
Machine Learning Systems

for Highly-Distributed and Rapidly-Growing Data

Submi�ed in partial ful�llment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Kevin Hsieh

M.S., Computer Science and Information Engineering,

National Chiao-Tung University

B.S., Computer Science and Information Engineering,

National Chiao-Tung University

Carnegie Mellon University

Pi�sburgh, PA

October, 2019

ar
X

iv
:1

91
0.

08
66

3v
1

 [
cs

.L
G

]
 1

8
O

ct
 2

01
9

Copyright © 2019 Kevin Hsieh

All Rights Reserved

Abstract

�e usability and practicality of any machine learning (ML) applications are

largely in�uenced by two critical but hard-to-a�ain factors: low latency and low cost.

Unfortunately, achieving low latency and low cost is very challenging when ML de-

pends on real-world data that are highly distributed and rapidly growing (e.g., data

collected by mobile phones and video cameras all over the world). Such real-world

data pose many challenges in communication and computation. For example, when

training data are distributed across data centers that span multiple continents, com-

munication among data centers can easily overwhelm the limited wide-area network

bandwidth, leading to prohibitively high latency and high cost.

In this dissertation, we demonstrate that the latency and cost of ML on highly-

distributed and rapidly-growing data can be improved by one to two orders of magni-

tude by designing ML systems that exploit the characteristics of ML algorithms, ML

model structures, and ML training/serving data. We support this thesis statement

with three contributions. First, we design a system that provides both low-latency

and low-cost ML serving (inferencing) over large-scale and continuously-growing

datasets, such as videos. Second, we build a system that makes ML training over geo-

distributed datasets as fast as training within a single data center. �ird, we present

a �rst detailed study and a system-level solution on a fundamental and largely over-

looked problem: ML training over non-IID (i.e., not independent and identically dis-

tributed) data partitions (e.g., facial images collected by cameras varies according to

the demographics of each camera’s location).

iii

Acknowledgments

I am grateful to everyone who enables me to pursue this challenging and ex-

citing journey. First and foremost, I am indebted to my advisors, Phil Gibbons and

Onur Mutlu, for their guidance, feedback, trust, and support throughout the years. I

am incredibly fortunate to work with Phil, as his exemplary advice taught me various

aspects of research. Phil guided me into a new research �eld when I had no clues, and

he continuously provided valuable feedback in the most constructive and encourag-

ing way. His passion for research gave me essential supports, especially when things

are inevitably not working at times. His succinct writing and presentation were also

great learning examples. Everything I learned from Phil will keep bene�ting me in

years to come.

I am equally fortunate to have the opportunity to work with Onur. A�er leading

me into CMU, Onur put tremendous trust in me and support me throughout the years.

I learned greatly from Onur, especially in striving for fundamental research and the

highest clarity in writing and presentation. I always remembered how Onur shaped

my view on research by showing me Dr. Hamming’s “You and your research”. �e

talk is indeed an excellent blueprint for a research journey. Onur also provided re-

sources and opportunities for fruitful collaborations with the SAFARI research group

and industrial collaborators. All of these helped me greatly along the way.

I am grateful to the members of my PhD commi�ee: Greg Ganger, Ganesh Anan-

thanarayanan, and Brendan McMahan. �eir valuable feedback and help brought

this dissertation to complete. Over the years, Greg always gave me insightful feed-

back on countless occasions, and the research discussions with him gave me many

di�erent perspectives. Ganesh not only served in my PhD commi�ee, but he was

also my internship mentor in Microso� Research. Ganesh guided me into a cu�ing-

edge problem, which led to a central piece of the dissertation. I am also grateful to

Brendan for all his time, e�orts, and insightful comments that signi�cantly improved

many aspects of the dissertation.

I want to give a big thank you to my internship mentors and industrial collabora-

tors. Amar Phanishayee provided valuable feedback and vital support in the last few

years of the journey. Eiman Ebrahimi taught me many research fundamentals when I

interned in NVIDIA Research. Peter Bodik provided many important ideas and feed-

iv

back when I was an intern in Microso� Research. I also thank all the collaborators

for their contributions and feedback: Victor Bahl, Niladrish Cha�erjee, Steve Keckler,

Gwangsun Kim, Mike O’Connor, Ma�hai Philipose, and Shivaram Venkataraman.

I thank my fellow PhD students in the SAFARI group and the PDL group, for

their support and friendship. Special thanks to Nandita Vijaykumar for her invalu-

able feedback and help throughout the years, Kevin Chang and Hongyi Xin for their

friendship and experience sharing, Aaron Harlap for his help and friendship (and

NBA rumors), Cui Henggang for his help on multiple parameter server systems, Dim-

itris Konomis for his proof on the Gaia work, Donghyuk Lee for his kind support,

Vivek Seshadri for his acute tips and feedback, as well as Samira Khan, Gennady

Pekhimenko, and Yoongu Kim for their valuable suggestions in the early years. I also

thank all the peers for their discussions, feedback, and support: Yixin Luo, Amirali

Boroumand, Rachata Ausavarungnirun, Saugata Ghose, Jinliang Wei, Vignesh Balaji,

Rajat Kateja, Jin Kyu Kim, Chris Fallin, Jianyu Wang, Lavanya Subramanian, Justin

Meza, Yang Li, Jeremie Kim, Damla Senol, and Minesh Patel.

I bene�ted greatly from the PDL events, including the visit days and the retreats.

�ese events connected me with many industrial collaborators who signi�cantly

in�uenced the course of my journey. Special thanks to all the people who made

these events possible: Karen Lindenfelser, Joan Digney, Jason Boles, Chad Dougherty,

Mitch Franzos, Garth Gibson, and Bill Courtright. I also thank the members and

companies of the PDL Consortium, including Alibaba, Amazon, Datrium, Dell EMC,

Facebook, Google, Hewle� Packard Labs, Hitachi, IBM Research, Intel Corporation,

Micron, Microso� Research, NetApp, Oracle Corporation, Salesforce, Samsung, Sea-

gate Technology, and Two Sigma, for their interest, insights, feedback, and support.

�is research was supported in part by our industrial partners: Google, Huawei,

Intel, Microso�, NVIDIA, Samsung, Seagate, and VMWare. �is research was also

partially supported by NSF (grants 1212962, 1320531, 1409723), Intel STC on Cloud

Computing (ISTC-CC), Intel STC on Visual Cloud Systems (ISTC-VCS), and the Dept

of Defense under contract FA8721-05-C-0003.

Lastly, my most important thank you goes to my family. None of these would have

been possible without their inspiring encouragement, deep understanding, endless

love, and ultimate support.

v

Contents

1 Introduction 1

1.1 �esis Statement . 3

1.2 Overview of Our Approach . 3

1.2.1 ML Serving over Large, Rapidly-Growing Datasets (e.g., Videos) 3

1.2.2 ML Training over Geo-Distributed Data 4

1.2.3 �e Non-IID Data Partition Problem for Decentralized ML 4

1.3 Contributions . 5

1.4 Outline . 6

2 Background 7

2.1 Distributed ML Training Systems . 7

2.2 Convolutional Neural Networks . 9

3 Related Work 10

3.1 Distributed ML Training Systems with Centralized Data 10

3.2 Distributed ML Training with Decentralized Data 10

3.3 Communication-E�cient ML Training Algorithms 11

3.4 Low-Latency ML Serving Systems . 11

4 ML Serving over Large, Rapidly-GrowingDatasets: ACase Study of Video�eries 12

4.1 Characterizing Real-world Videos . 15

4.1.1 Excluding large portions of videos . 16

4.1.2 Limited set of object classes in each video 16

4.1.3 Feature vectors for �nding duplicate objects 17

4.2 Overview of Focus . 17

4.3 Video Ingest & �erying Techniques . 20

4.3.1 Approximate Index via Cheap Ingest . 20

4.3.2 Video-speci�c Specialization of Ingest CNN 22

vi

4.3.3 Redundant Object Elimination . 23

4.3.4 Trading o� Ingest Cost and �ery Latency 24

4.4 Implementation . 26

4.4.1 Ingest Processor . 27

4.4.2 Stream Tuner . 27

4.4.3 �ery Processor . 28

4.5 Evaluation . 28

4.5.1 Methodology . 28

4.5.2 End-to-End Performance . 30

4.5.3 E�ect of Di�erent Focus Components . 33

4.5.4 Ingest Cost vs. �ery Latency Trade-o� 34

4.5.5 Sensitivity to Recall/Precision Target . 36

4.5.6 Sensitivity to Object Class Numbers . 36

4.6 Other Applications . 37

4.7 Summary . 37

5 ML Training over Geo-Distributed Data 39

5.1 Motivation . 41

5.1.1 WAN Network Bandwidth and Cost . 41

5.1.2 ML System Performance on WANs . 43

5.2 Our Approach: Gaia . 44

5.2.1 Key Challenges . 44

5.2.2 Gaia System Overview . 45

5.2.3 Study of Update Signi�cance . 46

5.2.4 Approximate Synchronous Parallel . 47

5.2.5 Summary of Convergence Proof . 49

5.3 Implementation . 50

5.3.1 Gaia System Key Components . 50

5.3.2 System Operations and Communication 50

5.3.3 Advanced Signi�cance Functions . 51

5.3.4 Tuning of Signi�cance �resholds . 52

5.3.5 Overlay Network and Hub . 52

5.4 Methodology . 53

5.4.1 Experiment Platforms . 53

5.4.2 Applications . 54

vii

5.4.3 Performance Metrics and Algorithm Convergence Criteria 55

5.5 Evaluation Results . 55

5.5.1 Performance on EC2 Deployment . 56

5.5.2 Performance and WAN Bandwidth . 58

5.5.3 Cost Analysis . 59

5.5.4 Comparisons with Centralized Data . 61

5.5.5 E�ect of Synchronization Mechanisms . 62

5.5.6 Performance Results of SSP . 63

5.6 Summary . 65

Appendices 66

5.A Convergence Proof of SGD under ASP . 66

6 �e Non-IID Data Partition Problem for Decentralized ML 74

6.1 Background and Setup . 75

6.1.1 Decentralized Learning . 76

6.1.2 Experimental Setup . 77

6.2 Non-IID Study: Results Overview . 78

6.2.1 Image Classi�cation with CIFAR-10 . 78

6.2.2 Image Classi�cation with ImageNet . 80

6.2.3 Face Recognition . 80

6.3 Problems of Decentralized Learning Algorithms 81

6.3.1 Reasons for Model �ality Loss . 81

6.3.2 Algorithm Hyper-Parameters . 84

6.4 Batch Normalization: Problem and Solution . 85

6.4.1 �e Problem of Batch Normalization in the Non-IID Se�ing 85

6.4.2 Alternatives to Batch Normalization . 87

6.5 Degree of Deviation from IID . 90

6.6 Our Approach: SkewScout . 91

6.6.1 Overview of SkewScout . 91

6.6.2 Mechanism Details . 93

6.6.3 Evaluation Results . 95

6.7 Summary . 96

Appendices 97

viii

6.A Details of Decentralized Learning Algorithms . 97

6.B Training Parameters . 99

6.C More Algorithm Hyper-Parameter Results . 99

7 Conclusion and Future Directions 102

7.1 Conclusion . 102

7.2 Future Research Directions . 103

7.2.1 ML Serving for Growing and Distributed Data 104

7.2.2 ML Training Systems for Intermi�ent Networks 104

7.2.3 Training Local and Global Models for Non-IID Data Partitions 104

7.2.4 ML Training Systems for Non-IID Data over Space and Time 105

ix

List of Figures

2.1 Overview of the parameter server architecture . 8

2.2 Architecture of an image classi�cation CNN. 9

4.1 E�ectiveness of Focus at reducing both ingest cost and query latency, for an ex-

ample surveillance video . 15

4.2 CDF of frequency of object classes . 16

4.3 Overview of Focus. 18

4.4 E�ect of K on the recall of cheap classi�er CNNs to classify the detected objects . 21

4.5 Parameter selection based on the ingest cost and query latency trade-o� 25

4.6 Key components of Focus. 26

4.7 Focus ingest cost and query latency compared to baseline systems 31

4.8 Focus performance on moving cameras . 32

4.9 E�ect of di�erent Focus components on query latency reduction 33

4.10 Focus’ trade-o� policies on an example video . 35

4.11 Ingest cost vs. query latency trade-o� . 35

4.12 Sensitivity of query latency reduction to recall/precision target 36

5.1 Measured network bandwidth between Amazon EC2 sites in 11 di�erent regions . 42

5.2 Normalized execution time until ML algorithm convergence when deploying two

state-of-the-art distributed ML systems on a LAN and WANs 43

5.3 Gaia system overview . 46

5.4 Percentage of insigni�cant updates . 47

5.5 �e synchronization mechanisms of ASP . 48

5.6 Key components of Gaia . 50

5.7 Normalized execution time until convergence when deployed across 11 EC2 re-

gions and our emulation cluster . 57

5.8 Normalized execution time until convergence with the WAN bandwidth between

Virginia and California . 58

x

5.9 Normalized execution time until convergence with the WAN bandwidth between

Singapore and São Paulo . 59

5.10 Normalized monetary cost of Gaia vs. Baseline 60

5.11 Progress toward algorithm convergence with and withoutGaia’s synchronization

mechanisms . 62

5.12 Normalized execution time ofMF until convergence when deployed across 11 EC2

regions . 63

5.13 Normalized execution time of TM until convergence when deployed across 11

EC2 regions . 64

5.14 Normalized execution time until convergence with the WAN bandwidth between

Virginia and California . 64

5.15 Normalized execution time until convergence with the WAN bandwidth between

Singapore and São Paulo . 65

6.1 Top-1 validation accuracy for Image Classification over the CIFAR-10 dataset . 79

6.2 Top-1 validation accuracy for Image Classification over the ImageNet dataset . 80

6.3 LFW veri�cation accuracy for Face Recognition 81

6.4 Top-1 validation accuracy (ImageNet) for models in di�erent partitions. 82

6.5 Average residual update delta (%) for DeepGradientCompression over the �rst

20 epochs. 83

6.6 Average local update delta (%) for FederatedAveraging over the �rst 25 epochs. 84

6.7 Minibatch mean divergence for the �rst layer of BN-LeNet over CIFAR-10 using

two Pk. 87

6.8 Top-1 validation accuracy (CIFAR-10) with BatchNorm and GroupNorm for BN-

LeNet with K = 5 partitions. 89

6.9 Top-1 validation accuracy (CIFAR-10) over various degrees of non-IID data 90

6.10 Overview of SkewScout . 92

6.11 Training accuracy drop between data partitions when training GoogleNet over

CIFAR-10 with Gaia. Each bar represents a T0 for Gaia 93

6.12 Communication savings over BSP with SkewScout and Oracle for training over

CIFAR-10. 95

xi

List of Tables

4.1 Video dataset characteristics . 29

5.1 Cost model details . 56

5.2 Comparison between Gaia and Centralized . 61

6.1 Top-1 validation accuracy (CIFAR-10) varying Gaia’s T0 hyper-parameter. 85

6.2 Top-1 validation accuracy (CIFAR-10) with BatchNorm and BatchReNorm 88

6.3 Major training parameters for Image Classification over CIFAR-10 99

6.4 Major training parameters for Image Classification over ImageNet 99

6.5 Major training parameters for Face Recognition over CASIA-WebFace. 100

6.6 CIFAR-10 Top-1 validation accuracy with various FederatedAveraging hyper-

parameters . 100

6.7 CIFAR-10 Top-1 validation accuracy with various DeepGradientCompression

hyper-parameters . 101

xii

Chapter 1

Introduction

�e explosive advancement of machine learning (ML) has been the engine of many important ap-

plications such as image or video classi�cation (e.g.,[59, 94, 146]), speech recognition (e.g., [19]),

recommendation systems (e.g., [60]), and self-driving cars (e.g., [35]). At its core, an ML-driven

application generally has two distinct phases: (i) training: the process of searching for the best

model to describe or explain training data (e.g., �nding the neural network model that can most

accurately classify training images); and (ii) serving: using the pre-trained model to answer ques-

tions for an input data (e.g., predicting the object class of an input image). �e success of both

phases depends on two key factors: low latency and low cost.

