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DRAM SCALING
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TECHNOLOGICAL FEASIBILITY
Can we make smaller cells?

ECONOMIC VIABILITY
Should we make smaller cells?
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SMALLER
CELLS

LOWER
COST/BIT

1. RELIABILITY TAX

2. PERFORMANCE TAX



1. RELIABILITY
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COUPLING BETWEEN 

NEARBY CELLS

ROW HAMMER (ISCA 2014)

Your DRAM chips are probably broken.



2. PERFORMANCE
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ABNORMALLY SLOW 

OUTLIER CELLS

BANK CONFLICTS (ISCA 2012)

Our solution may be adopted by industry.
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CPU
Memory
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THESIS STATEMENT

The degradation in DRAM 

reliability & performance can be 

effectively mitigated by making

low-overhead, non-intrusive 

modifications to the DRAM chips 

and the DRAM controller.
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DRAM
SCALING

ARCHITECTURAL
SUPPORT

MAIN MEMORY:
LARGER, FASTER, 

RELIABLE, EFFICIENT



THREE CONTRIBUTIONS

1. We show that DRAM scaling is 
negatively affecting reliability.

We expose a new type of
DRAM failure, and propose a 

cost-effective way to address it.
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THREE CONTRIBUTIONS

2. We propose a high-performance
architecture for DRAM that 
mitigates its growing latency.

We identify bottlenecks in DRAM’s 
internal design and alleviate them 

in a cost-effective manner.
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THREE CONTRIBUTIONS

3. We develop a new simulator for 
facilitating rapid design space 
exploration of DRAM. 

The simulator is the fastest,
while also being easy to modify

due to its modular design.
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OUTLINE
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1. RELIABILTY: ROW HAMMER

2. PERF: BANK CONFLICT

3. SIMULATOR: RAMULATOR

4. CONCLUSION
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1. ROW HAMMER

FLIPPING BITS IN MEMORY
WITHOUT ACCESSING THEM

ISCA 2014
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DRAM CHIP
WORDLINE

ROW LOW VOLTAGEHIGH VOLTAGE
VICTIM

VICTIM
AGGRESSOR

READ DATA FROM HERE, 
GET ERRORS OVER THERE 
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GOOGLE’S EXPLOIT

http://googleprojectzero.blogspot.com

“We learned about 

rowhammer from 

Yoongu Kim et al.”
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GOOGLE’S EXPLOIT

PROPOSED
SOLUTIONS

OUR PROOF-OF-CONCEPT

EMPIRICAL
ANALYSIS



REAL SYSTEM
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x86 DRAM

1. CACHE HITS 2. ROW HITS

MANY READS TO 

SAME ADDRESS

OPEN/CLOSE

SAME ROW≠
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LOOP:

mov (X), %reg
mov (Y), %reg
clflush (X)
clflush (Y)
jmp LOOP

11111111111
11111111111
11111111111
11111111111

Y

X

11111111111

1111

1111

11011110010

10111010111

x86 CPU DRAM

http://www.github.com/CMU-SAFARI/rowhammer

MANY
ERRORS!
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WHY DO THE

ERRORS OCCUR?
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COUPLING
• Electromagnetic

• Tunneling

ROOT CAUSE?

⇝ ⇝⇝⇝⇝ ⇝⇝⇝

ACCELERATES CHARGE LOSS 



AS DRAM SCALES …

• CELLS BECOME SMALLER 
Less tolerance to coupling effects

• CELLS BECOME PLACED CLOSER
Stronger coupling effects

COUPLING ERRORS MORE LIKELY
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1. ERRORS ARE RECENT
Not found in pre-2010 chips

2. ERRORS ARE WIDESPREAD
>80% of chips have errors

Up to one error per ~1K cells
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MOST MODULES AT RISK
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A VENDOR

B VENDOR

C VENDOR

86%

83%

88%

(37/43)

(45/54)

(28/32)
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MANUFACTURE DATE

ERRORS PER 
109 CELLS

MODULES:  A  B  C



DISTURBING FACTS

•AFFECTS ALL VENDORS
Not an isolated incident
Deeper issue in DRAM scaling

•UNADDRESSED FOR YEARS
Could impact systems in the field
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HOW TO PREVENT

COUPLING ERRORS?

