
Apollo: A Sequencing-Technology-Independent, Scalable,

and Accurate Assembly Polishing Algorithm

Can Firtina1, Jeremie S. Kim1,2, Mohammed Alser1, Damla Senol Cali2, A. Ercument Cicek3,
Can Alkan3, and Onur Mutlu1,2,3

8: Applicability of the Polishing Algorithms to Large Genomes

10: Conclusion

• Two major functionalities that are not possible
with prior tools:

1. Apollo scales well with polishing large
genome assemblies

2. Apollo is the best tool that can consistently
construct the most reliable Canu-generated
assemblies when reads from multiple
sequencing technologies are used

• We show there is a dramatic difference
between non-machine learning based
algorithms and the machine learning based
ones in terms of runtime

• As future work, it is possible to accelerate the
calculation of the Forward-Backward algorithm
and the Viterbi algorithm using Tensor cores,
SIMD, and GPUs.

6: Apollo Walkthrough

Provide a universal algorithm to improve accuracy of genome
assembly that
1. Uses read sets from all available HTS technologies within a

single run
2. Scales well to polish large genomes

1: High Throughout Sequencing (HTS)

1. Sequencing errors are not entirely random

2. A profile hidden Markov model (pHMM) graph is a good fit to
represent a sequence and its error profile

3. Read-to-assembly alignment: Aligning reads to a contig
provides a clue about the differences between a contig and an
aligned read

4. Read-to-assembly alignment can be used to train a pHMM-
graph to correct the errors in the assembly

Based on these observations, we propose a machine learning-
based universal technology-independent assembly polishing
algorithm, called Apollo

3: Problem

HTS: Produces large amount of sequencing data at relatively low
cost compared to first-generation sequencing methods.
Two types of HTS technologies:
1. Second-generation sequencing technologies (e.g., Illumina)

generate the most accurate reads (e.g., 99.9% accuracy), but
the length of these reads are short (e.g., 100-300 basepairs).

2. Third-generation sequencing technologies (e.g., PacBio’s
SMRT) produce long reads (e.g., up to 2M basepairs) at the
cost of high error rate (e.g., an error rate of 10%).

Motivation: Long reads make it more likely to generate
chromosome-size contigs but also more challenging as the error-
prone reads often result in an erroneous assembly.

2: Error Correction

Error-prone assemblies can be corrected in two ways:
1. Correcting the errors of long reads before generating the

assembly (i.e., error correction), which requires either:
❌ Reads from multiple sequencing technologies

(costly) or
❌ High coverage long reads (costly)

2. Correcting the errors of the assembly using long or short
reads (i.e., assembly polishing) that
❌ Mostly works with only reads from a limited set of

sequencing technologies
❌ Cannot use multiple read sets within a single run
❌ Cannot scale well to polish large genome

✅ Both approaches can improve accuracy of an assembly

4: Our Goal

The technology and genome-size dependency prevents state-of-
the-art assembly polishing algorithms from either
1. Using all available read sets from multiple HTS technologies
2. Polishing large genomes (e.g., a human genome)

5: Key Observations

7: Experimental Setup and Data Sets

1 2 3

• We evaluate the polished assemblies based on:

1. Aligned Bases: The percentage of bases of an assembly
that align to its reference

2. Accuracy: The fraction of identical portions between the
aligned bases of an assembly and its reference

3. Polishing Score: Accuracy x Aligned Bases

4. Runtime and the peak memory usage

• We ran all the tools on a server with 192 GB of memory by
assigning 45 threads for each run

• Apollo is compared with Nanopolish, Racon, Quiver, and Pilon

• We used E.coli K-12, E.coli O157, E.coli O157:H7, Yeast S288C,
Human CHM1, and Human HG002 data sets in our experiments

• Ground truth: Highly accurate assemblies either from the same
sample or a well-known reference of the species

❌ Racon, Pilon, and Quiver cannot
polish the large genome assembly
using high coverage read sets due to high
computational resources they require

❌ Racon is only able to polish a large
genome when using low coverage
read sets

✅ Apollo is the only assembly
polishing algorithm that can scale
well to polish large genome
assemblies

9: Using Read Sets from Multiple Sequencing Technologies

✅ Apollo generates the most
accurate Canu assemblies
for a species than running other

polishing tools multiple times

✅ Apollo never generates an
assembly with a polishing
score lower than the
original assembly whereas

other polishing tools may produce
such assemblies

❌ Running Apollo once is
significantly slower than

running other polishing tools
multiple times