Low latency is crucial for ML training and serving for three reasons. First, latency of ML

training is a key bo�leneck for many ML applications, as training an ML model can take days

or even months. Second, low-latency training enables fast iterations of model/algorithm explo-

ration, which is imperative for ML algorithm developers to �nd high-accuracy models. �ird, the

latency of ML serving largely determines the response time of an application, which is critical

for user-facing applications. Other than low latency, low cost is equally important for ML appli-

cations. Both ML training and serving can process large-scale datasets, which require substantial

computation and communication resources (e.g., thousands of GPUs or heavy communication

via wireless networks). �e cost of these resources can largely determine the practicality and

feasibility of an ML application.

Achieving low-latency and low-cost ML is particularly challenging when ML depends on real-

world, large-scale data. An example of this is the large-scale deployment of many emerging ML

applications, such as image or video classi�cation (e.g.,[94]), speech recognition (e.g., [19]), and

topic modeling (e.g., [34]), by large organizations like Google, Microso�, and Amazon. �ese data

are generated at very rapid rates, all over the world. As a result, the most timely and relevant ML

1

data are highly distributed and rapidly growing, which pose three major challenges for low-latency

and low-cost ML:

1. Computation challenge: Large and rapidly-growing data requires corresponding com-

putation power to process, and achieving low latency is challenging when the data quantity

(e.g., a large amount of videos, genomics data, or user activity) overwhelms the computa-

tion power of an ML training or serving system. While pre-processing data may reduce

user-facing latency, it can lead to excess monetary cost to the system, especially when

some data are not relevant. For example, searching for people in a particular camera in a

large enterprise may involve pre-processing videos in all cameras, which requires drasti-

cally more machine time and thus more monetary cost in the cloud. Hence, how to tame

latency and cost while dealing with rapidly-growing data is a fundamental challenge for

many ML systems.

2. Communication challenge: When ML data are highly distributed, massive communica-

tion overhead can drastically slow down an ML system and introduce substantial cost. For

example, if training data are distributed in many data centers across multiple continents,

communication among data centers can easily overwhelm the limited wide-area network

(WAN) bandwidth, leading to prohibitively high latency. Furthermore, usage of WAN com-

munication is very costly, and the cost of WAN communication can be much higher than

the cost of machine time.

3. Statistical challenge: Highly-distributed data are typically generated in di�erent con-

texts, which can lead to signi�cant di�erences in the distribution of the data across data

partitions. For example, facial images collected by cameras will re�ect the demographics

of each camera’s location, and images of kangaroos will be collected only from cameras in

Australia or zoos. Such non-IID data (i.e., not independent and identically distributed) pose

a fundamental statistical challenge for ML training, because distributed ML systems as-

sume each data partition is IID. Addressing the statistical challenge requires more frequent

communication, which exacerbates the high-latency and high-cost problem associated with

communication during training.

For ML training, despite a signi�cant amount of work that aims to enable large-scale ML

training applications (e.g., [20, 28, 46, 51, 52, 54, 75, 104, 110, 162, 167]), the vast majority of them

assume that the training data is centralized within a data center and thus they do not address

the challenge of highly-distributed data. Few recent works (e.g., [109, 112, 143]) that address

the communication challenge of highly-distributed data do not address the statistical challenge

directly. On the other hand, existing ML serving systems (e.g., [16, 22, 48, 49]) mostly focus on

2

serving smaller querying data such as user preferences and images and they do not address the

computation challenge of large, rapidly-growing data such as videos.

1.1 �esis Statement

�e goal of this dissertation is to enable low-latency and low-cost ML training and serving on

highly-distributed and rapidly-growing data by proposing system-level solutions to tackle above

challenges. Our approach can be summarized as the following thesis statement:

�e latency and cost of ML training and serving on highly-distributed and rapidly-

growing data can be improved by one to two orders of magnitude by designing ML

systems that exploit the characteristics of ML algorithms, ML model structures, and ML

training/serving data.

1.2 Overview of Our Approach

In line with the thesis statement, we take three directions to address the aforementioned chal-

lenges: (i) we design and build a system to provide both low-latency and low-cost ML serving over

large-scale rapidly-growing datasets (e.g. videos); (ii) we design and build a low-latency and low-

cost ML training system over geo-distributed datasets; and (iii) we characterize the fundamental

problem of ML training over non-IID data partitions in detail, and we propose a system-level

solution to this problem. We provide a brief overview of each direction in the rest of this section.

1.2.1 ML Serving over Large, Rapidly-Growing Datasets (e.g., Videos)

Large volumes of videos are continuously recorded from cameras deployed for tra�c control and

surveillance with the goal of answering “a�er the fact” queries: identify video frames with objects

of certain classes (cars, bags) from many days of recorded video. While advancements in convo-

lutional neural networks (CNNs) have enabled serving such queries with high accuracy, they are

too expensive and slow. Current systems for serving such queries on large video datasets incur

either high cost at video ingest time or high latency at query time. We present Focus, a system

providing both low-cost and low-latency querying on large video datasets. Focus’ architecture

�exibly and e�ectively divides the query processing work between ingest time and query time.

At ingest time (on live videos), Focus uses cheap convolutional network classi�ers (CNNs) to

construct an approximate index of all possible object classes in each frame (to handle queries for

3

any class in the future). At query time, Focus leverages this approximate index to provide low

latency, but compensates for the lower accuracy of the cheap CNNs through the judicious use

of an expensive CNN. Experiments on commercial video streams show that Focus is 48× (up to

92×) cheaper than using expensive CNNs for ingestion, and provides 125× (up to 607×) lower

query latency than a state-of-the-art video querying system (NoScope [93]).

1.2.2 ML Training over Geo-Distributed Data

ML is widely used to derive useful information from large-scale data generated at increasingly

rapid rates, all over the world. Unfortunately, it is infeasible to move all this globally-generated

data to a centralized data center before running an ML algorithm over it—moving large amounts

of training data over wide-area networks (WANs) can be extremely slow, and is also subject to the

constraints of privacy and data sovereignty laws. To this end, we introduce a new, general geo-

distributed ML training system, Gaia, that decouples the communication within a data center

from the communication between data centers, enabling di�erent communication and consis-

tency models for each. We present a new ML synchronization model, Approximate Synchronous

Parallel (ASP), whose key idea is to dynamically eliminate insigni�cant communication between

data centers while still guaranteeing the correctness of ML algorithms. Our experiments on our

prototypes of Gaia running across 11 Amazon EC2 global regions and on a cluster that emulates

EC2 WAN bandwidth show that, compared to two two state-of-the-art distributed ML training

systems, Gaia (1) signi�cantly improves performance, by 1.8–53.5×, (2) has performance within

0.94–1.40× of running the same ML algorithm on a local area network (LAN) in a single data cen-

ter, and (3) signi�cantly reduces the monetary cost of running the same ML algorithm on WANs,

by 2.6–59.0×.

1.2.3 �e Non-IID Data Partition Problem for Decentralized ML

Many large-scale machine learning (ML) applications need to train ML models over decentralized

datasets that are generated at di�erent devices and locations. �ese decentralized datasets pose

a fundamental challenge to ML because they are typically generated in very di�erent contexts,

which leads to signi�cant di�erences in data distribution across devices/locations. In this work,

we take a step toward be�er understanding this challenge, by presenting the �rst detailed ex-

perimental study of the impact of such non-IID data on the decentralized training of deep neural

networks (DNNs). Our study shows that: (i) the problem of non-IID data partitions is fundamental

and pervasive, as it exists in all ML applications, DNN models, training datasets, and decentral-

4

ized learning algorithms in our study; (ii) this problem is particularly di�cult for DNN models

with batch normalization layers; and (iii) the degree of deviation from IID (the skewness) is a

key determinant of the di�culty level of the problem. With these �ndings in mind, we present

SkewScout, a system-level approach that adapts the communication frequency of decentralized

learning algorithms to the (skew-induced) accuracy loss between data partitions. We also show

that group normalization can recover much of the skew-induced accuracy loss of batch normal-

ization.

1.3 Contributions

�is dissertation makes the following contributions.

1. We present a new architecture for low-cost and low-latency ML serving over large and

rapidly-growing datasets (e.g., videos), based on a principled split of ingest and query func-

tionalities. To this end, we propose techniques for e�cient indexing with a cheap CNN at

ingest time, while ensuring high recall and precision by judiciously using expensive CNNs

at query time. We demonstrate that our proposed system provides a new design point

for ML serving systems that trade o� between ingest cost and query latency: our system

is signi�cantly cheaper than an ingest-heavy design and signi�cantly faster than query-

optimized systems.

2. We propose a �rst general geo-distributed ML system that (1) di�erentiates the communi-

cation over a LAN from the communication over WANs to make e�cient use of the scarce

and heterogeneous WAN bandwidth, and (2) is general and �exible enough to deploy a

wide range of ML algorithms while requiring no change to the ML algorithms themselves.

Our system is based on a new, e�cient ML synchronization model, Approximate Syn-

chronous Parallel (ASP), for communication between parameter servers across data cen-

ters over WANs. ASP guarantees that each data center’s view of the ML model parameters

is approximately the same as the “fully-consistent” view and ensures that all signi�cant

updates are synchronized in time. We prove that ASP provides a theoretical guarantee on

algorithm convergence for a widely used ML algorithm, stochastic gradient descent. We

build two prototypes of our proposed system on CPU-based and GPU-based ML systems,

and we demonstrate their e�ectiveness over 11 globally distributed regions with three pop-

ular ML algorithms. We show that our system provides signi�cant performance improve-

ments over two state-of-the-art distributed ML systems [51, 52], and signi�cantly reduces

the communication overhead over WANs.

5

3. We build a deep understanding on the problem of non-IID data partitions for decentralized

learning by conducting a �rst detailed empirical study. To our knowledge, our study is the

�rst to show that the problem of non-IID data partitions is a fundamental and pervasive

challenge for decentralized learning. We then make a new observation showing that the

challenge of non-IID data partitions is particularly problematic for DNNs with batch nor-

malization, even under the most conservative communication approach. We discuss the

root cause of this problem and we �nd that it can be addressed by using an alternative

normalization technique. �ird, we show that the di�culty level of this problem varies

with the data skew. Finally, we design and evaluate SkewScout, a system-level approach

that adapts the communication frequency to re�ect the skewness in the data, seeking to

maximize communication savings while preserving model accuracy.

1.4 Outline

�e rest of the dissertation is organized as follows. Chapter 2 describes necessary backgrounds

for ML training and serving systems. Chapter 3 discusses related work on low-latency and low-

cost ML systems. Chapter 4 presents Focus [78], our system that provides both low-latency and

low-cost ML serving (inferencing) over large-scale and rapidly-growing datasets, such as videos.

Chapter 5 presents Gaia [80], our geo-distributed ML training system that makes ML training

over geo-distributed datasets as fast as training within a single data center. Chapter 6 presents

our study and solution on the problem of non-IID data partitions for decentralized learning [82].

Finally, Chapter 7 concludes the dissertation and presents future research directions.

6

Chapter 2

Background

We �rst introduce the architectures of widely-used distributed ML training systems, which serves

as the background for our work on low-latency and low-cost ML training over geo-distributed

data and arbitrarily skewed data partitions (Section 2.1). We then provide a brief overview of

convolutional Neural Networks (CNN), the state-of-the-art approach to detecting and classifying

objects in images, which serves as the background for our work on latency-latency and low-cost

an ML serving system for video queries (Section 2.2).

2.1 Distributed ML Training Systems

While ML training algorithms have di�erent types across di�erent domains, almost all have the

same goal—searching for the best model (usually a set of parameters) to describe or explain the

input data [167]. For example, the goal of an image classi�cation neural network is to �nd the

parameters (of the neural network) that can most accurately classify the input images. Most

ML training algorithms iteratively re�ne the ML model until it converges to �t the data. �e

correctness of an ML training algorithm is thus determined by whether or not the algorithm can

accurately converge to the best model for its training data.

As the training data to an ML training algorithm is usually enormous, processing all training

data on a single machine can take an unacceptably long time. Hence, the most common strategy to

run a large-scale ML training algorithm is to distribute the training data among multiple worker

machines, and have each machine work on a shard of the training data in parallel with other

machines. �e worker machines communicate with each other periodically to synchronize the

updates from other machines. �is strategy, called data parallelism [47], is widely used in many

popular ML training systems (e.g., [20, 27, 28, 46, 104, 110, 113, 167]).

7

�ere are many distributed ML training systems, such as ones using the MapReduce [47] ab-

straction (e.g., MLlib [28] and Mahout [27]), ones using the graph abstraction (e.g., GraphLab [110]

and PowerGraph [62]), and ones using the parameter server abstraction (e.g., Petuum [167] and

TensorFlow [20]). Among them, the parameter server architecture provides a performance ad-

vantage over other systems for many ML applications and has been widely adopted in many

distributed ML training systems.

Figure 2.1 illustrates the high-level overview of the parameter server (PS) architecture. In

such an architecture, each parameter server keeps a shard of the global model parameters as a

key-value store, and each worker machine communicates with the parameter servers to READ
and UPDATE the corresponding parameters. �e major bene�t of this architecture is that it

allows ML programmers to view all model parameters as a global shared memory, and leave the

parameter servers to handle the synchronization.

......Worker
Machine 1

Data 1
Worker

Machine N

Data N

Parameter
Server

Parameter
Server

Global Model

Figure 2.1: Overview of the parameter server architecture

Synchronization among workers in a distributed ML training system is a critical operation.

Each worker needs to see other workers’ updates to the global model to compute more accurate

updates using fresh information. However, synchronization is a high-cost operation that can

signi�cantly slow down the workers and reduce the bene�ts of parallelism. �e trade-o� between

fresher updates and communication overhead leads to three major synchronization models: (1)

Bulk Synchronous Parallel (BSP) [154], which synchronizes all updates a�er each worker goes

through its shard of data; all workers need to see the most up-to-date model before proceeding to

the next iteration, (2) Stale Synchronous Parallel (SSP) [75], which allows the fastest worker to

be ahead of the slowest worker by up to a bounded number of iterations, so the fast workers may

proceed with a bounded stale (i.e., old) model, and (3)Total Asynchronous Parallel (TAP) [126],

which removes the synchronization between workers completely; all workers keep running based

on the results of best-e�ort communication (i.e., each sends/receives as many updates as possible).

Both BSP and SSP guarantee algorithm convergence [53, 75], while there is no such guarantee

8

for TAP. Most state-of-the-art parameter servers implement both BSP and SSP (e.g., [20, 50, 51,

52, 75, 104, 167]).

2.2 Convolutional Neural Networks

Convolution Neural Networks (CNNs) are the state-of-the-art method for many computer vision

tasks such as object detection and classi�cation (e.g., [73, 99, 107, 127, 146]).

Convolutional +

Rectification Layers

Pooling

Layers

…

.

.

.

.

.

.

Fully-Connected

Layer

Prob.(Car)

Prob.(Dog)

Prob.(Cat)

Prob.(Apple) ✓✓✓✓

Prob.(Flower)

Prob.(Orange)

Extracted

Features

Input

Image

.

.

.

Figure 2.2: Architecture of an image classi�cation CNN.

Figure 2.2 illustrates the architecture of a representative image classi�cation CNN. Broadly,

CNNs consist of di�erent types of layers including convolutional layers, pooling layers and fully-

connected layers. �e output from the �nal layer of a classi�cation CNN are the probabilities of

all object classes (e.g., dog, �ower, car), and the class with the highest probability is the predicted

class for the object in the input image.

�e output of the penultimate (i.e., previous-to-last) layer can be considered as “representative

features” of the input image [99]. �e features are a real-valued vector, with lengths between 512

and 4096 in state-of-the-art classi�er CNNs (e.g., [73, 99, 142, 146]). It has been shown that images

with similar feature vectors (i.e., small Euclidean distances) are visually similar [31, 32, 99, 125].

