Architectural Techniques for
Improving NAND Flash Memory
Reliability

Thesis Oral
Yixin Luo

Committee:

Onur Mutlu (Chair)
Phillip B. Gibbons
James C. Hoe

Erich F. Haratsch, Seagate .
Yu Cai, SK Hynix Carnegie Mellon

Presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy



Storage Technology Drivers - 2018
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Flash-Memory-Based Solid-State Drive (SSD)
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Scaling Degrades Reliability
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Degraded Flash Reliability
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Problem:
The Cost of Flash Reliability



Error Correction Code (ECC)
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Increased Cost to Improve Flash Reliability
~ High ECC cost, BUT NOT enough! |
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Raw Bit Error Rate (RBER)

P/E Cycle Lifetime
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Goal:

Improve Flash Reliability
at A Low Cost



Opportunities to Improve Flash Reliability
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Thesis Statement

*‘NAND flash memory reliability can be improved
=at low cost and with low performance overhead

*by deploying various architectural techniques that
are aware of
*higher-level application behavior and

=underlying flash device characteristics
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Contributions

Improve NAND flash memory reliability at low cost, using

1. Access pattern awareness
“\WARM [MSST'15]

2. Flash error awareness
*Online Flash Channel Modeling [JSAC'16]

3. 3D NAND error and variation awareness
*Understanding 3D NAND Errors, LI-RAID [under submission]

4. Self-recovery and temperature awareness
»Heat\Watch [HPCA'18]
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Contributions

Improve NAND flash memory reliability at low cost, using

1. Access pattern awareness

"\WARM: Write-hotness Aware Retention Management
[MSST’15]

“* Retention: flash cell charge leakage over time

» Write-hot data requires short retention time guarantee

Hot Block Pool Cold Block Pool

Block 10

Write-hot-friendly Write-cold-friendly
management policies management policies

“*Improves flash lifetime by 12.9x )



Contributions

Improve NAND flash memory reliability at low cost, using

1. Access pattern awareness
“\WARM [MSST'15]

2. Flash error awareness
*Online Flash Channel Modeling [JSAC 2016]

s Existing models designed for offline analysis
s Accurate and easy-to-compute model

» Static threshold voltage distribution [ Online Model }
»Dynamically adjust to wearout
s Multiple applications “'

>Improves flash lifetime by Runtime
o)
up t0 69.9% Optimization/Analysis
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Flash Error Related Works

Planar (2D) NAND Errors

Data Retention MSST'15, HPCA'15, ICCD’12
P/E Cycling JSAC'16, GLOBECOM’14
Read Disturb DSN’'15, GLSVLSI'14, APSys’13

Two-Step Programming HPCA17, GLOBECOM' 14
Program Interference SIGMETRICS’ 14, ICCD’13

" No 3D NAND
3D NAND data publicly-

World'’s first 3D WhitePaper’'14 3D NAND available

<
NAND SSD ISSCC’'15 widely available é >

2013 2014-2015 2016 2018

TOSHIBA SK hynix
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Contributions

Improve NAND flash memory reliability at low cost, using

1. Access pattern awareness
"WARM [MSST'195]

2. Flash error awareness
*Online Flash Channel Modeling [JSAC 2016]

3. 3D NAND error and variation awareness
*Understanding 3D NAND Errors, LI-RAID [under submission]

4. Self-recovery and temperature awareness

*HeatWatch [HPCA 2018] Focus of this talk
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1. Flash Device
Characteristics

Understanding

3D NAND Errors:
Through Characterization



Characterization Methodology

*Real flash chips
*3D NAND: 30-39 layer MLC 3D NAND flash chips
=2D NAND: 15-19 nm MLC NAND flash chips

*Using a modified firmware version in the SSD controller
=Control the read reference voltage of the flash chip
*Bypass ECC to get raw NAND data (with raw bit errors)

*Using a heat chamber to control SSD temperature

Heat Chamber

oo
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Characterization Methodology Cont'd

