
Architectural Techniques for 

Improving NAND Flash Memory 

Reliability

Thesis Oral

Yixin Luo

Committee:

Onur Mutlu (Chair) 

Phillip B. Gibbons

James C. Hoe

Erich F. Haratsch, Seagate

Yu Cai, SK Hynix

Presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy
1



Storage Technology Drivers - 2018
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Faster access to 
larger amounts of 

persistent data



Flash-Memory-Based Solid-State Drive (SSD)

SSD
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HOSTSSD 
ControllerNAND NAND DRAM

NAND Flash Memory
(Flash Chip)

Fast access
~50 µs

>100K IOPS

Large data
Scaling



Scaling Degrades Reliability
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Scaling:
Smaller cell size

Smaller distance b/w cells

Bit flips or
Raw bit errors

Scaling

Flash Cell
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2-bit MLC



Degraded Flash Reliability
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Newer generation of planar (2D) NAND
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Problem:
The Cost of Flash Reliability
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Error Correction Code (ECC)
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ECC bitsData bits

More ECC bits are required to correct 
more raw bit errors



Increased Cost to Improve Flash Reliability
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Newer generation of planar (2D) NAND
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High ECC cost, BUT NOT enough!



P/E Cycle Lifetime
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Wearout (Program/Erase Cycles, or PEC)
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Degrading P/E Cycle Lifetime

10

0
2
4
6
8
10
12
14
16

0

2

4

6

8

10

12

90 72 50 32 25 20

EC
C

 R
ed

un
da

nc
y 

(%
)

P/
E 

C
yc

le
 L

ife
tim

e 
(T

ho
us

an
ds

)

Technology Node (nm)

P/E Cycle Lifetime ECC Redundancy

Newer generation of planar (2D) NAND

Sh
or

te
r l

ife
tim

e

H
ig

he
r E

C
C

 o
ve

rh
ea

d



Goal:
Improve Flash Reliability 
at A Low Cost
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Opportunities to Improve Flash Reliability

12

HOSTSSD 
ControllerNAND NAND DRAM

1. Flash Device 
Characteristics

2. Workload 
Characteristics

3. Powerful 
Controller



Thesis Statement

•NAND flash memory reliability can be improved
§at low cost and with low performance overhead

•by deploying various architectural techniques that 
are aware of
§higher-level application behavior and
§underlying flash device characteristics
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Contributions

Improve NAND flash memory reliability at low cost, using
1. Access pattern awareness
§WARM [MSST’15]

2. Flash error awareness
§Online Flash Channel Modeling [JSAC’16]

3. 3D NAND error and variation awareness
§Understanding 3D NAND Errors, LI-RAID [under submission]

4. Self-recovery and temperature awareness
§HeatWatch [HPCA’18]
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Contributions

Improve NAND flash memory reliability at low cost, using
1. Access pattern awareness
§WARM: Write-hotness Aware Retention Management 
[MSST’15]
vRetention: flash cell charge leakage over time
vWrite-hot data requires short retention time guarantee

vImproves flash lifetime by 12.9x
15
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Contributions

Improve NAND flash memory reliability at low cost, using
1. Access pattern awareness
§WARM [MSST’15]

2. Flash error awareness
§Online Flash Channel Modeling [JSAC 2016]
vExisting models designed for offline analysis
vAccurate and easy-to-compute model
ØStatic threshold voltage distribution
ØDynamically adjust to wearout

vMultiple applications
ØImproves flash lifetime by
up to 69.9%

16

Online Model

Runtime 
Optimization/Analysis



Flash Error Related Works
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Planar (2D) NAND Errors
Data Retention

P/E Cycling
Read Disturb

Two-Step Programming
Program Interference

MSST’15, HPCA’15, ICCD’12
JSAC’16, GLOBECOM’14
DSN’15, GLSVLSI’14, APSys’13
HPCA’17, GLOBECOM’14
SIGMETRICS’14, ICCD’13

3D NAND
World’s first 3D 

NAND SSD

2013

WhitePaper’14
ISSCC’15

2014-2015

3D NAND
widely available

2016 2018

No 3D NAND 
data publicly-

available 



Contributions

Improve NAND flash memory reliability at low cost, using
1. Access pattern awareness
§WARM [MSST’15]