Because inference using state-of-the-art CNNs is computationally expensive (and slow), there

are two main techniques that have been developed to reduce the cost of inference. First, com-

pression is a set of techniques that can dramatically reduce the cost of inference at the expense of

accuracy. Such techniques include removing some expensive convolutional layers [142], matrix

pruning [44, 70], and others [87, 130]. For example, ResNet18, which is a ResNet152 variant with

only 18 layers is 8× cheaper. Likewise, Tiny YOLO [127], a shallower variant of the YOLO object

detector, is 5× cheaper than YOLOv2. Second, a more recent technique is CNN specialization [69],

where the CNNs are trained on a subset of a dataset speci�c to a particular context, also making

them much cheaper.

9

Chapter 3

Related Work

We discuss related work that are related to low-latency and low-cost ML systems on large-scale,

highly-distributed data.

3.1 DistributedML Training Systems with Centralized Data

�ere are many distributed ML systems that aim to enable large-scale ML applications (e.g., [20,

23, 27, 28, 43, 46, 50, 51, 52, 54, 65, 75, 96, 104, 105, 110, 126, 162, 167]). �ese systems successfully

demonstrate their e�ectiveness on a large number of machines by employing various synchro-

nization models and system optimizations. However, all of them assume that the network com-

munication happens within a data center and do not tackle the challenges of highly-distributed

data.

3.2 Distributed ML Training with Decentralized Data

Few recent works (e.g., [109, 112, 141, 150]) aim to enable low-latency ML training on highly-

distributed, decentralized data. For example, federated learning [112] coordinates mobile devices

to train an ML model using wireless networks while keeping training data in local devices. �eir

major focus is to reduce communication overhead among training nodes, and they either (i) as-

sume the data partitions are IID or (ii) conduct only a limited study on non-IID data partitions.

Some recent work [143, 174] investigates the problem of non-IID data partitions. For example, in-

stead of training a global model to �t non-IID data partitions, federated multi-task learning [143]

proposes training local models for each data partition while leveraging other data partitions to im-

prove the model accuracy. However, this approach does not solve the problem for global models,

10

which are essential when a local model is unavailable (e.g., a brand new partition without training

data) or ine�ective (e.g., a partition with too few training examples for a class, such as kangaroos

in Europe). Zhao et al.’s study [174] discusses the problem of FederatedAveraging [112] over

non-IID data partitions, but this study does not discuss the implication for other decentralized

learning algorithms, ML applications, DNN models, and datasets.

3.3 Communication-E�cient ML Training Algorithms

A large body of prior work proposes ML training algorithms to reduce the dependency on in-

tensive parameter updates to enable more e�cient parallel computation (e.g., [88, 116, 139, 148,

172, 173, 176]). �ese work can be potentially useful in addressing the communication challenge

of highly-distributed data. However, these ML algorithms are not general and their applicability

depends on applications. Besides, they do not address the statistical challenge of non-IID data

partitions as they assume the data partitions is IID. In contrast, our goal is to propose generic

system-level solutions that do not require any changes to ML algorithms, and we aim to propose

solutions that work on non-IID data partitions.

3.4 Low-Latency ML Serving Systems

Some prior work proposes ML serving systems to achieve low-latency responses (e.g., [16, 22, 48,

49, 93]). Among them, some works [22, 48] focus on linear ML models that are fast but o�en are

less accurate than the computationally intensive models such as deep neural networks (DNNs).

�e ones that provide low-latency serving with DNNs [16, 49] mostly focus on serving smaller

querying data such as user preferences and images and they do not address the computation

challenge of massive data such as videos. Recent work [93] that addresses the latency of serving

large-scale data like videos provides signi�cantly improvement in latency, but the latencies are

still slow (e.g., 5 hours to query a month-long video on a GPU, Chapter 4). Hence, a lot more e�orts

are needed to address the computation challenge of serving massive data in ML applications.

11

Chapter 4

ML Serving over Large, Rapidly-Growing

Datasets: A Case Study of Video�eries

Cameras are ubiquitous, with millions of them deployed by public and private entities at tra�c

intersections, enterprise o�ces, and retail stores. Videos from these cameras are continuously

recorded [1, 5], with the main purpose of answering “a�er-the-fact” queries such as: identify

video frames with objects of certain classes (like cars or bags) from many days of recorded video.

Because the results from these video analytics queries may be needed quickly in many use cases,

achieving low latency is crucial.

Advances in convolutional neural networks (CNNs) backed by copious training data and hard-

ware accelerators (e.g., GPUs [12]) have led to highly accurate results in tasks like object detec-

tion and classi�cation of images. For instance, the ResNet152 classi�er CNN [73], winner of the

ImageNet challenge 2015 [133], surpasses human-level performance in classifying 1, 000 object

classes on a public image dataset that has labeled ground truths [72].

Despite the accuracy of image classi�er CNNs (like ResNet152) and object detectors (like

YOLOv2 [127]), using them for video analytics queries is both expensive and slow. For example,

even a�er using various motion detection techniques to �lter out frames with no moving ob-

jects, using an object detector such as YOLOv2 [127] to identify frames with a given class (e.g.,

ambulance) on a month-long tra�c video requires ≈ 190 hours on a high-end GPU (NVIDIA

P100 [12]) and costs over $380 in the Azure cloud (Standard NC6s v2 instances). To achieve a

query latency of say one minute on 190 GPU hours of work would require tens of thousands of

GPUs detecting objects in the video frames in parallel, which is two to three orders of magnitude

more than what is typically provisioned (few tens or hundreds of GPUs) by tra�c jurisdictions

or retail stores. Recent work like NoScope [93] has signi�cantly improved the �ltering of frames

12

by using techniques like lightweight binary classi�ers for the queried class (e.g., ambulance) be-

fore running heavy CNNs. However, the latencies are still long, e.g., it takes 5 hours to query a

month-long video on a GPU, in our evaluations. Moreover, videos from many cameras o�en need

to be queried, which increases the latency and the GPU requirements even more.

�e objective of our work is to enable low-latency and low-cost querying over large,

continuously-growing video datasets.

A natural approach to enable low latency queries is doing most of the work at ingest-time,

i.e., on the live video that is being captured. If object detection, using say YOLO, were performed

on frames at ingest-time, queries for speci�c classes (e.g., ambulance) would involve only a sim-

ple index lookup to �nd video frames with the queried object class. �ere are, however, two

main shortcomings with this approach. First, most of the ingest-time work may be wasteful be-

cause typically only a small fraction of recorded frames ever get queried [17], e.g., only a�er an

incident that needs investigation. Second, �ltering techniques that use binary classi�ers (as in

NoScope [93]) are ine�ective at ingest-time because any of a number of object classes could be

queried later and running even lightweight binary classi�ers for many classes can be prohibitively

expensive.

Objectives & Techniques. We present Focus, a system to support low-latency, low-cost queries

on large video datasets. To address the above challenges and shortcomings, Focus has the fol-

lowing goals: (a) provide low-cost indexing of multiple object classes in the video at ingest-time,

(b) achieve high accuracy and low latency for queries, and (c) enable trade-o�s between the cost

at ingest-time and the latency at query-time. Focus takes as inputs from the user a ground-truth

CNN (or “GT-CNN”, e.g., YOLO) and the desired accuracy of results that Focus needs to achieve

relative to the GT-CNN. With these inputs, Focus uses three key techniques to achieve the above

goals: (1) an approximate indexing scheme at ingest-time using cheap CNNs, (2) redundancy

elimination by clustering similar objects, and (3) a tunable mechanism for judiciously trading o�

ingest cost and query latency.

(1)Approximate indexing using a cheap ingest CNN.To make video ingestion cheap, Focus uses

compressed and specialized versions of the GT-CNN that have fewer convolutional layers [142],

use smaller image sizes, and are trained to recognize the classes speci�c to each video stream.

�e cheap ingest CNNs, however, are less accurate than the expensive GT-CNN, both in terms of

recall and precision. We de�ne recall as the fraction of frames in the video that contain objects of

the queried class that were actually returned in the query’s results. Precision, on the other hand,

is the fraction of frames in the query’s results that contain objects of the queried class.

Using a cheap CNN to �lter frames upfront risks incorrectly eliminating frames. To overcome

13

this potential loss in recall, Focus relies on an empirical observation: while the top (i.e., most

con�dent) classi�cation results of the cheap CNNs and expensive GT-CNN o�en do not match,

the top result of the expensive CNN o�en falls within the top-Kmost con�dent results of the cheap

CNN. �erefore, at ingest-time, Focus indexes each frame with the “top-K” results of the cheap

CNN, instead of just the top result. To increase precision, at query-time, a�er �ltering frames

using the top-K index, we apply the GT-CNN and return only frames that actually contains the

queried object class.

(2) Redundancy elimination via clustering. To reduce the query-time latency of using the ex-

pensive GT-CNN, Focus relies on the signi�cant similarity between objects in videos. For exam-

ple, a car moving across a camera will look very similar in consecutive frames. Focus leverages

this similarity by clustering the objects at ingest-time. We classify only the cluster centroids

with the GT-CNN at query-time, and assign the same class to all objects in the cluster. �is

considerably reduces query latency. Clustering, in fact, identi�es redundant objects even across

non-contiguous and temporally-distant frames.

(3) Trading o� ingest cost vs. query latency. Focus intelligently chooses its parameters (in-

cluding K and the cheap ingest-time CNN) to meet user-speci�ed targets on precision and re-

call. Among the parameter choices that meet the accuracy targets, it allows the user to trade o�

between ingest cost and query latency. For example, using a cheaper ingest CNN reduces the

ingest cost but increases the query latency as Focus needs to use a larger K for the top-K index

to achieve the accuracy targets. Focus automatically identi�es the “sweet spot” in parameters,

which sharply improves one of ingest cost or query latency for a small worsening of the other.

It also allows for policies to balance the two, depending on the fraction of videos the application

expects to get queried.

In summary, Focus’ ingest-time and query-time operations are as follows. At ingest-time,

Focus classi�es the detected objects using a cheap CNN, clusters similar objects, and indexes each

cluster centroid using the top-K most con�dent classi�cation results, where K is auto-selected

based on the user-speci�ed precision, recall, and cost/latency trade-o� point. At query-time,

Focus looks up the ingest index for cluster centroids that match the class X requested by the user

and classi�es them using the GT-CNN. Finally, Focus returns all objects from the clusters that

are classi�ed as class X to the user.

Evaluation Highlights. We build Focus and evaluate it on fourteen 12-hour videos from three

domains – tra�c cameras, surveillance cameras, and news. We compare against two baselines:

“Ingest-heavy”, which uses the heavy GT-CNN for ingest, and “NoScope”, a recent state-of-the-

art video querying system [93]. We use YOLOv2 [127] as the GT-CNN. On average, across all the

14

videos, Focus is 48× (up to 92×) cheaper than Ingest-heavy and 125× (up to 607×) faster than

NoScope, all the while achieving≥ 99% precision and recall. In other words, the latency to query

a month-long video drops from 5 hours to only 2.4 minutes, at an ingest cost of $8/month/stream.

Figure 4.1 also shows representative results with di�erent trade-o� alternatives for a surveillance

video.

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

ize
d

Q
ue

ry
 L

at
en

cy

Normalized Ingest Cost

Focus-Opt-Query Focus-Opt-Ingest
Focus-Balance Ingest-heavy
NoScope

(I=53X, Q=698X)

(I=90X, Q=403X)

(I=84X, Q=607X)

0

0.001

0.002

0.003

0 0.01 0.02
Normalized Ingest Cost

Figure 4.1: E�ectiveness of Focus at reducing both ingest cost and query latency, for an ex-

ample surveillance video. We compare against two baselines: “Ingest-heavy” that uses the

YOLOv2 [127] object detector CNN for ingestion, and “NoScope”, the state-of-the-art video

querying system [93]. On the le�, we see that Focus (the Focus-Balance point) is simultane-

ously 84× cheaper than Ingest-heavy in its cost (the I value) and 607× faster than NoScope in

query latency (the Q value), all the while achieving at least 99% precision and recall (not plot-

ted). Zooming in, also shown are two alternative Focus designs o�ering di�erent trade-o�s,

Focus-Opt-�ery and Focus-Opt-Ingest, each with at least 99% precision and recall.

4.1 Characterizing Real-world Videos

We aim to support queries of the form: �nd all frames in the video that contain objects of class X.

We identify some key characteristics of real-world videos towards supporting these queries: (i)

large portions of videos can be excluded (§4.1.1), (ii) only a limited set of object classes occur in

each video (§4.1.2), and (iii) objects of the same class have similar feature vectors (§4.1.3). �e

design of Focus is based on these characteristics.

15

We analyze six 12-hour videos from three domains: tra�c cameras, surveillance cameras, and

news channels (§4.5.1 provides the details.) In this chapter, we use results from YOLOv2 [127],

trained to classify 80 object classes based on the COCO [108] dataset, as the ground truth.

4.1.1 Excluding large portions of videos

We �nd considerable potential to avoid processing large portions of videos at query-time. Not all

the frames in a video are relevant to a query because each query looks only for a speci�c class of

objects. In our video sets, an object class occurs in only 0.16% of the frames on average, and even

the most frequent object classes occur in no more than 26%− 78% of the frames. �is is because

while there are usually some dominant classes (e.g., cars in a tra�c camera, people in a news

channel), most other classes are rare. Overall, the above data suggests considerable potential to

speed up query latencies by indexing frames using the object classes. Also, in our experience, a

system for querying videos is more useful for less frequent classes: querying for “ambulance” in

a tra�c video is more interesting than querying for something commonplace like “car”.

4.1.2 Limited set of object classes in each video

Most video streams have a limited set of objects because each video has its own context (e.g.,

tra�c cameras can have automobiles, pedestrians or bikes, but not airplanes).

0.5

0.6

0.7

0.8

0.9

1

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0%CD
F

(n
um

be
r o

f o
bj

ec
ts

)

Percentage of COCO's 80 classes

Auburn Jackson Hole
Lausanne Sittard
CNN MSNBC

95% of objects

Figure 4.2: CDF of frequency of object classes. �e x-axis is the fraction of classes out of the 80
classes recognized by the COCO [108] dataset (truncated to 12%).

Figure 4.2 shows the cumulative distribution function (CDF) of the frequency of object classes

in our videos (as classi�ed by YOLOv2). We make two observations. First, 2%− 10% of the most

frequent object classes cover ≥ 95% of the objects in all video streams. In fact, for some videos

like Auburn and Jackson Hole we �nd that only 11% − 19% object classes occur in the

16

entire video. �us, for each video stream, if we can automatically determine its most frequent

object classes, we can train e�cient CNNs specialized for these classes. Second, a closer analysis

reveals that there is li�le overlap between the object classes among di�erent videos. On average,

the Jaccard index [149] (i.e., intersection over union) between the videos based on their object

classes is only 0.46. �is implies that we need to specialize CNNs for each video stream separately

to achieve the most bene�ts.

4.1.3 Feature vectors for �nding duplicate objects

Objects moving in the video o�en stay in the frame for several seconds; for example, a pedestrian

might take 15 seconds to cross a street. Instead of classifying each instance of the same object

across the frames, we would like to inexpensively �nd duplicate objects and only classify one of

them using a CNN (and apply the same label to all duplicates). �us, given n duplicate objects,

we would like only one CNN classi�cation operation instead of n.

Comparing pixel values across frames is an obvious technique to identify duplicate objects,

however, this technique turns out to be highly sensitive to even small changes in the camera’s

view of an object. Instead, feature vectors extracted from the CNNs (§2.2) are more robust because

they are speci�cally trained to extract visual features for classi�cation. We verify the robustness

of feature vectors using the following analysis. In each video, for each object i, we �nd its nearest

neighbor j using feature vectors from a cheap CNN (ResNet18) and compute the fraction of object

pairs that belong to the same class. �is fraction is over 99% in each of our videos, which shows

the promise of using feature vectors from cheap CNNs to identify duplicate objects even across

frames that are not temporally contiguous.

