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MODERN 
DATA CENTERS
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100's
SOFTWARE SYSTEMS

[Hahn LISA'18]
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1,000,000's
CONTAINERS

[Hahn LISA'18]
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1,000,000,000's
REQUESTS PER SECOND

[Hahn LISA'18]
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WANT 
HIGH RELIABILITY



PROBLEM 
Device failures disrupt 
data center workloads
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1. INTERDEPENDENCE
2. DISTRIBUTION
3. COMMODITY HW
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The programs running in modern data centers 
make up larger workloads.
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PROBLEM 2: DISTRIBUTION
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Workloads in modern data centers 
are distributed across many servers.
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PROBLEM 3: COMMODITY HW

Modern data centers trade off reliability for 
using simpler, commodity hardware.
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PROBLEM 3: COMMODITY HW
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Modern data centers trade off reliability for 
using simpler, commodity hardware.
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Even a single device failure 
can have a widespread effect 
on the workloads running in 

modern data centers
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[FAST'18]

"A fail-slow hardware can collapse the entire cluster performance; 
for example, a degraded NIC made many jobs lock task slots/containers in 

healthy machines, hence new jobs cannot find enough free slots."



GOAL 
Measure, model, and learn from device failures 

to improve data center reliability
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CHALLENGES

1. Most device reliability studies are small scale

2. Prior large scale studies hard to generalize

3. Limited evaluation of techniques in the wild
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THESIS STATEMENT
If we measure the device failures in modern data centers, 

then we can learn the reasons why devices fail, 
develop models to predict device failures, and 

learn from failure trends to make recommendations 
to enable workloads to tolerate device failures. 
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MEASURE MODEL EVALUATE
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1. Large scale failure studies

DRAM 
[DSN '15]

SSDs 
[SIGMETRICS '15]

Networks 
[IMC '18]

We shed new light on device trends from the field

CONTRIBUTIONS
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CONTRIBUTIONS

We enable the community to apply what we learn

2. Statistical failure models

DRAM 
[DSN '15]

SSDs 
[SIGMETRICS '15]

Networks 
[IMC '18]
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CONTRIBUTIONS
3. Evaluate best practices in the field

We provide insight into how to tolerate failures

DRAM 
Page offlining

SSDs 
OS write buffering

Networks 
Software-based 

networks
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OUTLINE
1. Modern data center background
2. Large scale device failure studies
• Memory: DRAM 
• Storage: SSDs 
• Network: Switches and WAN

3. Conclusion
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Internet ISP Edge Node

WAN
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Core Switches Data Center Fabric Top of Rack Switch
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Server Rack Server Sleds Devices
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MEMORY
Dynamic Random Access Memory (DRAM)
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STORAGE
Solid State Drives (SSDs)
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NETWORK
Switches and Wide Area Network (WAN) Backbone
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WHY DO DEVICES FAIL?

DRAM SSDs Networks
• Retention 
• Disturbance 
• Endurance

• Endurance 
• Disturbance 
• Temperature

• Bugs 
• Faulty hardware 
• Human error



• Different system configurations 
• Diverse workloads (Web, Database, Cache, Media) 
• Diverse CPU/memory/storage requirements 

• Different device organizations 
• Capacity, frequency, vendors, ... 
• Across various stages of lifecycle

DATA CENTER DIVERSITY
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1. Large scale data centers have diverse device populations 

2. Large sample sizes mean we can build accurate models 

3. We can observe infrequent failure types at large scale

�41

KEY OBSERVATIONS



ERROR
• How failures manifest in software using a device

FAULT
• The underlying reason why a device fails 
• Permanent: the fault appears every time 
• Transient: the appears only sometimes

RELIABILITY EVENTS
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DRAM 
[DSN '15]

SSDs 
[SIGMETRICS '15]

Networks 
[IMC '18]

LARGE SCALE STUDIES
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Memory data

Error Correcting Code (ECC) metadata

�52



• Measured every logged error 
• Across Facebook's fleet 
• For 14 months 
• Metadata associated with each error 

• Parallelized Map-Reduce to process 
• Used R for further analysis

MEASURING DRAM ERRORS
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• Measure server characteristics 
• Examined all servers with errors (error group) 
• Sampled servers without errors (control group) 

• Bucket devices based on characteristics 
• Measure relative failure rate 

• Of error group vs. control group 
• Within each bucket

ANALYTICAL METHODOLOGY



• Errors follow a power-law distribution 
• Denial of service due to socket/channel 
• Higher density = more failures 
• DIMM architectural effects on reliability 
• Workload influence on failures 
• Model, page-offlining, page randomization

KEY DRAM CONTRIBUTIONS
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POWER-LAW DISTRIBUTION
• 1% of servers = 97.8% errors
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POWER-LAW DISTRIBUTION
• 1% of servers = 97.8% errors 
• Average is 55X median
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POWER-LAW DISTRIBUTION
• 1% of servers = 97.8% errors 
• Average is 55X median 
• Pareto distribution fits 

• Devices without errors 
tend to stay without errors
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SOCKET/CHANNEL ERRORS
• Contribute majority of errors
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SOCKET/CHANNEL ERRORS
• Contribute majority of errors 
• Concentrated on a few hosts 
• Symptoms ≈ server DoS
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HIGHER DENSITY TRENDS
• Capacity, NO! Density, YES!
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Chip density (Gb)
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HIGHER DENSITY TRENDS

• Capacity, NO! Density, YES! 
• Higher density, more failure 

• Due to smaller feature 
sizes
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DIMM architecture
• Chips per DIMM, transfer width 

• 8 to 48 chips 
• x4, x8 = 4 or 8 bits per cycle 
• Electrical implications
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likely due to the large amounts of effort that DRAM manufac-
turers put into designing faster and more reliable DRAM cell
architectures. Our insight is that small improvements in DRAM
cell reliability are easily outpaced by the quadratic increase in
number of cells per chip, leading to the trend of net decrease
in DRAM reliability as shown by the server failure rate data in
Figure 6. Unless more-than–quadratic improvements in DRAM
cell reliability are achieved in future devices, maintaining or
decreasing DRAM server failure rates in the future (while still
increasing DRAM chip capacity) will be untenable without
stronger hardware and/or software error correction.
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Fig. 7: The relative per-cell failure rate at different technology nodes (chip
densities).

B. DIMM Vendor
DIMM vendors purchase chips from DRAM chip manufac-

turers and assemble them into DIMMs. While we have infor-
mation on DIMM manufacturer, we do not have information
on the DRAM chip manufacturers in our systems.

Figure 8 shows the failure rate for servers with different
DIMM vendors.6 We observe that failure rate varies by over
2⇥ between vendors (e.g., Vendor B and Vendor C). The dif-
ferences between vendors can arise if vendors use less reliable
chips from a particular foundry or build DIMMs with less
reliable organization and manufacturing. Prior work [48, 10]
also found a large range in the server failure rate among vendors
of 3:9⇥.
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Fig. 8: Relative server failure rate for different vendors varies widely.

C. DIMM Architecture
We next examine how DIMM architecture affects server

failure rate. We examine two aspects of DIMM design that have
not been studied in published literature before: the number of
data chips (not including chips for ECC) per DIMM and the
transfer width of each chip.

Figure 9 plots the failure rate for servers with DIMMs with
different numbers of data chips for each of the densities that
we examine. The DIMMs that we examine have 8, 16, 32, and
48 chips. We make two observations from Figure 9.

6We have made the vendors anonymous.
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Fig. 9: The relative failure rate of
servers with DIMMs with different
numbers of data chips separated by
chip density.
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Fig. 10: The relative failure rate of
servers with DIMMs with different
chip transfer widths separated by
chip density.

First, for a given number of chips per DIMM, servers with
higher chip densities generally have higher average failure rates.
This illustrates how chip density is a first-order effect when
considering memory failure rate (as we showed in Figure 6).

Second, we find that server failure rate trends with respect
to chips per DIMM are dependent on the transfer width of the
chips – the number of data bits each chip can transfer in one
clock cycle. In order to transfer data at a similar rate, DIMMs
with fewer (8 or 16) chips must compensate by using a larger
transfer width of 8 bits per clock cycle (and are called ⇥8
devices) while DIMMs with more chips (32 or 48) can use a
smaller transfer width of 4 bits per clock cycle (and are called
⇥4 devices). We have annotated the graph to show which chip
counts have transfer widths of ⇥4 bits and ⇥8 bits.

