
Providing High and Predictable Performance
in Multicore Systems

Through Shared Resource Management

Thesis Defense

Lavanya Subramanian

1

Committee:
Advisor: Onur Mutlu

Greg Ganger
James Hoe

Ravi Iyer (Intel)

The Multicore Era

2

Main
MemoryCacheCore

The Multicore Era

3

Main
Memory

Shared
Cache

CoreCore

CoreCore

Interconnect

Multiple applications execute in parallel
High throughput and efficiency

Challenge:
Interference at Shared Resources

4

Main
Memory

Shared
Cache

CoreCore

CoreCore

Interconnect

Impact of
Shared Resource Interference

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

S
lo

w
d

o
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

S
lo

w
d

o
w

n

2. Unpredictable application slowdowns
1. High application slowdowns

5

gcc (core 1) mcf (core 1)

Why Predictable Performance?

• There is a need for predictable performance
– When multiple applications share resources
– Especially if some applications require performance

guarantees

• Example 1: In server systems
– Different users’ jobs consolidated onto the same server
– Need to provide bounded slowdowns to critical jobs

• Example 2: In mobile systems
– Interactive applications run with non-interactive applications
– Need to guarantee performance for interactive applications

6

Thesis Statement

High and predictable performance

can be achieved in multicore systems through
simple/implementable mechanisms to

mitigate and quantify shared resource interference

7

Goals

Approaches

Goals and Approaches

8

Goals:
1. High Performance

2. Predictable Performance

Mitigate Interference Quantify Interference

Approaches:

Focus Shared Resources in This Thesis

9

Main
Memory

Shared
Cache

Capacity

CoreCore

CoreCore

Interconnect
Main Memory

Bandwidth

Related Prior Work

10

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

CQoS (ICS ‘04), UCP
(MICRO ‘06), DIP (ISCA

‘07), DRRIP (ISCA ‘10),
EAF (PACT ‘12)

STFM (MICRO ’07),

PARBS (ISCA ’08), ATLAS
(HPCA ’10), TCM (MICRO

’11), Criticality-aware
(ISCA ‘’13)

Challenge:
High complexity

PCASA (DATE ’12),

Ubik (ASPLOS ’14)

Goal: Meet resource
allocation target

STFM (MICRO ’07)

Challenge:
High inaccuracy

FST (ASPLOS ’10),

PTCA (TACO ’13)

Challenge:
High inaccuracy

Much explored
Not our focus

Not our focus

Outline

11

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

Much explored
Not our focus

Blacklisting
Memory Scheduler

Not our focus

Memory
Interference induced

Slowdown Estimation
Model

and its uses

Application
Slowdown

Model
and its uses

Outline

12

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

Much explored
Not our focus

Blacklisting
Memory Scheduler

Not our focus

Memory
Interference induced

Slowdown Estimation
Model

and its uses

Application
Slowdown

Model
and its uses

Background: Main Memory

• FR-FCFS Memory Scheduler [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]

– Row-buffer hit first

– Older request first

• Unaware of inter-application interference

Row
Buffer

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Row
Buffer

Row
Buffer

R
o

w
s

Columns

Channel
Memory

Controller

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

13

Row-buffer hitRow-buffer miss

Tackling Inter-Application Interference:
Application-aware Memory Scheduling

14

Monitor Rank

Highest
Ranked AID

Enforce
Ranks

Full ranking increases
critical path latency and area

significantly to improve
performance and fairness

4

3

2

1
2

4

3

1

Req 1 1
Req 2 4
Req 3 1
Req 4 1
Req 5 3

Req 7 1
Req 8 3

Request Buffer

Req 5 2

Request
App. ID

(AID)

=

=

=

=

=

=

=

=

Performance vs. Fairness vs. Simplicity

15

Performance

Fairness

Simplicity

FRFCFS

PARBS

ATLAS

TCM

Blacklisting

Ideal

App-unaware

App-aware
(Ranking)

Our Solution
(No Ranking)

Is it essential to give up simplicity to
optimize for performance and/or fairness?

Our solution achieves all three goals
Very Simple

Low performance
and fairness

Complex

Our Solution

Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity

2. Full ranking causes unfair slowdowns

16

Our Goal: Design a memory scheduler with
Low Complexity, High Performance, and Fairness

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

17

Benefit 1: Low complexity compared to ranking

Group

Vulnerable
Interference

Causing

>

Monitor Rank

4

3

2

1
2

4

3

1

4

2

3

1

Benefit 2: Lower slowdowns than ranking

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

18

Group

Vulnerable
Interference

Causing

>

Monitor Rank

4

3

2

1
2

4

3

1

4

2

3

1

How to classify applications into groups?