*5 months to collect the data, even more for analysis
*Collected >180GB compressed data

*Characterize threshold voltage rather than raw bit error rate
=Cannot be done without our methodology
*Enables deeper understanding and new techniques

*Rigorous experiments to study 7 types of errors

*P/E cycling, program interference, read disturb, read variation,
retention, retention interference, process variation

*Develop insights into data through statistical modeling and
analysis using python scripts
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3D NAND Error Characteristics

Attribute Observation in 3D NAND Cause of Difference Future Trend

Retention Heat\Watch  dominate all errors
Frooess New layer-to-layer LI-RAID
P/E Cycling

Programming

Other errors become less significant
Program because of larger process technology

interference

Read disturb
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2. Workload
%cteristics }
HeatWatch:

Mitigate 3D NAND Retention
Using Self-Recovery and
Temperature Awareness

3. Powerful
Controller




Probability

Retention Errors

|

Read Ref.

Retention Loss: }
Voltage

Charge Leakage

Retention
Errors

Amount of Charge/Threshold Voltage

Charge - Voltage - Bit Values

]
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Retention Errors Dominates

P/E cycling errors
@ 5K PEC, 19%

Read disturb errors
@ 900K reads, 9%

__—

0% 20% 40% 60% 80% 100%

— _/
~

All 3D NAND Errors
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Probability

Mitigating Retention Errors

Optimal
Read Ref.
Voltage

Read Ref.
Voltage

n Retention

Amount of Charge/Threshold Voltage
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Predicting The Optimal Read Ref. Voltage

Voo = Vo + AV




1. Predicting V,

Conventional Model

*Wearout (PEC)
=Power-law model [JSAC’16]

leatWatch Model

3D NAND Wearout (PEC)
= inear model
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3D NAND Wearout Effect
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Predicting V,

Conventional Model

*Wearout (PEC)
=Power-law model [JSAC’16]

leatWatch Model

3D NAND Wearout (PEC)
= inear model

*Prog. Temperature (T,)
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Programming Temperature Effect
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Predicting The Optimal Read Ref. Voltage

Vopt = Vo + AV

G, 7RI




Predicting AV

Conventional Model

*Wearout (PEC)
*Retention Time (t,)

leatWatch Model

3D NAND Wearout (PEC)
*Retention Time (t,)

Dwell Time (ty)

=|dle time between program
cycles
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Self-Recovery Effect

Normalized
Retention Loss Speed (&)
E 88 &KEE

Dwell Time (seconds)
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Self-Recovery Component

Retention Dwell
Time Time

Retention Shift

AY(ter, t,q, PEC) = b-(PEC + ¢) - In (l +

ter

fo+a-t.g

)
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Predicting AV

Conventional Model

*Wearout (PEC)
*Retention Time (t,)

leatWatch Model

3D NAND Wearout (PEC)
*Retention Time (t,)

Dwell Time (ty)

=|dle time between program
cycles

*Retention & Dwell
Temperature (T, & Ty)
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Retention Temperature Effect

* |log(RBER)
¢ P1 Mean

Normalized
Retention Loss Speed ()

Temperature (Celsius)
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Predicting AV

Conventional Model

*Wearout (PEC)
*Retention Time (t,)

sArrhenius Law with known
activation energy (E,)
[JEDEC’10][ZPC1889]

leatWatch Model

3D NAND Wearout (PEC)
*Retention Time (t,)

Dwell Time (ty)

=|dle time between program
cycles

*Retention & Dwelling
Temperature (T, & Ty)

»E_ for 3D NAND?
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Effective Retention/D

Retention Retention
Time Temp.

Effective Retention
Time

well Time Component

Dwell Dwell
Time Temp.

