SAFARI
Apollo: A Sequencing-Technology-Independent, Scalable,

and Accurate Assembly Polishing Algorithm GitHub

Can Firtina!, Jeremie S. Kimi2, Mohammed Alser!, Damla Senol Cali¢, A. Ercument Cicek3,
Can Alkan3, and Onur Mutlul-23

1 TR p) 2 3 o=
ETHzurich “CarnegieMellon

Error-prone assemblies can be corrected in two ways:
1. Correcting the errors of long reads before generating the
assembly (i.e., error correction), which requires either:
¥ Reads from multiple sequencing technologies
(costly) or
) 4 High coverage long reads (costly)
2. Correcting the errors of the assembly using long or short
reads (i.e., assembly polishing) that
) 4 Mostly works with only reads from a limited set of
sequencing technologies
¥ Cannot use multiple read sets within a single run
¥ Cannot scale well to polish large genome
</ Both approaches can improve accuracy of an assembly

Bilkent University

1: High Throughout Sequencing (HTS) 3: Problem

The technology and genome-size dependency prevents state-of-
the-art assembly polishing algorithms from either

1. Using all available read sets from multiple HTS technologies
2. Polishing large genomes (e.g., a human genome)

HTS: Produces large amount of sequencing data at relatively low
cost compared to first-generation sequencing methods.
Two types of HTS technologies:

1. Second-generation sequencing technologies (e.g., lllumina)
generate the most accurate reads (e.g., 99.9% accuracy), but
the length of these reads are short (e.g., 100-300 basepairs).

2. Third-generation sequencing technologies (e.g., PacBio’s
SMRT) produce long reads (e.g., up to 2M basepairs) at the
cost of high error rate (e.g., an error rate of 10%).

Motivation: Long reads make it more likely to generate

chromosome-size contigs but also more challenging as the error-

prone reads often result in an erroneous assembly.

4: Our Goal

Provide a universal algorithm to improve accuracy of genome

assembly that

1. Uses read sets from all available HTS technologies within a
single run

2. Scales well to polish large genomes

5: Key Observations 6: Apollo Walkthrough

1. Sequencing errors are not entirely random Input Preparation (External to Apollo) Assembly Polishing (Internal to Apollo)

Step 3: Create a pHMM-graph per contig for

Step 1: Assembly Construction _ _ :
correcting the errors in the contig

2. A profile hidden Markov model (pHMM) graph is a good fit to

represent a sequence and its error profile i |

3. Read-to-assembly alignment: Aligning reads to a contig
provides a clue about the differences between a contig and an
aligned read

Original: A G C A C cC ... G C C T
Step 4: The Forward-Backward algorithm updates the

transition and emission probabilities of a pHMM-graph
for each alignment to a contig

Step 5: Viterbi algorithm
decodes the corrected contig

4. Read-to-assembly alignment can be used to train a pHMM-

graph to correct the errors in the assembly |
Step 2: Read-to-assembly alignment

Based on these observations, we propose a machine learning-
based universal technology-independent assembly polishing
algorithm, called Apollo

8: Applicability of the Polishing Algorithms to Large Genomes

7: Experimental Setup and Data Sets

* We evaluate the polished assemblies based on:

x Racon, Pilon, and Quiver cannot |Aligner Sequencing Tech. | Polishing Runtime Memory

1. Aligned Bases: The percentage of bases of an assembly oolish the large genome assembly of the Reads Algorithm (GB)

that align to its reference using high coverage read sets due to high | Minimap2 | PacBio (35X) Apollo 227h 12m 15s 6291

2. Accuracy: The fraction of identical portions between the computational resources they require &WA-M]%M gacg%o (ggi) ﬁpollo 198h 41m1\}/5§ 51%1/612

aligned bases of an assembly and its reference B&IX?S/}DEM P:EB;g E35X; Rgggﬁ N/A N/A

3. Polishing Score: Accuracy x Aligned Bases x o . v able t lich a | pbalign PacBi1o (35X) Quiver N/A N/A

: acon 15 ohly 4 e O pOlish a farge Minimap2 | PacBio (8.9X) Apollo 55h 38m 44s 44.99

4. Runtime and the peak memory usage genome when using low coverage | BwA-MEM | PacBio (8.9X) | Apollo 41h 38m27s 45.00

* We ran all the tools on a server with 192 GB of memory by read sets Minimap?2 PaCBiO (8.9X) Racon 2h 48m 25s 54.13

assigning 45 threads for each run BWA-MEM PacB%o (8.9X) Rac;on 1h 36m 39s 51.55

pbalign PacBio (8.9X) Quiver N/A N/A

 Apollois compared with Nanopolish, Racon, Quiver, and Pilon Minimap?2 MMumina (22X) Apollo 06h 22m 16s 101.12

</ Apollo is the only assembly |pwa MEM |Ilumina 22X) | Apollo | 102h01m 575 107.06