Key Observation 2

Observation 2: Serving a large number of consecutive
requests from an application causes interference

Basic Idea:
• Group applications with a large number of consecutive

requests as interference-causing Blacklisting
• Deprioritize blacklisted applications
• Clear blacklist periodically (1000s of cycles)

Benefits:
• Lower complexity
• Finer grained grouping decisions  Lower unfairness

19

The Blacklisting Memory Scheduler (ICCD ‘14)

20

1. Monitor

Memory
Controller

AID2 0 0

AID Blacklist

1 0
2 0

3 0

AID1AID1AID1AID1

1
Last Req AID 3

Consecutive
Requests

1

21

2344

2. Blacklist

Memory
Controller

Last Req AID 3

Consecutive
Requests

1

2. Blacklist

0 0

AID Blacklist

1
2 0
3 0

1

1. Monitor

Req Blacklist

Req 1 0
Req 2 1

Req 3 1
Req 4 0
Req 5 0

Req 6 0
Req 7 1
Req 8 0

Request Buffer

?

?

?

3. Prioritize

4. Clear
Periodically

0

Simple and scalable design

3. Prioritize

4. Clear
Periodically

1. Monitor

?

?

?

?

?

Methodology

• Configuration of our simulated baseline system
– 24 cores

– 4 channels, 8 banks/channel

– DDR3 1066 DRAM

– 512 KB private cache/core

• Workloads
– SPEC CPU2006, TPC-C, Matlab , NAS

– 80 multiprogrammed workloads

21

Performance and Fairness

22

1

3

5

7

9

11

13

15

1 3 5 7 9

U
n

fa
ir

n
e

ss

Performance

FRFCFS FRFCFS-Cap PARBS

ATLAS TCM Blacklisting

5%
21%

(Higher is better)

(L
o

w
er

 is
 b

et
te

r)

1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness

Complexity

23

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12

Sc
h

e
d

u
le

r
A

re
a

(s
q

. u
m

)

Critical Path Latency (ns)

FRFCFS FRFCFS-Cap PARBS

ATLAS TCM Blacklisting

43%

70%

Blacklisting reduces complexity significantly

Outline

24

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

Much explored
Not our focus

Blacklisting
Memory Scheduler

Not our focus

Memory
Interference induced

Slowdown Estimation
Model

and its uses

Application
Slowdown

Model
and its uses

Impact of Interference on Performance

25

Alone
(No interference)

time

Execution time

Shared
(With interference)

time

Execution time

Impact of
Interference

Slowdown: Definition

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown 

26

Impact of Interference on Performance

27

Alone
(No interference)

time

Execution time

Shared
(With interference)

time

Execution time

Impact of
Interference

Previous Approach: Estimate impact of
interference at a per-request granularity

Difficult to estimate due to request overlap

Outline

28

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

Much explored
Not our focus

Blacklisting
Memory Scheduler

Not our focus

Memory
Interference induced

Slowdown Estimation
Model

and its uses

Application
Slowdown

Model
and its uses

Observation: Request Service Rate
is a Proxy for Performance

For a memory bound application,
Performance  Memory request service rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Request Service Rate

omnetpp

mcf

astar

Shared

Alone

 Rate ServiceRequest

 Rate ServiceRequest
Slowdown 

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown 

Easy

Difficult

Intel Core i7, 4 cores

29

Observation: Highest Priority Enables
Request Service Rate Alone Estimation

Request Service Rate Alone (RSRAlone) of an
application can be estimated by giving the

application highest priority at the
memory controller

Highest priority  Little interference

(almost as if the application were run alone)

30

Observation: Highest Priority Enables
Request Service Rate Alone Estimation

Request Buffer State

Main
Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State

Main
Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State

Main
Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

31

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest

)(RSR Rate ServiceRequest
Slowdown

SharedShared

AloneAlone


32

Observation: Memory Bound vs.
Non-Memory Bound

• Memory-bound application

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time

Req

Req

Req Req

Req Req

33

Observation: Memory Bound vs.
Non-Memory Bound

• Non-memory-bound application

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

1



1

Shared

Alone

RSR

RSR


Shared

Alone

RSR

RSR
) - (1 Slowdown  

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

34

Interval Based Operation

time

Interval



Estimate

slowdown

Interval

Estimate

slowdown

 Measure RSRShared,

 Estimate RSRAlone

 Measure RSRShared,

 Estimate RSRAlone

35

Previous Work on
Slowdown Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 Time Stall

 Time Stall
 Slowdown 

Count number of cycles application receives interference
36

Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1066 DRAM

– 512 KB private cache/core

• Workloads
– SPEC CPU2006

– 300 multi programmed workloads

37

Quantitative Comparison

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

MISE

SPEC CPU 2006 application
leslie3d

38

Comparison to STFM

cactusADM

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

GemsFDTD

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

soplex

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

wrf

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

calculix

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

39

Possible Use Cases of the MISE Model

• Bounding application slowdowns [HPCA ’13]

• Achieving high system fairness and
performance [HPCA ’13]

• VM migration and admission control schemes
[VEE ’15]