Effective Dwell
Time

E, =1.

|

95% CI: 1.01 - 1.08 eV

04 eV

|
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Predicting The Optimal Read Ref. Voltage

‘---------------------------\

Self-Recovery
and Retention
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Heat\Watch Mechanism

*Key ldea: Adapt to workload characteristics using URT model

*Tracking Components (Efficiently track URT parameters)
*Tracking SSD temperature
*Tracking dwell time
*Tracking PEC and retention time

Prediction Components (Accurately predict V,; using URT)
*Predicting the optimal read reference voltage
*Fine-tuning URT model parameters online
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Tracking SSD Temperature

>

Area =
Effective
Ret. Time

SSD Temperature or
Amplification Factor

>
Retention Time

42



Heat\Watch Mechanism Cont'd

*Key ldea: Adapt to workload characteristics using URT model

*Tracking Components (Efficiently track URT parameters)
*Tracking SSD temperature
“*Precompute and store, use existing sensors
*Tracking dwell time
“*Only for the last 20 PEC
*Tracking PEC and retention time
“*Log write timestamp per flash block

*Prediction Components (Accurately predict V,,; using URT)
*Predicting the optimal read reference voltage
*Fine-tuning URT model parameters online
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Heat\Watch Mechanism Cont'd

*Key ldea: Adapt to workload characteristics using URT model

*Tracking Components (Efficiently track URT parameters)
*Tracking SSD temperature
*Tracking dwell time

*Tracking PEC and retention time
»Storage Overhead: <1.6MB for 1TB SSD

*Prediction Components (Accurately predict V,,; using URT)
*Predicting the optimal read reference voltage
“*Modeling error: 4.9%
*Fine-tuning URT model parameters online
“»Use periodic sampling
=|_ atency Overhead: <1%



Evaluation Methodology

28 real-workload traces

*Real dwell time, retention time
*MSR-Cambridge

*Temperature Model:

Trigonometric function + Gaussian noise
*Periodic temperature variation within each day
»Small transient temperature variation
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Flash Lifetime Improvements

—— Fixed Vier —— Oracle 3 Q5y-0ver
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1. Flash Device
Characteristics

LI-RAID:

Mitigate Process Variation



Layer-to-Layer Process Variation

iBlockks2 ;

:_Block K+1

3D NAND
cell

Variation in flash cell size across layers
—> Layer-to-layer process variation
|
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Avg. RBER

Worst
RBER

Tail RBER Problem

0 0.0002 0.0004

99% RBER

0.0006
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Adapting Optimal Read Ref. Voltage to Layer

Avg. RBER

Worst
RBER

Avg. RBER
(Vopt)

Worst

RBER

(Vopt)

0 0.0002 0.0004 0.0006
99% RBER
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Conventional RAID for SSD

/Chip 15\

Block 15 |
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Layer-to-Layer Process Variation

L imitations with conventional RAID

=1. Layer-to-layer process variation agnostic
‘*Middle layers have higher error rate

1e_4 I I U I

| -~ = msb (another chip) ’ o

msb e

RBER
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0 20 40 60 80 100
Norm. layers



Conventional RAID for SSD

Chip 0
Block 0

([ Chip 1

Block 1

~

-’-\
L

/Chip 15

~

Block 15 |

53



LI-RAID:
Tolerating Laxer—to-Layer Variation
Chip0 )| Chip 1 " Chip 15

Block 0 || Block 1 Block 15
MSB MSB

~

W N__ LSB a LSB
LSB T LSBT [l Soso LSB
~ Q/q/
MSB MSB
LSB LSB
[ 1. Interleave RAID group across layers

—— —




MSB-LSB Page Error Rate Variation

Limitations with conventional RAID
=1. Layer-to-layer process variation agnostic
‘*Middle layers have higher RBER
»2. MSB or LSB page agnostic
“*MSB pages have higher RBER

le—4

- o -

- — msb

RBER
OOHHNNWLIE B

0 20 40 60 80 100
Norm. layers
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LI-RAID:
Tolerating MSB-LSB Error Rate Variation