We observe two trends depending on whether chips on a
DIMM have the same or different transfer widths. First, among
chips of the same transfer width, we find that increasing the
number of chips per DIMM increases server failure rate. For
example, for 4 Gb devices, increasing the number of chips from
8 to 16 increases failure rate by 40.8% while for 2 Gb devices,
increasing the number of chips from 32 to 48 increases failure
rate by 36.1%. Second, once the number of chips per DIMM
increases beyond 16 and chips start using a different transfer
width of ⇥8, there is a decrease in failure rate. For example,
for 1 Gb devices, going from 16 chips with a ⇥8 interface to
32 chips with a ⇥4 interface decreases failure rate by 7.1%.
For 2 Gb devices, going from 8 chips with a ⇥8 interface to 32
chips with a ⇥4 interface decreases failure rate by 13.2%.

To confirm the trend related to transfer width, we plotted
the failure rates dependent on transfer width alone in Figure 10.
We find that, in addition to the first-order effect of chip density
increasing failure rate (Effect 1), there is a consistent increase
in failure rate going from ⇥4 to ⇥8 devices (Effect 2).

We believe that both effects may be partially explained by
considering how number of chips and transfer width contribute
to the electrical disturbance within a DIMM that may disrupt
the integrity of the signal between components. For example,
a larger transfer width increases internal data transfer current
(e.g., IDD4R=W in Table 19 of [35], which compares the power
consumption of ⇥4 and ⇥8 DRAM devices), leading to addi-
tional power noise across the device. Such power noise could
induce additional memory errors if, for example, charge were
to get trapped in components. Interestingly, we find that, for a
given chip density, the best architecture for device reliability
occurs when there is, first, low transfer width and, second, low
chips per DIMM. This is shown by the 2 Gb devices with 32
chips with a ⇥4 interface compared to the other 2 Gb devices
in Figure 9.
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likely due to the large amounts of effort that DRAM manufac-
turers put into designing faster and more reliable DRAM cell
architectures. Our insight is that small improvements in DRAM
cell reliability are easily outpaced by the quadratic increase in
number of cells per chip, leading to the trend of net decrease
in DRAM reliability as shown by the server failure rate data in
Figure 6. Unless more-than–quadratic improvements in DRAM
cell reliability are achieved in future devices, maintaining or
decreasing DRAM server failure rates in the future (while still
increasing DRAM chip capacity) will be untenable without
stronger hardware and/or software error correction.
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Fig. 7: The relative per-cell failure rate at different technology nodes (chip
densities).

B. DIMM Vendor
DIMM vendors purchase chips from DRAM chip manufac-

turers and assemble them into DIMMs. While we have infor-
mation on DIMM manufacturer, we do not have information
on the DRAM chip manufacturers in our systems.

Figure 8 shows the failure rate for servers with different
DIMM vendors.6 We observe that failure rate varies by over
2⇥ between vendors (e.g., Vendor B and Vendor C). The dif-
ferences between vendors can arise if vendors use less reliable
chips from a particular foundry or build DIMMs with less
reliable organization and manufacturing. Prior work [48, 10]
also found a large range in the server failure rate among vendors
of 3:9⇥.
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Fig. 8: Relative server failure rate for different vendors varies widely.

C. DIMM Architecture
We next examine how DIMM architecture affects server

failure rate. We examine two aspects of DIMM design that have
not been studied in published literature before: the number of
data chips (not including chips for ECC) per DIMM and the
transfer width of each chip.

Figure 9 plots the failure rate for servers with DIMMs with
different numbers of data chips for each of the densities that
we examine. The DIMMs that we examine have 8, 16, 32, and
48 chips. We make two observations from Figure 9.

6We have made the vendors anonymous.
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Fig. 9: The relative failure rate of
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numbers of data chips separated by
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Fig. 10: The relative failure rate of
servers with DIMMs with different
chip transfer widths separated by
chip density.

First, for a given number of chips per DIMM, servers with
higher chip densities generally have higher average failure rates.
This illustrates how chip density is a first-order effect when
considering memory failure rate (as we showed in Figure 6).

Second, we find that server failure rate trends with respect
to chips per DIMM are dependent on the transfer width of the
chips – the number of data bits each chip can transfer in one
clock cycle. In order to transfer data at a similar rate, DIMMs
with fewer (8 or 16) chips must compensate by using a larger
transfer width of 8 bits per clock cycle (and are called ⇥8
devices) while DIMMs with more chips (32 or 48) can use a
smaller transfer width of 4 bits per clock cycle (and are called
⇥4 devices). We have annotated the graph to show which chip
counts have transfer widths of ⇥4 bits and ⇥8 bits.

We observe two trends depending on whether chips on a
DIMM have the same or different transfer widths. First, among
chips of the same transfer width, we find that increasing the
number of chips per DIMM increases server failure rate. For
example, for 4 Gb devices, increasing the number of chips from
8 to 16 increases failure rate by 40.8% while for 2 Gb devices,
increasing the number of chips from 32 to 48 increases failure
rate by 36.1%. Second, once the number of chips per DIMM
increases beyond 16 and chips start using a different transfer
width of ⇥8, there is a decrease in failure rate. For example,
for 1 Gb devices, going from 16 chips with a ⇥8 interface to
32 chips with a ⇥4 interface decreases failure rate by 7.1%.
For 2 Gb devices, going from 8 chips with a ⇥8 interface to 32
chips with a ⇥4 interface decreases failure rate by 13.2%.

To confirm the trend related to transfer width, we plotted
the failure rates dependent on transfer width alone in Figure 10.
We find that, in addition to the first-order effect of chip density
increasing failure rate (Effect 1), there is a consistent increase
in failure rate going from ⇥4 to ⇥8 devices (Effect 2).

We believe that both effects may be partially explained by
considering how number of chips and transfer width contribute
to the electrical disturbance within a DIMM that may disrupt
the integrity of the signal between components. For example,
a larger transfer width increases internal data transfer current
(e.g., IDD4R=W in Table 19 of [35], which compares the power
consumption of ⇥4 and ⇥8 DRAM devices), leading to addi-
tional power noise across the device. Such power noise could
induce additional memory errors if, for example, charge were
to get trapped in components. Interestingly, we find that, for a
given chip density, the best architecture for device reliability
occurs when there is, first, low transfer width and, second, low
chips per DIMM. This is shown by the 2 Gb devices with 32
chips with a ⇥4 interface compared to the other 2 Gb devices
in Figure 9.
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Fig. 14: The relative failure rate of
servers of different ages. There is no
clear trend when controlling only for
chip density.
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Fig. 15: The relative failure rate of servers of different
hchip density; CPU counti configurations. When controlling for
density and CPUs together, older devices usually have higher
failure rates.
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Fig. 16: The relative failure rate of
servers with different numbers of CPU
cores. Servers with more CPUs have
higher failure rates.

TABLE II: The factors in our regression analysis and the resulting error model. p-value is the likelihood that a characteristic is inaccurately modeled: lower
p-values indicate more accurate modeling. Significant? is whether the p-value is < 0:01, corresponding a < 1% chance that the characteristic is inaccurately
modeled. ˇ -coefficient is the characteristic’s contribution to error rate and standard error is how much the model differs from the measured values for a given
characteristic. The model is publicly available at [1].

