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The Multicore Era
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The Multicore Era

3

Main 
Memory

Shared 
Cache

CoreCore

CoreCore

Interconnect

Multiple applications execute in parallel
High throughput and efficiency



Challenge:
Interference at Shared Resources
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Impact of 
Shared Resource Interference
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Why Predictable Performance?

• There is a need for predictable performance
– When multiple applications share resources 
– Especially if some applications require performance 

guarantees

• Example 1: In server systems
– Different users’ jobs consolidated onto the same server
– Need to provide bounded slowdowns to critical jobs 

• Example 2: In mobile systems
– Interactive applications run with non-interactive applications
– Need to guarantee performance for interactive applications
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Thesis Statement

High and predictable performance 

can be achieved in multicore systems through 
simple/implementable mechanisms to

mitigate and quantify shared resource interference
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Goals and Approaches
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Goals:
1. High Performance

2. Predictable Performance

Mitigate Interference Quantify  Interference

Approaches:



Focus Shared Resources in This Thesis
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Related Prior Work

10

Mitigate 
Interference

Quantify 
Interference

Cache 
Capacity

Memory 
Bandwidth

CQoS (ICS ‘04), UCP 
(MICRO ‘06), DIP (ISCA 

‘07), DRRIP (ISCA ‘10), 
EAF (PACT ‘12)

STFM (MICRO ’07), 

PARBS (ISCA ’08), ATLAS 
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Much explored
Not our focus
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Outline
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Background: Main Memory

• FR-FCFS Memory Scheduler [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]

– Row-buffer hit first

– Older request first

• Unaware of inter-application interference
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Tackling Inter-Application Interference:
Application-aware Memory Scheduling
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Performance vs. Fairness vs. Simplicity 

15

Performance

Fairness

Simplicity

FRFCFS

PARBS

ATLAS

TCM

Blacklisting

Ideal

App-unaware

App-aware 
(Ranking)

Our Solution 
(No Ranking)

Is it essential to give up simplicity to 
optimize for performance and/or fairness?

Our solution achieves all three goals
Very Simple

Low performance 
and fairness

Complex

Our Solution



Problems with Previous 
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity 

2. Full ranking causes unfair slowdowns
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Our Goal: Design a memory scheduler with
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications 
into two groups, rather than do full ranking
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications 
into two groups, rather than do full ranking
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Key Observation 2

Observation 2: Serving a large number of consecutive 
requests from an application causes interference

Basic Idea:
• Group applications with a large number of consecutive 

requests as interference-causing Blacklisting
• Deprioritize blacklisted applications
• Clear blacklist periodically (1000s of cycles)

Benefits:
• Lower complexity
• Finer grained grouping decisions  Lower unfairness
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The Blacklisting Memory Scheduler (ICCD ‘14)
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Methodology

• Configuration of our simulated baseline system
– 24 cores

– 4 channels, 8 banks/channel

– DDR3 1066 DRAM 

– 512 KB private cache/core

• Workloads
– SPEC CPU2006, TPC-C, Matlab , NAS

– 80 multiprogrammed workloads
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Performance and Fairness
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Complexity
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Outline
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Impact of Interference on Performance 
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Slowdown: Definition
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Impact of Interference on Performance 
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Observation: Request Service Rate 
is a Proxy for Performance

For a memory bound application,  
Performance  Memory request service rate
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Observation: Highest Priority Enables 
Request Service Rate Alone Estimation 

Request Service Rate Alone (RSRAlone) of an 
application can be estimated by giving the 

application highest priority at the         
memory controller 

Highest priority  Little interference

(almost as if the application were run alone)
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Observation: Highest Priority Enables 
Request Service Rate Alone Estimation 

Request Buffer State
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications

)(RSR  Rate ServiceRequest 
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Observation: Memory Bound vs. 
Non-Memory Bound

• Memory-bound application

No 
interference

Compute Phase

Memory Phase

With 
interference

Memory phase slowdown dominates overall slowdown

time

time

Req

Req

Req Req

Req Req
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Observation: Memory Bound vs. 
Non-Memory Bound

• Non-memory-bound application

time

time
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Memory Interference-induced Slowdown Estimation 
(MISE) model for non-memory bound applications
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Interval Based Operation

time

Interval
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Previous Work on 
Slowdown Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 Time Stall

 Time Stall
 Slowdown 

Count number of cycles application receives interference
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Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1066 DRAM 

– 512 KB private cache/core

• Workloads
– SPEC CPU2006 

– 300 multi programmed workloads
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Quantitative Comparison
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Comparison to STFM
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Possible Use Cases of the MISE Model