• Fair billing schemes in a commodity cloud

40

MISE-QoS: Providing
“Soft” Slowdown Guarantees

• Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

• Basic Idea

– Allocate just enough bandwidth to QoS-critical
application

– Assign remaining bandwidth to other applications

41

Methodology

• Each application (25 applications in total)
considered the QoS-critical application

• Run with 12 sets of co-runners of different memory
intensities

• Total of 300 multi programmed workloads

• Each workload run with 10 slowdown bound values

• Baseline memory scheduling mechanism
– Always prioritize QoS-critical application

[Iyer et al., SIGMETRICS 2007]

– Other applications’ requests scheduled in FR-FCFS order
[Zuravleff and Robinson, US Patent 1997, Rixner+, ISCA 2000]

42

A Look at One Workload

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

S
lo

w
d

o
w

n AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

QoS-critical non-QoS-critical

Slowdown Bound = 10
Slowdown Bound = 3.33

Slowdown Bound = 2

43

MISE is effective in
1. meeting the slowdown bound for the QoS-critical

application
2. improving performance of non-QoS-critical

applications

Effectiveness of MISE in Enforcing QoS

Predicted
Met

Predicted
Not Met

QoS Bound
Met

78.8% 2.1%

QoS Bound
Not Met

2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not the bound is
met for 95.7% of workloads

44

Performance of Non-QoS-Critical Applications

Higher performance when bound is looseWhen slowdown bound is 10/3
MISE-QoS improves system performance by 10%

45

0

0.2

0.4

0.6

0.8

1

S
y
s
te

m

P
e

rf
o

rm
a

n
c
e AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

Outline

46

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

Much explored
Not our focus

Blacklisting
Memory Scheduler

Not our focus

Memory
Interference induced

Slowdown Estimation
Model

and its uses

Application
Slowdown

Model
and its uses

Shared Cache Capacity Contention

47

Main
Memory

Shared
Cache

Capacity

CoreCore

CoreCore

Cache Capacity Contention

48

Main
Memory

Shared
Cache

Cache
Access Rate

Priority

Core

Core

Applications evict each other’s blocks
from the shared cache

Outline

49

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

Much explored
Not our focus

Blacklisting
Memory Scheduler

Not our focus

Memory
Interference induced

Slowdown Estimation
Model

and its uses

Application
Slowdown

Model
and its uses

Estimating Cache and Memory Slowdowns

50

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Memory
Service Rate

Service Rates vs. Access Rates

51

Request service and access rates are tightly coupled

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Cache Access
Rate

The Application Slowdown Model

52

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Shared

Alone

 Rate Access Cache

 Rate Access Cache
Slowdown 

Cache Access
Rate

Real System Studies:
Cache Access Rate vs. Slowdown

53

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
o

w
d

o
w

n

Cache Access Rate Ratio

astar

lbm

bzip2

Challenge

How to estimate alone cache access rate?

54

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Auxiliary Tag Store

55

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Core

Core

Still in auxiliary
tag store

Auxiliary
Tag StoreAuxiliary tag store tracks such contention misses

Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not

count as high priority cycles

56

 CyclesPriority High #

EpochsPriority High During Requests #

nApplicatioan of Rate ServiceRequest Alone



Alone Cache Access Rate Estimation

57

Cycles Contention Cache# - CyclesPriority High #

EpochsPriority High During Requests #

nApplicatioan of Rate Access Cache

Alone 

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory Average

 x Misses Contention # Cycles Contention Cache 

From auxiliary tag store
when given high priority

Measured when given
high priority

Application Slowdown Model (ASM)

58

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Shared

Alone

 Rate Access Cache

 Rate Access Cache
Slowdown 

Previous Work on Slowdown
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution

 TimeExecution
 Slowdown 

Count interference experienced by each request
59

Model Accuracy Results

Average error of ASM’s slowdown estimates: 10%

60

Select applications

0

20

40

60

80

100

120

140

160

ca
lc

u
lix

p
o

vr
ay

to
n

to

n
am

d

d
ea

lII

sj
en

g

p
er

lb
en

…

go
b

m
k

xa
la

n
cb

…

sp
h

in
x3

G
em

sF
…

o
m

n
et

p
p

lb
m

le
sl

ie
3

d

so
p

le
x

m
ilc

lib
q

m
cf

N
P

B
b

t

N
P

B
ft

N
P

B
is

N
P

B
u

a

A
ve

ra
ge

Sl
o

w
d

o
w

n
 E

st
im

at
io

n

Er
ro

r
(i

n
 %

)

FST PTCA ASM

Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high
performance and fairness

• Slowdown-aware resource allocation to bound
application slowdowns

• VM migration and admission control schemes
[VEE ’15]

• Fair billing schemes in a commodity cloud

61

Cache Capacity Partitioning

62

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the shared cache among
applications to mitigate contention

Cache Capacity Partitioning

63

Main
Memory

Core

Core

Way
2

Set 0
Set 1
Set 2
Set 3

..