2. Flash error awareness
§Online Flash Channel Modeling [JSAC 2016]

3. 3D NAND error and variation awareness
§Understanding 3D NAND Errors, LI-RAID [under submission]

4. Self-recovery and temperature awareness
§HeatWatch [HPCA 2018]
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Focus of this talk



Understanding
3D NAND Errors:
Through Characterization

19

1. Flash Device 
Characteristics



Characterization Methodology

•Real flash chips
§3D NAND: 30-39 layer MLC 3D NAND flash chips
§2D NAND: 15-19 nm MLC NAND flash chips

•Using a modified firmware version in the SSD controller
§Control the read reference voltage of the flash chip
§Bypass ECC to get raw NAND data (with raw bit errors)

•Using a heat chamber to control SSD temperature

20

Heat Chamber



Characterization Methodology Cont’d

•5 months to collect the data, even more for analysis
•Collected >180GB compressed data
•Characterize threshold voltage rather than raw bit error rate
§Cannot be done without our methodology
§Enables deeper understanding and new techniques

•Rigorous experiments to study 7 types of errors
§P/E cycling, program interference, read disturb, read variation, 
retention, retention interference, process variation

•Develop insights into data through statistical modeling and 
analysis using python scripts

21
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3D NAND Error Characteristics
Attribute Observation in 3D NAND Cause of Difference Future Trend

Retention
Early retention phenomenon Charge-trap cell Early retention phenomenon will 

continue if charge-trap cell is used

Retention interference Vertical stacking of flash 
cells

Retention interference will increase 
when smaller process technology 

is used

Process 
Variation

Process variation along z-axis is 
significant

Vertical stacking of flash 
cells

Process variation will increase as 
we stack more cells vertically

P/E Cycling
Distribution parameters change 
over P/E cycle following linear 

trend instead of power-law trend
Larger process technology

P/E cycle trend will go back to 
power-law trend when smaller 

process technology is used

Programming No programming errors Two-step programming
Programming errors may come 
back if two-step programming is 

used

Program 
interference

Wordline-to-wordline interference 
along z-axis

Vertical stacking of flash 
cells

Will stay true in 3D NAND

Much lower program interference 
correlation than in planar NAND Larger process technology

Program interference correlation 
will increase when smaller process 

technology is used

Read disturb Much smaller read disturb effect 
than in planar NAND Larger process technology

Read disturb effect will increase 
when smaller process technology 

is used

Retention errors dominate all errors

New layer-to-layer process variation errors

Other errors become less significant
because of larger process technology

HeatWatch

LI-RAID



HeatWatch:
Mitigate 3D NAND Retention 
Using Self-Recovery and 
Temperature Awareness

23

2. Workload 
Characteristics

3. Powerful 
Controller
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Retention Errors
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Retention Errors Dominates
P/E cycling errors 
@ 5K PEC, 19%

Read disturb errors 
@ 900K reads, 9%

Retention errors 
@ 3 day, 72%

0% 20% 40% 60% 80% 100%
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All 3D NAND Errors
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Mitigating Retention Errors
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Predicting The Optimal Read Ref. Voltage
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Vopt = V0 + ΔV

1. Initial Voltage 
Before Retention

2. Voltage Shift 
due to

Retention Loss



1. Predicting V0

Conventional Model
•Wearout (PEC)
§Power-law model [JSAC’16]

HeatWatch Model
•3D NAND Wearout (PEC)
§Linear model

28



3D NAND Wearout Effect
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Predicting V0

Conventional Model
•Wearout (PEC)
§Power-law model [JSAC’16]

HeatWatch Model
•3D NAND Wearout (PEC)
§Linear model

•Prog. Temperature (Tp)

30



Programming Temperature Effect
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A higher temperature increases the 
optimal read reference voltage

70 C
Vopt

0 C
Vopt



Predicting The Optimal Read Ref. Voltage
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Vopt = V0 + ΔV

Initial Voltage 
Before Retention

Voltage Shift 
due to 

Retention Loss

PEC Tp

Program Variation 
Component



Predicting ΔV

Conventional Model
•Wearout (PEC)
•Retention Time (tr)

HeatWatch Model
•3D NAND Wearout (PEC)
•Retention Time (tr)

•Dwell Time (td)
§Idle time between program 
cycles

33



Self-Recovery Effect
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Long dwell time slows down retention