Characteristic Description p-value Significant? ˇ -coefficient Standard error
Intercept A baseline server with 1 Gb chips with a ⇥4 interface and 0 <2:000 ⇥ 10�16 Yes �5:511 3:011 ⇥ 10�1

for all other factors.
Capacity DIMM capacity (GB). <2:000 ⇥ 10�16 Yes 9:012 ⇥ 10�2 2:168 ⇥ 10�2

Density2Gb 1 if the server has 2 Gb density chips; 0 otherwise. <2:000 ⇥ 10�16 Yes 1:018 1:039 ⇥ 10�1

Density4Gb 1 if the server has 4 Gb density chips; 0 otherwise. <2:000 ⇥ 10�16 Yes 2:585 1:907 ⇥ 10�1

Chips Number of chips per DIMM. <2:000 ⇥ 10�16 Yes �4:035 ⇥ 10�2 1:294 ⇥ 10�2

Width8 1 if the server has ⇥8 DRAM chips; 0 otherwise. 0:071 No 2:310 ⇥ 10�1 1:277 ⇥ 10�1

CPU% Average CPU utilization (%). <2:000 ⇥ 10�16 Yes 1:731 ⇥ 10�2 1:633 ⇥ 10�3

Memory% Average fraction of allocated physical pages (%). 0:962 No 5:905 ⇥ 10�5 1:224 ⇥ 10�3

Age Server age (years). <2:000 ⇥ 10�16 Yes 2:296 ⇥ 10�1 3:956 ⇥ 10�2

CPUs Number of physical CPU cores in the server. <2:000 ⇥ 10�16 Yes 2:126 ⇥ 10�1 1:449 ⇥ 10�2

Failure model ln ŒF=.1 � F/ç D ˇIntercept C .Capacity � ˇCapacity/ C .Density2Gb � ˇDensity2Gb/ C .Density4Gb � ˇDensity4Gb/ C .Chips � ˇChips/
C.CPU% � ˇCPU%/ C .Age � ˇAge/ C .CPUs � ˇCPUs/

to determine which server characteristics have a statistically
significant effect on failure rate and how much they contribute
to failure rate. The resulting model can then be used to examine
how relative server failure rate changes for servers with different
characteristics, which can be used to reason about the relative
reliability of different server configurations.

We used R [3] for our statistical analysis. We performed
a logistic regression [15, 32] on a binary characteristic that
represented whether a server was part of the error group or
control group of servers (see Section II-E for our error and
control group classification/formation). We include most of the
characteristics we analyzed in Section IV in our regression with
the exception of DIMM vendor because it is anonymized and
workload type because it is difficult to apply outside the context
of our fleet.7 One limitation of the logistic regression model
is that it is able to identify only linear relationships between
characteristics and failure rates. On the other hand, using a
logistic regression made analyzing our large data set of errors
across many variables tractable.

Table II shows the parameters and output of the regression
and the resulting model (in the last row). The first two columns
describe the factors included in the regression. The third column
lists the resulting p-value for each factor after performing
the logistic regression. The p-value is the likelihood that a
characteristic is inaccurately modeled: lower p-values indicate
more accurate modeling. The fourth column describes whether
the p-value is < 0:01, corresponding to a < 1% chance that
the characteristic is inaccurately modeled. The fifth column, ˇ-

7This results in these contributions to the model being expressed indirectly
though other factors, whose values will be computed, in part, based on how
they are correlated with different vendors/workloads.

coefficient, is the characteristic’s contribution to error rate and
the last column, standard error, is how much the model differs
from the measured values for a given characteristic.

The Intercept is a byproduct of the regression and helps the
model fit the measured data better. It represents a server with
a certain set of baseline characteristics (listed in Table II) and
0 for all other factors (0 CPUs, 0 years old, and so on). The
factors Density2Gb and Density4Gb take on the value 0 or 1
depending on whether the server has the characteristic (in which
case the value is 1) or does not (0). Note that the regression
analysis computes the ˇ-coefficients for these variables in such
a way that when they are added to the model, they effectively
replace the default values represented in ˇIntercept (e.g., though
ˇIntercept represents a server with 1 Gb chips, when Density2Gb
is set to 1, the model computes the failure rate of servers with
2 Gb chips).

Note that a characteristic that is included in the model
does not necessarily mean that it affects failure rate in the
real world. It may mean that it is only correlated with other
characteristics that do affect failure rate. The opposite is true
as well: A characteristic that is not included in the model may
in fact contribute to failure rate but its effects are captured
by other characteristics present in the model. For example,
Figure 17 shows a heatmap representing the correlation between
the different measured factors: darker colors correspond to a
stronger correlation while lighter colors correspond to a weaker
correlation. While some factors that are independent of one
another have weak or no correlation (i.e., close to 0, such
as CPUs and Chips), others show strong correlations (i.e.,
more/less than ˙0:8, such as Capacity and Chips). We have
discussed and attempted to control for these correlations in
Section IV.
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days. We divide the graph into three regions based on the
different phases of our experiment. Region a shows the state
of the servers before page offlining was deployed. Region b
shows the state of the servers while page offlining was deployed
gradually to 100% of the servers (so that any malfunctions
of the deployment could be detected in a small number of
machines and not all of them). Region c shows the state of
the servers after page offlining was fully deployed.

Fig. 18: The effect of page offlining on error rate.

The initial hump in Region a from days 0 to 7 was due
to a bank failure on one server that generated a large number
of errors. By day 8 its effects were no longer noticeable in
the moving average and we compare the effectiveness of page
offlining to the error rate after day 8.

There are three things to note from Figure 18. First, after
deploying page offlining to 100% of the fleet at day 25,
error rate continues to decrease until day 50. We believe that
this is because some pages that contained errors, but which
were not accessed immediately after deploying page offlining,
were eventually accessed, triggering an error and taking the
page offline. In addition, some pages cannot be taken offline
immediately due to restrictions in the OS, which we will
describe in the next section. Second, comparing the error rate
at day 18 (right before initial testing) to the error rate at day 50
(after deploying page offlining and letting the servers run for a
couple of weeks), the error rate decreased by around 67%. This
is smaller than the 86% to 94% error rate reduction reported
in Hwang et al.’s study [16]. One reason for this could be that
the prior study may have included socket and channel errors in
their simulation – increasing the number of errors that could
be avoided due to page offlining. Third, we observe a relatively
large rate of error occurrence (e.g., at day 57 the error rate
is still around 18% of the maximum amount), even after page
offlining. This suggests that it is important to design devices
and other techniques that help reduce the error rate that does
not seem to be affected by aggressive page offlining.

C. Limitations
While page offlining is relatively effective at reducing the

number of reported errors, we find that it has two main limi-
tations that were not addressed in prior work. First, it reduces
memory capacity, which requires repairing a machine after a
certain fraction of its pages have been taken offline. Second, it
may not always succeed in real systems. We additionally logged
the failure rate of page offlining and found that around 6% of
the attempts to offline a page initially failed. One example we
found of why a page may fail to be offlined in the Linux kernel
is if its contents cannot be locked for exclusive access. For
example, if its data is being prefetched into the page cache at
the time when it is to be offlined, locking the page could result
in a deadlock, and so the Linux kernel does not allow this.
This, however, could be easily fixed by retrying page-offlining
at a later time, at the expense of added complexity to system
software.

Despite these limitations, however, we find that page of-
flining – when adapted to function at scale – provides reason-

able memory error tolerance benefits, as we have demonstrated.
We look forward to future works that analyze the interaction of
page offlining with other error correction methods.

VII. RELATED WORK
To the best of our knowledge, we have performed the

first analysis of DRAM failure trends (on modern DRAM
devices using modern data-intensive workloads) that have not
been identified in prior work (e.g., chip density, transfer width,
workload type), presented the first regression-based model for
examining the memory failure rate of systems, and performed
the first analysis of page offlining in the field. Prior large
scale empirical studies of memory errors analyzed various
aspects of memory errors in different systems. We have al-
ready presented extensive comparisons to the most prevalent of
them [44, 16, 47, 48, 10] throughout the paper. We will discuss
these and others here briefly.

Schroeder et al. performed the first study of memory errors
in the field on a majority of Google’s servers in 2009 [44].
The authors’ study showed the relatively high rate of memory
errors across Google’s server population, provided evidence that
errors are dominated by device failures (versus alpha particles),
and noted that they did not observe any indication that newer
generations of DRAM devices have worse error behavior, that
CPU and memory utilization are correlated with error rate, and
that average server error rate is very high – findings clarified
by our study in this paper, five years later, as we explained in
Section III. Their work formed the basis for what is known of
DRAM errors in the field.