• Bounding application slowdowns [HPCA ’13]

• Achieving high system fairness and 
performance [HPCA ’13]

• VM migration and admission control schemes 
[VEE ’15]

• Fair billing schemes in a commodity cloud
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MISE-QoS: Providing 
“Soft” Slowdown Guarantees

• Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

• Basic Idea

– Allocate just enough bandwidth to QoS-critical 
application

– Assign remaining bandwidth to other applications
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Methodology

• Each application (25 applications in total) 
considered the QoS-critical application

• Run with 12 sets of co-runners of different memory 
intensities

• Total of 300 multi programmed workloads

• Each workload run with 10 slowdown bound values

• Baseline memory scheduling mechanism
– Always prioritize QoS-critical application 

[Iyer et al., SIGMETRICS 2007]

– Other applications’ requests scheduled in FR-FCFS order
[Zuravleff and Robinson, US Patent 1997, Rixner+, ISCA 2000]
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A Look at One Workload
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Effectiveness of MISE in Enforcing QoS

Predicted 
Met

Predicted
Not Met

QoS Bound 
Met

78.8% 2.1%

QoS Bound 
Not Met

2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not the bound is 
met for 95.7% of workloads
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Performance of Non-QoS-Critical Applications

Higher performance when bound is looseWhen slowdown bound is 10/3 
MISE-QoS improves system performance by 10%  
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Shared Cache Capacity Contention
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Cache Capacity Contention
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Estimating Cache and Memory Slowdowns
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Service Rates vs. Access Rates
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The Application Slowdown Model
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Real System Studies:
Cache Access Rate vs. Slowdown 
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Challenge

How to estimate alone cache access rate?
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Auxiliary Tag Store
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Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not 

count as high priority cycles
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Alone Cache Access Rate Estimation
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Application Slowdown Model (ASM)
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Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution 

 TimeExecution 
 Slowdown 

Count interference experienced by each request
59



Model Accuracy Results

Average error of ASM’s slowdown estimates: 10% 

60

Select applications

0

20

40

60

80

100

120

140

160

ca
lc

u
lix

p
o

vr
ay

to
n

to

n
am

d

d
ea

lII

sj
en

g

p
er

lb
en

…

go
b

m
k

xa
la

n
cb

…

sp
h

in
x3

G
em

sF
…

o
m

n
et

p
p

lb
m

le
sl

ie
3

d

so
p

le
x

m
ilc

lib
q

m
cf

N
P

B
b

t

N
P

B
ft

N
P

B
is

N
P

B
u

a

A
ve

ra
ge

Sl
o

w
d

o
w

n
 E

st
im

at
io

n
 

Er
ro

r 
(i

n
 %

)

FST PTCA ASM



Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high 
performance and fairness

• Slowdown-aware resource allocation to bound 
application slowdowns

• VM migration and admission control schemes 
[VEE ’15]

• Fair billing schemes in a commodity cloud
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Cache Capacity Partitioning

62

Main 
Memory

Shared 
Cache

Cache 
Access Rate

Core

Core

Goal: Partition the shared cache among 
applications to mitigate contention



Cache Capacity Partitioning
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ASM-Cache: Slowdown-aware 
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all 
possible way partitions

• Extend ASM to estimate slowdown for all 
possible cache way allocations

• Key Idea: Allocate each way to the application 
whose slowdown reduces the most
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Memory Bandwidth Partitioning
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ASM-Mem: Slowdown-aware 
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to 
an application’s slowdown

• Application i’s requests given highest priority 
at the memory controller for its fraction
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Coordinated Resource 
Allocation Schemes
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Fairness and Performance Results
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16-core system 
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Thesis Contributions

• Principles behind our scheduler and models
– Simple two-level prioritization sufficient to 

mitigate interference

– Request service rate a proxy for performance

• Simple and high-performance memory 
scheduler design

• Accurate slowdown estimation models

• Mechanisms that leverage our slowdown 
estimates
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Summary

• Problem: Shared resource interference causes high and 
unpredictable application slowdowns

• Goals: High and predictable performance 

• Approaches: Mitigate and quantify interference

• Thesis Contributions:
1. Principles behind our scheduler and models 
2. Simple and high-performance memory scheduler
3. Accurate slowdown estimation models
4. Mechanisms that leverage our slowdown estimates
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Future Work

• Leveraging slowdown estimates at the system and 
cluster level

• Interference estimation and performance predictability 
for multithreaded applications