Set N-1

Way
0

Way
1

Way
3

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

ASM-Cache: Slowdown-aware
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all
possible way partitions

• Extend ASM to estimate slowdown for all
possible cache way allocations

• Key Idea: Allocate each way to the application
whose slowdown reduces the most

64

Memory Bandwidth Partitioning

65

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the main memory bandwidth
among applications to mitigate contention

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to
an application’s slowdown

• Application i’s requests given highest priority
at the memory controller for its fraction

66




j
j

i
i

Slowdown

Slowdown
 FractionPriority High

Coordinated Resource
Allocation Schemes

67

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

68

16-core system
100 workloads

Significant fairness benefits across different channel counts

4

5

6

7

8

9

10

11

1 2

Fa
ir

n
es

s
(L

o
w

er
 is

 b
et

te
r)

Number of Channels

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2

P
er

fo
rm

an
ce

Number of Channels

FRFCFS-NoPart

FRFCFS+UCP

TCM+UCP

PARBS+UCP

ASM-Cache-Mem

Outline

69

Mitigate
Interference

Quantify
Interference

Cache
Capacity

Memory
Bandwidth

Much explored
Not our focus

Blacklisting
Memory Scheduler

Not our focus

Memory
Interference induced

Slowdown Estimation
Model

and its uses

Application
Slowdown

Model
and its uses

Thesis Contributions

• Principles behind our scheduler and models
– Simple two-level prioritization sufficient to

mitigate interference

– Request service rate a proxy for performance

• Simple and high-performance memory
scheduler design

• Accurate slowdown estimation models

• Mechanisms that leverage our slowdown
estimates

70

Summary

• Problem: Shared resource interference causes high and
unpredictable application slowdowns

• Goals: High and predictable performance

• Approaches: Mitigate and quantify interference

• Thesis Contributions:
1. Principles behind our scheduler and models
2. Simple and high-performance memory scheduler
3. Accurate slowdown estimation models
4. Mechanisms that leverage our slowdown estimates

71

Future Work

• Leveraging slowdown estimates at the system and
cluster level

• Interference estimation and performance predictability
for multithreaded applications

• Performance predictability in heterogeneous systems

• Coordinating the management of main memory and
storage

72

Research Summary

• Predictable performance in multicore systems
[HPCA ’13, SuperFri ’14, KIISE ’15]

• High and predictable performance in heterogeneous systems
[ISCA ’12, SAFARI Tech Report ’15]

• Low-complexity memory scheduling [ICCD ’14]

• Memory channel partitioning [MICRO ’11]

• Architecture-aware cluster management [VEE ’15]

• Low-latency DRAM architectures [HPCA ’13]

73

Backup Slides

74

Blacklisting

75

Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity

2. Full ranking causes unfair slowdowns

76

Ranking Increases Hardware Complexity

77

Highest
Ranked AID

Enforce
Ranks

Req 1 1
Req 2 4
Req 3 1
Req 4 1
Req 5 3

Req 7 1
Req 8 3

Request Buffer

Req 5 4

Request
App. ID

(AID)

Next Highest
Ranked AID

Monitor Rank

4

3

2

1
2

4

3

1

=

=

=

=

=

=

=

=

Hardware complexity increases with
application/core count

78

0

1

2

3

4

5

6

7

8

9

C
ri

ti
ca

l P
at

h
 L

at
e

n
cy

 (
in

 n
s)

App-unaware

App-aware

0

10000

20000

30000

40000

50000

60000

70000

80000

Sc
h

e
d

u
le

r
A

re
a

(i
n

 s
q

u
ar

e
 u

m
)

App-unaware

App-aware

Ranking Increases Hardware Complexity

8x

1.8x

Ranking-based application-aware schedulers
incur high hardware cost

From synthesis of RTL implementations using a 32nm library

Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity

2. Full ranking causes unfair slowdowns

79

Ranking Causes Unfair Slowdowns

80

GemsFDTD

0

10

20

30

0 20 40 60 80 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

App-unaware

Ranking

GemsFDTD (high memory intensity)

sjeng

0

10

20

30

0 20 40 60 80 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

App-unaware

Ranking

sjeng (low memory intensity)

0

10

20

30

0 20 40 60 80 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

App-unaware

Ranking

Full ordered ranking of applications
GemsFDTD denied request service

Ranking Causes Unfair Slowdowns

81

0

1

2

3

4

5

6

7

8

Sl
o

w
d

o
w

n

App-unaware

Ranking

0

1

2

3

4

5

6

7

8

Sl
o

w
d

o
w

n

App-unaware

Ranking

Ranking-based application-aware schedulers
cause unfair slowdowns

GemsFDTD
(high memory intensity)

sjeng
(low memory intensity)

Key Observation 1: Group Rather Than Rank

82

GemsFDTD (high memory intensity)

sjeng (low memory intensity)