Hwang et al. performed an analysis on a trace of memory
errors from a sample of Google servers and IBM supercomput-
ers, showing how errors are distributed across various DRAM
components [16], but without controlling for the effect of
socket and channel failures. The high number of repeat address
errors led them to simulate the effectiveness of page offlining
(proposed in [49]) on the memory error traces, which they found
to reduce error rate by 86% to 94%. Note that their study of
page offlining, unlike ours (presented in Section VI), was done
purely in simulation, not in a large scale system.

Sridharan et al. examined memory errors in a supercom-
puting environment [47, 48, 10]. Similar to Hwang et al., they
found that most memory errors are permanent and additionally
identified occurrences of multi-DIMM errors, and speculated as
to their origin. They also found that DRAM vendor and age are
correlated with error rate. Concurrent to our work, Sridharan et
al. also observe that average server errors are much larger than
median server errors [46], though we quantify and provide a
model for the full distribution of errors per server. Siddiqua et
al. provided an error classification methodology for the memory
controller and memory bus, but did not classify memory errors
at a finer DRAM chip-level granularity as we do [45]. They
found that a small number of faults generate a large number of
errors and that faults are predominantly permanent.

Nightingale et al. examined the failure rate of consumer PCs
and showed that increased CPU frequency is correlated with
increased DRAM error rates [40]. A pair of works by Li et al.
analyzed memory errors on 212 Ask.com servers and evaluated
their application-level impact [27, 28]. They found that most
memory errors are permanent and that memory errors affected
applications in noticeable ways, and proposed a technique to
monitor memory for errors to reduce application impact.

VIII. CONCLUSIONS
We performed a comprehensive analysis of the memory

errors across all of Facebook’s servers over fourteen months.
We analyzed a variety of factors and how they affect server
failure rate and observed several new reliability trends for
memory systems that have not been discussed before in lit-
erature. We find that (1) memory errors follow a power-law
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days. We divide the graph into three regions based on the
different phases of our experiment. Region a shows the state
of the servers before page offlining was deployed. Region b
shows the state of the servers while page offlining was deployed
gradually to 100% of the servers (so that any malfunctions
of the deployment could be detected in a small number of
machines and not all of them). Region c shows the state of
the servers after page offlining was fully deployed.

Fig. 18: The effect of page offlining on error rate.

The initial hump in Region a from days 0 to 7 was due
to a bank failure on one server that generated a large number
of errors. By day 8 its effects were no longer noticeable in
the moving average and we compare the effectiveness of page
offlining to the error rate after day 8.

There are three things to note from Figure 18. First, after
deploying page offlining to 100% of the fleet at day 25,
error rate continues to decrease until day 50. We believe that
this is because some pages that contained errors, but which
were not accessed immediately after deploying page offlining,
were eventually accessed, triggering an error and taking the
page offline. In addition, some pages cannot be taken offline
immediately due to restrictions in the OS, which we will
describe in the next section. Second, comparing the error rate
at day 18 (right before initial testing) to the error rate at day 50
(after deploying page offlining and letting the servers run for a
couple of weeks), the error rate decreased by around 67%. This
is smaller than the 86% to 94% error rate reduction reported
in Hwang et al.’s study [16]. One reason for this could be that
the prior study may have included socket and channel errors in
their simulation – increasing the number of errors that could
be avoided due to page offlining. Third, we observe a relatively
large rate of error occurrence (e.g., at day 57 the error rate
is still around 18% of the maximum amount), even after page
offlining. This suggests that it is important to design devices
and other techniques that help reduce the error rate that does
not seem to be affected by aggressive page offlining.

C. Limitations
While page offlining is relatively effective at reducing the

number of reported errors, we find that it has two main limi-
tations that were not addressed in prior work. First, it reduces
memory capacity, which requires repairing a machine after a
certain fraction of its pages have been taken offline. Second, it
may not always succeed in real systems. We additionally logged
the failure rate of page offlining and found that around 6% of
the attempts to offline a page initially failed. One example we
found of why a page may fail to be offlined in the Linux kernel
is if its contents cannot be locked for exclusive access. For
example, if its data is being prefetched into the page cache at
the time when it is to be offlined, locking the page could result
in a deadlock, and so the Linux kernel does not allow this.
This, however, could be easily fixed by retrying page-offlining
at a later time, at the expense of added complexity to system
software.

Despite these limitations, however, we find that page of-
flining – when adapted to function at scale – provides reason-

able memory error tolerance benefits, as we have demonstrated.
We look forward to future works that analyze the interaction of
page offlining with other error correction methods.

VII. RELATED WORK
To the best of our knowledge, we have performed the

first analysis of DRAM failure trends (on modern DRAM
devices using modern data-intensive workloads) that have not
been identified in prior work (e.g., chip density, transfer width,
workload type), presented the first regression-based model for
examining the memory failure rate of systems, and performed
the first analysis of page offlining in the field. Prior large
scale empirical studies of memory errors analyzed various
aspects of memory errors in different systems. We have al-
ready presented extensive comparisons to the most prevalent of
them [44, 16, 47, 48, 10] throughout the paper. We will discuss
these and others here briefly.

Schroeder et al. performed the first study of memory errors
in the field on a majority of Google’s servers in 2009 [44].
The authors’ study showed the relatively high rate of memory
errors across Google’s server population, provided evidence that
errors are dominated by device failures (versus alpha particles),
and noted that they did not observe any indication that newer
generations of DRAM devices have worse error behavior, that
CPU and memory utilization are correlated with error rate, and
that average server error rate is very high – findings clarified
by our study in this paper, five years later, as we explained in
Section III. Their work formed the basis for what is known of
DRAM errors in the field.

Hwang et al. performed an analysis on a trace of memory
errors from a sample of Google servers and IBM supercomput-
ers, showing how errors are distributed across various DRAM
components [16], but without controlling for the effect of
socket and channel failures. The high number of repeat address
errors led them to simulate the effectiveness of page offlining
(proposed in [49]) on the memory error traces, which they found
to reduce error rate by 86% to 94%. Note that their study of
page offlining, unlike ours (presented in Section VI), was done
purely in simulation, not in a large scale system.

Sridharan et al. examined memory errors in a supercom-
puting environment [47, 48, 10]. Similar to Hwang et al., they
found that most memory errors are permanent and additionally
identified occurrences of multi-DIMM errors, and speculated as
to their origin. They also found that DRAM vendor and age are
correlated with error rate. Concurrent to our work, Sridharan et
al. also observe that average server errors are much larger than
median server errors [46], though we quantify and provide a
model for the full distribution of errors per server. Siddiqua et
al. provided an error classification methodology for the memory
controller and memory bus, but did not classify memory errors
at a finer DRAM chip-level granularity as we do [45]. They
found that a small number of faults generate a large number of
errors and that faults are predominantly permanent.

Nightingale et al. examined the failure rate of consumer PCs
and showed that increased CPU frequency is correlated with
increased DRAM error rates [40]. A pair of works by Li et al.
analyzed memory errors on 212 Ask.com servers and evaluated
their application-level impact [27, 28]. They found that most
memory errors are permanent and that memory errors affected
applications in noticeable ways, and proposed a technique to
monitor memory for errors to reduce application impact.

VIII. CONCLUSIONS
We performed a comprehensive analysis of the memory

errors across all of Facebook’s servers over fourteen months.
We analyzed a variety of factors and how they affect server
failure rate and observed several new reliability trends for
memory systems that have not been discussed before in lit-
erature. We find that (1) memory errors follow a power-law
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days. We divide the graph into three regions based on the
different phases of our experiment. Region a shows the state
of the servers before page offlining was deployed. Region b
shows the state of the servers while page offlining was deployed
gradually to 100% of the servers (so that any malfunctions
of the deployment could be detected in a small number of
machines and not all of them). Region c shows the state of
the servers after page offlining was fully deployed.

Fig. 18: The effect of page offlining on error rate.

The initial hump in Region a from days 0 to 7 was due
to a bank failure on one server that generated a large number
of errors. By day 8 its effects were no longer noticeable in
the moving average and we compare the effectiveness of page
offlining to the error rate after day 8.