4.2 Overview of Focus

�e goal of Focus is to index live video streams by the object classes occurring in them and enable

answering “a�er-the-fact” queries later on the stored videos of the form: �nd all frames that

contain objects of class X. Optionally, the query can be restricted to a subset of cameras and a time

range. Such a query formulation is the basis for many widespread applications and could be used

either on its own (such as for detecting all cars or bicycles in the video) or used as a basis for

further processing (e.g., �nding all collisions between cars and bicycles).

System Con�guration. Focus is designed to work with a wide variety of current and future

CNNs. �e user (system administrator) provides a ground-truth CNN (GT-CNN), which serves

as the accuracy baseline for Focus, but is far too costly to run on every video frame. �rough

17

a sequence of techniques, Focus provides results of nearly-comparable accuracy but at greatly

reduced cost. In this chapter, we use YOLOv2 [127] as the default GT-CNN.

Because di�erent applications require di�erent accuracies, Focus permits the user to specify

the accuracy target, while providing reasonable defaults. �e accuracy target is speci�ed in terms

of precision, i.e., fraction of frames output by the query that actually contain an object of class X

according to GT-CNN, and recall, i.e., fraction of frames that contain objects of class X according

to GT-CNN that were actually returned by the query.

Objects
Specialized,

Compressed CNN

Object top-K
classes

Object
feature
vectors

Ingest-time Query-time

Querying for
class X

Object
clusters

Frames with
objects of

class X

GT-CNN

CNN
specialization

Matching
clusters for X

FramesFramesFrames

Top-K
index

Centroid
objects

IT1

IT2

IT3 IT4
QT2

QT1

QT3

QT4

Figure 4.3: Overview of Focus.

Architecture: Figure 4.3 overviews the Focus design. Focus is a system that runs on centralized

servers (such as data centers) where live video streams are continuously recorded and transmi�ed

from cameras.

• At ingest-time (le� part of Figure 4.3), Focus classi�es objects in the incoming video frames

and extracts their feature vectors. For its ingest, Focus uses highly compressed and spe-

cialized alternatives of the GT-CNN model (IT1 in Figure 4.3). Focus then clusters objects

based on their feature vectors (IT2) and assigns to each cluster the top K most likely classes

these objects belong to (based on classi�cation con�dence of the ingest CNN) (IT3). It cre-

ates a top-K index, which maps each class to the set of object clusters (IT4). �e top-K index

is the output of Focus’ ingest-time processing of videos.

• At query-time (right part of Figure 4.3), when the user queries for a certain class X (QT1),

Focus retrieves the matching clusters from the top-K index (QT2), runs the centroids of the

clusters through GT-CNN (QT3), and returns all frames from the clusters whose centroids

were classi�ed by GT-CNN as class X (QT4).

�e top-K ingest index is a mapping between the object classes and the clusters. In particular,

we create a mapping from each object class to the clusters with top K matching object classes.

Separately, we store the mapping between clusters and their corresponding objects and frames.

18

�e structure of the index is:

object class → 〈cluster ID〉
cluster ID → [centroid object, 〈objects〉 in cluster, 〈frame IDs〉
of objects]

We next explain how Focus’ key techniques keep ingest cost and query latency low while

also meeting the user-speci�ed recall and precision targets.

1) Top-K index via cheap ingesting: Focus makes indexing at ingest-time cheap by using

compressed and specialized alternatives of the GT-CNN for each video stream. Compression of

CNNs [44, 70, 87, 142] uses fewer convolutional layers and other approximations (§2.2), while

specialization of CNNs [69, 140] uses the observation that a speci�c video stream contains only a

small number of object classes and their appearance is more constrained than in a generic video

(§4.1.2). Both optimizations are done automatically by Focus and together result in ingest-time

CNNs that are up to 96× cheaper than the GT-CNN.

�e cheap ingest-time CNNs are less accurate, i.e., their top-most results o�en do not match

the top-most classi�cations of GT-CNN. �erefore, to improve recall, Focus associates each object

with the top-K classi�cation results of the cheap CNN, instead of only its top-most result. Increas-

ing K increases recall because the top-most result of GT-CNN o�en falls within the ingest-time

CNN’s top-K results. At query-time, Focus uses the GT-CNN to remove objects in this larger set

that do not match the class, to regain the precision lost by including the top-K.

2) Clustering similar objects. A high value of K at ingest-time increases the work done at

query time, thereby increasing query latency. To reduce this overhead, Focus clusters similar

objects at ingest-time using feature vectors from the cheap ingest-time CNN (§4.1.3). In each

cluster, at query-time, we run only the cluster centroid through GT-CNN and apply the classi�ed

result from the GT-CNN to all objects in the cluster. �us, a tight clustering of objects is crucial

for high precision and recall.

3) Trading o� ingest vs. query costs. Focus automatically chooses the ingest CNN, its K,

and specialization and clustering parameters to achieve the desired precision and recall targets.

�ese choices also help Focus trade o� between the work done at ingest-time and query-time.

For instance, to save ingest work, Focus can select a cheaper ingest-time CNN, and then coun-

teract the resultant loss in recall by using a higher K and running the expensive GT-CNN on

more objects at query time. Focus chooses its parameters so as to o�er a sharp improvement

in one of the two costs for a small degradation in the other cost. Because the desired trade-o�

point is application-dependent, Focus provides users with options: “ingest-optimized”, “query-

optimized”, and “balanced” (the default). Figure 4.1 presents an example result.

19

4.3 Video Ingest &�erying Techniques

We describe the main techniques used in Focus: constructing approximate indexes with cheap

CNNs at ingest-time (§4.3.1), specializing the CNNs to the speci�c videos (§4.3.2), and identifying

similar objects and frames to save on redundant CNN processing (§4.3.3). §4.3.4 describes how

Focus �exibly trades o� ingest cost and query latency.

4.3.1 Approximate Index via Cheap Ingest

Focus indexes the live videos at ingest-time to reduce the query-time latency. We detect and clas-

sify the objects within the frames of the live videos using ingest-time CNNs that are far cheaper

than the ground-truth GT-CNN. We use these classi�cations to index objects by class.

Cheap ingest-time CNN. As noted earlier, the user provides Focus with a GT-CNN. Option-

ally, the user can also provide other CNN architectures to be used in Focus’ search for cheap

CNNs. Examples include object detector CNNs (which vary in their resource costs and accura-

cies) like YOLO [127] and Faster RCNN [128] that jointly detect the objects in a frame and classify

them. Alternatively, objects can be detected separately using relatively inexpensive techniques

like background subtraction [39], which are well-suited for static cameras, as in surveillance or

tra�c installations, and then the detected objects can be classi�ed using object classi�cation CNN

architectures such as ResNet [73], AlexNet [99] and VGG [142].
1

Starting from these user-provided CNNs, Focus applies various levels of compression, such

as removing convolutional layers and reducing the input image resolution (§2.2). �is results in a

large set of CNN options for ingest, {CheapCNN1, . . . , CheapCNNn}, with a wide range of costs

and accuracies, out of which Focus picks its ingest-time CNN, CheapCNNingest.

Top-K Ingest Index. To keep recall high, Focus indexes each object using the topK object classes

from the output of CheapCNNingest, instead of using just the top-most class. Recall from §2.2 that

the output of the CNN is a list of classes for each object in descending order of con�dence. We

make the following empirical observation: the top-most output of the expensive GT-CNN for an

object is o�en contained within the top-K classes output by the cheap CNN, for a small value of

K.

Figure 4.4 demonstrates the above observation by plo�ing the e�ect of K on recall on one

of our video streams from a static camera, lausanne (see §4.5.1). We explore many cheaper

ResNet18 [73] models by removing one layer at a time with various input image sizes. �e trend

1
Focus is agnostic to whether object detection and classi�cation are done together or separately. In practice, the

set of detected object bounding boxes (but not their classi�cations!) remain largely the same with di�erent ingest

CNNs, background subtraction, and the GT-CNN.

20

is the same among the CNNs we explore so we present three models for clarity: ResNet18, and

ResNet18 with 4 and 6 layers removed; correspondingly to each model, the input images were

rescaled to 224, 112, and 56 pixels, respectively. �ese models were also specialized to the video

stream (more in §4.3.2). We make two observations.

0%
20%
40%
60%
80%

100%

1 2 3 4

Re
ca

ll

Number of selected results (K)

ResNet18 ResNet18 (4 fewer layers) ResNet18 (6 fewer layers)

Figure 4.4: E�ect of K on the recall of three cheap classi�er CNNs to classify the detected objects.

Recall is measured relative to the results of the GT-CNN, YOLOv2 [127].

First, we observe steady increase in recall with increasing K, for all three CheapCNNs. As

the �gure shows, all the cheap CNNs reach ≥ 99% recall when K ≥ 4. Note that all these models

recognize 80 classes, so K = 4 represents only 5% of the possible classes. Second, there is a trade-

o� between di�erent models – typically, the cheaper they are, the lower their recall with the

same K. However, we can compensate for the loss in recall in cheaper models using a larger K to

reach a certain recall value. Overall, we conclude that by selecting the appropriate model and K,

Focus can achieve the target recall.

Achieving precision. Focus creates the top-K index from the top-K classes output by

CheapCNNingest for every object at ingest-time. While �ltering for objects of the queried class

X using the top-K index (with the appropriate K) will have a high recall, this will lead to very

low precision. Because we associate each object with K classes (while it has only one true class),

the average precision is only 1/K. �us, at query time, to improve precision, Focus determines

the actual class of objects from the top-K index using the expensive GT-CNN and returns only

the objects that match the queried class X .

Skipping GT-CNN for high-con�dence indexes. Focus records the prediction con�dence

along with the top-K results by CheapCNNingest. �e system can skip invoking GT-CNN for the

indexes with prediction con�dence higher than a chosen threshold (Skipth). Not invoking GT-

CNN for these indexes can cause precision to fall if the threshold is too low. Hence, this parameter

needs to be carefully selected to retain high precision.

21

Parameter selection. �e selection of the cheap ingest-time CNN model (CheapCNNingest) and

the K value (for the top-K results) has a signi�cant in�uence on the recall of the output produced.

Lower values of K reduce recall, i.e., Focus will miss frames that contain the queried objects.

At the same time, higher values of K increase the number of objects to classify with GT-CNN

at query time, and hence adds to the latency. §4.3.4 describes how Focus sets these parameters

because they have to be jointly set with other parameters described in §4.3.2 and §4.3.3.

4.3.2 Video-speci�c Specialization of Ingest CNN

To further reduce the ingest cost, Focus specializes the ingest-time CNN model to each video

stream. As §2.2 describes, model specialization [69] reduces cost by simplifying the task of CNNs.

Speci�cally, model specialization takes advantage of two characteristics in real-world videos.

First, most video streams have a limited set of object classes (§4.1.2). Second, objects in a speci�c

stream are o�en visuallymore constrained than objects in general (say, in the COCO [108] dataset).

�e cars and buses that occur in a speci�c tra�c camera have much less variability, e.g., they

have very similar angle, distortion and size, compared to a generic set of vehicle images. �us,

classifying objects from a speci�c camera is a much simpler task than doing so from all cameras,

resulting in cheaper ingest-time CNNs.

While specializing CNNs to speci�c videos has been a�empted in computer vision research

(e.g., [69, 140]), we explain its two key implications within Focus.

1) Lower K values. Because the specialized CNN classi�es across fewer classes, they are more

accurate, which enables Focus to achieved the desired recall with a much smaller K (for the top-K

ingest index). We �nd that specialized models can usually use K ≤ 4 (Figure 4.4), much smaller

compared to the typical K needed for generic cheap CNNs. A smaller K translates to fewer objects

that have to be classi�ed by GT-CNN at query time, thus reducing latency.

2) Most frequent classes. On each video stream, Focus periodically obtains a small sample

of video frames and classi�es their objects using GT-CNN to estimate the ground truth of the

distribution of object classes for the video (similar to Figure 4.2). From this distribution, Focus

selects the most frequently occurringLs object classes to retrain new specialized models. Because

just a handful of classes o�en account for a dominant majority of the objects (§4.1.2), low values

of Ls usually su�ce.

While Focus specializes the CNN towards the most frequently occurring Ls classes, we also

want to support querying of the less frequent classes. For this purpose, Focus includes an addi-

tional class called “OTHER” in the specialized model. Being classi�ed as OTHER simply means

not being one of the Ls classes. At query time, if the queried class is among the OTHER classes of

22

the ingest CNN’s index, Focus extracts all the clusters that match the OTHER class and classi�es

their centroids through the GT-CNN model.
2

�e parameter Ls (for each video stream) exposes the following trade-o�. Using a small Ls

enables us to train a simpler model with cheaper ingest cost and lower query-time latency for the

popular classes, but, it also leads to a larger fraction of objects falling in the OTHER class. As a

result, querying for the OTHER class will be expensive because all those objects will have to be

classi�ed by the GT-CNN. Using a larger value of Ls, on the other hand, leads to more expensive

ingest and query-time models, but cheaper querying for the OTHER classes. We select Ls in

§4.3.4.

4.3.3 Redundant Object Elimination

At query time, Focus retrieves the objects likely matching the user-speci�ed class from the top-K

index and infers their actual class using the GT-CNN. �is ensures precision of 100%, but could

cause signi�cant latency at query time. Even if this inference were parallelized across many

GPUs, it would incur a large cost. Focus uses the following observation to reduce this cost: if

two objects are visually similar, their feature vectors are also similar and they would likely be

classi�ed as the same class (e.g., cars) by the GT-CNN model (§4.1.3).

Focus clusters objects that are similar, invokes the expensive GT-CNN only on the cluster

centroids, and assigns the centroid’s label to all objects in each cluster. Doing so dramatically

reduces the work done by the GT-CNN classi�er at query time. Focus uses the feature vector

output by the previous-to-last layer of the cheap ingest CNN (see §2.2) for clustering. Note that

Focus clusters the objects in the frames and not the frames as a whole.
3

�e key questions regarding clustering are how we cluster and when we cluster. We discuss

both below.

Clustering Heuristic. We require two properties in our clustering technique. First, given the

high volume of video data, it should be a single-pass algorithm to keep the overhead low, un-

like most clustering algorithms, which are quadratic complexity. Second, it should make no as-

sumption on the number of clusters and adapt to outliers in data points on the �y. Given these

2
Specialized CNNs can be retrained quickly on a small dataset. Retraining is relatively infrequent and done once

every few days. Also, because there will be considerably fewer objects in the video belonging to the OTHER class,

we proportionally re-weight the training data to contain equal number of objects of all the classes.

3
Recall from §4.3.1 that Focus’ ingest process either (i) employs an object detector CNN (e.g., YOLO) that jointly

detects and classi�es objects in a frame; or (ii) detects objects with background subtraction and then classi�es objects

with a classi�er CNN (e.g. ResNet). Regardless, we obtain the feature vector from the CNNs for each object in the

frame.

23

requirements, we use the following simple approach for incremental clustering, which has been

well-studied in the literature [41, 119].

We put the �rst object into the �rst cluster c1, and we make the �rst object as the centroid of c1.

To cluster a new object iwith a feature vector fi, we assign it to the closest cluster cj if the centroid

of cj is at most distance T away from fi, where T is a distance threshold. However, if none of the

clusters are within a distance T , we create a new cluster with centroid at fi. We measure distance

as the L2 norm [8] between the cluster centroid feature vector and the object feature vector fi. To

bound the time complexity for clustering, we keep the number of clusters actively being updated

at a constantC . We do this by sealing the smallest cluster when the number of clusters hitsC+1,

but we keep growing the popular clusters (such as similar cars). �is maintains the complexity as

O(Cn), which is linear in n, the total number of objects. �e value of C has a very minor impact

on our evaluation results, and we set C as 100 in our evaluations.