Previous Approaches
1. Make Better Chips: Expensive

2. Rigorous Testing: Takes Too Long
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ROW
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MORE ERRORS
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ROW



Faster  ⟶ Slower
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ONE MODULE:   A  B  C
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Often  ⟵ Seldom
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ONE MODULE:   A  B  C

REFRESH INTERVAL (ms)

TOTAL
ERRORS

6
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m
s
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1

m
s

11ms

𝟓5ns
= 𝟐𝟎𝟎𝐊



1. LIMIT ACCESSES TO ROW
Access Interval > 500ns

2. REFRESH ALL ROWS OFTEN
Refresh Interval < 11ms
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TWO NAIVE SOLUTIONS

LARGE OVERHEAD: 
PERF, ENERGY, COMPLEXITY



OUR SOLUTION: PARR
Probabilistic Adjacent Row Refresh
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Do nothing Refresh (=Open) 
adjacent rows

After closing any row ...

0.1%99.9%



PARR: CHANCE OF ERROR

• NO REFRESHES IN N TRIALS
Probability: 0.999N

• N=128K FOR ERROR (64ms)
Probability: 0.999128K = 10–56

STRONG RELIABILITY GUARANTEE
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STRONG 
RELIABILITY

LOW PERF
OVERHEAD

9.4× 10–14

Errors/Year

0.20%
Slowdown

NO STORAGE
OVERHEAD 0 Bytes



RELATED WORK

• Security Exploit (Seaborn@Google 2015)

• Industry Analysis (Kang@SK Hynix 2014)
“... will be [more] severe as technology shrinks down.”

• Targeted Row Refresh (JEDEC 2014)

• DRAM Testing (e.g., Van de Goor+ 1999)

• Disturbance in Flash & Hard Disk
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RECAP: RELIABILITY

CPU

Memory
Management

DRAM

Arch &
Interface

Circuits &
Devices

DRAM
ControllerPARR ROW 

HAMMER
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2. BANK CONFLICTS

A CASE FOR 
SUBARRAY PARALLELISM

ISCA 2012
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CUTOFF

FASTEST SLOWEST

DRAM

CELLS

5⨉ “WRITE PENALTY”
Source: Samsung & Intel. The Memory Forum 2014
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FIGHT LATENCY 

WITH MORE

PARALLELISM
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BANK

CHIP

BANK
CPU

WR

WR

DIFFERENT BANKS:
SMALL LATENCY
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BANK

CHIP

BANK
CPU

WR WR

BANK CONFLICT:
LARGE LATENCY
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BANK CONFLICT LATENCY

WR WR

 SERIALIZATION

 WRITE PENALTY (GETTING WORSE)

 TIME

 “ROW-BUFFER” THRASHING




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BANK

BITLINES
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ROW-BUFFER

BUFFER

MEMORY REQUEST

DATA

MEMORY REQUEST
MEMORY REQUEST
MEMORY REQUEST
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HOW TO 

PARALLELIZE

BANK CONFLICTS?
Previous Approaches
1. Have More Banks: Expensive

2. Bank Interleaving: Non-Solution
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BUFFER

BANK (LOGICAL VIEW)

ROW
ROW

ROW
ROW

MANY ROWS
(~100K)

JUST ONE

CANNOT DRIVE LONG BITLINES
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ROW
ROW

BUFFER

SHARING = ROOT OF EVIL
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ROW2
ROW1
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WR  



SERIAL
SUBARRAYS

WR  
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SUBARRAYS BANKS

PARALLELISM8x 8x

SPEEDUP+17% +20%

vs.

CHIP-SIZE+0.2% +36%
Estimated using DRAM area model from Rambus  



RELATED WORK

• Module Partitioning (e.g., Zheng+ 2008)
Divide module into small, independent subsets

Narrower data-bus  Higher unloaded latency

• Hierarchical Bank (Yamauchi+ 1997)
Parallelizes accesses to different subarrays

Does not utilize multiple local row-buffers

• Cached DRAM (e.g., Hidaka+ 1990)

• Low-Latency DRAM (e.g., Sato+ 1998)
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RECAP: PERFORMANCE

CPU

Memory
Management

DRAM

Arch &
Interface

Circuits &
Devices

DRAM
Controller

SUBARRAY
AWARE

SLOW
OUTLIERS

PARALLEL
SUBARRAYS
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3. RAMULATOR

RAMULATOR:
A FAST AND EXTENSIBLE 

DRAM SIMULATOR
IEEE CAL 2015
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IDEA

IDEA
IDEA NEW IDEAS FOR 

BETTER DRAM ...