There are three things to note from Figure 18. First, after
deploying page offlining to 100% of the fleet at day 25,
error rate continues to decrease until day 50. We believe that
this is because some pages that contained errors, but which
were not accessed immediately after deploying page offlining,
were eventually accessed, triggering an error and taking the
page offline. In addition, some pages cannot be taken offline
immediately due to restrictions in the OS, which we will
describe in the next section. Second, comparing the error rate
at day 18 (right before initial testing) to the error rate at day 50
(after deploying page offlining and letting the servers run for a
couple of weeks), the error rate decreased by around 67%. This
is smaller than the 86% to 94% error rate reduction reported
in Hwang et al.’s study [16]. One reason for this could be that
the prior study may have included socket and channel errors in
their simulation – increasing the number of errors that could
be avoided due to page offlining. Third, we observe a relatively
large rate of error occurrence (e.g., at day 57 the error rate
is still around 18% of the maximum amount), even after page
offlining. This suggests that it is important to design devices
and other techniques that help reduce the error rate that does
not seem to be affected by aggressive page offlining.

C. Limitations
While page offlining is relatively effective at reducing the

number of reported errors, we find that it has two main limi-
tations that were not addressed in prior work. First, it reduces
memory capacity, which requires repairing a machine after a
certain fraction of its pages have been taken offline. Second, it
may not always succeed in real systems. We additionally logged
the failure rate of page offlining and found that around 6% of
the attempts to offline a page initially failed. One example we
found of why a page may fail to be offlined in the Linux kernel
is if its contents cannot be locked for exclusive access. For
example, if its data is being prefetched into the page cache at
the time when it is to be offlined, locking the page could result
in a deadlock, and so the Linux kernel does not allow this.
This, however, could be easily fixed by retrying page-offlining
at a later time, at the expense of added complexity to system
software.

Despite these limitations, however, we find that page of-
flining – when adapted to function at scale – provides reason-

able memory error tolerance benefits, as we have demonstrated.
We look forward to future works that analyze the interaction of
page offlining with other error correction methods.

VII. RELATED WORK
To the best of our knowledge, we have performed the

first analysis of DRAM failure trends (on modern DRAM
devices using modern data-intensive workloads) that have not
been identified in prior work (e.g., chip density, transfer width,
workload type), presented the first regression-based model for
examining the memory failure rate of systems, and performed
the first analysis of page offlining in the field. Prior large
scale empirical studies of memory errors analyzed various
aspects of memory errors in different systems. We have al-
ready presented extensive comparisons to the most prevalent of
them [44, 16, 47, 48, 10] throughout the paper. We will discuss
these and others here briefly.

Schroeder et al. performed the first study of memory errors
in the field on a majority of Google’s servers in 2009 [44].
The authors’ study showed the relatively high rate of memory
errors across Google’s server population, provided evidence that
errors are dominated by device failures (versus alpha particles),
and noted that they did not observe any indication that newer
generations of DRAM devices have worse error behavior, that
CPU and memory utilization are correlated with error rate, and
that average server error rate is very high – findings clarified
by our study in this paper, five years later, as we explained in
Section III. Their work formed the basis for what is known of
DRAM errors in the field.

Hwang et al. performed an analysis on a trace of memory
errors from a sample of Google servers and IBM supercomput-
ers, showing how errors are distributed across various DRAM
components [16], but without controlling for the effect of
socket and channel failures. The high number of repeat address
errors led them to simulate the effectiveness of page offlining
(proposed in [49]) on the memory error traces, which they found
to reduce error rate by 86% to 94%. Note that their study of
page offlining, unlike ours (presented in Section VI), was done
purely in simulation, not in a large scale system.

Sridharan et al. examined memory errors in a supercom-
puting environment [47, 48, 10]. Similar to Hwang et al., they
found that most memory errors are permanent and additionally
identified occurrences of multi-DIMM errors, and speculated as
to their origin. They also found that DRAM vendor and age are
correlated with error rate. Concurrent to our work, Sridharan et
al. also observe that average server errors are much larger than
median server errors [46], though we quantify and provide a
model for the full distribution of errors per server. Siddiqua et
al. provided an error classification methodology for the memory
controller and memory bus, but did not classify memory errors
at a finer DRAM chip-level granularity as we do [45]. They
found that a small number of faults generate a large number of
errors and that faults are predominantly permanent.

Nightingale et al. examined the failure rate of consumer PCs
and showed that increased CPU frequency is correlated with
increased DRAM error rates [40]. A pair of works by Li et al.
analyzed memory errors on 212 Ask.com servers and evaluated
their application-level impact [27, 28]. They found that most
memory errors are permanent and that memory errors affected
applications in noticeable ways, and proposed a technique to
monitor memory for errors to reduce application impact.

VIII. CONCLUSIONS
We performed a comprehensive analysis of the memory

errors across all of Facebook’s servers over fourteen months.
We analyzed a variety of factors and how they affect server
failure rate and observed several new reliability trends for
memory systems that have not been discussed before in lit-
erature. We find that (1) memory errors follow a power-law
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PAGE OFFLINING AT SCALE
• First study at large scale 

• Cluster of 12,276 servers 
• Reduced error rate by 67% 
• Prior simulations: 86 to 94% 

• Did not account for OS 
failures to lock page
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DRAM WEAROUT IN THE FIELD
• DRAM shows signs of wear 
• Idea: What if we performed 

wear leveling in DRAM? 
• Can be done in OS without 

modifying hardware
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PAGE RANDOMIZATION

Prototype implemented in Debian 6.0.7 kernel
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PAGE RANDOMIZATION
• Can perform with low 

overhead (< 5%) 
• Can fine-tune desired rate 

of randomization

�78



• Errors follow a power-law distribution 
• Denial of service due to socket/channel 
• Higher density = more failures 
• Architectural effects on reliability 
• Workload influence on failures 
• Model, page-offlining, page randomization

KEY DRAM CONTRIBUTIONS
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RELATED WORK
• DRAM errors at Google 

[Schroeder+ SIGMETRICS'09] 
• Component failures + simulated page offlining 

[Hwang+ ASPLOS'12] 
• Error correction, location, multi-DIMM errors 

[Sridharan+ SC'12, SC'13; DeBardeleben+ SELSE'14]
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DRAM 
[DSN '15]

SSDs 
[SIGMETRICS '15]

Networks 
[IMC '18]

LARGE SCALE STUDIES
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PCIe
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Flash chips
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SSD controller
▪ translates addresses 
▪ schedules accesses 
▪ performs wear leveling
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10011111 11001111 11000011 00001101 
10101110 11100101 11111001 01111011  
00011001 11011101 11100011 11111000 
11011111 01001101 11110000 10111111  
00000001 11011110 00000101 01010110 
00001011 10000010 11111110 00011100  

...

01001100 01001101 11010010 01000000 
10011100 10111111 10101111 11000101 

Stored data

ECC metadata
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Ones that cause SMALL ERRORS
• 10's of flipped bits per KB 
• Silently corrected by SSD controller

Ones that cause LARGE ERRORS
• 100's of flipped bits per KB 
• Corrected by host using driver 
• Referred to as SSD failure

TYPES OF SSD FAILURES
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• Examined lifetime hardware counters 
• Across Facebook's fleet 
• Devices deployed between 6 months and 4 years 
• 15 TB to 50 TB read and written 
• Planar, Multi-Level Cell (MLC) 

• Snapshot-based analysis

MEASURING SSD FAILURES
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Errors 54,326 0 2 10
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written 10TB 2TB 5TB 6TB 2018-12-3

Data written

Buckets
Errors
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Data written
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• Distinct lifecycle periods 
• Read disturbance not prevalent in the field 
• Higher temperatures cause more failures 
• Amount of data written by OS is misleading 
• Write amplification trends from the field

KEY SSD CONTRIBUTIONS
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FAILURE MODELING
• Built a model across 6 SSD 

server configurations 
• Weibull (0.3, 5e3) 
• Most errors are from a small 

set of SSDs
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bathtub curve
Storage lifecycle background:

the

[Schroeder+,FAST'07]

for disk drives

Usage

Failure 
rate

�98



Storage lifecycle background:
the

[Schroeder+,FAST'07]

Failure 
rate

Usage

Early 
failure 
period

Useful life 
period

Wearout 
period

bathtub curve for disk drives
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SSD LIFECYCLE PERIODS
• We believe there are two distinct pools of flash cells 