Clustering can reduce precision and recall depending on the parameter T . If the centroid

is classi�ed by GT-CNN as the queried class X but the cluster contains another object class, it

reduces precision. If the centroid is classi�ed as a class di�erent than X but the cluster has an

object of class X, it reduces recall. §4.3.4 discuss se�ing T .

Clustering at Ingest vs. �ery Time. Focus clusters the objects at ingest-time rather than at

query-time. Clustering at query-time would involve storing all feature vectors, loading them for

objects �ltered from the ingest index and then clustering them. Instead, clustering at ingest time

creates clusters right when the feature vectors are created and stores only the cluster centroids

in the top-K index. �is makes the query-time latency much lower and also reduces the size of

the top-K index. We observe that the ordering of indexing and clustering operations is mostly

commutative in practice and has li�le impact on recall and precision. We therefore use ingest-time

clustering due to its latency and storage bene�ts.

4.3.4 Trading o� Ingest Cost and�ery Latency

Focus’ goals of high recall/precision, low ingest cost and low query latency are a�ected by its

parameters: (i) K, the number of top results from the ingest-time CNN to index an object; (ii)

Ls, the number of popular object classes we use to create a specialized model; (iii) CheapCNNi,

the specialized ingest-time cheap CNN; (iv) Skipth, the con�dence threshold to skip invoking

GT-CNN; and (v) T , the distance threshold for clustering objects.

Viable Parameter Choices. Focus �rst prunes the parameter choices to only those that meet

the desired precision and recall targets. Among the �ve parameters, four parameters (K, Ls,

CheapCNNi, and T) impact recall; only T and Skipth impact precision. Focus samples a represen-

24

tative fraction of the video stream and classi�es them using GT-CNN for the ground truth. Next,

for each combination of parameter values, Focus computes the precision and recall (relative to

GT-CNN’s outputs) achievable for each of the object classes, and selects only those combinations

that meet the precision and recall targets.

Among the viable parameter choices that meet the precision and recall targets, Focus balances

ingest- and query-time costs. For example, picking a more accurate CheapCNNingest will have

higher ingest cost, but lower query cost because we can use a smaller K. Using a less accurate

CheapCNNingest will have the opposite e�ect.

Pareto Boundary. Focus identi�es “intelligent defaults” that sharply improve one of the two

costs for a small worsening of the other cost. Figure 4.5 illustrates the tradeo� between ingest cost

and query latency for one of our video streams. �e �gure plots all the viable “con�gurations”

(i.e., parameter choices that meet the precision and recall targets) based on their ingest cost (i.e.,

cost of CheapCNNingest) and query latency (i.e., the number of clusters that need to be checked at

query time according to K,Ls, T and Skipth).

Balance
Opt-Query

Opt-Ingest

0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

0.008 0.010 0.012 0.014

No
rm

al
ize

d
Q

ue
ry

La

te
nc

y

Normalized Ingest Cost

Figure 4.5: Parameter selection based on the ingest cost and query latency trade-o�. �e ingest

cost is normalized to the cost of ingesting all video frames with GT-CNN (YOLOv2), while the

query latency is normalized to the query latency using NoScope. �e dashed line is the Pareto

boundary.

We �rst extract the Pareto boundary [18], which is de�ned as the set of con�gurations among

which we cannot improve one of the metrics without worsening the other. For example, in Fig-

ure 4.5, the yellow triangles are not Pareto optimal when compared to the points on the dashed

line. Focus can discard all non-Pareto con�gurations because at least one point on the Pareto

boundary is be�er than all non-Pareto points in both metrics.

Tradeo� Policies. Focus balances ingest cost and query latency (Balance in Figure 4.5) by

25

selecting the con�guration that minimizes the sum of ingest cost and query latency. We measure

ingest cost as the compute cycles taken to ingest the video and query latency as the average time

(or cycles) required to query the video on the object classes that are recognizable by the ingest

CNN. By default, Focus chooses a Balance policy that equally weighs ingest cost and query

latency. Users can also provide any other weighted function to optimize their goal.

Focus also allows for other con�gurations based on the application’s preferences and query

rates. Opt-Ingest minimizes the ingest cost and is applicable when the application expects most

of the video streams to not get queried (such as surveillance cameras), as this policy minimizes

the amount of wasted ingest work. On the other hand, Opt-�ery minimizes query latency but

it incurs a larger ingest cost. More complex policies can be easily implemented by changing how

the query latency cost and ingest cost are weighted in our cost function. Such �exibility enables

Focus to �t a number of applications.

4.4 Implementation

Because Focus targets large video datasets, a key requirement of Focus’ implementation is the

ability to scale and distribute computation across many machines. To this end, we implement

Focus as three loosely-coupled modules which handle each of its three key tasks. Figure 4.6

presents the architecture and the three key modules of Focus: the ingest processor (M1), the

stream tuner (M2), and the query processor (M3). �ese modules can be �exibly deployed on

di�erent machines based on the video dataset size and the available hardware resources (such as

GPUs). We describe each module in turn.

Frame / object
extraction

Objects Ingest CNN
evaluation

Feature vector
clustering

Approximate index

Ingest Processor

Specialized
model training

GT-CNN,
Accuracy target

Model and parameter
selection

Ingest CNN and
parameters

Stream Tuner
Trade-off policy

Query
object class

Centroid object
selection

GT-CNN
evaluation

FramesFrames

Frames with
queried object class

Query ProcessorM1

M2

M3

IP1

IP2 IP3

ST1
ST2

QP1 QP2

Figure 4.6: Key components of Focus.

26

4.4.1 Ingest Processor

Focus’ ingest processor (M1) generates the approximate index (§4.3.1) for the input video stream.

�e work is distributed across many machines, with each machine running one worker process

for each video stream’s ingestion. An ingest processor handles its input video stream with a

four-stage pipeline: (i) extracting the moving objects from the video frames (IP1 in Figure 4.6),

(ii) inferring the top-K indexes and the feature vectors of all detected objects with the ingest-time

CNN (IP2 in Figure 4.6, §4.3.1), (iii) using the feature vector to cluster objects (IP3 in Figure 4.6,

§4.3.3), and (iv) storing the top-K indexes of centroid objects in a database for e�cient retrieval

at query time.

An ingest processor is con�gured di�erently for static (�xed-angle) and moving cameras. For

static cameras, we extract object boxes by subtracting each video frame from the background

frame, which is obtained by averaging the frames in each hour of the video. We then index each

object box with an ingest-time object classi�er CNN. We accelerate the background subtraction

with GPUs [14]. We use background subtraction for static cameras because running background

subtraction with a cheap object classi�er is much faster than running an ingest-time object detector

CNN, and we �nd that both approaches have almost the same accuracy in detecting objects in

static cameras. Hence, we choose the cheaper ingest option.

For moving cameras, we use a cheap, ingest-time object detector CNN (e.g., Tiny YOLO [127])

to generate the approximate indexes. We choose the object detection threshold (the threshold to

determine if a box has an object) for the object detector CNN such that we do not miss objects in

GT-CNN while minimizing spurious objects.

4.4.2 Stream Tuner

�e stream tuner (M2) determines the ingest-time CNN and Focus’ parameters for each video

stream (§4.3.4). It takes four inputs: the sampled frames/objects, the GT-CNN, the desired ac-

curacy relative to the GT-CNN, and the tradeo� policy between ingest cost and query latency

(§4.3.4). Whenever executed, the stream tuner: (i) generates the ground truth of the sampled

frames/objects with the GT-CNN; (ii) trains specialized ingest-time CNNs based on the ground

truth (ST1 in Figure 4.6); and (iii) selects the ingest-time CNN and Focus’ parameters (ST2 in

Figure 4.6).

Focus executes the stream tuner for each video stream before launching the corresponding

ingest processor. As the characteristics of video streams may change over time, Focus periodi-

cally launches the stream tuner to validate the accuracy of the selected parameters on sampled

27

frames. �e ingest-time CNN and the system parameters are re-tuned if necessary to meet the

accuracy targets (e.g., [90]).

4.4.3 �ery Processor

�e task of the query processor is to return the video frames that contain the user’s queried object

class. In response to a user query for class X , the query processor �rst retrieves the centroid

objects with matching approximate indexes (QP1 in Figure 4.6), and then uses the GT-CNN to

determine the frames that do contain object class X (QP2 in Figure 4.6, §4.3.1). �e GT-CNN

evaluation can be easily distributed across many machines, if needed.

We employ two optimizations to reduce the overhead of GT-CNN evaluation. First, we

skip the GT-CNN evaluation for high-con�dence indexes (§4.3.1). Second, we apply a query-

specialized binary classi�er [93] on the frames that need to be checked before invoking the GT-

CNN. �ese two optimizations make the query processor more e�cient by not running GT-CNN

on all candidate centroid objects.

4.5 Evaluation

We evaluate our Focus prototype with more than 160 hours of videos from 14 real video streams

that span tra�c cameras, surveillance cameras, and news channels. Our main results are:

1. Focus is simultaneously 48× cheaper on average (up to 92×) than the Ingest-heavy base-

line in processing videos and 125× faster on average (up to 607×) than NoScope [93] in

query latency — all the while achieving at least 99% precision and recall (§4.5.2, §4.5.3).

2. Focus provides a rich trade-o� space between ingest cost and query latency. If a user wants

to optimize for ingest cost, Focus is 65× cheaper on average (up to 96×) than the Ingest-

heavy baseline, while reducing query latency by 100× on average. If the goal is to optimize

for query latency, Focus can achieve 202× (up to 698×) faster queries than NoScope with

53× cheaper ingest. (§4.5.4).

4.5.1 Methodology

So�ware Tools. We use OpenCV 3.4.0 [13] to decode the videos into frames, and we feed the

frames to our evaluated systems, Focus and NoScope. Focus runs and trains CNNs with Mi-

croso� Cognitive Toolkit 2.4 [115], an open-source deep learning system. Our ingest processor

(§4.4.1) stores the approximate index in MongoDB [11] for e�cient retrieval at query time.

28

Video Datasets. We evaluate 14 video streams that span across tra�c cameras, surveillance

cameras, and news channels. We record each video stream for 12 hours to cover both day time

and night time. Table 4.1 summarizes the video characteristics. We strengthen our evaluation

by including down sampling (or frame skipping), one of the most straightforward approaches

to reduce ingest cost and query latency, into our evaluation baseline. Speci�cally, as the vast

majority of objects show up for at least one second in our evaluated videos, we evaluate each

video at 1 fps instead of 30 fps. We �nd that the object detection results at these two frame rates

are almost the same. Each video is split evenly into a training set and a test set. �e training

set is used to train video-specialized CNNs and select system parameters. We then evaluate the

systems with the test set. In some �gures, we show results for only eight representative videos

to improve legibility.

Type Camera Name Description

auburn c A commercial area intersection in the City of Auburn [4]

Tra�c Static

auburn r A residential area intersection in the City of Auburn [3]

bellevue d

A downtown intersection in the City of Bellevue. �e video

streams are obtained from city tra�c cameras.

bellevue r A residential area intersection in the City of Bellevue

bend A road-side camera in the City of Bend [6]

jackson h A busy intersection in Jackson Hole [7]

jackson ts

A night street in Jackson Hole. �e video is downloaded from

the NoScope project website [92].

Surveillance Static

coral

An aquarium video downloaded from the NoScope

project website [92]

lausanne A pedestrian plaza (Place de la Palud) in Lausanne [9]

oxford A bookshop street in the University of Oxford [15]

si�ard A market square in Si�ard [2]

News Moving

cnn News channel

foxnews News channel

msnbc News channel

Table 4.1: Video dataset characteristics

Accuracy Target. We use YOLOv2 [127], a state-of-the-art object detector CNN, as our ground-

truth CNN (GT-CNN): all objects detected by GT-CNN are considered to be the correct answers.
4

For each query, our default accuracy target is 99% recall and precision. To avoid over��ing, we use

the training set of each video to explore system parameters with various recall/precision targets

(i.e., 100%–95% with a 0.5% step), and we report the best system parameters that can actually

4
We do not use the latest YOLOv3 or other object detector CNN such as FPN [107] as our GT-CNN because one of

our baseline systems, NoScope, comes with the YOLOv2 code. Fundamentally, there is no restriction on the selection

of GT-CNN for Focus.

29

achieve the recall/precision target on the test set. We also evaluate other recall/precision targets

such as 97% and 95% (§4.5.5).

Baselines. We use baselines at two ends of the design spectrum: (1) Ingest-heavy, the baseline

system that uses GT-CNN to analyze all frames at ingest time, and stores the results as an index

for query; and (2) NoScope, a recent state-of-the-art querying system [93] that analyzes frames

for the queried object class at query time. We also use a third baseline, Ingest-NoScope that uses

NoScope’s techniques at ingest time. Speci�cally, Ingest-NoScope runs the binary classi�ers

of NoScope for all possible classes at ingest time, invokes GT-CNN if any of the binary classi-

�ers cannot produce a high-con�dence result, and stores the results as an index for query. To

further strengthen the baselines, we augment all baseline systems with background subtraction,

thus eliminating frames with no motion. As Focus is in the middle of the design spectrum, we

compare Focus’ ingest cost with Ingest-heavy and Ingest-NoScope, and we compare Focus’

query latency with NoScope.

Metrics. We use two performance metrics. �e �rst metric is ingest cost, the end-to-end machine

time to ingest each video. �e second metric is query latency, the end-to-end latency for an object

class query. Speci�cally, for each video stream, we evaluate the object classes that collectively

make up 95% of the detected objects in GT-CNN. We report the average query latency on these

object classes. We do not evaluate the bo�om 5% classes because they are o�en random erroneous

results in GT-CNN (e.g., “broccoli” or “orange” in a tra�c camera).

Both metrics include the time spent on all processing stages, such as detecting objects with

background subtraction, running CNNs, clustering, reading and writing to the approximate index,

etc. Similar to prior work [93, 127], we report the end-to-end execution time of each system while

excluding the video decoding time, as the decoding time can be easily accelerated with GPUs or

accelerators.

Experimental Platform. We run the experiments on Standard NC6s v2 instances on the

Azure cloud. Each instance is equipped with a high-end GPU (NVIDIA Tesla P100), 6-core Intel

Xeon CPU (E5-2690), 112 GB RAM, a 10 GbE NIC, and runs 64-bit Ubuntu 16.04 LTS.

4.5.2 End-to-End Performance

Static Cameras. We �rst show the end-to-end performance of Focus on static cameras when

Focus aims to balance these two metrics (§4.3.4). Figure 4.7 compares the ingest cost of Focus and

Ingest-NoScope with Ingest-heavy and the query latency of Focus with NoScope. We make

three main observations.

First, Focus signi�cantly improves query latency with a very small cost at ingest time. Focus

30

35X
66X 67X 84X

40X 38X
92X 60X 44X

84X 53X 57X

1

10

100

au
bu

rn
_c

au
bu

rn
_r

be
lle

vu
e_

d

be
lle

vu
e_

r

be
nd

ja
ck

so
n_

h

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd

Traffic Surveillance Avg

In
ge

st
 c

he
ap

er
 th

an

In

ge
st

-h
ea

vy
 b

y
(fa

ct
or

)

Ingest-NoScope Focus

304X
46X

444X
75X 40X

288X
46X

122X 322X 607X 350X 162X

1
10

100
1000

au
bu

rn
_c

au
bu

rn
_r

be
lle

vu
e_

d

be
lle

vu
e_

r

be
nd

ja
ck

so
n_

h

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd

Traffic Surveillance Avg

Q
ue

ry
 fa

st
er

 th
an

N

oS
co

pe
 b

y
(fa

ct
or

)

Figure 4.7: (Top) Focus ingest cost compared to Ingest-heavy. (Bottom) Focus query latency

compared to NoScope.

achieves 162× speedup (on average) in query latency over NoScope with a very small ingest cost

(57× cheaper than Ingest-heavy, on average), all the while retaining 99% recall and precision

(not shown). Focus achieves two orders of magnitude speedup over NoScope because: (i) the

ingest-time approximate indexing drastically narrows down the frames that need to be checked at

query time; and (ii) the feature-based clustering further reduces the redundant work. In contrast,

NoScope needs to go through all the frames at query time, which is especially ine�cient for the

object classes that appear infrequently. We conclude that Focus’ architecture provides a valuable

trade-o� between ingest cost and query latency.