• Performance predictability in heterogeneous systems

• Coordinating the management of main memory and 
storage

72



Research Summary

• Predictable performance in multicore systems 
[HPCA ’13, SuperFri ’14, KIISE ’15]

• High and predictable performance in heterogeneous systems 
[ISCA ’12, SAFARI Tech Report ’15]

• Low-complexity memory scheduling [ICCD ’14]

• Memory channel partitioning [MICRO ’11]

• Architecture-aware cluster management [VEE ’15]

• Low-latency DRAM architectures [HPCA ’13]
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Problems with Previous 
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity 

2. Full ranking causes unfair slowdowns
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Ranking Increases Hardware Complexity
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Problems with Previous 
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity 

2. Full ranking causes unfair slowdowns
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Ranking Causes Unfair Slowdowns
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Ranking Causes Unfair Slowdowns
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Key Observation 1: Group Rather Than Rank
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Key Observation 1: Group Rather Than Rank
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Previous Memory Schedulers

• FRFCFS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

– Prioritizes row-buffer hits and older requests

• FRFCFS-Cap [Mutlu and Moscibroda, MICRO 2007]

– Caps number of consecutive row-buffer hits

• PARBS [Mutlu and Moscibroda, ISCA 2008]

– Batches oldest requests from each application; prioritizes batch
– Employs ranking within a batch

• ATLAS [Kim et al., HPCA 2010]

– Prioritizes applications  with low memory-intensity

• TCM [Kim et al., MICRO 2010]

– Always prioritizes low memory-intensity applications
– Shuffles thread ranks of high memory-intensity applications
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Application-unaware
+ Low complexity

- Low performance and fairness

Application-aware
+ High performance and fairness

- High complexity



Performance and Fairness
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Performance vs. Fairness vs. Simplicity
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performance
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Summary

• Applications’ requests interfere at main memory
• Prevalent solution approach

– Application-aware memory request scheduling

• Key shortcoming of previous schedulers: Full ranking
– High hardware complexity
– Unfair application slowdowns

• Our Solution: Blacklisting memory scheduler
– Sufficient to group applications rather than rank
– Group by tracking number of consecutive requests

• Much simpler  than application-aware schedulers at 
higher performance and fairness
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Performance and Fairness
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Complexity Results

Blacklisting achieves 
70% lower latency than TCM
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Understanding Why Blacklisting Works
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Harmonic Speedup
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Effect of Workload Memory Intensity
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Combining FRFCFS-Cap and Blacklisting
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Sensitivity to Blacklisting Threshold
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Sensitivity to Clearing Interval
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Sensitivity to Core Count
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Sensitivity to Channel Count
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Sensitivity to Cache Size
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Performance and Fairness with 
Shared Cache
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Breakdown of Benefits
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BLISS vs. Criticality-aware Scheduling
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Sub-row Interleaving
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MISE
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Measuring RSRShared and α

• Request Service Rate Shared (RSRShared)
– Per-core counter to track number of requests serviced
– At the end of each interval, measure

• Memory Phase Fraction (  )
– Count number of stall cycles at the core
– Compute fraction of cycles stalled for memory

Length Interval

Served Requests ofNumber 
  RSRShared 


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Estimating Request Service Rate Alone (RSRAlone)

• Divide each interval into shorter epochs

• At the beginning of each epoch
– Randomly pick an application as the highest priority 

application

• At the end of an interval, for each application, 
estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone 
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Goal: Estimate RSRAlone

How: Periodically give each application 
highest priority in accessing memory 



Inaccuracy in Estimating RSRAlone
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Request Buffer
State

Main 
Memory

Time units Service order

Main 
Memory

123

• When an application has highest priority
– Still experiences some interference

Request Buffer 
State

Main 
Memory

Time units Service order

Main 
Memory

123

Request Buffer 
State

Main 
Memory

Time units Service order

Main 
Memory

123

Interference Cycles

High Priority



Accounting for Interference in 
RSRAlone Estimation

• Solution: Determine and remove interference 
cycles from RSRAlone calculation

• A cycle is an interference cycle if
– a request from the highest priority application is 

waiting in the request buffer and

– another application’s request was issued previously

107

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
ARSR

           





MISE Operation: Putting it All Together

time

Interval



Estimate 

slowdown

Interval

Estimate 

slowdown

 Measure RSRShared, 

 Estimate RSRAlone

 Measure RSRShared, 

 Estimate RSRAlone
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MISE-QoS: Mechanism to Provide Soft QoS