• The "weak" pool fails first, during early detection 
• The "strong" pool follows the bathtub curve 

• Burn-in testing is important to help the SSD identify 
the weak pool of cells
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Read disturbance errors
• Charge drift from reads to neighboring cells 
• Documented in prior controlled studies on chips
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READ DISTURBANCE ERRORS
3.2TB, 1 SSD 
(R/W = 2.14)

●
● ● ●

● ●

● ●
● ●

●

●
● ●

0.0e+00 1.5e+14

Data read (B)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te

●
● ● ● ● ● ● ●

● ●
● ●

●
●

●

●
●

●

●
●

0.0e+00 1.0e+14 2.0e+14

Data read (B)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te 1.2TB, 1 SSD 
(R/W = 1.15)

• SSDs with the most reads

�105



READ DISTURBANCE ERRORS
3.2TB, 1 SSD 
(R/W = 2.14)
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TEMPERATURE DEPENDENCE
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Temperature 
sensor

TEMPERATURE DEPENDENCE
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TEMPERATURE DEPENDENCE
• Higher temperature = 

more failures
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On some devices, 
high temperature 
may throttle or 
shut down SSD

TEMPERATURE DEPENDENCE
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TEMPERATURE DEPENDENCE
• Throttling is an effective 

technique to reduce failures 
• Potentially decreases device 

performance, however
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Access patterns and SSD writes
System buffering

• Data served from OS caches 
• Decreases SSD usage

Write amplification
• Updates to small amounts of data 
• Increases erasing and copying
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OS

the impact of SSD writes
System caching reduces

Page cache
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OS WRITES MISLEADING
• No statistically significant 

correlation with failures at 
high write volume
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OS WRITES MISLEADING

●

● ●

●
●

●

●
●

●

●

0e+00 2e+10 4e+10

2e
+1

3
6e

+1
3

System data written (sectors)

Platform A

D
at

a 
w

rit
te

n 
to

 fl
as

h 
ce

lls
 (B

)

●

●

●

●
● ●

●

●

●

●

●

●

0e+00 3e+10 6e+10

2e
+1

3
6e

+1
3

System data written (sectors)

Platform B

●●
●
●
●
●

●

●

●●
●●

●
●
●

●

●
●

●

●

●
●
●
●

0.0e+00 6.0e+10 1.2e+110.
0e

+0
0

1.
0e

+1
4

System data written (sectors)

Platform C

●

●

●

●

●

●

●

0.0e+00 1.5e+10 3.0e+10

0e
+0

0
2e

+1
3

System data written (sectors)

Platform D

●●●
●●

●●
●●

●●

●
●

●●

●

●

●
●
●●

●

●
●
●●

●●

●
●

0.0e+00 1.0e+11 2.0e+110.
0e

+0
0

1.
5e

+1
4

3.
0e

+1
4

System data written (sectors)

Platform E

●

●

●

● ●

●

●
●

●

●

0e+00 2e+10 4e+100.
0e

+0
0

2.
0e

+1
3

System data written (sectors)

Platform F

720GB, 2 SSDs

0 15 30
Data written to OS (TB)

Da
ta

 w
rit

te
n 

to
 

fla
sh

 ce
lls

 (T
B)

60

20

• No statistically significant 
correlation with failures at 
high write volume 

• Data written to OS versus 
SSD is not correlated for 
high write volume
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OS

Flash devices use a
translation layer

to locate data
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OS

Logical 
address 
space

Translation layer
Physical 
address 
space

<offset1, size1>
<offset2, size2>

...
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Sparse data layout
more translation metadata

potential for higher write amplification
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Dense data layout
less translation metadata

potential for lower write amplification
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WRITE AMPLIFICATION
• Sparse data shows signs 

of higher failure rates 
• Likely due to write 

amplification

�120



• Distinct lifecycle periods 
• Read disturbance not prevalent in the field 
• Higher temperatures cause more failures 
• Amount of data written by OS is misleading 
• Write amplification trends from the field

KEY SSD CONTRIBUTIONS
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RELATED WORK
• Examined chip-level failures 

E.g., [Cai+ DATE'12, ICCD'12, DATE'13, ICCD'13, DSN'15, HPCA'17] 
• Examined a simulated SSD controller with 45 flash chips 

[Grupp+ FAST'12] 
• Reliability of SSD controllers (NOT chips) 

[Ouyang+ ASPLOS'14] 
• Microsoft and Google SSDs over multiple years 

[Narayanan+ SYSTOR'16, Schroeder+ FAST'16]
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DRAM 
[DSN '15]

SSDs 
[SIGMETRICS '15]

Networks 
[IMC '18]

LARGE SCALE STUDIES
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Internet ISP Edge Node

WAN

Core Switches Data Center Fabric Rack Switch



SOFTWARE-AIDED NETWORKS
• Simple, custom switches 
• Software-based fabric networks 
• Automated repair of common failures
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• Incident reports 
• Across Facebook's fleet 
• Over 7 years 
• Details on faulty device, severity, ...

MEASURING NETWORK FAILURE
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DATA CENTER 
NETWORK

WIDE AREA 
NETWORK

• Vendor repair tickets 
• Across Facebook's fleet 
• Over 14 months 
• Details on location, timing, ...
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Switch Failures 
cause 

Software Failures 
that result in 

Incidents (with reports)

INCIDENT REPORTS



• Software-aided networks greatly reduce errors 
• High bandwidth switches cause more incidents 
• Rack switches are a bottleneck for reliability 
• Data center WAN reliability models

KEY NETWORK CONTRIBUTIONS
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NETWORK DESIGN TRENDS
• Older hard-wired networks 

• 9X incident increase 
over 4 years

Hard-wired network
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• Older hard-wired networks 
• 9X incident increase 

over 4 years 
• Newer software-aided designs 

• 2X fewer incidents 
• 2.8X on a per-device basis

Hard-wired network Software-aided network

NETWORK DESIGN TRENDS
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SWITCH TYPE TRENDS

Highest bandwidth Lowest bandwidth
Hard-wired Software-aided

Moderate bandwidth �131



SWITCH TYPE TRENDS

Highest bandwidth Lowest bandwidth
Hard-wired Software-aided

Moderate bandwidth �132



SWITCH TYPE TRENDS

Highest bandwidth Lowest bandwidth
Hard-wired Software-aided

Moderate bandwidth �133
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of network devices
82%

Rack switches make up



WAN architecture
Edge nodes

• Route requests across different network paths 
• Connected by multiple links

Links
• Optical fiber cables that connect edges
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MODELING WAN RELIABILITY

Edge 

Link 

Failure rate Repair rate
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MODELING WAN RELIABILITY

Edge 

Link 

Failure rate Repair rate
O(months) O(hours)

O(months) O(days)
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MODELING WAN RELIABILITY

Edge 

Link 

Failure rate Repair rate

We provide open models
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• Software-aided networks greatly reduce errors 
• High bandwidth switches cause more incidents 
• Rack switches are a bottleneck for reliability 
• Data center WAN reliability models

KEY NETWORK CONTRIBUTIONS
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RELATED WORK
• Identify network incidents as leading cause 

[Barroso+ DCaaC, Gunawi+ SoCC'6, Oppenheimer+ USITS'03, 
Brewer Google Tech. Rep. '17, Wang+ DSN'17] 

• Hard-wired network studies 
[Zhuo+ SIGCOMM'17, Gill+ SIGCOMM'11, Potharaju+ IMC'13] 

• Complementary large scale works focused on device trends 
[Potharaju+ SoCC'13, Turner+ SIGCOMM'10, 
Govindan+ SIGCOMM'16]
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DRAM 
[DSN '15]

SSDs 
[SIGMETRICS '15]

Networks 
[IMC '18]

LARGE SCALE STUDIES
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THESIS STATEMENT
If we measure the device failures in modern data centers, 

then we can learn the reasons why devices fail, 
develop models to predict device failures, and 

learn from failure trends to make recommendations 
to enable workloads to tolerate device failures. 
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CONCLUSION