0

10

20

30

0 20 40 60 80 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

App-unaware

Ranking

Grouping

0

10

20

30

0 20 40 60 80 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

App-unaware

Ranking

Grouping

No unfairness due to denial of request service

83

Key Observation 1: Group Rather Than Rank

0

1

2

3

4

5

6

7

8

Sl
o

w
d

o
w

n

App-unaware

Ranking

Grouping

0

1

2

3

4

5

6

7

8

Sl
o

w
d

o
w

n

App-unaware

Ranking

Grouping

Benefit 2: Lower slowdowns than ranking

GemsFDTD
(high memory intensity)

sjeng
(low memory intensity)

Previous Memory Schedulers

• FRFCFS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

– Prioritizes row-buffer hits and older requests

• FRFCFS-Cap [Mutlu and Moscibroda, MICRO 2007]

– Caps number of consecutive row-buffer hits

• PARBS [Mutlu and Moscibroda, ISCA 2008]

– Batches oldest requests from each application; prioritizes batch
– Employs ranking within a batch

• ATLAS [Kim et al., HPCA 2010]

– Prioritizes applications with low memory-intensity

• TCM [Kim et al., MICRO 2010]

– Always prioritizes low memory-intensity applications
– Shuffles thread ranks of high memory-intensity applications

84

Application-unaware
+ Low complexity

- Low performance and fairness

Application-aware
+ High performance and fairness

- High complexity

Performance and Fairness

85

5

7

9

11

13

15

7.5 8 8.5 9 9.5 10

U
n

fa
ir

n
e

ss

Performance

FRFCFS FRFCFS-Cap PARBS

ATLAS TCM Blacklisting

5%
21%

1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness

Performance vs. Fairness vs. Simplicity

86

Performance

Fairness

Simplicity

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Ideal

Highest
performance

Close to
simplest

Close to
fairest

Blacklisting is the closest scheduler to ideal

Summary

• Applications’ requests interfere at main memory
• Prevalent solution approach

– Application-aware memory request scheduling

• Key shortcoming of previous schedulers: Full ranking
– High hardware complexity
– Unfair application slowdowns

• Our Solution: Blacklisting memory scheduler
– Sufficient to group applications rather than rank
– Group by tracking number of consecutive requests

• Much simpler than application-aware schedulers at
higher performance and fairness

87

Performance and Fairness

0

2

4

6

8

10

W
e

ig
h

te
d

 S
p

e
e

d
u

p FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

0

5

10

15

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

5% higher system performance and 21%
lower maximum slowdown than TCM

88

Complexity Results

Blacklisting achieves
70% lower latency than TCM

89

Blacklisting achieves
43% lower area than TCM

0

2

4

6

8

10

12

La
te

n
cy

 (
in

 n
s)

App-unaware

FRFCFS-Cap

PARBS

ATLAS

App-aware

Blacklisting

0

20000

40000

60000

80000

100000

120000

A
re

a
(i

n
 s

q
u

ar
e

u
m

) FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Understanding Why Blacklisting Works

0

0.1

0.2

0.3

0.4

0 10 20

Fr
ac

ti
o

n
 o

f
R

e
q

u
e

st
s

Streak Length

FRFCFS

PARBS

TCM

Blacklisting 0

0.1

0.2

0.3

0.4

0.5

0 10 20

Fr
ac

ti
o

n
 o

f
R

e
q

u
e

st
s

Streak Length

FRFCFS

PARBS

TCM

Blacklisting

libquantum
(High memory-intensity

application)

Blacklisting shifts the request distribution
towards the left

calculix
(Low memory-intensity

application)

Blacklisting shifts the request distribution
towards the right

90

Harmonic Speedup

91

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H
ar

m
o

n
ic

 S
p

e
e

d
u

p FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Effect of Workload Memory Intensity

92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

25 50 75 100 Avg

W
e

ig
h

te
d

 S
p

e
e

d
u

p

(N
o

rm
al

iz
e

d
)

0

0.5

1

1.5

2

25 50 75 100 Avg

M
ax

im
u

m
 S

lo
w

d
o

w
n

(N

o
rm

al
iz

e
d

) FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Combining FRFCFS-Cap and Blacklisting

93

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
e

ig
h

te
d

 S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

FRFCFS-Cap

Blacklisting

FRFCFS-Cap-
Blacklisting

Sensitivity to Blacklisting Threshold

94

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
e

ig
h

te
d

 S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

Blacklisting-1

Blaclisting-2

Blacklisting-4

Blacklisting-8

Blacklisting-16

Sensitivity to Clearing Interval

95

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
e

ig
h

te
d

 S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

Blacklisting-
1000

Blacklisting-
10000

Blacklisting-
100000

Sensitivity to Core Count

96

0

5

10

15

20

16 24 32 64

P
e

rf
o

rm
an

ce

Core Count

0

10

20

30

40

16 24 32 64

U
n

fa
ir

n
e

ss

Core Count

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Sensitivity to Channel Count

