Practical Data Compression for
Modern Memory Hierarchies

Gennady Pekhimenko

Committee:

Todd Mowry (Co-chair)

Onur Mutlu (Co-chair)

Kayvon Fatahalian

David Wood, University of Wisconsin-Madison
Doug Burger, Microsoft

Michael Kozuch, Intel

Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Performance and Energy Efficiency

Applications today are data-intensive

amazon
DynamoDB

Databases Graphics

Computation vs. Communication

Modern memory systems are
bandwidth constrained

Data movement is very costly

— Integer operation: ~1 pJ

— Floating operation: ~20 p)J

— Low-power memory access: ~1200 pJ
Implications

— % bandwidth of modern mobile phone memory
exceeds power budget

— Transfer less or keep data near processing units

Data Compression across the System

Processor

Cache

Memory

Software vs. Hardware Compression

Software vs. Hardware

Layer Disk Cache/Memory

Latency milliseconds nanoseconds

Algorithms Dictionary-based Arithmetic

Existing dictionary-based algorithms are too slow
for main memory hierarchies 5

Key Challenges for Compression in
Memory Hierarchy

* Fast Access Latency

* Practical Implementation and Low Cost

* High Compression Ratio

Thesis Statement

It is possible to develop a new set of designs for
data compression within modern memory
hierarchies that is:

v Fast
v'Simple
v Effective
in saving storage space and consumed bandwidth

so that the resulting improvements in
performance, cost, and energy efficiency will make
it attractive to implement in future systems

Contributions of This Dissertation

* Base-Delta-Immediate (BDI) Compression
algorithm with low latency and high compression
ratio

 Compression-Aware Management Policies
(CAMP) that incorporate compressed block size
into cache management decisions

* Linearly Compressed Pages (LCP) framework for
efficient main memory compression

* Toggle-Aware Bandwidth compression
mechanisms for energy-efficient bandwidth
compression

Practical Data Compression in Memory

. ﬁ ﬁ 1. Cache Compression
2. mpregg&n!
ache Replace

HPCA
2015

3. Memory Compressmn

MICRO

4. Bandwidt °.}SCA
Compression 2016

1. Cache Compression

PACT
2012

10

Background on Cache Compression

Hit Hit
(3-4 cycles) (~15 cycles)

>

Uncompressed pression Compressed

* Key requirement:

— Low decompression latency

11

Key Data Patterns in Real Applications

Zero Values: initialization, sparse matrices, NULL pointers

0x00000000 | 0x00000000 | 0x00000000 | 0x00000000 _

Repeated Values: common initial values, adjacent pixels

0x000000€0 | 0x000000€0 | 0x000000€0 | 0x000000C0O _

Narrow Values: small values stored in a big data type

0x000000€0 | 0x000000€8 | 0x000000D0 | 0x000000D8 _

Other Patterns: pointers to the same memory region

0xC04039€0 | 0xco4039¢8 | 0xco4039p0 | 0xC04039D8 _

How Common Are These Patterns?

SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

__100%
X m Zero
o 80%
o B Repeated Values
= 60% 239
3 1000 Other Patterns 3%
@ () B
()
<
8 20%
O
0% ||_|._|_.||
Y 7, R - S c
EEECS oS3 eSS E8EE88258E2E 8
+= C -0 o =90 Ngs .= g g g<o <t'm<D s
o Q_WC_,_,LU.Q_,_,U,Q_O o O e LD:U,I-IU-)
S g Z5 Qo s 2 = F Y352 g
o o Tc 00 0O o =
= x SO <

