ARCHITECTURAL TECHNIQUES TO ENHANCE DRAM SCALING

Thesis Defense Yoongu Kim

CPU+CACHE

MAIN MEMORY

STORAGE

Complex Problems

Large Datasets

High Throughput

DRAM Chip

'1' '0'

DRAM Cell (Capacitor)

10⁹ Cells

DRAM SCALING

TECHNOLOGICAL FEASIBILITY

Can we make smaller cells?

ECONOMIC VIABILITY

Should we make smaller cells?

RELIABILITY TAX PERFORMANCE TAX

1. RELIABILITY

COUPLING BETWEEN NEARBY CELLS

ROW HAMMER (ISCA 2014)
Your DRAM chips are probably broken.

2. PERFORMANCE

BANK CONFLICTS (ISCA 2012)

Our solution may be adopted by industry.

CO-DESIGN: CPU & DRAM

Memory Management

> DRAM Controller

DRAM

Arch & Interface

Circuits & Devices

THESIS STATEMENT

The degradation in DRAM reliability & performance can be effectively mitigated by making low-overhead, non-intrusive modifications to the DRAM chips and the DRAM controller.

MAIN MEMORY: LARGER, FASTER, RELIABLE, EFFICIENT

THREE CONTRIBUTIONS

1. We show that DRAM scaling is negatively affecting reliability.

We expose a new type of DRAM failure, and propose a cost-effective way to address it.

THREE CONTRIBUTIONS

2. We propose a <u>high-performance</u> architecture for DRAM that mitigates its growing latency.

We identify bottlenecks in DRAM's internal design and alleviate them in a cost-effective manner.

THREE CONTRIBUTIONS

3. We develop a new <u>simulator</u> for facilitating rapid design space exploration of DRAM.

The simulator is the fastest, while also being easy to modify due to its modular design.

OUTLINE

1. RELIABILTY: ROW HAMMER

2. PERF: BANK CONFLICT

3. SIMULATOR: RAMULATOR

4. CONCLUSION

FLIPPING BITS IN MEMORY WITHOUT ACCESSING THEM ISCA 2014

1. ROW HAMMER

READ DATA FROM HERE, GET ERRORS OVER THERE

GOOGLE'S EXPLOIT

Project Zero

News and updates from the Project Zero team at Google

Monday, March 9, 2015

Exploiting the DRAM rowhammer bug to gain kernel privileges

"We learned about rowhammer from Yoongu Kim et al."

http://googleprojectzero.blogspot.com

GOOGLE'S EXPLOIT

OUR PROOF-OF-CONCEPT

EMPIRICAL ANALYSIS PROPOSED SOLUTIONS

REAL SYSTEM

MANY READS TO SAME ADDRESS

OPEN/CLOSE SAME ROW

1. CACHE HITS

2. ROW HITS

x86 CPU

DRAM

```
LOOP:
 mov(X), %reg
 mov (Y), %reg
 clflush (X)
 clflush (Y)
 imp LOOP
```


http://www.github.com/CMU-SAFARI/rowhammer

WHY DO THE ERRORS OCCUR?

DRAM CELLS ARE LEAKY

DRAM CELLS ARE LEAKY

ROOT CAUSE?

COUPLING

- Electromagnetic
- Tunneling

ACCELERATES CHARGE LOSS

AS DRAM SCALES ...

- CELLS BECOME SMALLER
 Less tolerance to coupling effects
- CELLS BECOME PLACED CLOSER
 Stronger coupling effects

COUPLING ERRORS MORE LIKELY

1. ERRORS ARE RECENT Not found in pre-2010 chips

2. ERRORS ARE WIDESPREAD

>80% of chips have errors
Up to one error per ~1K cells

MOST MODULES AT RISK

A VENDOR

(37/43)

B VENDOR

(45/54)

C VENDOR

(28/32)

MODULES: • A B • C

MANUFACTURE DATE

DISTURBING FACTS

AFFECTS ALL VENDORS

Not an isolated incident Deeper issue in DRAM scaling

UNADDRESSED FOR YEARS
 Could impact systems in the field

HOW TO PREVENT COUPLING ERRORS?