97

0

5

10

15

1 2 4 8

P
e

rf
o

rm
an

ce

Channel Count

0

50

100

150

1 2 4 8

U
n

fa
ir

n
e

ss

Channel Count

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Sensitivity to Cache Size

98

0

5

10

15

512KB 1MB 2MB

P
e

rf
o

rm
an

ce

0

5

10

15

512KB 1MB 2MB

U
n

fa
ir

n
e

ss

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Performance and Fairness with
Shared Cache

99

7

7.5

8

8.5

9

9.5

10

P
e

rf
o

rm
an

ce

0

5

10

15

20

U
n

fa
ir

n
e

ss

FRFCFS

FRFCFS-CAP

PARBS

ATLAS

TCM

Blacklisting

Breakdown of Benefits

100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
e

ig
h

te
d

 S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

TCM

Grouping

Blacklisting

BLISS vs. Criticality-aware Scheduling

101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
e

ig
h

te
d

 S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

PARBS

TCM

Crit-MaxStall

Crit-TotalStall

Blacklisting

Sub-row Interleaving

102

0

2

4

6

8

10

12

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS-Row

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

0

2

4

6

8

10

12

W
e

ig
h

te
d

 S
p

e
e

d
u

p

MISE

103

Measuring RSRShared and α

• Request Service Rate Shared (RSRShared)
– Per-core counter to track number of requests serviced
– At the end of each interval, measure

• Memory Phase Fraction ()
– Count number of stall cycles at the core
– Compute fraction of cycles stalled for memory

Length Interval

Served Requests ofNumber
 RSRShared 



104

Estimating Request Service Rate Alone (RSRAlone)

• Divide each interval into shorter epochs

• At the beginning of each epoch
– Randomly pick an application as the highest priority

application

• At the end of an interval, for each application,
estimate

PriorityHigh Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
RSR

Alone 

105

Goal: Estimate RSRAlone

How: Periodically give each application
highest priority in accessing memory

Inaccuracy in Estimating RSRAlone

106

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

• When an application has highest priority
– Still experiences some interference

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

Interference Cycles

High Priority

Accounting for Interference in
RSRAlone Estimation

• Solution: Determine and remove interference
cycles from RSRAlone calculation

• A cycle is an interference cycle if
– a request from the highest priority application is

waiting in the request buffer and

– another application’s request was issued previously

107

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
ARSR



MISE Operation: Putting it All Together

time

Interval



Estimate

slowdown

Interval

Estimate

slowdown

 Measure RSRShared,

 Estimate RSRAlone

 Measure RSRShared,

 Estimate RSRAlone

108

MISE-QoS: Mechanism to Provide Soft QoS

• Assign an initial bandwidth allocation to QoS-
critical application

• Estimate slowdown of QoS-critical application
using the MISE model

• After every N intervals

– If slowdown > bound B +/- ε, increase bandwidth allocation

– If slowdown < bound B +/- ε, decrease bandwidth allocation

• When slowdown bound not met for N intervals

– Notify the OS so it can migrate/de-schedule jobs
109

Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
a

rm
o

n
ic

 S
p

e
e

d
u

p

Number of Memory Intensive Applications

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

Higher performance when bound is looseWhen slowdown bound is 10/3
MISE-QoS improves system performance by 10%

110

Case Study with Two QoS-Critical Applications

• Two comparison points

– Always prioritize both applications

– Prioritize each application 50% of time

0

1

2

3

4

5

6

7

8

9

10

astar mcf leslie3d mcf

S
lo

w
d

o
w

n

AlwaysPrioritize

EqualBandwidth

MISE-QoS-10/1

MISE-QoS-10/2

MISE-QoS-10/3

MISE-QoS-10/4

MISE-QoS-10/5

MISE-QoS can achieve a lower slowdown bound
for both applications

MISE-QoS provides much lower slowdowns for
non-QoS-critical applications

111

Minimizing Maximum Slowdown

• Goal
– Minimize the maximum slowdown experienced by any

application

• Basic Idea
– Assign more memory bandwidth to the more slowed

down application

112

Mechanism

• Memory controller tracks
– Slowdown bound B

– Bandwidth allocation of all applications

• Different components of mechanism
– Bandwidth redistribution policy

– Modifying target bound

– Communicating target bound to OS periodically

113

Bandwidth Redistribution

• At the end of each interval,

– Group applications into two clusters

– Cluster 1: applications that meet bound

– Cluster 2: applications that don’t meet bound

– Steal small amount of bandwidth from each
application in cluster 1 and allocate to applications in
cluster 2

114

Modifying Target Bound

• If bound B is met for past N intervals
– Bound can be made more aggressive

– Set bound higher than the slowdown of most slowed down
application

• If bound B not met for past N intervals by more
than half the applications
– Bound should be more relaxed