DRAM
SIMULATOR

MUST BE VETTED 
BY SIMULATION



PREVIOUS SIMULATORS

•PRO: HIGH FIDELITY
– Cycle-accurate DRAM models

• CON: LOW FLEXIBILITY
– Hardcoded for DDR3/DDR4 DRAM

– Difficult to extend to others
E.g., LPDDRx, WIOx, GDDRx, RLDRAMx, HBM, HMC
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OUR RAMULATOR

•BUILT FOR EXTENSIBILITY
– Easy to incorporate new ideas

•HIGH SIMULATION SPEED
– 2.5x faster than the next fastest

•PORTABLE: SIMPLE C++ API
68



RAMULATOR’S APPROACH
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BankBankBankBANK

RANK

CHANNEL

DRAM SYSTEM
(STATE MACHINES) 

BankBankBankBANK

RANK

CHANNEL
DRAM

COMMAND
& ADDRESS

(INPUTS)
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BANK
X

Z Y

RANK

CHANNEL
A

C

B

D

P Q

TEMPLATE

?

?

?
?

STATE MACHINES
ARE DEFINED BY:
• STATES
• EDGES

RAMULATOR:
RECONFIGURABLE
STATE MACHINE
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TEMPLATE TEMPLATE

TEMPLATE

TREE OF
STATE MACHINES

COMMAND
& ADDRESS

• Hierarchy

• States

• EdgesD
D
R
4

• Hierarchy

• States

• Edges

G
D
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• Hierarchy

• States

• EdgesH
B
M

TEMPLATE TEMPLATE

TEMPLATE
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TMP TMP

TMP TMP TMP

TMP

DDR4

GDDR5

HBM

LPDDR4

WIO2DRAM 
CONTROLLER

DRAM
TRACE

CPU
FRONTEND

FULL
SYSTEM

RAMULATOR
• PERFORMANCE

• POWER (for some)

http://www.github.com/CMU-SAFARI/ramulator
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Supported
DRAM Specifications

Simulation
Speed (DDR3)

Ramulator
DDR3/4, LPDDR3/4,

GDDR5, HBM, WIO1/2, 
Subarray Parallelism, etc. 

2.70x

DRAMSim2
(Rosenfeld et al.)

DDR2/3 1x

USIMM
(Chatterjee et al.)

DDR3 1.08x

DrSim
(Jeong et al.)

DDR2/3, LPDDR2 0.11x

NVMain
(Poremba and Xie)

DDR3, LPDDR3/4 0.30x



74

4. CONCLUSION



SUMMARY
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Traditional DRAM Scaling at Risk

Architectural Techniques for

Coping with Degrading DRAM

Regain Reliability & Performance



CONTRIBUTIONS

1. We show that DRAM scaling is 

negatively affecting reliability.

2. We propose a high-performance, 

cost-effective DRAM architecture.

3. We develop a new simulator for 

facilitating DRAM research.
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

RELIABILITY

• Row Hammer
Kim et al., ISCA ’14

• Retention Failures
Liu et al., ISCA ’13
Khan et al., SIGMETRICS ’14

• Speed vs. Reliability
Lee et al., HPCA ’15

EFFICIENCY

• Bank Conflicts
Kim et al., ISCA ’12

• In-DRAM Page Copy
Seshadri et al., MICRO ’13

• Tiered Latency
Lee et al., HPCA ’13

• Fine-Grained Refreshes
Chang et al., HPCA ’14

 RESEARCH



78

COMPRESSION
• Simple & Effective

Pekhimenko et al., MICRO ’13

SCHEDULING
• High Throughput

Kim et al., HPCA ’10

• Quality of Service
Kim et al., MICRO ’10
Kim et al., IEEE Micro Top Picks ’11
Subramanian et al., HPCA ’13

SIMULATION
• Fast & Extensible

Kim et al., IEEE CAL ’15




 RESEARCH






OUTDATED ASSUMPTIONS

•DRAM SCALING WILL TAKE 
CARE OF MAIN MEMORY

•LATEST AND CHEAPEST DRAM 
IS THE GREATEST
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NEW TECHNOLOGIES

80

NONVOLATILE
MEMORY (NVM)

3-DIMENSIONAL

DIE STACKING

Image: Loke et al., Science 2012

Image: Micron Technology, 2015



TREND: HETEROGENEITY
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CACHE:

MAIN
MEMORY:

STORAGE:

SRAM

FLASH/HDD

DRAM

eDRAM
3D DRAM

NVM



TREND: SPECIALIZATION
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MOBILE

GRAPHICS

NETWORKS

PC/SERVER

BANDWIDTH

POWER

LATENCY

COST
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HOW TO

REFORMULATE THE

MEMORY HIERARCHY? 



•NEW SOFTWARE ABSTRACTIONS
Primitives for managing heterogeneity

•NEW HARDWARE TRADE-OFFS
Defining appropriate roles for each tier

• RICH MEMORY CAPABILITIES 
Memory as more than a “bag of bits”
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