• Assign an initial bandwidth allocation to QoS-
critical application

• Estimate slowdown of QoS-critical application 
using the MISE model

• After every N intervals

– If slowdown > bound B +/- ε, increase bandwidth allocation

– If slowdown < bound B +/- ε, decrease bandwidth allocation

• When slowdown bound not met for N intervals

– Notify the OS so it can migrate/de-schedule jobs
109



Performance of Non-QoS-Critical Applications
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Case Study with Two QoS-Critical Applications

• Two comparison points

– Always prioritize both applications

– Prioritize each application 50% of time
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Minimizing Maximum Slowdown

• Goal
– Minimize the maximum slowdown experienced by any 

application

• Basic Idea
– Assign more memory bandwidth to the more slowed 

down application
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Mechanism

• Memory controller tracks
– Slowdown bound B

– Bandwidth allocation of all applications

• Different components of mechanism
– Bandwidth redistribution policy

– Modifying target bound

– Communicating target bound to OS periodically
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Bandwidth Redistribution

• At the end of each interval,

– Group applications into two clusters

– Cluster 1: applications that meet bound

– Cluster 2: applications that don’t meet bound

– Steal small amount of bandwidth from each 
application in cluster 1 and allocate to applications in 
cluster 2
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Modifying Target Bound

• If bound B is met for past N intervals
– Bound can be made more aggressive

– Set bound higher than the slowdown of most slowed down 
application

• If bound B not met for past N intervals by more 
than half the applications
– Bound should be more relaxed

– Set bound to slowdown of most slowed down application
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Results: Harmonic Speedup 
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Results: Maximum Slowdown
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Sensitivity to Memory Intensity
(16 cores)
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MISE: Per-Application Error
Benchmark STFM MISE Benchmark STFM MISE

453.povray 56.3 0.1 473.astar 12.3 8.1

454.calculix 43.5 1.3 456.hmmer 17.9 8.1

400.perlbench 26.8 1.6 464.h264ref 13.7 8.3

447.dealII 37.5 2.4 401.bzip2 28.3 8.5

436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8

450.soplex 29.8 3.5 433.milc 26.4 9.5

444.namd 43.6 3.7 481.wrf 33.6 11.1

437.leslie3d 26.4 4.3 429.mcf 83.74 11.5

403.gcc 25.4 4.5 445.gobmk 23.1 12.5

462.libquantum 48.9 5.3 483.xalancbmk 18 13.6

459.GemsFDTD 21.6 5.5 435.gromacs 31.4 15.6

470.lbm 6.9 6.3 482.sphinx3 21 16.8

473.astar 12.3 8.1 471.omnetpp 26.2 17.5

456.hmmer 17.9 8.1 465.tonto 32.7 19.5
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Sensitivity to Epoch and Interval 
Lengths

1 mil. 5 mil. 10 mil. 25 mil. 50 mil.

1000 65.1% 9.1% 11.5% 10.7% 8.2%

10000 64.1% 8.1% 9.6% 8.6% 8.5%

100000 64.3% 11.2% 9.1% 8.9% 9%

1000000 64.5% 31.3% 14.8% 14.9% 11.7%

Interval 
Length

Epoch 
Length
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Workload Mixes

Mix No. Benchmark 1 Benchmark 2 Benchmark 3

1 sphinx3 leslie3d milc

2 sjeng gcc perlbench

3 tonto povray wrf

4 perlbench gcc povray

5 gcc povray leslie3d

6 perlbench namd lbm

7 h264ref bzip2 libquantum

8 hmmer lbm omnetpp

9 sjeng libquantum cactusADM

10 namd libquantum mcf

11 xalancbmk mcf astar

12 mcf libquantum leslie3d
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STFM’s Effectiveness in Enforcing QoS

Predicted 
Met

Predicted
Not Met

QoS Bound 
Met

63.7% 16%

QoS Bound 
Not Met

2.4% 17.9%

Across 3000 data points
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STFM vs. MISE’s System Performance
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MISE’s Implementation Cost

1. Per-core counters worth 20 bytes
• Request Service Rate Shared
• Request Service Rate Alone

– 1 counter for number of high priority epoch requests
– 1 counter for number of high priority epoch cycles
– 1 counter for interference cycles

• Memory phase fraction (  )
2. Register for current bandwidth allocation – 4 

bytes
3. Logic for prioritizing an application in each epoch



124



MISE Accuracy w/o Interference Cycles

• Average error – 23%
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MISE Average Error by Workload Category

Workload Category (Number of 
memory intensive applications)

Average Error

0 4.3%

1 8.9%

2 21.2%

3 18.4%
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ASM
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Impact of Cache Capacity Contention

128

Cache capacity interference causes high 
application slowdowns

Shared Main Memory Shared Main Memory and Caches
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Error with Sampling
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Error Distribution
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Impact of Prefetching
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Sensitivity to 
Epoch and Quantum Lengths
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Sensitivity to Core Count
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Sensitivity to Cache Capacity
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Sensitivity to 
Auxiliary Tag Store Sampling
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ASM-Cache:
Fairness and Performance Results

136

Significant fairness benefits across different systems 
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ASM-Mem: 
Fairness and Performance Results
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ASM-QoS: Meeting Slowdown Bounds
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Previous Approach: Estimate 
Interference Experienced Per-Request
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Shared 
(With interference) time

Execution time

Req A
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Req C

Request Overlap Makes Interference 
Estimation Per-Request Difficult



Estimating PerformanceAlone
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Request 
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per-request due to request overlap



Impact of Interference on Performance 

141
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Application-aware 
Memory Channel Partitioning

142

Goal: 
Mitigate 

Inter-Application Interference 

Previous Approach:
Application-Aware Memory 

Request Scheduling

Our First Approach:
Application-Aware Memory 

Channel Partitioning

Our Second Approach:
Integrated Memory Partitioning

and Scheduling



Observation: Modern Systems Have Multiple 
Channels

A new degree of freedom

Mapping data across multiple channels
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Data Mapping in Current Systems
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Partitioning Channels Between Applications
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Integrated Memory 
Partitioning and Scheduling
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Goal: 
Mitigate 

Inter-Application Interference 

Previous Approach:
Application-Aware Memory 

Request Scheduling

Our First Approach:
Application-Aware Memory 

Channel Partitioning

Our Second Approach:
Integrated Memory Partitioning
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Slowdown/Interference Estimation in 
Existing Systems
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Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory
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How do we detect/mitigate the impact of interference on 
a real system using existing performance counters?



Our Approach: Mitigating 
Interference in a Cluster

1. Detect memory bandwidth contention at 
each host

2. Estimate impact of moving each VM to a 
non-contended host (cost-benefit analysis)

3. Execute the migrations that provide the most 
benefit 
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Architecture-aware DRM – ADRM
(VEE 2015)
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ADRM: Key Ideas and Results 

• Key Ideas:

– Memory bandwidth captures impact of shared 
cache and memory bandwidth interference

– Model degradation in performance as linearly 
proportional to bandwidth increase/decrease

• Key Results:

– Average performance improvement of 9.67% on a 
4-node cluster
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QoS in Heterogeneous Systems

• Staged memory scheduling 
– In collaboration with Rachata Ausavarungnirun, 

Kevin Chang and Gabriel Loh

– Goal: High performance in CPU-GPU systems

• Memory scheduling in heterogeneous systems
– In collaboration with Hiroukui Usui

– Goal: Meet deadlines for accelerators while 
improving performance
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Performance Predictability in 
Heterogeneous Systems

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache
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Accelerator

Accelerator



Goal of our Scheduler (SQUASH)

• Goal: Design a memory scheduler that 
– Meets accelerators’ deadlines and

– Achieves high CPU performance

• Basic Idea:
– Different CPU applications and hardware 

accelerators have different memory requirements

– Track progress of different agents and prioritize 
accordingly
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Key Observation:
Distribute Priority for Accelerators

• Accelerators need priority to meet deadlines

• Worst case prioritization not always the best

• Prioritize accelerators when they are not on 
track to meet a deadline

154

Distributing priority mitigates impact of 
accelerators on CPU cores’ requests



Key Observation: 
Not All Accelerators are Equal

• Long-deadline accelerators are more likely to 
meet their deadlines

• Short-deadline accelerators are more likely to 
miss their deadlines
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Schedule short-deadline accelerators 
based on worst-case memory access time 



Key Observation: 
Not All CPU cores are Equal

• Memory-intensive cores are much less 
vulnerable to interference

• Memory non-intensive cores are much more 
vulnerable to interference
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Prioritize accelerators over memory-intensive cores 
to ensure accelerators do not become urgent



SQUASH: Key Ideas and Results

• Distribute priority for HWAs

• Prioritize HWAs over memory-intensive CPU 
cores even when not urgent

• Prioritize short-deadline-period HWAs based 
on worst case estimates
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Improves CPU performance by 7-21%
Meets 99.9% of deadlines for HWAs