43% of the cache lines belong to key patterns 13

Key Data Patterns in Real Applications

Zero Values: initialization, sparse matrices, NULL pointers

0x00000000 | 0x00000000 | 0x00000000 | 0x00000000 _

Repeated Values: common initial values, adjacent pixels

0x000000€0 | 0x000000€0 | 0x000000€0 | 0x000000C0O _

Narrow Values: small values stored in a big data type

0x000000€0 | 0x000000€8 | 0x000000D0 | 0x000000D8 _

Other Patterns: pointers to the same memory region

0xC04039€0 | 0xco4039¢8 | 0xco4039p0 | 0xC04039D8 _

Key Data Patterns in Real Applications

Low Dynamic Range:
Differences between values are significantly

smaller than the values themselves

* Low Latency Decompressor
* Low Cost and Complexity Compressor
 Compressed Cache Organization

15

Key Idea: Base+Delta (B+A) Encoding

4 bytes

32-byte Uncompressed Cache Line

0xC04039C0 | 0xC04039C8 | 0xC04039D0 _ 0xCO4039F8

12-byte

Compressed Cache Line

1 byte 1byte 1 byte

20 bytes saved
v’ Effective: good compression ratio

16

B+A Decompressor Design

Compressed Cache Line

Bo Bo Bo I30
OlOJOL0:
0 1 2 V3

Uncompressed Cache Line

v’ Fast Decompression: 1-2 cycles
17

Can We Get Higher Compression Ratio?

* Uncompressible cache line (with a single base):

0x09A40178 | 0x00000000 | 0x09A4A838 | 0x00000008B _

struct A {
int* next;
* Key idea - use more bases int count;};

— More cache lines can be compressed
— Unclear how to find these bases efficiently
— Higher overhead (due to additional bases)

18

B+A with Multiple Arbitrary Bases

1.8
1.7
1.6
1.5
1.4 -
1.3 -
1.2 -
1.1 -

1 -

of bases
is fixed

Compression Ratio

H] w2 E3 mE4 m8 m10 16

v’ 2 bases — empirically the best option

19

How to Find Two Bases Efficiently?

1. First base - first element in the cache line

v Base+Delta part

2. Second base - implicit base of 0

v Immediate part
Base-Delta-Immediate (BAl) Compression

20

BAI Cache Organlzatlon

Way, Way, Way, Way,

BAI: 4-way cache with 8-byte segmented data

8 bytes
Tag Storage: Y
Set,

Set

Set, Tag,

Way, Way, Way, Way,

0 51 i S5 S3 ASAA §_5 p S6 o/ bits ‘
I y N | \"n'pF

‘ v Twice %sﬁiléagys tagsp‘to multiple adjacent segments ‘ 21

Methodology

e Simulator
— x86 event-driven simulator (MemSim [Seshadri+, PACT’12])

 Workloads
— SPEC2006 benchmarks, TPC, Apache web server
— 1 -4 core simulations for 1 billion representative instructions

* System Parameters
— L1/L2/L3 cache latencies from CACTI
— BDI (1-cycle decompression)
— 4GHz, x86 in-order core, cache size (1MB - 16 MB)

Comparison Summary

Prior Work vs. BAI

Comp. Ratio 1.51 1.53
Decompression 5-9 cycles 1-2 cycles
Compression 3-10+ cycles 1-9 cycles

Average performance of a twice larger cache
23

1. Cache Compression

2. Compression and
Cache Replacement

3. Memory Compression

4. Bandwidth
Compression

24

e

2. Compression and Cache Replacement

25

Cache Management Background

* Not only about size
— Cache management policies are important
— Insertion, promotion and eviction

ize blocks

8 Access stream:| X A Y B C
Y\

26

Block Size Can Indicate Reuse

e Sometimes there is a relation between the
compressed block size and reuse distance

compressed]
{ data block size

structure
reuse
distance

* This relation can be detected through the
compressed block size

 Minimal overhead to track this relation (compressed
block information is a part of design)

Code Example to Support Intuition

int A[N]; // small indices: compressible
double B[16]; // FP coefficients: incompressible
for (int i=0; i<N; i++) {
int idx = - long reuse, compressible
for (int j=0; j<N; j++) {
sum += B[(idx+j)%16];]