4 Chip 0 N[ Chip 1 A /ChID 15\
Block 0 Block 1 Block 15
| MSB | MSB MSB
LSB LSB LSB
MSB N MSB
LSB LSB e LSB

MSB MSB [ msB_ |

LSB LSB LSB

1. Interleave RA D group across Iayers

Y4

2. Interleave RAID group across MSB/LSB pages




LI-RAID Evaluation

*Methodology
»Based on characterization data at 10,000 P/E cycles

*Reliability
=*Improves MTTF by 9.1x over conventional RAID

*Overhead
*No additional overhead on top of conventional RAID
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Conclusions and
Future Work



[ Goal: Improve Flash Reliability At Low Cost }

3D NAND Errors, LI- WARM [MSST “16]
RAID [under submission] HeatWatch [HPCA ‘18]

1. Flash Device 2. Workload
Characteristics Characteristics

" e r : -
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Online Flash Channel

3. Powerful }
Modeling [JSAC “16]

Controller
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L essons Learned

*Specialization helps
=Device characteristics
=\\Vorkload characteristics

Data-driven approach
*Model-based techniques
=*Online model vs. fixed model

*Observation-driven research
=Derive new insights through real characterization
*New observation inspires new techniques
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Future Research Directions

Data Center
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Future Research Directions

Data helps storage

Storage helps data

New models using

machine learning/deep learning
New techniques using
reinforcement learning

Accommodate new applications:
e.g., Al, DNA sequencing
Accommodate new technologies:
NVM, NVDIMM-F, zNAND

Accommodate new storage
architectures: distributed storage,
single-level storage
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Other Works During PhD

*Other NAND Flash Memory Reliability Works
*[ProclEEE ‘17], [HPCA ‘17], [DFRWS EU ‘17], [DSN ‘15], [HPCA ‘15]

*Heterogeneous-Reliability Memory
*[DSN “14] [arXiv “17]

*Single-Level Storage
«[WEED “13]

*Processing In Memory
*[MICRO ‘13]
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Error Correction Code (ECC)

*Key Ildea:
=sJse redundant bits to encode data bits

*Pros:
*Avoids silent data corruption (Error Detection)
*Increases data reliability (Error Correction)

Cons:
*Requires redundant ECC bits (High Cost)

*Treats all errors as random, does not take advantage
of error characteristics (Not Specialized)
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NAND Flash Errors

*P/E cycling
=\Wear out

*Retention
*Charge leakage

*Program interference
=Coupling

*Read disturb
="\Weak programming

*Process variation

/

Retention

~

Program interference

BL-3 BL-2 BL1 BLO

Aggressor page
I D

Victim page

Aggressor page

Y4

Read disturb

BL-3 BL-2 BL1 BLO

Disturbed pages

Disturbed page
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Future of Solid-State Drives (SSD

Capacity/Density

Areal density (Tb/in?)

TR S

IsscC2014/ =
(0BZL.......ocheccescnesiomesmessibasesssetbressssssssmssemssiiossasspassessssasssetosssgssassssassasssionsesassssssssns asepssead
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Image Source:

1. https://www.computerworld.com/article/3030642/data-storage/flash-memorys-density-surpasses-hard-drives-for-first-time.html|

* IDEMA - ASTC Technology Roadmap
http://www.idema.org/

2. https://www.pcworld.com/article/3040591/storage/ssd-prices-plummet-again-close-in-on-hdds.html

n

Cost

Figure: 128GB SSD and 500GB HDD Price Trends, 2012~2016

1 3 ) S —
US$100
US$50
US$O 1 L 1 1 J
2012 2013 2014 2015 2016E
= 500GB HDD =128 GB 2.5" SSD

Source : DRAMeXchange, Mar., 2016
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Why do we care about SSD lifetime”?

*Because SSD lifetime is an indicator of SSD reliability
=Lifetime — Errors increase with write cycles
»We are actually reducing SSD errors!