Self-Recovery Component
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tr Td

Dwell 
Time

ΔV

Retention Shift

Retention 
Time

PEC

Wearout



Predicting ΔV

Conventional Model
•Wearout (PEC)
•Retention Time (tr)

HeatWatch Model
•3D NAND Wearout (PEC)
•Retention Time (tr)

•Dwell Time (td)
§Idle time between program 
cycles

•Retention & Dwell 
Temperature (Tr & Td)

36



Retention Temperature Effect
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High temperature accelerates retention



Predicting ΔV

Conventional Model
•Wearout (PEC)
•Retention Time (tr)

§Arrhenius Law with known 
activation energy (Ea) 
[JEDEC’10][ZPC1889]

HeatWatch Model
•3D NAND Wearout (PEC)
•Retention Time (tr)

•Dwell Time (td)
§Idle time between program 
cycles

•Retention & Dwelling 
Temperature (Tr & Td)
§Ea for 3D NAND?

38



Effective Retention/Dwell Time Component
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td Td

Dwell 
Temp.

Dwell 
Time

Td,eff

Effective Dwell 
Time

tr Tr

Retention 
Temp.

Tr,eff

Effective Retention 
Time

Retention 
Time

Ea = 1.04 eV
95% CI: 1.01 – 1.08 eV



Predicting The Optimal Read Ref. Voltage
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Vopt = V0 + ΔV
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URT Model



HeatWatch Mechanism

•Key Idea: Adapt to workload characteristics using URT model
•Tracking Components (Efficiently track URT parameters)
§Tracking SSD temperature
§Tracking dwell time
§Tracking PEC and retention time

•Prediction Components (Accurately predict Vopt using URT)
§Predicting the optimal read reference voltage
§Fine-tuning URT model parameters online

41



Tracking SSD Temperature
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HeatWatch Mechanism Cont’d

•Key Idea: Adapt to workload characteristics using URT model
•Tracking Components (Efficiently track URT parameters)
§Tracking SSD temperature
vPrecompute and store, use existing sensors

§Tracking dwell time
vOnly for the last 20 PEC

§Tracking PEC and retention time
vLog write timestamp per flash block

•Prediction Components (Accurately predict Vopt using URT)
§Predicting the optimal read reference voltage
§Fine-tuning URT model parameters online

43



HeatWatch Mechanism Cont’d

•Key Idea: Adapt to workload characteristics using URT model
•Tracking Components (Efficiently track URT parameters)
§Tracking SSD temperature
§Tracking dwell time
§Tracking PEC and retention time
§Storage Overhead: <1.6MB for 1TB SSD

•Prediction Components (Accurately predict Vopt using URT)
§Predicting the optimal read reference voltage
vModeling error: 4.9%

§Fine-tuning URT model parameters online
vUse periodic sampling

§Latency Overhead: <1%

44



Evaluation Methodology

•28 real-workload traces
§Real dwell time, retention time
§MSR-Cambridge

•Temperature Model:
Trigonometric function + Gaussian noise
§Periodic temperature variation within each day
§Small transient temperature variation

45



Flash Lifetime Improvements
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3.85x over 
baseline

24% over 
conventional



LI-RAID:
Mitigate Process Variation

47

1. Flash Device 
Characteristics



Layer-to-Layer Process Variation
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Tail RBER Problem

0 0.0002 0.0004 0.0006

Worst
RBER

Avg. RBER

99% RBER
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Adapting Optimal Read Ref. Voltage to Layer

0 0.0002 0.0004 0.0006

Worst
RBER
(Vopt)

Avg. RBER
(Vopt)

Worst
RBER

Avg. RBER

99% RBER
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Worst RBER still much higher than Avg. RBER



Conventional RAID for SSD
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Layer-to-Layer Process Variation
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•Limitations with conventional RAID
§1. Layer-to-layer process variation agnostic
vMiddle layers have higher error rate



Conventional RAID for SSD
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LI-RAID:
Tolerating Layer-to-Layer Variation
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MSB-LSB Page Error Rate Variation
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•Limitations with conventional RAID
§1. Layer-to-layer process variation agnostic
vMiddle layers have higher RBER

§2. MSB or LSB page agnostic
vMSB pages have higher RBER



LI-RAID:
Tolerating MSB-LSB Error Rate Variation
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LI-RAID Evaluation