Second, directly applying NoScope’s techniques at ingest time (Ingest-NoScope) does not

save much cost over Ingest-heavy. �ere are two reasons for this: (1) While each binary classi�er

is relatively cheap, running multiple instances of binary classi�ers (for all possible object classes)

imposes non-trivial cost. (2) �e system needs to invoke GT-CNN when any one of the binary

classi�ers cannot derive the correct answer. As a result, GT-CNN is invoked for most frames.

31

Hence, the ingest cost of Focus is much cheaper than both, Ingest-heavy and Ingest-NoScope.

�is is because Focus’ architecture only needs to construct the approximate index at ingest time

which can be done cheaply with an ingest-time CNN.

�ird, Focus is e�ective across videos with varying characteristics. It makes queries 46×
to 622× faster than NoScope with a very small ingest cost (35× to 92× cheaper than Ingest-

heavy) among busy intersections (auburn c, bellevue d and jackson h), normal intersections

(auburn r, bellevue r, bend), a night street (jackson ts), busy plazas (lausanne and sittard),

a university street (oxford), and an aquarium (coral). �e gains in query latency are smaller

for some videos (auburn r, bellevue r, bend, and jackson ts). �is is because Focus’ ingest

CNN is less accurate on these videos, and Focus selects more conservative parameters (e.g., a

larger K such as 4–5 instead of 1–2) to a�ain the recall/precision targets. As a result, there is

more work at query time for these videos. Nonetheless, Focus still achieves at least 40× speedup

over NoScope in query latency. We conclude that the core techniques of Focus are general and

e�ective on a variety of real-world videos.

Moving Cameras. We evaluate the applicability of Focus on moving cameras using three news

channel video streams. �ese news videos were recorded with moving cameras and they change

scenes between di�erent news segments. For moving cameras, we use a cheap object detector

(Tiny YOLO, which is 5× faster than YOLOv2 for the same input image size) as our ingest-time

CNN. Figure 4.8 shows the end-to-end performance of Focus on moving cameras.

5X 5X 5X 5X

1

10

cn
n

fo
xn

ew
s

m
sn

bc Av
g

In
ge

st
 ch

ea
pe

r t
ha

n
In

ge
st

-h
ea

vy
 b

y
(fa

ct
or

)

27X

122X
34X 49X

1

10

100

1000
cn

n

fo
xn

ew
s

m
sn

bc Av
g

Q
ue

ry
 fa

st
er

 th
an

N

oS
co

pe
 b

y
(fa

ct
or

)

Figure 4.8: Focus performance on moving cameras. (Le�) Focus ingest cost compared to Ingest-

heavy. (Right) Focus query latency compared to NoScope.

As the �gure shows, Focus is e�ective in reducing query latency with only a modest ingest

32

cost. Focus achieves a 49× speedup in query latency on average over NoScope, with ingest cost

that is 5× cheaper than Ingest-heavy. We make two main observations. First, the ingest cost

improvements on moving cameras (5×) is lower than the ones on static cameras (57×). �is is

because moving cameras require a detector CNN to detect objects, and it is more costly to run a

cheap object detector (like Tiny YOLO) as opposed to using background subtraction to detect the

objects and then classifying them using a cheap classi�er CNN (like compressed ResNet18). Our

design, however, does not preclude using much cheaper detectors than Tiny YOLO, and we can

further reduce the ingest cost of moving cameras by exploring even cheaper object detector CNNs.

Second, Focus’ techniques are very e�ective in reducing query latency on moving cameras. �e

approximate index generated by a cheap detector CNN signi�cantly narrows down the frames

that need to be checked at query time. We conclude that the techniques of Focus are general and

can be applied to a wide range of object detection CNNs and camera types.

Averaging over both static and moving cameras, Focus’ ingest cost is 48× cheaper than

Ingest-heavy and its queries are 125× faster than NoScope.

We now take a deeper look at Focus’ performance using representative static cameras.

4.5.3 E�ect of Di�erent Focus Components

Figure 4.9 shows the breakdown of query latency gains for two core techniques of Focus: (1)

Approximate indexing, which indexes each object with the top-K results of the ingest-time

CNN, and (2) Approximate indexing + Clustering, which adds feature-based clustering at

ingest time to reduce redundant work at query time. We show the results that achieve at least

99% recall and precision. We make two observations.

114X
195X

1
10

100
1000

au
bu

rn
_c

be
lle

vu
e_

d

be
nd

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd

Av
g

Fa
st

er
 th

an
 N

oS
co

pe

by
 (f

ac
to

r)

Approximate indexing +Clustering

Figure 4.9: E�ect of di�erent Focus components on query latency reduction

First, approximate indexing is the major source of query latency improvement. �is is because

33

approximate indexing e�ectively eliminates irrelevant objects for each query and bypasses the

query-time veri�cation for high-con�dence ingest predictions. As a result, only a small fraction

of frames need to be resolved at query time. On average, approximate indexing alone is 114×
faster than NoScope in query latency.

Second, clustering is a very e�ective technique to further reduce query latency. Using clus-

tering (on top of approximate indexing) reduces the query latency by 195×, signi�cantly be�er

than approximate indexing alone. We see that clustering is especially e�ective on surveillance

videos (e.g., coral, lausanne, and oxford) because objects in these videos tend to stay longer

in the camera (e.g., “person” on a plaza compared to “car” in tra�c videos), and hence there is

more redundancy in these videos. �is gain comes with a negligible cost because we run our

clustering algorithm (§4.3.3) on the otherwise idle CPUs of the ingest machine while the GPUs

run the ingest-time CNN model.

4.5.4 Ingest Cost vs. �ery Latency Trade-o�

One of the important features of Focus is the �exibility to tune its system parameters to achieve

di�erent application goals (§4.3.4). Figure 4.10 (the zoom-in region of Figure 4.1) depicts three

alternative se�ings for Focus that illustrate the trade-o� space between ingest cost and query

latency, using the oxford video stream: (1) Focus-Opt-�ery, which optimizes for query latency

by increasing ingest cost, (2) Focus-Balance, which is the default option that balances these two

metrics (§4.3.4), and (3): Focus-Opt-Ingest, which is the opposite of Focus-Opt-�ery. �e

results are shown relative to the Ingest-heavy and NoScope baselines. Each data label (I,Q)

indicates its ingest cost is I× cheaper than Ingest-heavy, while its query latency is Q× faster

than NoScope.

As Figure 4.10 shows, Focus o�ers very good options in the trade-o� space between ingest

cost and query latency. Focus-Opt-Ingest is 90× cheaper than Ingest-heavy, and makes the

query 403× faster than a query-optimized system (NoScope). On the other hand, Focus-Opt-

�ery reduces query latency even more (by 698×) but it is still 53× cheaper than Ingest-heavy.

As these points in the design space are all good options compared to the baselines, such �exibility

enables a user to tailor Focus for di�erent contexts. For example, a camera that requires fast

turnaround time for queries can use Focus-Opt-�ery, while a video stream that will be queried

rarely would choose Focus-Opt-Ingest to reduce the amount of wasted ingest cost in exchange

for longer query latencies.

Figure 4.11 shows the (I,Q) values for both Focus-Opt-Ingest (Opt-I) and Focus-Opt-

�ery (Opt-Q) for the representative videos. As the �gure shows, the �exibility to make di�erent

34

(I=53X, Q=698X)

(I=90X, Q=403X)

(I=84X, Q=607X)

0

0.001

0.002

0.003

0 0.01 0.02No
rm

al
ize

d
Q

ue
ry

 L
at

en
cy

Normalized Ingest Cost

Focus-Opt-Query Focus-Opt-Ingest
Focus-Balance

Figure 4.10: Focus’ trade-o� policies on an example video

trade-o�s exists in most other videos. On average, Focus-Opt-Ingest is 65× (up to 96×) cheaper

than Ingest-heavy in ingest cost while providing 100× (up to 443×) faster queries. Focus-Opt-

�ery makes queries 202× (up to 698×) faster with a higher ingest cost (53× cheaper than

Ingest-heavy). Note that there is no fundamental limitation on the spread between Focus-Opt-

�ery and Focus-Opt-Ingest as we can expand the search space for ingest-time CNNs to further

optimize ingest cost at the expense of query latency (or vice versa). We conclude that Focus en-

ables �exibly optimizing for ingest cost or query latency for application’s needs.

1

10

100

1000

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

auburn_c bellevue_d bend jackson_ts coral lausanne oxford sittard

Im
pr

ov
em

en
ts

 (f
ac

to
r) Ingest Cheaper by Query Faster by

Figure 4.11: Ingest cost vs. query latency trade-o�

It is worth noting that the fraction of videos that get queried can a�ect the applicability of

Focus, especially in the case where only a tiny fraction of videos gets queried. While Focus-Opt-

Ingest can save the ingest cost by up to 96×, it can be more costly than any purely query-time-

35

only solution if the fraction of videos that gets queried is less than
1
96
≈ 1%. In such a case, a

user can still use Focus to signi�cantly reduce query latency, but the cost of Focus can be higher

than query-time-only solutions.

4.5.5 Sensitivity to Recall/Precision Target

Figure 4.12 illustrates Focus’ reduction in query latency compared to the baselines under di�erent

recall/precision targets. Other than the default 99% recall and precision target, we evaluate both

Focus and NoScope with two lower targets, 97% and 95%.

195X
167X

169X

1
10

100
1000

au
burn_c

belle
vu

e_d
bend

jac
kso

n_ts
co

ral

lausanne
oxfo

rd
sit

tard Avg

Q
ue

ry
 fa

st
er

 th
an

No

Sc
op

e
by

 (f
ac

to
r) 99% 97% 95%Precision/Recall:

Figure 4.12: Sensitivity of query latency reduction to recall/precision target

We observe that with lower accuracy targets, the query latency improvement decreases

slightly for most videos, while the ingest cost improvement does not change much (not graphed).

�e ingest cost is not sensitive to the accuracy target because Focus still runs similar ingest

CNNs. NoScope can however apply more aggressive query-time optimization to reduce query

latency given lower accuracy targets. �is decreases Focus’ improvement over NoScope for sev-

eral videos. On average, Focus is faster than NoScope in query latency by 195×, 167×, and 169×
with recall/precision of 99%, 97%, and 95%, respectively. We conclude that Focus’ techniques can

achieve signi�cant improvements on query latency, irrespective of recall/precision targets.

4.5.6 Sensitivity to Object Class Numbers

We use the 1000 object classes in the ImageNet dataset [133] to study the sensitivity of Focus’

performance to the number of object classes (compared to the 80 default object classes in the

COCO [108] dataset). Our result shows that Focus is 15× faster (on average) in query latency

and 57× cheaper (on average) in ingest cost than the baseline systems, while achieving 99% recall

and precision. We observe that the query latency improvements with 1000 object classes is lower

36

than the ones with 80 object classes. �e reason is that ingest-time CNNs are less accurate on

more object classes, and we need to select a larger K to achieve the target recall. Nonetheless,

the improvements of Focus are robust with more object classes as Focus is over one order of

magnitude faster than the baseline systems when di�erentiating 1000 object classes.

4.6 Other Applications

Applications that leverage CNNs to process large and continuously growing data share similar

challenges as Focus. Examples of such applications are:

1) Video and audio. Other than querying for objects, many emerging video applications are

also based on CNNs, such as event detection (e.g., [169]), emotion recognition (e.g., [91]), video

classi�cation (e.g., [94]), and face recognition (e.g., [137]). Audio applications such as speech

recognition (e.g., [21]) are also based on CNNs.

2) Bioinformatics and geoinformatics. Many bioinformatics and geoinformatics systems

leverage CNNs to process a large dataset, such as anomaly classi�cation in biomedical imaging

(e.g., [106, 131]), information decoding in biomedical signal recordings (e.g., [145]), and pa�ern

recognition in satellite imagery (e.g., [24, 45]).

Naturally, these applications need to answer user-speci�ed queries, such as “�nd all brain

signal recordings with a particular perception” or “�nd all audio recordings with a particular

keyword”. Supporting these queries faces similar challenges to Focus, as a system either: (i)

generates a precise index at ingest time, which incurs high cost; or (ii) does most of the heavy-

li�ing at query time, which results in high query latency. Hence, Focus’ architecture o�ers a

low-cost and low-latency option: building an approximate index with cheap CNNs at ingest time

and generating precise results based on the approximate index at query time. While the indexing

structure may need to be adapted to di�erent applications, we believe Focus’ architecture and

techniques can bene�t many of these emerging applications.

4.7 Summary

Answering queries of the form, �nd me frames that contain objects of class X, is an important

workload on recorded video datasets. Such queries are used by analysts and investigators for

various immediate purposes, and it is crucial to answer them with low latency and low cost.

�is chapter presents Focus, a system that �exibly divides the query processing work between

ingest time and query time. Focus performs low-cost ingest-time analytics on live video that

37

later facilitates low-latency queries on the recorded videos. At ingest time, Focus uses cheap

CNNs to construct an approximate index of all possible object classes in each frame to retain

high recall. At query time, Focus leverages this approximate index to provide low latency, but

compensates for the lower precision by judiciously using expensive CNNs. �is architecture en-

ables orders-of-magnitude faster queries with only a small investment at ingest time, and allows

�exibly trading o� ingest cost and query latency. Our evaluations using real-world videos from

tra�c, surveillance, and news domains show that Focus reduces ingest cost on average by 48×
(up to 92×) and makes queries on average 125× (up to 607×) faster compared to state-of-the-

art baselines. We conclude that Focus’ architecture and techniques make it a highly practical

and e�ective approach to querying large video datasets. We hope that the ideas and insights be-

hind Focus can be applied to designing e�cient systems for many other forms of querying on

large and continuously-growing datasets in many domains, such as audio, bioinformatics, and

geoinformatics.

38

Chapter 5

ML Training over Geo-Distributed Data

As Chapter §1 discusses, many ML applications analyze massive amounts of data from user ac-

tivities, pictures, videos, etc., which are generated at very rapid rates, all over the world. Many

large organizations, such as Google [64], Microso� [114], and Amazon [25], operate tens of data

centers globally to minimize their service latency to end-users, and store massive quantities of

data all over the globe [68, 74, 84, 97, 122, 124, 159, 160, 161, 165].

A commonly-used approach to run an ML application over such rapidly generated data is to

centralize all data into one data center over wide-area networks (WANs) before running the ML

application [29, 40, 103, 152]. However, this approach can be prohibitively di�cult because: (1)

WAN bandwidth is a scarce resource, and hence moving all data can be extremely slow [40, 122].

Furthermore, the fast growing rate of image and video generation will eventually saturate the

total WAN bandwidth, whose growth has been decelerating for many years [151, 161]. (2) Privacy

and data sovereignty laws in some countries prohibit transmission of raw data across national or

continental borders [40, 160, 161].

�is motivates the need to distribute an ML system across multiple data centers, globally. In

such a system, large amounts of raw data are stored locally in di�erent data centers, and the ML

algorithms running over the distributed data communicate between data centers using WANs.

Unfortunately, existing large-scale distributed ML systems [20, 46, 104, 110, 113, 167] are suitable

only for data residing within a single data center. Our experiments using three state-of-the-art

distributed ML systems (Bösen [162], IterStore [51], and GeePS [52]) show that operating these

systems across as few as two data centers (over WANs) can cause a slowdown of 1.8–53.7× (see

Section 5.1.2 and Section 5.5) relative to their performance within a data center (over LANs).