MLC-A —e— MLC-D
@ MLC-B -4- SLC-A
MLC-C sLC-B

0.012
|

Daily UE Probability
0.006
|

0.000
I

0 1000 2000 3000 4000

PE cycle

Image Source:
1. Bianca Schroeder, et al., “Flash Reliability in Production: The Expected and the Unexpected”, FAST 2016.
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Why do we care about SSD lifetime”?

Because SSD lifetime is an indicator of SSD reliability
=Lifetime — Errors increase with write cycles
“*We are actually reducing SSD errors!

=*UE: Uncorrectable errors or data corruption — Errors can lead
to error correction failure

=Data retention — Errors increase with retention time
*Performance

*When SSD lifespan is fixed, limits drive writes per day

“* We can trade-off reliability for performance (Samsung zNAND)
=Cost — Errors increase as areal density increases
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Raw bit error rate (RBER)

Mitigating Retention Improves Lifetime

Retention errors affect SSD reliability and lifetime.

o
o
UNRELABLE
¢! ors
e gion &
pete" .

ECC-correctable | qth of orrof
RBER I

Wear out (in write or P/E cycles)




Conventional Retention Model Drawbacks

*Not designed for 3D NAND

CIW/E=1 O W/E=100 [JW/E=300 /. W/E=500
< WI/E=1000 X W/E=1500 >k W/E=2000

103 — = 10°
3D TLC, 85degC > 2D (1Xnm) TLC, 85degC
5 102 } w/o Vigr shift v 102 f
= 3
2 10°
3
aQ 2 100
m©
Q
= 101

2D NAND very
sensitive to
wearout

3D NAND uniformly
affected by wearout

Source: K. Mizoguchi, et al., “Data-Retention Characteristics Comparison of 2D and 3D TLC NAND Flash Memories,” IMW, 2017.
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Conventional Retention Model Drawbacks

*Retention temperature agnostic

Retention loss speed

1.0{ =+« log(RBER) S
f,:f
*  P1 mean ,;ﬁ,,
oR « P2 mean R4
| < 77 .
) « P33 mean A a
061 . i
e o ol
r’- L}
0 20 40 60

Temperature (Celsius)



Conventional Retention Model Drawbacks

Dwell time agnostic
* Dwell time between program cycles & temperature

Retention loss speed

1.09 &

-~
W »
R
L -
N . Y
5 S~ e
08 — _ e ‘ﬁ. '.
- ‘ \\. - “\ »
~ - -
LS ~ 'A-“
~ ‘h..‘
b : (]
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LS L ]
0.6 - .
- .
1111" llff' LI
102 103

Dwell time (seconds)

log{RBER)
P1 mean
P2 mean
P3 mean
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Conventional Retention Model Drawbacks

*Programming temperature agnostic
Program accuracy
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Optimal Read Ref. Voltage for Process Variation
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Threshold Voltage Distribution
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Reading From A Flash Cell
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Reading From A Flash Cell
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Writing To A Flash Cell
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PDF

Read Reference Voltage (V)
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Threshold Voltage
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Threshold Voltage
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Background:

- Flash Reliability Background
- 3D NAND vs. Planar NAND



Threshold Voltage Distribution
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Flash Block Organization
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Read Reference Voltage

- [ Read }
— N —~
Va Vb Vc

Threshold Voltage
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Common Types of Flash Errors

*P/E cycling [Yu+ DATE13] )
=\Wear out

*Program interference [Yu+ ICCD’13]
=Coupling

*Program [Yu+ HPCA'17]

*Two-step programming J
*Read disturb [Yu+ DSN’15]

="\Weak programming

*Retention [Yu+ HPCA'15]
*Charge leakage

> [ Write ]

[ Read ]

Cdle
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Raw Bit Errors

[Raw Bit Errors}

PDF

Threshold Voltage
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Flash Reliability Summary

*Flash operations

*—> Various types of noise
»-> Threshold voltage distribution shift
*»—> Raw Dbit errors

*Scaling
=Smaller cells - bigger shifts
»Smaller distance between cells - bigger noise

