SneakySnake: A New Fast and Highly Accurate Pre-Alignment Filter on CPU and FPGA for Accelerating Sequence Alignment

Mohammed Alser^{1,2} Can Alkan² Onur Mutlu^{1,2,3}

1: Read Mapping

Fact: it remains challenging to sequence the entire DNA molecule as a whole.

As a workaround: high throughput DNA sequencing (HTS) technologies can sequence only segments of the original molecule. This is relatively quick and cost-effective but it results in an excessive number of genomic reads.

Hence we need *read mapping* to link the reads together and construct back the donor's complete genome by 1) determining the location of each read within reference genome and 2) calculating its **optimal sequence alignment**.

2: Problem

Calculating sequence alignment is a major performance bottleneck:

- **X** Uses computationally expensive dynamic programming algorithms.
- Bottlenecked by memory bandwidth, e.g., Illumina NovaSeq 6000 generates 6 Terabases in < 24 hours
- They are unavoidable as they provide accurate information about the quality of the alignment.
- Majority of candidate locations in the reference genome do not align with a given read due to high dissimilarity.

3: Our Goal

Significantly reduce the time spent on calculating the sequence alignment of short sequences using pre-alignment filtering.

To this end: We introduce new, fast, and very accurate pre-alignment filters, **SneakySnake** (for CPU) and **Snake-on-Chip** (for FPGA).

4: Key Ideas

- Quickly and accurately filters out highly dissimilar sequence pairs before applying sequence alignment algorithms.
- Provides fast and highly accurate filtering by reducing the sequence alignment problem to single net routing (SNR) problem [Lee+, IEEE-TCAS 1976] in VLSI chip layout.
- Judiciously leverages the parallelism-friendly architecture of modern FPGAs to greatly speed up the SneakySnake algorithm.

5: Single Net Routing (SNR) Problem

SNR Problem: finding the *optimal* routing path that:

- Includes the least number of horizontal escape segments,
- Passes through the minimum number of obstacles,
- Connects two IO terminals on a special grid layout.
- The **number of obstacles** in the solution to the SNR problem is a lower bound on the actual number of edits between two genomic sequences.
- Solving the SNR problem is much faster than solving the sequence alignment problem, as calculating the routing path after facing an obstacle is *independent* of the calculated path before this obstacle.

6: SneakySnake Walkthrough

7: Evaluation & Key Takeaways

Speedup vs. Existing Filters

Dataset Description: Set_1 & Set_2: each has 30 million pairs from mapping *ERR240727_1* to the human genome using mrFAST's e= 2, 40, respectively.

Set_3 & Set_4: each has 30 million pairs from mapping **SRR826471_1** using mrFAST's e= 8, 100, respectively.

Runtime 1.2 8.0 8.0 Normalized F 6 0.0 7 0 0 8 0.0 0% 5% 10% 5% 10% 5% 10% Set_4 Set 1 Set 3 ■ SneakySnake ■ Edlib ■ SHD Set 3 Set 4 Set 1 ■ SneakySnake ■ Parasail ■ SHD ■ Parasail Runtime 1.4 0.6

Key Results

- < 31412×, 20603×, and 64.1× fewer falsely-</p> accepted sequences compared to GateKeeper / SHD (using Set 4, E= 10%), Shouji (using Set 4, E= 10%), and MAGNET (using Set_1, E= 1%), respectively.
- < 37.6× and 43.9× speedup with the addition of</p> SneakySnake to Edlib [Šošic+, Bioinformatics 2017] (using Set 4, E= 0%) and Parasail [Daily+, Bioinformatics BMC 2016] (using Set_4, E = 2%), respectively.
- < 154.7× and 150.2× speedup with the addition of</p> Snake-on-Chip to Edlib [Šošic+, Bioinformatics 2017] (E= 0%) and Parasail [Daily+, Bioinformatics BMC 2016] (E =0%), respectively. < 1.4×, 3.4×, and 1.8× more speedup compared to that provided by adding Shouji, MAGNET, and GateKeeper as a pre-alignment filter, respectively.

SneakySnake & Snake-on-Chip

- Open-source: https://github.com/CMU-SAFARI
- do not replace sequence alignment step.
- do not sacrifice any of the sequence aligner capabilities (scoring and backtracking), as they do not modify the aligner.

Contact Us: https://people.inf.ethz.ch/alserm/

■ w/ Shouji
■ w/ MAGNET
■ w/ GateKeeper
■ w/Snake-on-Chip

Edlib

0% | 5% | 0% | 5% | 0% | 5%

FPGASW ¢UDASW++3.\$\psi\$ GSWABE