•Methodology

§Based on characterization data at 10,000 P/E cycles

•Reliability

§Improves MTTF by 9.1x over conventional RAID

•Overhead

§No additional overhead on top of conventional RAID

57



Conclusions and 
Future Work
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HOSTSSD 
ControllerNAND NAND DRAM

1. Flash Device 
Characteristics

2. Workload 
Characteristics

3. Powerful 
Controller

WARM [MSST ‘16]

Online Flash Channel 
Modeling [JSAC ‘16]

3D NAND Errors, LI-
RAID [under submission]

Goal: Improve Flash Reliability At Low Cost

HeatWatch [HPCA ‘18]



Lessons Learned

•Specialization helps
§Device characteristics
§Workload characteristics

•Data-driven approach
§Model-based techniques
§Online model vs. fixed model

•Observation-driven research
§Derive new insights through real characterization
§New observation inspires new techniques

60



Future Research Directions

61

SSDManage unreliable cells 
in an SSD

Manage unreliable SSDs 
in a data center

Data Center
SSD

Server SSD

SSD

SSD

Server SSD

SSD



Future Research Directions
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Data helps storage

Storage helps data

• New models using
machine learning/deep learning

• New techniques using 
reinforcement learning

• Accommodate new applications: 
e.g., AI, DNA sequencing

• Accommodate new technologies: 
NVM, NVDIMM-F, zNAND

• Accommodate new storage 
architectures: distributed storage, 
single-level storage



Other Works During PhD

•Other NAND Flash Memory Reliability Works
§[ProcIEEE ‘17], [HPCA ‘17], [DFRWS EU ‘17], [DSN ‘15], [HPCA ‘15]

•Heterogeneous-Reliability Memory
§[DSN ‘14] [arXiv ‘17]

•Single-Level Storage
§[WEED ‘13]

•Processing In Memory
§[MICRO ‘13]
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Backup Slides
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Error Correction Code (ECC)

•Key Idea:
§Use redundant bits to encode data bits

•Pros:
§Avoids silent data corruption (Error Detection)
§Increases data reliability (Error Correction)

•Cons:
§Requires redundant ECC bits (High Cost)
§Treats all errors as random, does not take advantage 
of error characteristics (Not Specialized)
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NAND Flash Errors

•P/E cycling
§Wear out

•Retention
§Charge leakage

•Program interference
§Coupling

•Read disturb
§Weak programming

•Process variation

71
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Future of Solid-State Drives (SSDs)

72
Image Source:
1. https://www.computerworld.com/article/3030642/data-storage/flash-memorys-density-surpasses-hard-drives-for-first-time.html
2. https://www.pcworld.com/article/3040591/storage/ssd-prices-plummet-again-close-in-on-hdds.html

Capacity/Density Cost



Why do we care about SSD lifetime?

•Because SSD lifetime is an indicator of SSD reliability
§Lifetime – Errors increase with write cycles
vWe are actually reducing SSD errors!

73Image Source:
1. Bianca Schroeder, et al., “Flash Reliability in Production: The Expected and the Unexpected”, FAST 2016.



Why do we care about SSD lifetime?
•Because SSD lifetime is an indicator of SSD reliability
§Lifetime – Errors increase with write cycles
vWe are actually reducing SSD errors!

§UE: Uncorrectable errors or data corruption – Errors can lead 
to error correction failure
§Data retention – Errors increase with retention time
§Performance
vWhen SSD lifespan is fixed, limits drive writes per day
vWe can trade-off reliability for performance (Samsung zNAND)

§Cost – Errors increase as areal density increases
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Mitigating Retention Improves Lifetime
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Conventional Retention Model Drawbacks

•Not designed for 3D NAND
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Source: K. Mizoguchi, et al., “Data-Retention Characteristics Comparison of 2D and 3D TLC NAND Flash Memories,” IMW, 2017.
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Conventional Retention Model Drawbacks
•Not designed for 3D NAND

•Retention temperature agnostic
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Conventional Retention Model Drawbacks
•Not designed for 3D NAND
•Retention temperature agnostic

•Dwell time agnostic
§ Dwell time between program cycles & temperature

78



Conventional Retention Model Drawbacks
•Not designed for 3D NAND
•Retention temperature agnostic
•Dwell time agnostic