J

! short reuse, incompressible

Compressed size can be an indicator of reuse distance

Block Size Can Indicate Reuse

o))
o
o
-

AN
o
o
-

N
o
o
-

Reuse Distance
(# of memory accesses)

o

Block size, bytes

Different sizes have different dominant reuse distances

29

Compression-Aware Management
Policies (CAMP)

CAMP

SIP: MVE:
Size-based Minimal-Value
Insertion Policy Eviction

compressed]
W block size
ey L, RS e il

Th¥dlgpefi
additional

pression - 2X

distance

2. Compression and
Cache Replacement

3. Memory Compression

4. Bandwidth
Compression

31

MICRO
2013

3. Main Memory Compression

32

Challenges in Main Memory Compression

1. Address Computation

2. Mapping and Fragmentation

Address Computation

> Cache Line (64B)

Pane HC T Y R

Address Offset b 64 128 (N-i)*64

Compressed
P | b]

Page

Address Offset 0 ? ? ?

34

Mapping and Fragmentation

Virtual Page
4KB
() ‘ ‘ Virtual
\ ‘ Address
Physical
°8 , Address

Physical Page \\":\ _
(? KB) Fragmentation

35

Shortcomings of Prior Work

611+]{ (], Compression | Address | Decompression | Complexity
Mechanisms and Cost

IBM MXT v X X S
[IBM J.R.D. ’01] 64 cycles

36

Shortcomings of Prior Work

611+ J{=3 <], Compression | Address | Decompression | Complexity
Mechanisms and Cost

IBM MXT
[IBM J.R.D. "01]

Robust Main

Memory

Compression v X v X
[ISCA’05] 5 cycles

37

Shortcomings of Prior Work

611+ J{=3 <], Compression | Address | Decompression | Complexity
Mechanisms and Cost

IBM MXT
[IBM J.R.D. "01]

Robust Main
Memory

Compression v X v X
[ISCA’05]

Linearly
Compressed

Pages: \/ \/ \/ \/

Our Proposal
38

Linearly Compressed Pages (LCP): Key Idea

Uncompressed Page (4KB: 64*64B)

g
wnt®
nn®
an
an®
s
e
wn®
s
.n
et
an
T
wut
nen®
e
wn®
s

.
e
wut
ne®
e
wn®
s
Ty
wnt
an
e
wut
ne®
e
wn®
wn®
wn®
.

4:1 Compression

LCP sacrifices some compression
ratio in favor of design simplicity

Compressed Data
(1KB) v" LCP effectively solves challenge 1:

address computation

LCP:

r
pressed Page (4KB: 64

64B
64
B _| 648 | o4B
... | 648

COm
pres
(1KB) sed Data

Exception
StOrage

M
Y eradat toas)
mpreSSibIe) .

40

LCP Framework Overview

e Page Table entry extension PTE

e compression type and size I

e OS support for multiple page sizes
e 4 memory pools (512B, 1KB, 2KB, 4KB)

e Handling uncompressible data

e Hardware support
e memory controller logic
e metadata (MD) cache

Physical Memory Layout

Page Table

1KB | 1B

42

LCP Optimizations

 Metadata cache
* Avoids additional requests to metadata
 Memory bandwidth reduction:

1 transfer
648 D]]] instead of 4

e Zero pages and zero cache lines
 Handled separately in TLB (1-bit) and in metadata
(1-bit per cache line)

43

Summary of the Results

Prior Work vs. LCP

Comp. Ratio 1.59 1.62

Performance -4% +14%

Energy Consumption 16% 5%

1. Cache Compression

2. Compression and
Cache Replacement

3. Memory Compression

4. Bandwidth
Compression

45

HPCA
2016

CAL
2015

4. Energy-Efficient Bandwidth
Compression

46

Energy Efficiency: Bit Toggles

How energy is spent in data transfers:
Previous data: 0011 New data: 0101

0 Energy = C*\2] Energy:

2 > Bit Toggles

1

Energy of data transfers (e.g., NoC, DRAM) is
proportional to the bit toggle count