«Solution?
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3D NAND Flash Memory Scaling
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3D NAND vs. Planar NAND Differences

* Flash cell design
* Flash chip organization
 Larger manufacturing process
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Flash Chip Organization
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Variation in flash cell size across layers

-> Layer-to-layer process variation
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Summary of Differences

‘Flash cell design
s aster data retention

‘Flash chip organization
=|_ayer-to-layer process variation

-Larger manufacturing process
*More resistant to other types of errors
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Threshold Voltage Distribution
Characterization Methodology
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Retention Errors
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[Retention errors increase faster in 3D NAND}
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Importance of Prediction Accuracy

Conventiona
| Retention

Model

HeatWatch

0 : 10 15 20 25
Distance to optimal read reference voltage (Vopt)
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Raw Bit Error Rate Variation Within A Block

— fit = gamma(2.19,7.45e-05)

Probability density
o
o
(@)

Tail RBER
MSB pages @ middle layers
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Characterization Summary

‘Retention errors
=s|ncrease much faster
sDominate SSD errors

-Layer-to-layer process variation

=Error rate much higher than average
in the MSB pages on the middle layers
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HeatWatch Summary

Dwell time and temperature affect retention

Conventional retention model is insufficient

Heat\Watch

sl Jses a new unified retention model

s Unifies: PEC, tret; Treb tdwel/f waell: Tprog

=Efficiently computes effective retention/dwell time
“Combines: to; & Teot, tawen & Tawen

*Results
*Improves flash lifetime by 3.85 times
*< 1.6 MB memory for 1TB SSD
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Rising Popularity of NAND Flash Memory

Data Centers and Servers Personal Computers Mobile Devices
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Storage Technology Drivers - 2018

Internet (User data, Cloud storage)
Camera (4K, VR, Drones, Light field)
Al (Machine learning, Self-driving)
loT (Sensor data)

Bioinformatics (DNA sequencing, Health monitoring)
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Primary Storage Demands

Flash Memory-
Based Solid-State
V Drive
v

Low Latency
High Bandwidth V

High Density, Low Cost ?
High Reliability ?
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Degraded Flash Reliability Increases Cost

--Raw Bit Error Rate -e-ECC Redundancy
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Causes of Raw Bit Errors

———————————————————————————————————
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Raw bit errors
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Causes of Raw Bit Errors

———————————————————————————————————

.{ FLASH Limited Uncorrectable
RELIABILITY BuGEHE error/corruption

|
|
N\

Various types of Threshold Flash
circuit-level noise eli=Te[< mgmt. pattern

HARDWARE

Hardware-software coordination is needed!
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Future Research Directions

«SSD Errors At Scale

*Problem
s Characterizing process variation requires lots of flash devices
=Directions

s Understanding other component failures

s Deploy our proposed techniques at scale

“*Predicting and Preventing SSD Failures

*» Understanding and tolerating reliability variation across SSDs

Enabling Cold Storage in SSD

*Problem
s Cost/GB is higher for SSD than for HDD

=Directions
s Identifying suitable data for cold storage
ssIncrease SSD retention time and capacity
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Flash Reliability

>

SSD Reliability-Cost Trade-off

*Error Rate Our Research
*SSD Lifetime
*Retention Longer
Lifetime,
_ .Retention -~
Newer generation
SSDrel:ab:l:tyrequ:rement
in data centers
Weaker ECC, oo
More Bits/Cell *Density-
_/ ‘Redundancy
: / —

SSD Cost
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Summary

*Goal: Improve SSD reliability at low cost
3D NAND changes flash error characteristics

*Real 3D NAND chips characterization
=|dentify retention and process variation problems

*HeatWatch
*Predict V,,, using dwell time and temperature
*Improve lifetime by 3.85x, < 1.6 MB memory

Layer-Interleaved RAID
=Interleave layers and bits within each RAID group
=Reduce 99% RBER by 66.9%
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