
Techniques for Shared Resource Management 
in Systems with GPUs

Thesis Oral
Rachata Ausavarungnirun

Committees:
Advisor: Onur Mutlu (CMU and ETH Zürich)
James C. Hoe (CMU)
Kayvon Fatahalian (CMU)
Gabriel H. Loh (AMD Research)
Christopher J. Rossbach (UT Austin and VMware Research)



Parallelism in GPU
Time

Active

GPU Core 
Status

Warp A

Warp B

Warp C

8 Loads

32 Loads

2

Stall

GPU CoreGPU CoreActive

Warp C

Warp D

Lockstep
ExecutionThreadGPU is much more (4x-20x) memory-intensive 

than memory-intensive CPU applications



Three Types of Memory Interference
• Intra-application Interference

3



Intra-application Interference

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

32 Loads 32 Loads

Requests from GPU cores interfere at 
the cache and main memory

Last Level CacheLast Level Cache

Memory Controller

Main Memory

Memory Controller

Main Memory

4



Three Types of Memory Interference
• Intra-application Interference

• Inter-application Interference

5



Inter-application Interference

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

CPU
Core

CPU 
Core

CPU 
Core

CPU 
Core

Last Level Cache

100s Loads
Load

CPU
Core

CPU 
Core

CPU 
Core

CPU 
Core

Last Level Cache

Memory Controller

Main Memory

Memory Controller

Main Memory

Requests from CPU and GPU contend 
and interfere at the main memory

6



Three Types of Memory Interference
• Intra-application Interference

• Inter-application Interference

• Inter-address-space Interference

7



Address Translation & TLBAddress Translation & TLB

Inter-address-space Interference

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

CPU
Core

CPU 
Core

CPU 
Core

CPU 
Core

Last Level Cache

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

GPU 
Core

Load

Load
Load

Address translation is required 
to enforce memory protection

GPU 
Core
GPU 
Core

GPU 
Core
GPU 
Core

GPU 
Core
GPU 
Core

GPU 
Core
GPU 
Core

GPU 
Core
GPU 
Core

GPU 
Core
GPU 
Core

Memory Controller

Main Memory

Requests from multiple GPU applications interfere 
at the shared TLB

to enforce memory protection
Last Level Cache

8



Previous Works
• Cache management schemes

– Li et al. (HPCA’15), Li et al. (ICS’15), Jia et al. (HPCA’14), Chen et al. 
(MICRO’14, MES’14), Rogers et al. (MICRO’12), Seshadri et al. (PACT’12), 
Jaleel et al. (PACT’08), Jaleel et al. (ISCA’10)

– Does not take GPU’s memory divergence into account

• Memory Scheduling
– Rixner et al. (ISCA’00), Yuan et al. (MICRO’09), Kim et al. (HPCA’10), Kim – Rixner et al. (ISCA’00), Yuan et al. (MICRO’09), Kim et al. (HPCA’10), Kim 

et al. (MICRO’10), Mutlu et al. (MICRO’07), Kim et al. (MICRO’10)
– Does not take GPU’s traffic into account

• TLB designs
– Power et al. (HPCA’14), Cong et al. (HPCA’16)
– Only works for CPU-GPU heterogeneous systems

• There is no previous work that holistically aims to solve all 
three types of interference in GPU-based systems

9



Thesis Statement

A combination of GPU-aware cache 

and memory management techniques 

Approach

10

and memory management techniques 

can mitigate interference caused by GPUs on current 

and future systems with GPUs.
Goals



Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017

11



Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017

12



Inefficiency: Memory Divergence
Warp A

Time

Cache Hit
Stall Time

13

Cache Miss

Cache Hit

Time
Main Memory



Observation 1: Divergence Heterogeneity

Reduced
Stall Time

Mostly-hit warp Mostly-miss warp

Time

All-hit warp All-miss warp

14

Stall Time

Cache Miss

Cache Hit

Time

Goals 1: 
• Convert mostly-hit warps to 

all-hit warps
• Convert mostly-miss warps to 

all-miss warps



Observation 2: Stable Divergence Char.

• Warp retains its hit ratio during a program 
phase

0.9
1.0
Warp 1 Warp 2 Warp 3 Warp 4 Warp 5 Warp 6

Mostly-hit

15

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H
it 

Ra
tio

Cycles

Mostly-hit

Balanced

Mostly-miss



Observation 3: Queuing at L2 Banks

Bank 0

Bank 1

Bank 2

…
…

…
…

Request Buffers

Memory
Scheduler

To 
DRAM

16

Shared L2 Cache

Bank n

…
…

…
… Scheduler DRAM

45% of requests stall 20+ cycles at the L2 queue

Goal 2: Reduce queuing latency



Memory Divergence Correction

W
arp Type Identification Logic

Bank 0

Bank 1

Bank 2 N

Low PriorityBypassing Logic

Warp-type-aware Cache Bypassing
Mostly-miss, All-miss

Identify warp-type
Bypass mostly-miss 

and all-miss accesses
Mostly-hit and all-hit: high priority queue

Warp-type-aware
Memory Scheduler
Warp-type-aware
Memory Scheduler

W
arp Type Identification Logic

Memory
Request

Shared L2 
Cache

Bank 2

Bank n

To 
DRAM

N

Y
High Priority

Any Requests 
in High Priority

…
…

Bypassing Logic
Warp-type-aware Cache Insertion Policy

17

Memory Scheduler

Mostly-miss and all-miss accesses: LRU
Others: MRU

Mostly-miss and all-miss accesses: LRU
Others: MRU



1.5

2.0

2.5

Sp
ee

du
p 

O
ve

r B
as

el
in

e

Baseline EAF PCAL MeDiC

Results: Performance of MeDiC

21.8%

0.5

1.0

Sp
ee

du
p 

O
ve

r B
as

el
in

e

18

MeDiC is effective in identifying warp-type and 
taking advantage of divergence heterogeneity



Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017

19



Memory Scheduler

Core 1 Core 2 Core 3 Core 4

M
em

or
y 

Re
qu

es
t B

uf
fe

r

ReqReq Req ReqReq Req

Req

Req Req

Interference in the Main Memory

• All cores contend for limited off-chip bandwidth
– Inter-application interference degrades system 

performance
– The memory scheduler can help mitigate the problem

20

Memory Scheduler

To DRAM

M
em

or
y 

Re
qu

es
t B

uf
fe

r

DataData



Memory Scheduler

Core 1 Core 2 Core 3 Core 4

Req Req

GPU

Req Req Req Req Req ReqReq

Req ReqReqReq Req Req Req

Req ReqReq Req ReqReq Req

Req

Req

Introducing the GPU into the System

• GPU occupies a significant portion of the request buffers
– Limits the MC’s visibility of the CPU applications’ differing 

memory behavior  can lead to a poor scheduling decision

21

Memory Scheduler

To DRAM



Core 1 Core 2 Core 3 Core 4

Req ReqReq Req Req Req Req Req

Req Req ReqReq Req ReqReqReq

Req ReqReqReq Req Req Req Req

Req Req ReqReq ReqReq Req Req

GPU

Naïve Solution: Large Monolithic Buffer

22

Memory Scheduler

To DRAM

Req ReqReqReqReq Req Req Req

Req Req



Req

Req

Req

Req

Req

Req Req

Req Req Req

Req

Req

Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req

ReqReq

Req

Req

Req

Req

ReqReq ReqReq

Req Req

Req Req

Problems with Large Monolithic Buffer

• A large buffer requires more complicated logic to:
– Analyze memory requests (e.g., determine row buffer hits)
– Analyze application characteristics
– Assign and enforce priorities 

• This leads to high complexity, high power, large die area

23

Memory Scheduler

More Complex Memory Scheduler
Goal: Design an application-aware 

scalable memory controller that reduces interference 



1) Maximize row buffer hits
– Maximize memory bandwidth
– Stage 1: Batch Formation 
 Group requests within an application into batches

2) Manage contention between applications
– Maximize system throughput and fairness

Key Functions of a Memory Controller

– Maximize system throughput and fairness
– Stage 2: Batch Scheduler
 Schedule batches from different applications

• Idea: Decouple the functional tasks of the memory 
controller
– Partition tasks across several simpler HW structures

24



Core 1 Core 2 Core 3 Core 4

Row A Row BRow B
Row C

Row DRow DRow E
Row F

Row E
Row A

Next request goes to a different rowStage 1

Batch 
Formation

Stage 1: Batch Formation Example

25

Batch Boundary

To Stage 2 (Batch Scheduling)

Time 
window 
expires



Batch SchedulerRound-RobinSJF

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch 
Formation

GPU

Stage 2:

Staged Memory Scheduling

Batch SchedulerRound-RobinSJF

Bank 1 Bank 2 Bank 3 Bank 4

26

Stage 2:

SJF prioritizes CPU applicationsRound-robin prioritizes GPU applications

Probability p : SJF Probability 1-p : Round-robin



• Compared to a row hit first scheduler, SMS 
consumes*
– 66% less area
– 46% less static power

Complexity

• Reduction comes from:
– Simpler scheduler (considers fewer properties at a 

time to make the scheduling decision)
– Simpler buffers (FIFO instead of out-of-order)

27

* Based on a Verilog model using 180nm library



0.4

0.6

0.8

1

Sy
st

em
 P

er
fo

rm
an

ce

Previous Best
Best Previous 
Scheduler

Performance at Different GPU Weights

28

0

0.2

0.001 0.1 10

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

ATLAS TCM FR-FCFS

ATLAS [Kim et al., HPCA’10]
Good Multi Core CPU Performance

TCM [Kim et al., MICRO’10]
Good Fairness

FR-FCFS [Rixner et al., ISCA’00]
Good Throughput



0.4

0.6

0.8

1

Sy
st

em
 P

er
fo

rm
an

ce

Previous Best SMS
SMS

Best Previous 
Scheduler

Performance at Different GPU Weights

• At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight

29

0

0.2

0.001 0.1 10

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight



Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017

30



Bottleneck from GPU Address Translation

Page A

Page B
Page C

Page D

Compute Instruction

Warp Pool
In-flight page walks

A B C D

31

A single page walk can stall multiple warps

Parallelism of the GPUs Multiple page walks



Limited Latency Hiding Capability

0
10
20
30
40
50
60

Warps Stalled Per TLB Entry Concurrent Page Walks

GPUs no longer able to hide memory latency

Page Walk  Multiple Dependent Memory Requests

32

0

3
D
S

B
F
S
2

B
L
K

B
P

C
F
D

C
O
N
S

F
F
T

F
W
T

G
U
P
S

H
IS
T
O
H
S

JP
E
G

L
IB

L
P
S

L
U
D

L
U
H

M
M

M
U
M
N
N

N
W

Q
T
C

R
A
Y

R
E
D

S
A
D

S
C

S
C
A
N

S
C
P

S
P
M
V

S
R
A
D

T
R
D

Address translation slowdowns GPUs by 47.6% on average 
on the state-of-the-art design [Power et al., HPCA ’14]

Design Goal of MASK: Reduce the overhead of 
GPU address translation with a TLB-aware design



Observation 1: Thrashing at the Shared TLB

• Multiple GPU applications contend for the TLB

• TLB utilization across warps does not vary a lot

0.8

1

L2
 T

LB
 M

is
s 

Ra
te

(L
ow

er
 is

 B
et

te
r)

Alone App1 Shared App1 Alone App2 Shared App2

33

0

0.2

0.4

0.6

0.8

3DS_HISTO CONS_LPS MUM_HISTO RED_RAY

L2
 T

LB
 M

is
s 

Ra
te

(L
ow

er
 is

 B
et

te
r)

App 1 App 2



MASK: TLB-fill Bypassing

• Limit number of warps that can fill the TLB
– Only warps with a token can fill the shared TLB
– Otherwise fills into the tiny bypassed cache

• Tokens are distributed equally across all cores
• Within each core, randomly distribute to warps

34

• Within each core, randomly distribute to warps

TLB Request

TLBBypassed Cache

Token

No Token

Probe

Probe
Fill

Fill



Observation 2: Inefficient Caching

• Partial address translation data can be cached
– Not all TLB-related data are the same

0.6

0.8

1
L2

 D
at

a 
Ca

ch
e 

H
it 

Ra
te

1
2

35

• Cache is unaware of the page walk depth

0

0.2

0.4

0.6

Average

L2
 D

at
a 

Ca
ch

e 
H

it 
Ra

te 2
3
4



MASK: TLB-aware Shared L2 Cache Design

• Bypass TLB-data with low hit rate

Page Walk Level 1 Hit Rate

Page Walk Level 2 Hit Rate

Page Walk Level 3 Hit Rate

Page Walk Level 4 Hit Rate

Level 2 TLB-Req Page Walk Level 2 Hit Rate

Page Walk Level 4 Hit RateLevel 4 TLB-Req

Probe L2 Cache

Skip L2 Cache

36

Page Walk Level 4 Hit Rate

L2 Data cache Hit RateL2 Data cache Hit Rate

Page Walk Level 4 Hit RateLevel 4 TLB-Req

Benefit 1: Better L2 cache utilization for TLB-data

Benefit 2: TLB-data that is less likely to hit do not have to 
queue at L2 data cache, reducing the latency of a page walk 



Observation 3: TLB- and App-awareness

• TLB requests are latency sensitive
• GPU memory controller is unaware of TLB-data

– Data requests can starve TLB-related requests

• GPU memory controller is unaware of multiple 
GPU applications

37

GPU applications
– One application can starve others



MASK: TLB-aware Memory Controller Design

• Goals:
– Prioritize TLB-data over normal data
– Ensure fairness across all applications

Golden Queue
TLB-Data Request

High Priority

38

To 
DRAM

Memory Scheduler

TLB-Data Request

Silver Queue

Normal Request

Normal Queue

Normal Request

Low Priority

Each application takes turn injecting into the silver queue



Results: Performance of MASK

45.7%2.5
3

3.5
4

4.5

W
ei

gh
te

d 
Sp

ee
du

p

GPU-MMU MASK

39

MASK is effective in reducing TLB contention and TLB-
requests latency throughout the memory hierarchy

1
1.5

2
2.5

0 High Miss Rate 1 High Miss Rate 2 High Miss Rate Average

W
ei

gh
te

d 
Sp

ee
du

p



Our Approach
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017

40



Problems with Using Large Page

Page A

Page B
Page C

Page D

WarpPool

41

Problem: Paging large pages incurs significant slowdown

For a 2MB page size  93% slowdown compared to 4KB



Utilizing Multiple Page Sizes

• Goals: Multi-page-size support
– Allow demand paging using small page size
– Translate addresses using large page size
– Low-cost page coalescing and splintering

• Key Constraint: No operating system support

42



Performance Overhead of Coalescing

Base (small) page

Large page range

App A

App B

UnallocatedRemap data

Update Page Table

Significant performance overhead

43

Update Page Table

Flush



GPGPU Allocation Patterns

• Observation 1: Allocations happen infrequently
– Allocation at the beginning of a kernel
– Deallocation at the end of a kernel

• Observation 2: Allocations are typically for a • Observation 2: Allocations are typically for a 
large block of data

• Mosaic utilizes these observations to provide 
transparent multi-page support

44



Mosaic: Enforcing a Soft Guarantee

• Small pages from different applications never 
fall in the same large page range

App A

App B

Unallocated

45

Large Page 1 Large Page 2



Mosaic: Low Overhead Coalescing

• Key assumption: Soft guarantee
– large page range always contains pages of the same application

L1 Page Table

Update PTE

Coalesce

L2 Page Table

Set Disabled Bit

Set Disabled Bit

46

Benefit: No flush, no data movement

Coalesce
Set Disabled Bit

Set Disabled Bit

PD PT POVA PO



When to Coalesce/Splinter

• Coalesce: 
– Proactively coalesce fully allocated large pages

• Once all data within a large page are transferred

– Keep translations at large page most of the time

• Splinter: 
– Splinter when the page is evicted from the main 

memory
• Enforce demand paging to be done at small size

47



3
4
5
6
7

W
ei

gh
te

d 
Sp

ee
du

p

GPU-MMU MOSAIC MASK + Mosaic Ideal

Results: Performance of Mosaic

46.7%57.8%1.8%

0
1
2
3

2 Apps 3 Apps 4 Apps 5 Apps Average

W
ei

gh
te

d 
Sp

ee
du

p

48

Mosaic is effective at increasing TLB range
MASK-Mosaic is effective in reducing 

address translation overhead



Mitigating Memory Interference
• Intra-application interference

– Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance, PACT 2015

• Inter-application interference
– Staged Memory Scheduling: Achieving High Performance and – Staged Memory Scheduling: Achieving High Performance and 

Scalability in Heterogeneous Systems, ISCA 2012

• Inter-address-space interference
– Redesigning the GPU Memory Hierarchy to Support Multi-

Application Concurrency, Submitted to MICRO 2017
– Mosaic: A Transparent Hardware-Software Cooperative 

Memory Management in GPU, Submitted to MICRO 2017

49



Summary
• Problem: Memory interference in GPU-based systems leads 

to poor performance
– Intra-application interference
– Inter-application interference
– Inter-address-space interference 

• Thesis statement: A combination of GPU-aware cache and 
memory management techniques can mitigate interferencememory management techniques can mitigate interference

• Approach: A holistic memory hierarchy design that is
– GPU-aware
– Application-aware
– Divergence-aware 
– Page-walk-aware

• Key Result: Our mechanisms significantly reduce memory 
interference in multiple GPU-based systems

50



Thesis Contributions
• In-depth analysis of three types of memory interference 

in GPU-based systems

• MeDiC utilizes divergence heterogeneity to reduce 
intra-application interference

• SMS introduces CPU- and GPU-awareness memory • SMS introduces CPU- and GPU-awareness memory 
controller design to reduce inter-application interference

• MASK proposes a TLB-aware GPU memory hierarchy
to reduce the latency of page walks

• Mosaic increases the TLB reach resulting in the reduction 
of TLB contention

51



Future Research Directions
• GPU memory hierarchy design

– Integration of high bandwidth 3D memory
– Other methods to exploit divergence heterogeneity

• Low-overhead virtualization support for GPUs
– Interference-aware and VM-aware designs– Interference-aware and VM-aware designs
– Provide limited operating system support

• Co-schedule multiple GPGPU applications
– Kernel scheduling and GPU core partitioning

• Sharing the GPUs for emerging applications
– Real-time embedded applications with deadlines

52



Other Contributions
• GPU Designs:

– Managing GPU concurrency
• Kayiran et al., MICRO’14

– Improving GPU efficiency
• Vijaykumar et al. ISCA’15
• Kayiran et al., PACT ‘16• Kayiran et al., PACT ‘16

• DRAM Designs:
– Low-latency DRAM

• Seshadri et al., MICRO ’13
• Lee et al. PACT ’15
• Lee et al., SIGMETRICS ‘17

– Hybrid memory
• Yoon et al., ICCD’12

53



Other Contributions
• Network-on-chip Designs:

– Energy efficient on-chip network design 
• Chang et al., SAFARI Tech Report 2011-006
• Fallin et al., NOCs ’12
• Chang et al., SBAC-PAD ’12
• Das et al., HPCA’13• Das et al., HPCA’13
• Ausavarungnirun et al., SBAC-PAD’14,
• Ausavarungnirun et al., PARCO ‘16

– Handling faults in on-chip network 
• Fattah et al., NoCs ‘15

• Data center power management 
• Li et al., HPCA ’16

54



Acknowledgements
• My advisor: Onur Mutlu
• James Hoe, Gabriel Loh, Chris Rossbach, Kayvon Fatahalian
• SAFARI group members

55



Techniques for Shared Resource Management 
in Systems with GPUs

Thesis Defense
Rachata Ausavarungnirun

Committees:
Advisor: Onur Mutlu (CMU and ETH Zürich)
James C. Hoe (CMU)
Kayvon Fatahalian (CMU)
Gabriel H. Loh (AMD Research)
Christopher J. Rossbach (UT Austin and VMware Research)