47

Excessive Number of Bit Toggles

Uncompressed Cache Line

OxO0003A00 0x38001D0O0O0 I OxO0003A01 0x8001D008 I

Flit 0

Flit 1

T0R
~oooo0odip-_o0od]__] # Toggles = 2

Compressed Cache Line

_[0x5[0x3A00 _ |0x78001D000_[0x5|0x3A01 _ [0x7|8001D008 1~

5 3A00 7 8001D000 5 1D Flit 0

101 78001D008 5 3A02 1 Flit 1

| 001bq111y.. [110100d11000 | # Toggles = 31 48

Effect of Compression on Bit Toggles

-
(S
(T

a

el N
m N D O ONN

O

(00)
FPC [
BDI |mmmam

Normalized Bit Toggle #

FPC [——
BD| [E——

Fibonacci s
C-Pack |[mmmam
FPC |mam
C-Pack s

BDI+FPC |

Fibonacci

BDI+FPC s

-—— U * =
Q a O
(a8] (T P

£ S .

o) (@)
o =2
Ll

Discrete Mobile Open-Source

Compression significantly increases bit toggle count

Energy Control

* Bit toggle count: compressed vs.
uncompressed

e Use a heuristic (Energy X Delay or Energy X
Delay? metric) to estimate the trade-off

e Take bandwidth utilization into account

* Throttle compression when it is not beneficial

Methodology

 Simulator: GPGPU-Sim 3.2.x and in-house simulator

 Workloads:

— NVIDIA apps (discrete and mobile): 221 apps
— Open-source (Lonestar, Rodinia, MapReduce): 21 apps

* System parameters (Fermi):
— 15 SMs, 32 threads/warp
— 48 warps/SM, 32768 registers, 32KB Shared Memory
— Core: 1.4GHz, GTO scheduler, 2 schedulers/SM
— Memory: 177.4GB/s BW, GDDR5
— Cache: L1 - 16KB; L2 - 768KB

Effect of EC on Bit Toggle Count

B Without EC B With EC

=

g2.2

S 2

o 1.8

1.6

o114 ‘

= 1.2 |

0 1 —Re—Aer—E—Ae—A—l S —— S — R — R — R r— !

Tog (MM W NN NN NN BN NN NN NN NN NN NN NW WY W

o O X O T X VU ® O § XU & O §g <X

s EREFFEBETEERE R
—] — 1 -— o 1

g g é o 8 é o g _E o
Discrete Mobile Open-Source

v’ EC significantly reduces the bit toggle count
v" Works for different compression algorithms

Effect of EC on Compression Ratio

B Without EC B With EC

A3ed-D
122euoqid
Jd4+idgd
1ad

Jdd

Open-Source

Hoed-d
120euUO0qi
Jd4+1dg
idg

Jdd

Mobile

)ded-)
122eUOqI4
Jd4+idd

iag

Jd4d

Discrete

oney uoissaidwo)

EC preserves most of the benefits of compression

Acknowledgments

 Todd Mowry and Onur Mutlu

* Phil Gibbons and Mike Kozuch

e Kayvon Fatahalian, David Wood, and Doug Burger
 SAFARI and LBA group members

* Collaborators at CMU, MSR, NVIDIA and GaTech

* CALCM and PDL

* Deb Cavlovich

* Family and friends

Conclusion

* Data stored in memory hierarchies has significant
redundancy

— Inefficient usage of existing limited resources
* Simple and efficient mechanisms for hardware-
based data compression
— On-chip caches
— Main memory
— On-chip/off-chip interconnects

* Our mechanisms improve performance, cost and
energy efficiency

55

Practical Data Compression for
Modern Memory Hierarchies

Gennady Pekhimenko

Committee:

Todd Mowry (Co-chair)

Onur Mutlu (Co-chair)

Kayvon Fatahalian

David Wood, University of Wisconsin-Madison
Doug Burger, Microsoft

Michael Kozuch, Intel

Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy

