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Parallelism in GPU
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than memory-intensive CPU applications



Three Types of Memory Interference
• Intra-application Interference
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Intra-application Interference
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Three Types of Memory Interference
• Intra-application Interference

• Inter-application Interference
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Inter-application Interference
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Three Types of Memory Interference
• Intra-application Interference

• Inter-application Interference

• Inter-address-space Interference
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Address Translation & TLBAddress Translation & TLB

Inter-address-space Interference
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Previous Works
• Cache management schemes

– Li et al. (HPCA’15), Li et al. (ICS’15), Jia et al. (HPCA’14), Chen et al. 
(MICRO’14, MES’14), Rogers et al. (MICRO’12), Seshadri et al. (PACT’12), 
Jaleel et al. (PACT’08), Jaleel et al. (ISCA’10)

– Does not take GPU’s memory divergence into account

• Memory Scheduling
– Rixner et al. (ISCA’00), Yuan et al. (MICRO’09), Kim et al. (HPCA’10), Kim – Rixner et al. (ISCA’00), Yuan et al. (MICRO’09), Kim et al. (HPCA’10), Kim 

et al. (MICRO’10), Mutlu et al. (MICRO’07), Kim et al. (MICRO’10)
– Does not take GPU’s traffic into account

• TLB designs
– Power et al. (HPCA’14), Cong et al. (HPCA’16)
– Only works for CPU-GPU heterogeneous systems

• There is no previous work that holistically aims to solve all 
three types of interference in GPU-based systems
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Thesis Statement

A combination of GPU-aware cache 

and memory management techniques 

Approach
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and memory management techniques 

can mitigate interference caused by GPUs on current 

and future systems with GPUs.
Goals



Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017
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Inefficiency: Memory Divergence
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Observation 1: Divergence Heterogeneity
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Goals 1: 
• Convert mostly-hit warps to 

all-hit warps
• Convert mostly-miss warps to 

all-miss warps



Observation 2: Stable Divergence Char.

• Warp retains its hit ratio during a program 
phase
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Observation 3: Queuing at L2 Banks
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45% of requests stall 20+ cycles at the L2 queue

Goal 2: Reduce queuing latency



Memory Divergence Correction
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Memory Scheduler

Mostly-miss and all-miss accesses: LRU
Others: MRU

Mostly-miss and all-miss accesses: LRU
Others: MRU
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MeDiC is effective in identifying warp-type and 
taking advantage of divergence heterogeneity



Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017
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Interference in the Main Memory

• All cores contend for limited off-chip bandwidth
– Inter-application interference degrades system 

performance
– The memory scheduler can help mitigate the problem
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Memory Scheduler

Core 1 Core 2 Core 3 Core 4

Req Req

GPU

Req Req Req Req Req ReqReq

Req ReqReqReq Req Req Req

Req ReqReq Req ReqReq Req

Req

Req

Introducing the GPU into the System

• GPU occupies a significant portion of the request buffers
– Limits the MC’s visibility of the CPU applications’ differing 

memory behavior  can lead to a poor scheduling decision
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Naïve Solution: Large Monolithic Buffer
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Problems with Large Monolithic Buffer

• A large buffer requires more complicated logic to:
– Analyze memory requests (e.g., determine row buffer hits)
– Analyze application characteristics
– Assign and enforce priorities 

• This leads to high complexity, high power, large die area
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Memory Scheduler

More Complex Memory Scheduler
Goal: Design an application-aware 

scalable memory controller that reduces interference 



1) Maximize row buffer hits
– Maximize memory bandwidth
– Stage 1: Batch Formation 
 Group requests within an application into batches

2) Manage contention between applications
– Maximize system throughput and fairness

Key Functions of a Memory Controller

– Maximize system throughput and fairness
– Stage 2: Batch Scheduler
 Schedule batches from different applications

• Idea: Decouple the functional tasks of the memory 
controller
– Partition tasks across several simpler HW structures
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Stage 1: Batch Formation Example

25

Batch Boundary

To Stage 2 (Batch Scheduling)

Time 
window 
expires



Batch SchedulerRound-RobinSJF
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Stage 2:

SJF prioritizes CPU applicationsRound-robin prioritizes GPU applications

Probability p : SJF Probability 1-p : Round-robin



• Compared to a row hit first scheduler, SMS 
consumes*
– 66% less area
– 46% less static power

Complexity

• Reduction comes from:
– Simpler scheduler (considers fewer properties at a 

time to make the scheduling decision)
– Simpler buffers (FIFO instead of out-of-order)
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* Based on a Verilog model using 180nm library
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• At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight
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Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017
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Bottleneck from GPU Address Translation
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A single page walk can stall multiple warps

Parallelism of the GPUs Multiple page walks



Limited Latency Hiding Capability
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GPUs no longer able to hide memory latency

Page Walk  Multiple Dependent Memory Requests
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Address translation slowdowns GPUs by 47.6% on average 
on the state-of-the-art design [Power et al., HPCA ’14]

Design Goal of MASK: Reduce the overhead of 
GPU address translation with a TLB-aware design



Observation 1: Thrashing at the Shared TLB

• Multiple GPU applications contend for the TLB

• TLB utilization across warps does not vary a lot
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MASK: TLB-fill Bypassing

• Limit number of warps that can fill the TLB
– Only warps with a token can fill the shared TLB
– Otherwise fills into the tiny bypassed cache

• Tokens are distributed equally across all cores
• Within each core, randomly distribute to warps
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• Within each core, randomly distribute to warps
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Observation 2: Inefficient Caching

• Partial address translation data can be cached
– Not all TLB-related data are the same
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• Cache is unaware of the page walk depth
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MASK: TLB-aware Shared L2 Cache Design

• Bypass TLB-data with low hit rate

Page Walk Level 1 Hit Rate

Page Walk Level 2 Hit Rate

Page Walk Level 3 Hit Rate

Page Walk Level 4 Hit Rate

Level 2 TLB-Req Page Walk Level 2 Hit Rate

Page Walk Level 4 Hit RateLevel 4 TLB-Req

Probe L2 Cache

Skip L2 Cache
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Page Walk Level 4 Hit Rate

L2 Data cache Hit RateL2 Data cache Hit Rate

Page Walk Level 4 Hit RateLevel 4 TLB-Req

Benefit 1: Better L2 cache utilization for TLB-data

Benefit 2: TLB-data that is less likely to hit do not have to 
queue at L2 data cache, reducing the latency of a page walk 



Observation 3: TLB- and App-awareness

• TLB requests are latency sensitive
• GPU memory controller is unaware of TLB-data

– Data requests can starve TLB-related requests

• GPU memory controller is unaware of multiple 
GPU applications

37

GPU applications
– One application can starve others



MASK: TLB-aware Memory Controller Design

• Goals:
– Prioritize TLB-data over normal data
– Ensure fairness across all applications

Golden Queue
TLB-Data Request

High Priority
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Each application takes turn injecting into the silver queue



Results: Performance of MASK
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MASK is effective in reducing TLB contention and TLB-
requests latency throughout the memory hierarchy
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Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017
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Problems with Using Large Page

Page A

Page B
Page C

Page D

WarpPool
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Problem: Paging large pages incurs significant slowdown

For a 2MB page size  93% slowdown compared to 4KB



Utilizing Multiple Page Sizes

• Goals: Multi-page-size support
– Allow demand paging using small page size
– Translate addresses using large page size
– Low-cost page coalescing and splintering

• Key Constraint: No operating system support
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Performance Overhead of Coalescing

Base (small) page

Large page range

App A

App B

UnallocatedRemap data

Update Page Table

Significant performance overhead
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Update Page Table

Flush



GPGPU Allocation Patterns

• Observation 1: Allocations happen infrequently
– Allocation at the beginning of a kernel
– Deallocation at the end of a kernel

• Observation 2: Allocations are typically for a • Observation 2: Allocations are typically for a 
large block of data

• Mosaic utilizes these observations to provide 
transparent multi-page support
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Mosaic: Enforcing a Soft Guarantee

• Small pages from different applications never 
fall in the same large page range

App A

App B

Unallocated
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Large Page 1 Large Page 2



Mosaic: Low Overhead Coalescing

• Key assumption: Soft guarantee
– large page range always contains pages of the same application

L1 Page Table

Update PTE

Coalesce

L2 Page Table

Set Disabled Bit

Set Disabled Bit
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Benefit: No flush, no data movement

Coalesce
Set Disabled Bit

Set Disabled Bit

PD PT POVA PO



When to Coalesce/Splinter

• Coalesce: 
– Proactively coalesce fully allocated large pages

• Once all data within a large page are transferred

– Keep translations at large page most of the time

• Splinter: 
– Splinter when the page is evicted from the main 

memory
• Enforce demand paging to be done at small size
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Mosaic is effective at increasing TLB range
MASK-Mosaic is effective in reducing 

address translation overhead



Mitigating Memory Interference
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017

49



Summary
• Problem: Memory interference in GPU-based systems leads 

to poor performance
– Intra-application interference
– Inter-application interference
– Inter-address-space interference 

• Thesis statement: A combination of GPU-aware cache and 
memory management techniques can mitigate interferencememory management techniques can mitigate interference

• Approach: A holistic memory hierarchy design that is
– GPU-aware
– Application-aware
– Divergence-aware 
– Page-walk-aware

• Key Result: Our mechanisms significantly reduce memory 
interference in multiple GPU-based systems
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Thesis Contributions
• In-depth analysis of three types of memory interference 

in GPU-based systems

• MeDiC utilizes divergence heterogeneity to reduce 
intra-application interference

• SMS introduces CPU- and GPU-awareness memory • SMS introduces CPU- and GPU-awareness memory 
controller design to reduce inter-application interference

• MASK proposes a TLB-aware GPU memory hierarchy
to reduce the latency of page walks

• Mosaic increases the TLB reach resulting in the reduction 
of TLB contention
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Future Research Directions
• GPU memory hierarchy design

– Integration of high bandwidth 3D memory
– Other methods to exploit divergence heterogeneity

• Low-overhead virtualization support for GPUs
– Interference-aware and VM-aware designs– Interference-aware and VM-aware designs
– Provide limited operating system support

• Co-schedule multiple GPGPU applications
– Kernel scheduling and GPU core partitioning

• Sharing the GPUs for emerging applications
– Real-time embedded applications with deadlines
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Other Contributions
• GPU Designs:

– Managing GPU concurrency
• Kayiran et al., MICRO’14

– Improving GPU efficiency
• Vijaykumar et al. ISCA’15
• Kayiran et al., PACT ‘16• Kayiran et al., PACT ‘16

• DRAM Designs:
– Low-latency DRAM

• Seshadri et al., MICRO ’13
• Lee et al. PACT ’15
• Lee et al., SIGMETRICS ‘17

– Hybrid memory
• Yoon et al., ICCD’12
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Other Contributions
• Network-on-chip Designs:

– Energy efficient on-chip network design 
• Chang et al., SAFARI Tech Report 2011-006
• Fallin et al., NOCs ’12
• Chang et al., SBAC-PAD ’12
• Das et al., HPCA’13• Das et al., HPCA’13
• Ausavarungnirun et al., SBAC-PAD’14,
• Ausavarungnirun et al., PARCO ‘16

– Handling faults in on-chip network 
• Fattah et al., NoCs ‘15

• Data center power management 
• Li et al., HPCA ’16
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