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Bitap algorithm (i.e., Shift-Or algorithm, or Baeza-Yates-Gonnet
algorithm) [1] can perform exact string matching with fast and
simple bitwise operations. Wu and Manber extended the algorithm
[2] in order to perform approximate string matching.
§ Step 1 – Preprocessing: For each character in the alphabet (i.e.,

A,C,G,T), generate a pattern bitmask that stores information
about the presence of the corresponding character in the
pattern.

§ Step 2 – Searching: Compare all characters of the text with the
pattern by using the preprocessed bitmasks, a set of bitvectors
that hold the status of the partial matches and the bitwise
operations.

[1] Baeza-Yates, Ricardo, and Gaston H. Gonnet. "A new approach to text searching."
Communications of the ACM 35.10 (1992): 74-82.
[2] Wu, Sun, and Udi Manber. "Fast text search allowing errors." Communications of the ACM 35.10
(1992): 83-91.

String Matching with Bitap AlgorithmProblem
o Read mapping is the critical first step of

the genome sequence analysis pipeline.
o In read mapping, each read is aligned

against a reference genome to verify
whether the potential location results in
an alignment for the read (i.e., read
alignment).

o Read alignment can be viewed as an
approximate (i.e., fuzzy) string matching
algorithm.

o Approximate string matching is typically
performed with an expensive quadratic-
time dynamic programming algorithm,
which consumes over 70% of the execution
time of read alignment.
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Our Goal and Contributions

Limitations of Bitap

BitMAC: Efficient In-Memory Bitap

Results

(1) The algorithm itself cannot be parallelized
due to data dependencies across loop
iterations,

(2) Multiple searches can be done in parallel, but
are limited by the number of compute units
available in a CPU,

(3) Even if many compute units are made
available (e.g., a GPU), Bitap is highly
constrained by the amount of available
memory bandwidth.

Also, standard Bitap algorithm cannot
(1) perform the traceback step of the alignment.
(2) work effectively for both short and long reads.

Goal: Designing a fast and efficient customized accelerator for
approximate string matching to enable faster read alignment, and
therefore faster genome sequence analysis for both short and long reads.
Contributions:
o Modified Bitap algorithm to perform efficient genome read alignment

in memory, by
ü parallelizing the Bitap algorithm by removing data dependencies

across loop iterations,
ü adding efficient support for long reads, and
ü developing the first efficient Bitap-based algorithm for traceback.

o BitMAC, the first in-memory read alignment accelerator for both short
accurate and long noisy reads.
ü Hardware implementation of our modified Bitap algorithm, and
ü Designed specifically to take advantage of the high internal

bandwidth available in the logic layer of 3D-stacked DRAM chips.

o Recent technological advances in memory
design allow architects to
tightly couple memory and logic within the
same chip with very high bandwidth, low
latency and energy-efficient vertical
connectors.
à 3D-stacked memories (Hybrid Memory
Cube (HMC), High-Bandwidth Memory
(HBM))

o A customizable logic layer enables fast,
massively parallel operations on large sets
of data, and provides the ability to run
these operations near memory at high
bandwidth and low latency.
à Processing-in-memory (PIM)

o BitMAC: implementation of our modified
PIM-friendly Bitap algorithm using a
dedicated hardware accelerator that we
add to the logic layer of a 3D-stacked
DRAM chip.

(1) achieves high performance and
energy efficiency with specialized
compute units and data locality,

(2) balances the compute resources and
available memory bandwidth per
compute unit,

(3) scales linearly with the number of
parallel compute units,

(4) provides generic applicability by
performing both edit distance
calculation and traceback for short
and long reads.

o BitMAC consists of two components that
work together to perform read
alignment:

(1) BitMAC-DC: calculates the edit
distance between the reference
genome and the query read, and
(2) BitMAC-TB: performs traceback
using the list of edit locations recorded
by BitMAC-DC.
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BitMAC-DC:
o Systolic array based configuration for an efficient implementation of edit distance calculation. This allows us to

provide parallelism across multiple iterations of read alignment.
(1) computes the edit distance between the whole reference genome and the input reads,
(2) computes the edit distance between the candidate regions reported by an initial filtering step and the input reads,
and also
(3) finds the candidate regions of the reference genome by running the accelerator with the exact matching mode.

BitMAC-TB:
o Makes use of a low-power general-purpose PIM core to perform the traceback step of read alignment.
o New, efficient algorithm for traceback, which exploits the bitvectors generated by BitMAC-DC.
o Divides the matching region of the text (as identified by BitMAC-DC) into multiple windows, and then performs

traceback in parallel on each window. This allows us to utilize the full memory bandwidth for the traceback step.
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When compared with the alignment steps of BWA-MEM and Minimap2, BitMAC achieves:
For simulated PacBio and ONT datasets:
ü 4997× and 79× throughput improvement à over the single-threaded baseline
ü 455× and 7× throughput improvement à over the 12-threaded baseline
ü 15.9× and 13.8× less power consumption
For simulated llumina datasets:
ü 102,558× and 16,867× throughput improvement à over the single-threaded baseline
ü 8162× and 1445× throughput improvement à over the 12-threaded baseline

Future Work
We believe it is promising to
explore:
o coupling PIM-based filtering

methods with BitMAC to
reduce the amount of
required read alignments,

o enhancing the design of
BitMAC to support different
scoring schemas and affine
gap penalties,

o analyzing the effects of a
larger alphabet on BitMAC,
and

o examining the benefit of
using AVX-512 support for
multiple pattern searches in
parallel.