Previous Approaches

- 1. Make Better Chips: Expensive
- 2. Rigorous Testing: Takes Too Long

ONE MODULE: OA DB 🔷 C

ACCESS INTERVAL (ns)

ONE MODULE: OA DB 🔷 C

REFRESH INTERVAL (ms)

TWO NAIVE SOLUTIONS

1. LIMIT ACCESSES TO ROW

Access Interval > 500ns

2. REFRESH ALL ROWS OFTEN

Refresh Interval < 11ms

LARGE OVERHEAD: PERF, ENERGY, COMPLEXITY

OUR SOLUTION: PARR

Probabilistic Adjacent Row Refresh

PARR: CHANCE OF ERROR

NO REFRESHES IN N TRIALS

Probability: 0.999^N

• N=128K FOR ERROR (64ms)

Probability: $0.999^{128K} = 10^{-56}$

STRONG RELIABILITY GUARANTEE

STRONG RELIABILITY

 9.4×10^{-14} Errors/Year

LOW PERF OVERHEAD

0.20% Slowdown

NO STORAGE OVERHEAD

O Bytes

RELATED WORK

- Security Exploit (Seaborn@Google 2015)
- Industry Analysis (Kang@SK Hynix 2014)
 "... will be [more] severe as technology shrinks down."
- Targeted Row Refresh (JEDEC 2014)
- DRAM Testing (e.g., Van de Goor+ 1999)
- Disturbance in Flash & Hard Disk

RECAP: RELIABILITY

A CASE FOR SUBARRAY PARALLELISM ISCA 2012

2. BANK CONFLICTS

DRAM **CELLS**

FASTEST SLOWEST

5× "WRITE PENALTY"

Source: Samsung & Intel. The Memory Forum 2014

FIGHT LATENCY WITH MORE PARALLELISM

CHIP

DIFFERENT BANKS: SMALL LATENCY

BANK CONFLICT: LARGE LATENCY

BANK CONFLICT LATENCY

- **O** SERIALIZATION
- **WRITE PENALTY** (GETTING WORSE)
- **6** "ROW-BUFFER" THRASHING

BANK

HOW TO PARALLELIZE BANK CONFLICTS?

Previous Approaches

- 1. Have More Banks: Expensive
- 2. Bank Interleaving: Non-Solution

BANK (LOGICAL VIEW)

MANY ROWS (~100K)

JUST ONE

CANNOT DRIVE LONG BITLINES

BANK (PHYSICAL VIEW)

SHARING = ROOT OF EVIL

SHARED:

- 1. GLOBAL DEC.
- 2. GLOBAL BUF.

NO SUBARRAY PARALLELISM

PROBLEM #1: DECODER

OUR SOLUTION

STORES ADDRESS FOR EACH SUBARRAY

PROBLEM #2: BUFFER

OUR SOLUTION

- Simulation: Out-of-Order CPU + DDR3-1066
- Benchmarks: SPEC/TPC/STREAM/RANDOM

SUBARRAYS vs. BANKS

$$+17\%$$
 SPEEDUP $+20\%$

+0.2% CHIP-SIZE +36%

Estimated using DRAM area model from Rambus

RELATED WORK

- Module Partitioning (e.g., Zheng+ 2008)
 Divide module into small, independent subsets
 Narrower data-bus → Higher unloaded latency
- Hierarchical Bank (Yamauchi+ 1997)
 Parallelizes accesses to different subarrays
 Does not utilize multiple local row-buffers
- Cached DRAM (e.g., Hidaka+ 1990)
- Low-Latency DRAM (e.g., Sato+ 1998)

RECAP: PERFORMANCE

RAMULATOR: A FAST AND EXTENSIBLE DRAM SIMULATOR IEEE CAL 2015

3. RAMULATOR

NEW IDEAS FOR BETTER DRAM ...