+ We used E.coli K-12, E.coli 0157, E.coli 0157:H7, Yeast $288C, polishing algorithm that can scale | Minimap? . (22X) Rg’con WA N/A
H CHM1, and H HG002 data sets | iment - I

uman and Human ata sets in our experiments well to polish large genome BWA-MEM ;:_:_um@na (22) R.acon N/A N/A

« Ground truth: Highly accurate assemblies either from the same assemblies Minimap?2 [llumina (22X) P}IOH N/A N/A

sample or a well-known reference of the species BWA-MEM | Illumina (22X) Pilon N/A N/A

9: Using Read Sets from Multiple Sequencing Technologies

10: Conclusion

Data Set First Run Second Run Aligned Accuracy Polishing Runtime Memory i e Two major functionalities that are not pOSSible
Bases (%) Score (GB) | ! . .
 Apollo generates the most _ | with prior tools:
. E.Coli 0157 99.94 0.9998 0.9992 43m 53s 379 | _ o
accurate Canu assemblies |gcoliois7 | Apollo (Hybrid) 99.94 09999 0.9993| 8h16m08s 13.85| | 1. Apollo scales well with polishing large
for a species than running other E.Coli 0157 | Racon (PacBio) | Racon (Illumina) 99.94 09994 0.9988 20m4ds 2265 ! genome assemblies
lishing tools multiole times E.Coli O157 Racon (PacBi10) | Racon (PacBi0o) 99.94 0.9984 0.9978 4m 58s 2.43 i . .
PO 5 P E.Coli 0157 | Racon (PacBio) | Pilon (Illumina) 99.40 0.9989 0.9829 12m 14s 8.51 | ! 2. Apollo is the best tool that can consistently
E.Coli 0157 Pilon (Illumina) | Pilon (Illumina) 09.94 0.9999 0.9993 4m 10s 11.40 | i construct the most reliable Canu-egenerated
< Apollo never generates an |gcuions7 | pion (Illumina) | Racon (PacBio) 99.94 09986 0.9980 4m58s 1140 | bl X 4 f - tio|
assembly with a polishing |EColiO157 | Quiver (PacBio) | Pilon (lllumina) 99.94 09998 0.9992 Smo0ls 750 | assemblies when reads Tfrom multiple
score IOWEI' than the E.Coli O157 Quiver (PacBi1o) | Racon (PacBio) 99.94 0.9986 0.9980 5m 13s 2.48 E Sequencing techno|ogies are used
iginal assembly wh E.Coli 0157:H7 100.00 0.9998 0.9998 43m 19s 3.39 | !
origind Whereas | g coli 0157:H7 | Apollo (Hybrid) 100.00 0.9999 0.9999 | 5h58m 05s 8.86 | | - - -
other polishing tools may produce E.Coli O157:H7 | Racon (PacBio) | Racon (Illumina) 100.00 0.9995 0.9995 9m 43s 6.56 We show there is a dramatic difference
such assemblies E.Coli O157:H7 | Racon (PacBio) | Racon (PacBio) 100.00 09970 0.9970 5m 36s 2.24 | | between non-machine learning based
E.Coli 0157:H7 | Racon (PacBio) | Pilon (Illumina) 100.00 0.9996 0.9996 10m 23s 6.41 | ! | ith d th hi | : . g
x Running Apollo once is E.Coli O157:H7 | Pilon (Illumina) | Pilon (Illumina) 100.00 0.9998 0.9998 35m12s 1079 | | dlgorithms an € machine learning base
L E.Coli O157:H7 | Pilon (Illumina) | Racon (PacBio) 100.00 0.9996 0.9996 6m04s 1075 ! ones in terms of runtime
significantly slower than |
_ ” ich ool Yeast S288C 99.89 0.9998 0.9987 | 1h 20m 39s 6.24 | !
running - other polishing 100IS | yeast $288C | Apollo (Hybrid) 99.89 09998 09987 [11h08m4ls 6.38 | | o :
. . : o
multiple times Yeast S288C Racon (PacBio) | Racon (Illumina) 99.890 0.9994 0.9983 38m 215 6.93 | | As future Work' It is pOSSIble to accelerate the
Yeast S288C | Racon (PacBio) | Racon (PacBio) 99.89 09949 0.9938 49m 52s 6.93 | i calculation of the Forward-Backward algorithm
Yeast S288C Racon (PacBi10) | Pilon (Illumina) 99.89 0.9992 0.9981 26m 25s 14.25 i d th V t b I . th . T
Yeast S288C | Pilon (Tllumina) | Pilon (Illumina) 99.89 0.9998 0.9987 Im10s 11.85] ! an € Viterbl algorithm using Iensor cores,
Yeast $288C | Pilon (Illumina) | Racon (PacBio) 99.89 0.9960 0.9949 2lm42s 11.85] ! SIMD, and GPU:s.