– Set bound to slowdown of most slowed down application

115

Results: Harmonic Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 8 16

H
a

rm
o

n
ic

 S
p

e
e

d
u

p

Core Count

FRFCFS

ATLAS

TCM

STFM

MISE-Fair

116

Results: Maximum Slowdown

0

2

4

6

8

10

12

14

16

4 8 16

M
a

x
im

u
m

 S
lo

w
d

o
w

n

Core Count

FRFCFS

ATLAS

TCM

STFM

MISE-Fair

117

Sensitivity to Memory Intensity
(16 cores)

0

5

10

15

20

25

0 25 50 75 100 Avg

M
a

x
im

u
m

 S
lo

w
d

o
w

n

FRFCFS

ATLAS

TCM

STFM

MISE-Fair

118

MISE: Per-Application Error
Benchmark STFM MISE Benchmark STFM MISE

453.povray 56.3 0.1 473.astar 12.3 8.1

454.calculix 43.5 1.3 456.hmmer 17.9 8.1

400.perlbench 26.8 1.6 464.h264ref 13.7 8.3

447.dealII 37.5 2.4 401.bzip2 28.3 8.5

436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8

450.soplex 29.8 3.5 433.milc 26.4 9.5

444.namd 43.6 3.7 481.wrf 33.6 11.1

437.leslie3d 26.4 4.3 429.mcf 83.74 11.5

403.gcc 25.4 4.5 445.gobmk 23.1 12.5

462.libquantum 48.9 5.3 483.xalancbmk 18 13.6

459.GemsFDTD 21.6 5.5 435.gromacs 31.4 15.6

470.lbm 6.9 6.3 482.sphinx3 21 16.8

473.astar 12.3 8.1 471.omnetpp 26.2 17.5

456.hmmer 17.9 8.1 465.tonto 32.7 19.5
119

Sensitivity to Epoch and Interval
Lengths

1 mil. 5 mil. 10 mil. 25 mil. 50 mil.

1000 65.1% 9.1% 11.5% 10.7% 8.2%

10000 64.1% 8.1% 9.6% 8.6% 8.5%

100000 64.3% 11.2% 9.1% 8.9% 9%

1000000 64.5% 31.3% 14.8% 14.9% 11.7%

Interval
Length

Epoch
Length

120

Workload Mixes

Mix No. Benchmark 1 Benchmark 2 Benchmark 3

1 sphinx3 leslie3d milc

2 sjeng gcc perlbench

3 tonto povray wrf

4 perlbench gcc povray

5 gcc povray leslie3d

6 perlbench namd lbm

7 h264ref bzip2 libquantum

8 hmmer lbm omnetpp

9 sjeng libquantum cactusADM

10 namd libquantum mcf

11 xalancbmk mcf astar

12 mcf libquantum leslie3d
121

STFM’s Effectiveness in Enforcing QoS

Predicted
Met

Predicted
Not Met

QoS Bound
Met

63.7% 16%

QoS Bound
Not Met

2.4% 17.9%

Across 3000 data points

122

STFM vs. MISE’s System Performance

0.7

0.75

0.8

0.85

0.9

0.95

MISE STFM

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

QoS-10/1

QoS-10/3

QoS-10/5

QoS-10/7

QoS-10/9

123

MISE’s Implementation Cost

1. Per-core counters worth 20 bytes
• Request Service Rate Shared
• Request Service Rate Alone

– 1 counter for number of high priority epoch requests
– 1 counter for number of high priority epoch cycles
– 1 counter for interference cycles

• Memory phase fraction ()
2. Register for current bandwidth allocation – 4

bytes
3. Logic for prioritizing an application in each epoch



124

MISE Accuracy w/o Interference Cycles

• Average error – 23%

125

MISE Average Error by Workload Category

Workload Category (Number of
memory intensive applications)

Average Error

0 4.3%

1 8.9%

2 21.2%

3 18.4%

126

ASM

127

Impact of Cache Capacity Contention

128

Cache capacity interference causes high
application slowdowns

Shared Main Memory Shared Main Memory and Caches

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)
S

lo
w

d
o

w
n

Error with Sampling

129

Error Distribution

130

Impact of Prefetching

131

Sensitivity to
Epoch and Quantum Lengths

132

Sensitivity to Core Count

133

Sensitivity to Cache Capacity

134

Sensitivity to
Auxiliary Tag Store Sampling

135

ASM-Cache:
Fairness and Performance Results

136

Significant fairness benefits across different systems

0

5

10

15

4 8 16

Fa
ir

n
es

s
(L

o
w

e
r

is
 b

et
te

r)

Number of Cores

0

0.2

0.4

0.6

0.8

4 8 16

P
e

rf
o

rm
an

ce

Number of Cores

NoPart

UCP

ASM-Cache

ASM-Mem:
Fairness and Performance Results

137

0

5

10

15

20

4 8 16

Fa
ir

n
es

s
(L

o
w

er
 is

 b
et

te
r)