•Programming temperature agnostic
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Optimal Read Ref. Voltage for Process Variation
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Threshold Voltage Distribution

Threshold Voltage Distribution
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Reading From A Flash Cell
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Reading From A Flash Cell
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Writing To A Flash Cell
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Threshold Voltage Distribution
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Read Reference Voltage (Vref)
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Multi-Level Cell (MLC)
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Background:
- Flash Reliability Background
- 3D NAND vs. Planar NAND
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Threshold Voltage Distribution
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Flash Block Organization
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Read Reference Voltage
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Common Types of Flash Errors

•P/E cycling [Yu+ DATE’13]
§Wear out

•Program interference [Yu+ ICCD’13]
§Coupling

•Program [Yu+ HPCA’17]
§Two-step programming

•Read disturb [Yu+ DSN’15]
§Weak programming

•Retention [Yu+ HPCA’15]
§Charge leakage
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Raw Bit Errors

93

Threshold Voltage

PDF

Va Vb Vc

Raw Bit Errors



Flash Reliability Summary

§Flash operations
•à Various types of noise
§à Threshold voltage distribution shift
và Raw bit errors

•Scaling
§Smaller cells à bigger shifts
§Smaller distance between cells à bigger noise

•Solution?
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3D NAND Flash Memory Scaling
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3D NAND vs. Planar NAND Differences

• Flash cell design
• Flash chip organization
• Larger manufacturing process

96

These differences fundamentally affect 
various types of flash errors!



Flash Cell Design
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Flash Chip Organization
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Summary of Differences

•Flash cell design
§Faster data retention

•Flash chip organization
§Layer-to-layer process variation

•Larger manufacturing process
§More resistant to other types of errors
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Threshold Voltage Distribution
Characterization Methodology
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Retention Errors
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Importance of Prediction Accuracy

102

Conventiona
l Retention 

Model

HeatWatch



Raw Bit Error Rate Variation Within A Block
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Characterization Summary

•Retention errors
§Increase much faster
§Dominate SSD errors

•Layer-to-layer process variation
§Error rate much higher than average
in the MSB pages on the middle layers
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HeatWatch Summary

•Dwell time and temperature affect retention
•Conventional retention model is insufficient
•HeatWatch
§Uses a new unified retention model
vUnifies: PEC, tret, Tret, tdwell, Tdwell, Tprog

§Efficiently computes effective retention/dwell time
vCombines: tret & Tret, tdwell & Tdwell

•Results
§Improves flash lifetime by 3.85 times
§< 1.6 MB memory for 1TB SSD
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Rising Popularity of NAND Flash Memory
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Storage Technology Drivers - 2018

•Internet (User data, Cloud storage)

•Camera (4K, VR, Drones, Light field)

•AI (Machine learning, Self-driving)

•IoT (Sensor data)

•Bioinformatics (DNA sequencing, Health monitoring)
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Primary Storage Demands

108

Small
Form Factor
Low Power

Low Latency

High Bandwidth

High Density, Low Cost

High Reliability

SSD Flash Memory-
Based Solid-State 

Drive

?
?



Degraded Flash Reliability Increases Cost
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Newer generation of planar NAND
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Causes of Raw Bit Errors

110

Limited 
lifetime

Uncorrectable 
error/corruption

Raw bit errors

FLASH
RELIABILITY



SOFTWAREHARDWARE

Causes of Raw Bit Errors
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Future Research Directions

•SSD Errors At Scale
§Problem
vCharacterizing process variation requires lots of flash devices

§Directions
vUnderstanding other component failures
vDeploy our proposed techniques at scale
vPredicting and Preventing SSD Failures
vUnderstanding and tolerating reliability variation across SSDs

•Enabling Cold Storage in SSD
§Problem
vCost/GB is higher for SSD than for HDD

§Directions
vIdentifying suitable data for cold storage
vIncrease SSD retention time and capacity
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SSD Reliability-Cost Trade-off
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Summary

•Goal: Improve SSD reliability at low cost
•3D NAND changes flash error characteristics
•Real 3D NAND chips characterization
§Identify retention and process variation problems

•HeatWatch
§Predict Vopt using dwell time and temperature
§Improve lifetime by 3.85x, < 1.6 MB memory

•Layer-Interleaved RAID
§Interleave layers and bits within each RAID group
§Reduce 99% RBER by 66.9%
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