The problem of understanding why data center devices fail 
can be solved by using the scale of modern data centers 

to observe failures and by building robust statistical models 
to understand the implications of the failure trends.
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1. Large scale failure studies
We shed new light on device trends from the field

CONTRIBUTIONS

We enable the community to apply what we learn
2. Statistical failure models

3. Evaluate best practices in the field
We provide insight into how to tolerate failures



!145

Only examined one company's data centers

LIMITATIONS

Do not consider combination of device effects

Do not consider silent data corruption



!146

FUTURE RESEARCH
Further field study based analysis

Other devices, statistical techniques, environments

Use learnings to inform design decisions
HW/SW cooperative techniques

Introspective fault monitoring and reduction
Systems that can identify and adapt their behavior
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THESIS PUBLICATIONS

Large scale reliability studies
• DRAM [Meza+ DSN'15] 
• SSDs [Meza+ SIGMETRICS'15] 
• Network [Meza+ IMC'18]
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OTHER PhD PUBLICATIONS
Non-volatile memory
• DRAM + NVM [Meza+ CAL'12] 
• Persistent Memory [Meza+ WEED'13] 
• Multi-Level Cell [Yoon+ TACO'14] 
• Row Buffers Locality [Yoon+ ICCD'15] 
• Row Buffer Sizes [Meza+ ICCD'12]
Main memory architecture
• Bit Flips [Luo+ DSN'14] 
• Overview [Mutlu+ KIISE'15]

Datacenter Energy
• Sustainable DC Design 

[Chang+ ASPLOS'12]
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EARLIER PUBLICATIONS
Energy efficiency studies
• JouleSort [Rivoire+ Computer'07] 
• DB Energy [Harizopoulos+ CIDR'09] 
• OLTP Energy [Meza+ ISLPED'09] 
• Sustainable DC Design [Meza+ IMCE'10] 
• Sustainable Server Design [Chang+ HotPower'10]
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FACEBOOK PUBLICATIONS

Systems architecture + reliability
• Power Management [Wu+ ISCA'16] 
• Time Series DBs [Pelkonen+ VLDB'15] 
• Load Testing [Veeraraghavan+ OSDI'16] 
• Disaster Recovery [Veeraraghavan+ OSDI'18]
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More Techniques?
• We believe our DRAM work provides a promising direction 

• Analyze failures, build models, design techniques 
• At the same time, we wanted to focus on: 

• Instrumentation + analysis of new devices (SSDs) 
• Going more in depth in software-level effects (networks) 

• We sketch how to extend our methodology in the thesis
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Other Data Centers
• We tie our results to fundamental device properties 
• We build models that control for data center specifics 

• E.g., DRAM: Workload has an effect, but our models 
can factor that in to other features (e.g., CPU util) 

• We do see evidence of similarities to other data centers 
• E.g., Networks: Data center networks ≈ B4, WAN ≈ B2 

in [Jain+SIGCOMM'13, Govindan+SIGCOMM'16]
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How Widespread is the Impact?
• For DRAM and SSDs we observe fail-slow behavior 

• Slow devices can cause cascading failures [FAST'18] 
• For Network devices, 

failure domain is large 
leading to widespread 
effects
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DRAM Failure Details
• Retention 

• Cells must be refreshed 
• Variable retention time complicates matters  

• Disturbance 
• Bit flips due to charged particles 
• Data pattern disturbance & RowHammer effect 

• Endurance 
• Wear out due to physical phemonena
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SSD Failure Details
• Endurance 

• Cells wear out after many program-erase cycles 
• Floating gate loses ability to adequately store charge 

• Temperature 
• Shrinks and expands boards and components 
• Arrhenius effect ages cells at accelerated rate 

• Disturbance 
• Pass through voltage causes neighboring cell disturbance 

• Program failures, retention failures
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Network Failure Details
• Hardware (see DRAM and SSD failure details) 
• Unplanned fiber cuts 

• Everything from anchors dragging to backhoes 
• Bugs 

• Switches run a variety of software, can be buggy 
• Operational mistakes 

• Attempting to repair a switch without turning it off
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Fig. 17: The correlation between different measured factors.

Using the equation in Table II, we can solve for F , the rate
of memory failure for a server with a given set of characteristics.
For example, Table III compares the failure rates predicted by
the model for four different server types: (1) a low-end server
with low density DIMMs and few CPUs, (2) a high-end (HE)
server with high density DIMMs and twice as many CPUs
as the low-end server, (3) a high-end server that uses lower-
density DIMMs (HE/#density), and (4) a high-end server that
uses half as many CPUs (HE/#CPUs). So that the workload is
kept roughly similar across the configurations, we double the
CPU utilization for servers with half as many CPUs.
TABLE III: Predicted relative failure rates among different server types.
Factor Low-end High-end (HE) HE/#density HE/#CPUs
Capacity 4 GB 16 GB 4 GB 16 GB
Density2Gb 1 0 1 0
Density4Gb 0 1 0 1
Chips 16 32 16 32
CPU% 50% 25% 25% 50%
Age 1 1 1 1
CPUs 8 16 16 8
Predicted

0.12 0.78 0.33 0.51relative
failure rate

We can see that the model-predicted failure rate of the high-
end server is 6:5⇥ that of the low-end server. This agrees with
the trends that we observed in Section IV, which showed, for
example, increasing failure rates with increasing chip density
and number of CPUs. Interestingly, the model can be used
to provide insight into the relative change in error rate for
different system design choices. For example, the failure rate
of the high-end server can be reduced by 57.7% by using
lower density DIMMs and by 34.6% by using half as many
cores. This indicates that designing systems with lower density
DIMMs can provide a larger DRAM reliability benefit than
designing systems with fewer CPUs. In this way, the model
that we develop allows system architects to easily and quickly
explore a large design space for memory reliability. We hope
that, by using the model, system architects can evaluate the
reliability trade-offs of their own system configurations in order
to achieve better memory reliability. We make the model also
available online at [1].

VI. EFFECT OF PAGE OFFLINING AT SCALE
We next discuss the results of a study performed to examine

ways to reduce memory errors using page offlining [49, 16].
Page offlining removes a physical page of memory that contains
a memory error from the set of physical pages of memory that
the operating system can allocate. This reduces the chance of
a more severe uncorrectable error occurring on that page com-

pared to leaving the faulty page in the physical address space.
While prior work evaluated page offlining using simulations on
memory traces [16], we deployed page offlining on a fraction of
the machines we examined (12,276 servers) and observed the
results. We next describe the system design decisions required
to make page-offlining work well at a large scale, and analyze
its effectiveness.

A. Design Decisions and Implementation
The three main design decisions we explore with respect

to utilizing page offlining in practice are: (1) when to take a
page offline, (2) for how long to take a page offline, and (3)
how many pages to take offline (the first and last of which were
also identified in [16]).

(1) When to take a page offline? ECC DIMMs provide
flexibility for tolerating correctable errors for a certain amount
of time. In some settings, it may make sense to wait until a
certain number of memory errors occur on a page in a certain
amount of time before taking the page offline. We examine a
conservative approach and take any page that had a memory er-
ror offline immediately (the same as the most aggressive policy
examined in prior work [16]). The rationale is that leaving a
page with an error in use increases the risk of an uncorrectable
error occurring on that page. Another option could be to leave
pages with errors in use for longer and, for example, design
applications that are not as adversely affected by memory errors.
Such an approach is taken by Flikker [31], which developed a
programming model for reasoning about the reliability of data,
and by heterogeneous-reliability memory systems where parts
of memory can be less reliable and application data that is less
vulnerable to errors can be allocated there [33].

(2) For how long to take a page offline? One question
that arose when designing page offlining at a large scale was
how to make an offlined page persist across machine reboots
(both planned and unplanned) and hardware changes (e.g., disk
replacement). Neither of these cases are handled by existing
techniques. Allowing an offlined page with a permanent error
to come back online can defeat the purpose of page offlining by
increasing the window of vulnerability for uncorrectable errors.
We examine a policy that takes pages offline permanently. To
keep track of offlined pages across machine reboots, we store
offlined pages by host name in a distributed database that is
queried when the OS kernel loads. This allows known-bad
pages to be taken offline before the kernel allocates them to
applications. Entries in this database need to be updated as
DRAM parts are replaced in a system.