Existing systems that do address challenges in geo-distributed data analytics [40, 74, 84, 97, 122,

124, 159, 160, 161] do not consider the broad class of important, sophisticated ML algorithms

39

commonly run on ML systems — they focus instead on other types of computation, e.g., map-

reduce or SQL.

Our goal in this chapter is to develop a geo-distributed ML system that (1) minimizes com-

munication over WANs, so that the system is not bo�lenecked by the scarce WAN bandwidth;

and (2) is general enough to be applicable to a wide variety of ML algorithms, without requiring

any changes to the algorithms themselves.

To achieve these goals, such a system needs to address two key challenges. First, to e�-

ciently utilize the limited (and heterogeneous) WAN bandwidth, we need to �nd an e�ective

communication model that minimizes communication over WANs but still retains the correct-

ness guarantee for an ML algorithm. �is is di�cult because ML algorithms typically require

extensive communication to exchange updates that keep the global ML model su�ciently con-

sistent across data centers. �ese updates are required to be timely, irrespective of the available

network bandwidth, to ensure algorithm correctness. Second, we need to design a general system

that e�ectively handles WAN communication for ML algorithms without requiring any algorithm

changes. �is is challenging because the communication pa�erns vary signi�cantly across dif-

ferent ML algorithms [88, 118, 129, 144, 148, 153]. Altering the communication across systems

can lead to di�erent tradeo�s and consequences for di�erent algorithms [175].

In this chapter, we introduce Gaia, a new general, geo-distributed ML system that is de-

signed to e�ciently operate over a collection of data centers. Gaia builds on the widely used

parameter server architecture (e.g., [20, 23, 46, 50, 51, 54, 75, 104, 162, 167]) that provides ML

worker machines with a distributed global shared memory abstraction for the ML model param-

eters they collectively train until convergence to �t the input data. �e key idea of Gaia is to

maintain an approximately-correct copy of the global ML model within each data center, and

dynamically eliminate any unnecessary communication between data centers. Gaia enables this

by decoupling the synchronization (i.e., communication/consistency) model within a data cen-

ter from the synchronization model between di�erent data centers. �is di�erentiation allows

Gaia to run a conventional synchronization model [53, 75, 162] that maximizes utilization of the

more-freely-available LAN bandwidth within a data center. At the same time, across di�erent

data centers, Gaia employs a new synchronization model, called Approximate Synchronous Par-

allel (ASP), which makes more e�cient use of the scarce and heterogeneous WAN bandwidth. By

ensuring that each ML model copy in di�erent data centers is approximately correct based on a

precise notion de�ned by ASP, we guarantee ML algorithm convergence.

ASP is based on a key �nding that the vast majority of updates to the global ML model pa-

rameters from each ML worker machine are insigni�cant. For example, our study of three classes

40

of ML algorithms shows that more than 95% of the updates produce less than a 1% change to

the parameter value. With ASP, these insigni�cant updates to the same parameter within a data

center are aggregated (and thus not communicated to other data centers) until the aggregated

updates are signi�cant enough. ASP allows the ML programmer to specify the function and the

threshold to determine the signi�cance of updates for each ML algorithm, while providing default

con�gurations for unmodi�ed ML programs. For example, the programmer can specify that all

updates that produce more than a 1% change are signi�cant. ASP ensures all signi�cant updates

are synchronized across all model copies in a timely manner. It dynamically adapts communi-

cation to the available WAN bandwidth between pairs of data centers and uses special selective

barrier and mirror clock control messages to ensure algorithm convergence even during a period

of sudden fall (negative spike) in available WAN bandwidth.

In contrast to a state-of-the-art communication-e�cient synchronization model, Stale Syn-

chronous Parallel (SSP) [75], which bounds how stale (i.e., old) a parameter can be, ASP bounds

how inaccurate a parameter can be, in comparison to the most up-to-date value. Hence, it provides

high �exibility in performing (or not performing) updates, as the server can delay synchroniza-

tion inde�nitely as long as the aggregated update is insigni�cant.

We build two prototypes of Gaia on top of two state-of-the-art parameter server systems,

one specialized for CPUs [51] and another specialized for GPUs [52]. We deploy Gaia across 11

regions on Amazon EC2, and on a local cluster that emulates the WAN bandwidth across di�erent

Amazon EC2 regions. Our evaluation with three popular classes of ML algorithms shows that,

compared to two state-of-the-art parameter server systems [51, 52] deployed on WANs, Gaia:

(1) signi�cantly improves performance, by 1.8–53.5×, (2) has performance within 0.94–1.40× of

running the same ML algorithm on a LAN in a single data center, and (3) signi�cantly reduces

the monetary cost of running the same ML algorithm on WANs, by 2.6–59.0×.

5.1 Motivation

To further motivate our work, we discuss WAN bandwidth constraints and study the performance

implications of running two state-of-the-art ML systems over WANs.

5.1.1 WAN Network Bandwidth and Cost

WAN bandwidth is a very scarce resource [100, 124, 161] relative to LAN bandwidth. Moreover,

the high cost of adding network bandwidth has resulted in a deceleration of WAN bandwidth

41

growth. �e Internet capacity growth has fallen steadily for many years, and the annual growth

rates have lately se�led into the low-30 percent range [151].

To quantify the scarcity of WAN bandwidth between data centers, we measure the network

bandwidth between all pairs of Amazon EC2 sites in 11 di�erent regions (Virginia, California,

Oregon, Ireland, Frankfurt, Tokyo, Seoul, Singapore, Sydney, Mumbai, and São Paulo). We use

iperf3 [58] to measure the network bandwidth of each pair of di�erent regions for �ve rounds,

and then calculate the average bandwidth. Figure 5.1 shows the average network bandwidth

between each pair of di�erent regions. We make two observations.

Virginia
California
Oregon
Ireland
Frankfurt
Tokyo
Seoul
Singapore
Sydney
Mumbai
São Paulo

0
100
200
300
400
500
600
700
800
900

1000

Ne
tw

or
k
Ba

nd
wi
dt

h
(M
b/
s)

Figure 5.1: Measured network bandwidth between Amazon EC2 sites in 11 di�erent regions

First, the WAN bandwidth between data centers is 15× smaller than the LAN bandwidth

within a data center on average, and up to 60× smaller in the worst case (for Singapore Ö São

Paulo). Second, the WAN bandwidth varies signi�cantly between di�erent regions. �e WAN

bandwidth between geographically-close regions (e.g., Oregon Ö California or Tokyo Ö Seoul)

is up to 12× of the bandwidth between distant regions (e.g., Singapore Ö São Paulo). As Sec-

tion 5.1.2 shows, the scarcity and variation of the WAN bandwidth can signi�cantly degrade the

performance of state-of-the-art ML systems.

Another important challenge imposed by WANs is the monetary cost of communication. In

data centers, the cost of WANs far exceeds the cost of a LAN and makes up a signi�cant fraction

of the overall cost [66]. Cloud service providers, such as Amazon EC2, charge an extra fee for

WAN communication while providing LAN communication free of charge. �e cost of WAN

communication can be much higher than the cost of the machines themselves. For example, the

cost of two machines in Amazon EC2 communicating at the rate of the average WAN bandwidth

42

between data centers is up to 38× of the cost of renting these two machines [26]. �ese costs

make running ML algorithms on WANs much more expensive than running them on a LAN.

5.1.2 ML System Performance on WANs

We study the performance implications of deploying distributed ML systems on WANs using

two state-of-the-art parameter server systems, IterStore [51] and Bösen [162]. Our experiments

are conducted on our local 22-node cluster that emulates the WAN bandwidth between Amazon

EC2 data centers, the accuracy of which is validated against a real Amazon EC2 deployment (see

Section 6.1.2 for details). We run the same ML application,Matrix Factorization [60] (Section 5.4.2),

on both systems.

For each system, we evaluate both BSP and SSP as the synchronization model (Section 2.1),

with four deployment se�ings: (1) LAN, deployment within a single data center, (2) EC2-ALL,

deployment across 11 aforementioned EC2 regions, (3) V/C WAN, deployment across two data

centers that have the same WAN bandwidth as that between Virginia and California (Figure 5.1),

representing a distributed ML se�ing within a continent, and (4) S/S WAN, deployment across

two data centers that have the same WAN bandwidth as that between Singapore and São Paulo,

representing the lowest WAN bandwidth between any two Amazon EC2 regions.

Figure 5.2 shows the normalized execution time until algorithm convergence across the four

deployment se�ings. All results are normalized to IterStore using BSP on a LAN. �e data label

on each bar represents how much slower the WAN se�ing is than its respective LAN se�ing for

the given system, e.g., Bösen-BSP on EC2-ALL is 5.9× slower than Bösen-BSP on LAN.

3.7X 3.5X

23.8X

2.7X 2.3X

13.7X

5.9X 4.4X

24.2X

4.9X 4.3X

26.8X

0

5

10

15

20

25

LAN EC2-ALL V/C WAN S/S WAN LAN EC2-ALL V/C WAN S/S WAN

BSP SSP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

un
til

 C
on

ve
rg

en
ce

IterStore Bӧsen

Figure 5.2: Normalized execution time until ML algorithm convergence when deploying two

state-of-the-art distributed ML systems on a LAN and WANs

As we see, both systems su�er signi�cant performance degradation when deployed across

multiple data centers. When using BSP, IterStore is 3.5× to 23.8× slower on WANs than it is on a

43

LAN, and Bösen is 4.4× to 24.2× slower. While using SSP can reduce overall execution times of

both systems, both systems still show signi�cant slowdown when run on WANs (2.3× to 13.7×
for IterStore, and 4.3× to 26.8× for Bösen). We conclude that simply running state-of-the-art

distributed ML systems on WANs can seriously slow down ML applications, and thus we need a

new distributed ML system that can be e�ectively deployed on WANs.

5.2 Our Approach: Gaia

We introduce Gaia, a general ML system that can be e�ectively deployed on WANs to address

the increasing need to run ML applications directly on geo-distributed data. We identify two key

challenges in designing such a system (Section 5.2.1). We then introduce the system architecture

of Gaia, which di�erentiates the communication within a data center from the communication

between di�erent centers (Section 5.2.2). Our approach is based on the key empirical �nding

that the vast majority of communication within an ML system results in insigni�cant changes

to the state of the global model (Section 5.2.3). In light of this �nding, we design a new ML

synchronization model, called Approximate Synchronous Parallel (ASP), which can eliminate the

insigni�cant communication while ensuring the convergence and accuracy of ML algorithms. We

describe ASP in detail in Section 5.2.4. Finally, Section 5.2.5 summarizes our theoretical analysis of

how ASP guarantees algorithm convergence for a widely-used ML algorithm, stochastic gradient

descent (SGD) (the full proof is in Appendix 5.A).

5.2.1 Key Challenges

�ere are two key challenges in designing a general and e�ective ML system on WANs.

Challenge 1. How to e�ectively communicate over WANs while retaining algorithm conver-

gence and accuracy? As we see above, state-of-the-art distributed ML systems can overwhelm the

scarce WAN bandwidth, causing signi�cant slowdowns. We need a mechanism that signi�cantly

reduces the communication between data centers so that the system can provide competitive

performance. However, reducing communication can a�ect the accuracy of an ML algorithm. A

poor choice of synchronization model in a distributed ML system can prevent the ML algorithm

from converging to the optimal point (i.e., the best model to explain or �t the input data) that

one can achieve when using a proper synchronization model [38, 126]. �us, we need a mech-

anism that can reduce communication intensity while ensuring that the communication occurs

in a timely manner, even when the network bandwidth is extremely stringent. �is mechanism

should provably guarantee algorithm convergence irrespective of the network conditions.

44

Challenge 2. How to make the system generic and work for ML algorithms without requiring

modi�cation? Developing an e�ective ML algorithm takes signi�cant e�ort and experience, mak-

ing it a large burden for the ML algorithm developers to change the algorithm when deploying it

on WANs. Our system should work across a wide variety of ML algorithms, preferably without

any change to the algorithms themselves. �is is challenging because di�erent ML algorithms

have di�erent communication pa�erns, and the implication of reducing communication can vary

signi�cantly among them [88, 118, 129, 144, 148, 153, 175].

5.2.2 Gaia System Overview

We propose a new ML system, Gaia, that addresses the two key challenges in designing

a general and e�ective ML system on WANs. Gaia is built on top the popular parame-

ter server architecture, which is proven to be e�ective on a wide variety of ML algorithms

(e.g., [20, 23, 46, 50, 51, 54, 75, 104, 162, 167]). As discussed in Section 2.1, in the parameter

server architecture, all worker machines synchronize with each other through parameter servers

to ensure that the global model state is up-to-date. While this architecture guarantees algorithm

convergence, it also requires substantial communication between worker machines and parame-

ter servers. To make Gaia e�ective on WANs while fully utilizing the abundant LAN bandwidth,

we design a new system architecture to decouple the synchronization within a data center (LANs)

from the synchronization across di�erent data centers (WANs).

Figure 5.3 shows an overview of Gaia. In Gaia, each data center has some worker machines

and parameter servers. Each worker machine processes a shard of the input data stored in its

data center to achieve data parallelism (Section 2.1). �e parameter servers in each data center

collectively maintain a version of the global model copy (¶), and each parameter server handles a

shard of this global model copy. A worker machine only READs and UPDATEs the global model

copy in its data center.

To reduce the communication overhead over WANs, the global model copy in each data cen-

ter is only approximately correct. �is design enables us to eliminate the insigni�cant, and thus

unnecessary, communication across di�erent data centers. We design a new synchronization

model, called Approximate Synchronous Parallel (ASP ·), between parameter servers across dif-

ferent data centers to ensure that each global model copy is approximately correct even with

very low WAN bandwidth. Section 5.2.4 describes the details of ASP. On the other hand, worker

machines and parameter servers within a data center synchronize with each other using the con-

ventional BSP (Bulk Synchronous Parallel) or SSP (Stale Synchronous Parallel) models (¸). �ese

models allow worker machines to quickly observe fresh updates that happen within a data center.

45

Parameter
Server

Data Center 1

❸

Parameter
Server

Worker
Machine

Data
Shard

BSP/SSP

Global Model Copy❶

Parameter
Server

Parameter
Server

…

ASP❷

Data Center 2

Worker
Machine

Data
Shard

Worker
Machine

Data
Shard

…

Global Model Copy

Figure 5.3: Gaia system overview

Furthermore, worker machines and parameter servers within a data center can employ more ag-

gressive communication schemes such as sending updates early and o�en [53, 162] to fully utilize

the abundant (and free) network bandwidth on a LAN.

5.2.3 Study of Update Signi�cance

As discussed above, Gaia reduces the communication overhead over WANs by eliminating in-

signi�cant communication. To understand the bene�t of our approach, we study the signi�cance

of the updates sent from worker machines to parameter servers. We study three classes of popular

ML algorithms: Matrix Factorization (MF) [60], Topic Modeling (TM) [34], and Image Classi�cation

(IC) [101] (see Section 5.4.2 for descriptions). We run all the algorithms until convergence, ana-

lyze all the updates sent from worker machines to parameter servers, and compare the change

they cause on the parameter value when the servers receive them. We de�ne an update to be sig-

ni�cant if it causes S% change on the parameter value, and we vary S, the signi�cance threshold,

between 0.01 and 10. Figure 5.4 shows the percentage of insigni�cant updates among all updates,

for di�erent values of S.

As we see, the vast majority of updates in these algorithms are insigni�cant. Assuming the

signi�cance threshold is 1%, 95.2% / 95.6% / 97.0% of all updates are insigni�cant for MF / TM

/ IC. When we relax the signi�cance threshold to 5%, 98.8% / 96.1% / 99.3% of all updates are

insigni�cant. �us, most of the communication changes the ML model state only very slightly.