DRAM SIMULATOR

MUST BE VETTED BY SIMULATION

PREVIOUS SIMULATORS

• PRO: HIGH FIDELITY

Cycle-accurate DRAM models

CON: LOW FLEXIBILITY

- Hardcoded for DDR3/DDR4 DRAM
- Difficult to extend to others
 E.g., LPDDRx, WIOx, GDDRx, RLDRAMx, HBM, HMC

OUR RAMULATOR

- BUILT FOR EXTENSIBILITY
 - Easy to incorporate new ideas
- HIGH SIMULATION SPEED
 - 2.5x faster than the next fastest
- PORTABLE: SIMPLE C++ API

RAMULATOR'S APPROACH

DRAM SYSTEM (STATE MACHINES)

STATE MACHINES ARE DEFINED BY:

- STATES
- EDGES

RAMULATOR: RECONFIGURABLE STATE MACHINE

TREE OF STATE MACHINES

JDDR5

- Hierarchy
- States
- Edges

DDR4

- Hierarchy
- States
- Edges

HBM

- Hierarchy
- States
- Edges

http://www.github.com/CMU-SAFARI/ramulator

	Supported DRAM Specifications	Simulation Speed (DDR3)
Ramulator	DDR3/4, LPDDR3/4, GDDR5, HBM, WIO1/2, Subarray Parallelism, etc.	2.70x
DRAMSim2 (Rosenfeld et al.)	DDR2/3	1x
USIMM (Chatterjee et al.)	DDR3	1.08x
DrSim (Jeong et al.)	DDR2/3, LPDDR2	0.11x
NVMain (Poremba and Xie)	DDR3, LPDDR3/4	0.30x

4. CONCLUSION

SUMMARY

Traditional DRAM Scaling at Risk

Architectural Techniques for Coping with Degrading DRAM

Regain Reliability & Performance

CONTRIBUTIONS

- 1. We show that DRAM scaling is negatively affecting reliability.
- 2. We propose a high-performance, cost-effective DRAM architecture.
- 3. We develop a new simulator for facilitating DRAM research.

ORELIABILITY

- Row Hammer
 Kim et al., ISCA '14
- Retention Failures
 Liv et al., ISCA '13
 Khan et al., SIGMETRICS '14
- Speed vs. Reliability
 Lee et al., HPCA '15

RESEARCH

OEFFICIENCY

- Bank Conflicts
 Kim et al., ISCA '12
- In-DRAM Page Copy
 Seshadri et al., MICRO '13
- Tiered Latency
 Lee et al., HPCA '13
- Fine-Grained Refreshes
 Chang et al., HPCA '14

RESEARCH

4 COMPRESSION

• Simple & Effective
Pekhimenko et al., MICRO '13

OSCHEDULING

- High Throughput Kim et al., HPCA '10
- Quality of Service
 Kim et al., MICRO '10
 Kim et al., IEEE Micro Top Picks '11
 Subramanian et al., HPCA '13

OSIMULATION

• Fast & Extensible
Kim et al., IEEE CAL '15

OUTDATED ASSUMPTIONS

• DRAM SCALING WILL TAKE CARE OF MAIN MEMORY

• LATEST AND CHEAPEST DRAM
IS THE GREATEST

NEW TECHNOLOGIES

Image: Loke et al., Science 2012

NONVOLATILE MEMORY (NVM)

Image: Micron Technology, 2015

3-DIMENSIONAL DIE STACKING

TREND: HETEROGENEITY

CACHE:

SRAM

MAIN MEMORY:

DRAM

eDRAM 3D-DRAM

NVM

STORAGE: FLASH/HDD

TREND: SPECIALIZATION

HOW TO REFORMULATE THE MEMORY HIERARCHY?

• NEW SOFTWARE ABSTRACTIONS Primitives for managing heterogeneity

• NEW HARDWARE TRADE-OFFS

Defining appropriate roles for each tier

• RICH MEMORY CAPABILITIES

Memory as more than a "bag of bits"

ARCHITECTURAL TECHNIQUES TO ENHANCE DRAM SCALING

Thesis Defense Yoongu Kim