(3) How many pages to take offline? Taking a page offline
reduces the size of physical memory in a system and could
cause increased swapping of pages to storage. To limit the
negative performance impact of this, we place a cap on the
number of physical pages that may be taken offline. Unlike
prior work, as we showed in Section III-B, socket and channel
failures can potentially cause page offlining to remove large
portions of the physical address space, potentially causing large
amounts of swapping to storage and degrading performance.
To check how many pages have been taken offline, logs are
routinely inspected on each machine. When the amount of
physical memory taken offline is greater than 5% of a server’s
physical memory capacity, a repair ticket is generated for the
server.

B. Effectiveness
Figure 18 shows a timeline of the normalized number of

errors in the 12,276 servers that we examine (unlike the rest
of this study, we only examine a small number of servers for
this technique). The experiment was performed for 86 days and
we measure the number of errors as a moving average over 30
days. As it was a production environment, page offlining was
deployed on all of the machines over the course of several
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Figure 8: SSD failure rate vs. DRAM bu↵er usage. Sparse data mappings (e.g., non-contiguous data, indicated
by high DRAM bu↵er usage to store flash translation layer metadata) negatively a↵ect SSD reliability the
most (Platforms A, B, and D). Additionally, some dense data mappings (e.g., contiguous data in Platforms
E and F) also negatively a↵ect SSD reliability, likely due to the e↵ect of small, sparse writes.
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Figure 9: SSD failure rate vs. DRAM bu↵er usage across six applications that run on Platform B. We observe
similar DRAM bu↵er e↵ects to Figure 8, even among SSDs running the same application.

5. THE ROLE OF EXTERNAL FACTORS
We next examine how factors external to the SSD influence

the errors observed over an SSD’s lifetime. We examine the ef-
fects of temperature, PCIe bus power, and system-level writes
reported by the OS.

5.1 Temperature
It is commonly assumed that higher temperature negatively

a↵ects the operation of flash-based SSDs. In flash cells, higher
temperatures have been shown to cause cells to age more
quickly due to the temperature-activated Arrhenius e↵ect [39].
Temperature-dependent e↵ects are especially important to un-
derstand for flash-based SSDs in order to make adequate data
center provisioning and cooling decisions. To examine the ef-
fects of temperature, we used temperature measurements from
temperature sensors embedded on the SSD cards, which pro-
vide a more accurate portrayal of the temperature of flash cells
than temperature sensors at the server or rack level.

Figure 10 plots the failure rate for SSDs that have various
average operating temperatures. We find that at an operating
temperature range of 30 to 40�C, SSDs across server platforms
see similar failure rates or slight increases in failure rates as
temperature increases.

Outside of this range (at temperatures of 40�C and higher),
we find that SSDs fall into one of three categories with respect
to their reliability trends vs. temperature: (1) temperature-
sensitive with increasing failure rate (Platforms A and B),
(2) less temperature-sensitive (Platforms C and E), and (3)

temperature-sensitive with decreasing failure rate (Platforms
D and F). There are two factors that may a↵ect the trends we
observe with respect to SSD temperature.

One potential factor when analyzing the e↵ects of temper-
ature is the operation of the SSD controller in response to
changes in temperature. The SSD controllers in some of the
SSDs we examine attempt to ensure that SSDs do not exceed
certain temperature thresholds (starting around 80�C). Simi-
lar to techniques employed in processors to reduce the amount
of processor activity in order to keep the processor within a
certain temperature range, our SSDs attempt to change their
behavior (e.g., reduce the frequency of SSD access or, in the
extreme case, shut down the SSD) in order not to exceed tem-
perature thresholds.

A second potential factor is the thermal characteristics of
the machines in each platform. The existence of two SSDs in
a machine (in Platforms B, D, and F) compared to one SSD
in a machine may (1) increase the thermal capacity of the
machine (causing its SSDs to reach higher temperatures more
quickly and increase the work required to cool the SSDs) and
(2) potentially reduce airflow to the components, prolonging
the e↵ects of high temperatures when they occur.

One hypothesis is that temperature-sensitive SSDs with in-
creasing error rates, such as Platforms A and B, may not em-
ploy as aggressive temperature reduction techniques as other
platforms. While we cannot directly measure the actions the
SSD controllers take in response to temperature events, we
examined an event that can be correlated with temperature
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Figure 8: SSD failure rate vs. DRAM bu↵er usage. Sparse data mappings (e.g., non-contiguous data, indicated
by high DRAM bu↵er usage to store flash translation layer metadata) negatively a↵ect SSD reliability the
most (Platforms A, B, and D). Additionally, some dense data mappings (e.g., contiguous data in Platforms
E and F) also negatively a↵ect SSD reliability, likely due to the e↵ect of small, sparse writes.
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Figure 9: SSD failure rate vs. DRAM bu↵er usage across six applications that run on Platform B. We observe
similar DRAM bu↵er e↵ects to Figure 8, even among SSDs running the same application.

5. THE ROLE OF EXTERNAL FACTORS
We next examine how factors external to the SSD influence

the errors observed over an SSD’s lifetime. We examine the ef-
fects of temperature, PCIe bus power, and system-level writes
reported by the OS.

5.1 Temperature
It is commonly assumed that higher temperature negatively

a↵ects the operation of flash-based SSDs. In flash cells, higher
temperatures have been shown to cause cells to age more
quickly due to the temperature-activated Arrhenius e↵ect [39].
Temperature-dependent e↵ects are especially important to un-
derstand for flash-based SSDs in order to make adequate data
center provisioning and cooling decisions. To examine the ef-
fects of temperature, we used temperature measurements from
temperature sensors embedded on the SSD cards, which pro-
vide a more accurate portrayal of the temperature of flash cells
than temperature sensors at the server or rack level.

Figure 10 plots the failure rate for SSDs that have various
average operating temperatures. We find that at an operating
temperature range of 30 to 40�C, SSDs across server platforms
see similar failure rates or slight increases in failure rates as
temperature increases.

Outside of this range (at temperatures of 40�C and higher),
we find that SSDs fall into one of three categories with respect
to their reliability trends vs. temperature: (1) temperature-
sensitive with increasing failure rate (Platforms A and B),
(2) less temperature-sensitive (Platforms C and E), and (3)

temperature-sensitive with decreasing failure rate (Platforms
D and F). There are two factors that may a↵ect the trends we
observe with respect to SSD temperature.

One potential factor when analyzing the e↵ects of temper-
ature is the operation of the SSD controller in response to
changes in temperature. The SSD controllers in some of the
SSDs we examine attempt to ensure that SSDs do not exceed
certain temperature thresholds (starting around 80�C). Simi-
lar to techniques employed in processors to reduce the amount
of processor activity in order to keep the processor within a
certain temperature range, our SSDs attempt to change their
behavior (e.g., reduce the frequency of SSD access or, in the
extreme case, shut down the SSD) in order not to exceed tem-
perature thresholds.

A second potential factor is the thermal characteristics of
the machines in each platform. The existence of two SSDs in
a machine (in Platforms B, D, and F) compared to one SSD
in a machine may (1) increase the thermal capacity of the
machine (causing its SSDs to reach higher temperatures more
quickly and increase the work required to cool the SSDs) and
(2) potentially reduce airflow to the components, prolonging
the e↵ects of high temperatures when they occur.

One hypothesis is that temperature-sensitive SSDs with in-
creasing error rates, such as Platforms A and B, may not em-
ploy as aggressive temperature reduction techniques as other
platforms. While we cannot directly measure the actions the
SSD controllers take in response to temperature events, we
examined an event that can be correlated with temperature
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DC fabric has fewer incidents

• Reversing the negative software-level reliability trend
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Main cause across all severities
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Edge node MTBF distribution

• Typical edge node failure rate is on the order of months



�166

Edge node MTTR distribution

• Edge node mean time to repair is on the order of hours
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Fiber vendor MTBF distribution

• Typical vendor link failure rate is on the order of months
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Fiber vendor MTTR distribution
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Minimizing backbone outages
...

Simulation 
objective = six 9's 

Capacity plan
Node1: Links A, B 
Node 2: Links X, Y