Number of Cores

0

0.2

0.4

0.6

0.8

4 8 16
P

e
rf

o
rm

an
ce

Number of Cores

FRFCFS

TCM

PARBS

ASM-Mem

Significant fairness benefits across different systems

ASM-QoS: Meeting Slowdown Bounds

138

0

0.5

1

1.5

2

2.5

3

3.5

4

h264ref mcf sphinx3 soplex

Sl
o

w
d

o
w

n

Naive-QoS

ASM-QoS-2.5

ASM-QoS-3

ASM-QoS-3.5

ASM-QoS-4

Previous Approach: Estimate
Interference Experienced Per-Request

139

Shared
(With interference) time

Execution time

Req A

Req B

Req C

Request Overlap Makes Interference
Estimation Per-Request Difficult

Estimating PerformanceAlone

140

Shared
(With interference)

Execution time

Req A

Req B

Req C
Request
Queued
Request
Served

Difficult to estimate impact of interference
per-request due to request overlap

Impact of Interference on Performance

141

Alone
(No interference)

time

Execution time

Shared
(With interference) time

Execution time

Impact of
Interference

Previous Approach: Estimate impact of
interference at a per-request granularity

Difficult to estimate due to request overlap

Application-aware
Memory Channel Partitioning

142

Goal:
Mitigate

Inter-Application Interference

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory Partitioning

and Scheduling

Observation: Modern Systems Have Multiple
Channels

A new degree of freedom

Mapping data across multiple channels

143

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Data Mapping in Current Systems

144

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Partitioning Channels Between Applications

145

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Integrated Memory
Partitioning and Scheduling

146

Goal:
Mitigate

Inter-Application Interference

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory Partitioning

and Scheduling

Slowdown/Interference Estimation in
Existing Systems

147

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

How do we detect/mitigate the impact of interference on
a real system using existing performance counters?

Our Approach: Mitigating
Interference in a Cluster

1. Detect memory bandwidth contention at
each host

2. Estimate impact of moving each VM to a
non-contended host (cost-benefit analysis)

3. Execute the migrations that provide the most
benefit

148

Architecture-aware DRM – ADRM
(VEE 2015)

149

VM

1

Kernel-based Virtual Machine

(KVM + QEMU)

App

Profiler

VM

2

App

VM

i

App

VM

i+1

App

PM1

VM

j

Kernel-based Virtual Machine

(KVM + QEMU)

App

Profiler

VM

j+1

App

VM

n-1

App

VM

n

App

PMM

… ……

Profiling

Engine

Contention

Detector

Recommendation

Engine

Actuation

Engine

AI-DRM

ADRM: Key Ideas and Results

• Key Ideas:

– Memory bandwidth captures impact of shared
cache and memory bandwidth interference

– Model degradation in performance as linearly
proportional to bandwidth increase/decrease

• Key Results:

– Average performance improvement of 9.67% on a
4-node cluster

150

QoS in Heterogeneous Systems

• Staged memory scheduling
– In collaboration with Rachata Ausavarungnirun,

Kevin Chang and Gabriel Loh

– Goal: High performance in CPU-GPU systems

• Memory scheduling in heterogeneous systems
– In collaboration with Hiroukui Usui

– Goal: Meet deadlines for accelerators while
improving performance

151

Performance Predictability in
Heterogeneous Systems

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

152

Accelerator

Accelerator

Goal of our Scheduler (SQUASH)

• Goal: Design a memory scheduler that
– Meets accelerators’ deadlines and

– Achieves high CPU performance

• Basic Idea:
– Different CPU applications and hardware

accelerators have different memory requirements

– Track progress of different agents and prioritize
accordingly

153

Key Observation:
Distribute Priority for Accelerators

• Accelerators need priority to meet deadlines

• Worst case prioritization not always the best

• Prioritize accelerators when they are not on
track to meet a deadline

154

Distributing priority mitigates impact of
accelerators on CPU cores’ requests

Key Observation:
Not All Accelerators are Equal

• Long-deadline accelerators are more likely to
meet their deadlines

• Short-deadline accelerators are more likely to
miss their deadlines

155

Schedule short-deadline accelerators
based on worst-case memory access time

Key Observation:
Not All CPU cores are Equal

• Memory-intensive cores are much less
vulnerable to interference

• Memory non-intensive cores are much more
vulnerable to interference

156

Prioritize accelerators over memory-intensive cores
to ensure accelerators do not become urgent

SQUASH: Key Ideas and Results

• Distribute priority for HWAs

• Prioritize HWAs over memory-intensive CPU
cores even when not urgent

• Prioritize short-deadline-period HWAs based
on worst case estimates

157

Improves CPU performance by 7-21%
Meets 99.9% of deadlines for HWAs