It is worth noting that our �nding is consistent with the �ndings of prior work [55, 57, 96,

110, 171] on other ML algorithms, such as PageRank and Lasso. �ese works observe that in

these ML algorithms, not all model parameters converge to their optimal value within the same

46

0%
20%
40%
60%
80%

100%

10% 5% 1% 0.5% 0.1% 0.05% 0.01%

Pe
rc

en
ta

ge
 o

f
In

sig
ni

fic
an

t
U

pd
at

es

Threshold of Significant Updates (S)

Matrix Factorization Topic Modeling Image Classification

Figure 5.4: Percentage of insigni�cant updates

number iterations — a property called non-uniform convergence [168]. Instead of examining the

convergence rate, we quantify the signi�cance of updates with various signi�cance thresholds,

which provides a unique opportunity to reduce the communication over WANs.

5.2.4 Approximate Synchronous Parallel

�e goal of our new synchronization model, Approximate Synchronous Parallel (ASP), is to en-

sure that the global model copy in each data center is approximately correct. In this model, a

parameter server shares only the signi�cant updates with other data centers, and ASP ensures

that these updates can be seen by all data centers in a timely fashion. ASP achieves this goal by

using three techniques: (1) the signi�cance �lter, (2) ASP selective barrier, and (3) ASP mirror

clock. We describe them in order.

�esigni�cance �lter. ASP takes two inputs from an ML programmer to determine whether

or not an update is signi�cant. �ey are: (1) a signi�cance function and (2) an initial signi�cance

threshold. �e signi�cance function returns the signi�cance of each update. We de�ne an up-

date as signi�cant if its signi�cance is larger than the threshold. For example, an ML program-

mer can de�ne the signi�cance function as the update’s magnitude relative to the current value

(|Update
V alue

|), and set the initial signi�cance threshold to 1%. �e signi�cance function can be more

sophisticated if the impact of parameter changes to the model is not linear, or the importance

of parameters is non-uniform (see Section 5.3.3). A parameter server aggregates updates from

the local worker machines and shares the aggregated updates with other data centers when the

aggregated updates become signi�cant. To ensure that the algorithm can converge to the optimal

point, ASP automatically reduces the signi�cance threshold over time (speci�cally, if the original

threshold is v, then the threshold at iteration t of the ML algorithm is v/
√
t).

ASP selective barrier. While we can greatly reduce the communication overhead over

47

WANs by sending only the signi�cant updates, the WAN bandwidth might still be insu�cient

for such updates. In such a case, the signi�cant updates can arrive too late, and we might not be

able to bound the deviation between di�erent global model copies. ASP handles this case with

the ASP selective barrier (Figure 5.5a) control message. When a parameter server receives the sig-

ni�cant updates (¶) at a rate that is higher than the WAN bandwidth can support, the parameter

server �rst sends the indexes of these signi�cant updates (as opposed to sending both the indexes

and the update values together) via an ASP selective barrier (·) to the other data centers. �e

receiver of an ASP selective barrier blocks its local worker from reading the speci�ed parameters

until it receives the signi�cant updates from the sender of the barrier. �is technique ensures

that all worker machines in each data center are aware of the signi�cant updates a�er a bounded

network latency, and they wait only for these updates. �e worker machines can make progress

as long as they do not depend on any of these parameters.

Data Center 1

Parameter
Server

Data Center 2

Barrier
❶

❷

Parameter
Server

Significant
Updates

(a) ASP selective barrier

Data Center 1 Data Center 2

Clock N❸ Clock N + DS❹

Parameter
Server

Parameter
Server

(b) Mirror clock

Figure 5.5: �e synchronization mechanisms of ASP

Mirror clock. �e ASP select barrier ensures that the latency of the signi�cant updates is

no more than the network latency. However, it assumes that 1) the underlying WAN bandwidth

and latency are �xed so that the network latency can be bounded, and 2) such latency is short

enough so that other data centers can be aware of them in time. In practice, WAN bandwidth can

�uctuate over time [77], and the WAN latency can be intolerably high for some ML algorithms.

Worse still, the ASP selective barrier messages could experience long delay when the network

packets are dropped on WAN. We need a mechanism to guarantee that the worker machines are

aware of the signi�cant updates in time, irrespective of the WAN bandwidth or latency.

We use the mirror clock (Figure 5.5b) to provide this guarantee. When each parameter server

receives all the updates from its local worker machines at the end of a clock (e.g., an iteration), it

reports its clock to the servers that are in charge of the same parameters in the other data centers.

48

When a server detects its clock is ahead of the slowest server that shares the same parameters by a

prede�ned thresholdDS (data center staleness), the server blocks its local worker machines from

reading its parameters until the slowest mirror server catches up. In the example of Figure 5.5b,

the server clock in Data Center 1 is N , while the server clock in Data Center 2 is (N +DS). As

their di�erence reaches the prede�ned limit, the server in Data Center 2 blocks its local worker

from reading its parameters. �is mechanism is similar to the concept of SSP [75], but we use it

only as the last resort to guarantee algorithm convergence.

5.2.5 Summary of Convergence Proof

In this section, we summarize our proof showing that a popular, broad class of ML algorithms

are guaranteed to converge under our new ASP synchronization model. �e class we consider

are ML algorithms expressed as convex optimization problems that are solved using distributed

stochastic gradient descent.

�e proof follows the outline of prior work on SSP [75], with a new challenge, i.e., our new

ASP synchronization model allows the synchronization of insigni�cant updates to be delayed

inde�nitely. To prove algorithm convergence, our goal is to show that the distributed execution

of an ML algorithm results in a set of parameter values that are very close (practically identical)

to the values that would be obtained under a serialized execution.

Let f denote the objective function of an optimization problem, whose goal is to minimize f .

Let x̃t denote the sequence of noisy (i.e., inaccurate) views of the parameters, where t = 1, 2, ..., T

is the index of each view over time. Let x∗ denote the value that minimizes f . Intuitively, we

would like ft(x̃t) to approach f(x∗) as t→∞. We call the di�erence between ft(x̃t) and f(x∗)

regret. We can prove ft(x̃t) approaches f(x∗) as t → ∞ by proving that the average regret,

R[X]
T
→ 0 as T →∞.

Mathematically, the above intuition is formulated with �eorem 1. �e details of the proof

and the notations are in Appendix 5.A.

�eorem 1. (Convergence of SGD under ASP). Suppose that, in order to compute the minimizer

x∗ of a convex function f(x) =
∑T

t=1 ft(x), with ft, t = 1, 2, . . . , T , convex, we use stochastic

gradient descent on one component ∇ft at a time. Suppose also that 1) the algorithm is distributed

in D data centers, each of which uses P machines, 2) within each data center, the SSP protocol

is used, with a �xed staleness of s, and 3) a �xed mirror clock di�erence ∆c is allowed between

any two data centers. Let ut = −ηt∇ft(x̃t), where the step size ηt decreases as ηt = η√
t
and

the signi�cance threshold vt decreases as vt = v√
t
. If we further assume that: ‖∇ft(x)‖ ≤ L,

∀x ∈ dom(ft) and max(D(x,x′)) ≤ ∆2,∀x,x′ ∈ dom(ft). �en, as T →∞, the regret R[X] =

49

∑T
t=1 ft(x̃t)− f(x∗) = O(

√
T) and therefore limT→∞

R[X]
T
→ 0.

5.3 Implementation

We introduce the key components of Gaia in Section 5.3.1, and discuss the operation and design

of individual components in the remaining sections.

5.3.1 Gaia System Key Components

Figure 5.6 presents the key components of Gaia. All of the key components are implemented

in the parameter servers, and can be transparent to the ML programs and the worker machines.

As we discuss above, we decouple the synchronization within a data center (LANs) from the

synchronization across di�erent data centers (WANs). �e local server (¶) in each parameter

server handles the synchronization between the worker machines in the same data center using

the conventional BSP or SSP models. On the other hand, themirror server (·) and themirror client

(¸) handle the synchronization with other data centers using our ASP model. Each of these three

components runs as an individual thread.

Local
Server

Gaia Parameter
ServerWorker

Machine

Significance
Filter

Parameter Store

Worker
Machine

Worker
Machine

Mirror
Server

Mirror
Client

Data Center Boundary

Control
Queue

Data
Queue

Gaia Parameter Server

…

❶

❸

❷

❹

❺ ❻

❼
Figure 5.6: Key components of Gaia

5.3.2 System Operations and Communication

We present a walkthrough of major system operations and communication.

UPDATE from a worker machine. When a local server (¶) receives a parameter update

from a worker machine, it updates the parameter in its parameter store (¹), which maintains the

parameter value and its accumulated update. �e local server then invokes the signi�cance �lter

(º) to determine whether or not the accumulated update of this parameter is signi�cant. If it is,

50

the signi�cance �lter sends a MIRROR UPDATE request to the mirror client (¸) and resets the

accumulated update for this parameter.

Messages from the signi�cance �lter. �e signi�cance �lter sends out three types of mes-

sages. First, as discussed above, it sends aMIRROR UPDATE request to the mirror client through

the data queue (¼). Second, when the signi�cance �lter detects that the arrival rate of signi�cant

updates is higher than the underlying WAN bandwidth that it monitors at every iteration, it �rst

sends an ASP Barrier (Section 5.2.4) to the control queue (») before sending the MIRROR
UPDATE. �e mirror client (¸) prioritizes the control queue over the data queue, so that the

barrier is sent out earlier than the update. �ird, to maintain the mirror clock (Section 5.2.4), the

signi�cance �lter also sends a MIRROR CLOCK request to the control queue at the end of each

clock in the local server.

Operations in themirror client. �e mirror client thread wakes up when there is a request

from the control queue or the data queue. Upon waking up, the mirror client walks through the

queues, packs together the messages to the same destination, and sends them.

Operations in the mirror server. �e mirror server handles above messages (MIRROR
UPDATE, ASP BARRIER, and MIRROR CLOCK) according to our ASP model. For MIRROR
UPDATE, it applies the update to the corresponding parameter in the parameter store. For ASP
BARRIER, it sets a �ag in the parameter store to block the corresponding parameter from being

read until it receives the corresponding MIRROR UPDATE. For MIRROR CLOCK, the mirror

server updates its local mirror clock state for each parameter server in other data centers, and

enforces the prede�ned clock di�erence threshold DS (Section 5.2.4).

5.3.3 Advanced Signi�cance Functions

As we discuss in Section 5.2.4, the signi�cance �lter allows the ML programmer to specify a cus-

tom signi�cance function to calculate the signi�cance of each update. By providing an advanced

signi�cance function, Gaia can be more e�ective at eliminating the insigni�cant communication.

If several parameters are always referenced together to calculate the next update, the signi�cance

function can take into account the values of all these parameters. For example, if three parame-

ters a, b, and c are always used as a · b · c in an ML algorithm, the signi�cance of a, b, and c can be

calculated as the change on a ·b ·c. If one of them is 0, any change in another parameter, however

large it may be, is insigni�cant. Similar principles can be applied to model parameters that are

non-linear or non-uniform. For unmodi�ed ML programs, the system applies default signi�cance

functions, such as the relative magnitude of an update for each parameter.

51

5.3.4 Tuning of Signi�cance �resholds

�e user of Gaia can specify two di�erent goals for Gaia: (1) speed up algorithm convergence

by fully utilizing the available WAN bandwidth and (2) minimize the communication cost on

WANs. In order to achieve either of these goals, the signi�cance �lter maintains two signi�cance

thresholds and dynamically tunes these thresholds. �e �rst threshold is the hard signi�cance

threshold. �e purpose of this threshold is to guarantee ML algorithm convergence. As we discuss

in our theoretical analysis (Section 5.2.5), the initial threshold is provided by the ML program-

mer or a default system se�ing, and the signi�cance �lter reduces it over time. Speci�cally, the

signi�cance threshold decreases whenever the learning rate decreases. Every update whose sig-

ni�cance is above the hard threshold is guaranteed to be sent to other data centers. �e second

threshold is the so� signi�cance threshold. �e purpose of it is to use underutilized WAN band-

width to speed up convergence. �is threshold is tuned based on the arrival rate of the signi�cant

updates and the underlying WAN bandwidth. When the user chooses to optimize the �rst goal

(speed up algorithm convergence), the system lowers the so� signi�cance threshold whenever

there is underutilized WAN bandwidth. �e updates whose signi�cance is larger than the so� sig-

ni�cance threshold are sent in a best-e�ort manner. On the other hand, if the goal of the system

is to minimize the WAN communication costs, the so� signi�cance threshold is not activated.

While the con�guration of the initial hard threshold depends on how error tolerant each ML

algorithm is, a simple and conservative threshold (such as 1%–2%) is likely to work in most cases.

�is is because most ML algorithms initialize their parameters with random values, and make

large changes to their model parameters at early phases. �us, they are more error tolerant at the

beginning. As Gaia reduces the threshold over time, its accuracy loss is limited. Typically, the

ML programmer selects the initial hard threshold by running Gaia locally with several values,

and then selects the threshold value that can achieve target model accuracy (e.g., the accuracy

of BSP) while minimizing network communication. An ML expert can choose a more aggressive

threshold based on domain knowledge of the ML algorithm.

5.3.5 Overlay Network and Hub

While Gaia can eliminate the insigni�cant updates, each data center needs to broadcast the sig-

ni�cant updates to all the other data centers. �is broadcast-based communication could limit

the scalability of Gaia when we deploy Gaia to many data centers. To make Gaia more scalable

with more data centers, we use the concept of overlay networks [111].

As we discuss in Section 5.1.1, the WAN bandwidth between geographically-close regions

52

is much higher than that between distant regions. In light of this, Gaia supports having

geographically-close data centers form a data center group. Servers in a data center group send

their signi�cant updates only to the other servers in the same group. Each group has hub data

centers that are in charge of aggregating all the signi�cant updates within the group, and sending

to the hubs of the other groups. Similarly, a hub data center broadcasts the aggregated signi�cant

updates from other groups to the other data centers within its group. Each data center group

can designate di�erent hubs for communication with di�erent data center groups, so the system

can utilize more links within a data center group. For example, the data centers in Virginia, Cal-

ifornia, and Oregon can form a data center group and assign the data center in Virginia as the

hub to communicate with the data centers in Europe and the data center in Oregon as the hub to

communicate with the data centers is Asia. �is design allows Gaia to broadcast the signi�cant

updates with lower communication cost.

5.4 Methodology

5.4.1 Experiment Platforms

We use three di�erent platforms for our evaluation.

Amazon-EC2. We deploy Gaia to 22 machines spread across 11 EC2 regions as we

show in Figure 5.1. In each EC2 region we start two instances of type c4.4xlarge or

m4.4xlarge [26], depending on their availability. Both types of instances have 16 CPU cores

and at least 30GB RAM, running 64-bit Ubuntu 14.04 LTS (HVM). In all, our deployment uses 352

CPU cores and 1204 GB RAM.

Emulation-EC2. As the monetary cost of running all experiments on EC2 is too high, we run

some experiments on our local cluster that emulates the computation power and WAN bandwidth

of EC2. We use the same number of machines (22) in our local cluster. Each machine is equipped

with a 16-core Intel Xeon CPU (E5-2698), an NVIDIA Titan X GPU, 64GB RAM, a 40GbE NIC,

and runs the same OS as above. �e computation power and the LAN speeds of our machines are

higher than the ones we get from EC2, so we slow down the CPU and LAN speeds to match the

speeds on EC2. We model the measured EC2 WAN bandwidth (Figure 5.1) with the Linux Tra�c

Control tool [10]. As Section 5.5.1 shows, our emulation platform gives very similar results to the

results from our real EC2 deployment.

Emulation-Full-Speed. We run some of our experiments on our local cluster that emulates

the WAN bandwidth of EC2 at full speed. We use the same se�ings as Emulation-EC2 except we

do not slow down the CPUs and the LAN. We use this platform to show the results of deployments

53

with more powerful nodes.

5.4.2 Applications

We evaluate Gaia with three popular ML applications.

Matrix Factorization (MF) is a technique commonly used in recommender systems, e.g.,

systems that recommend movies to users on Net�ix (a.k.a. collaborative �ltering) [60]. Its goal

is to discover latent interactions between two entities, such as users and movies, via matrix fac-

torization. For example, input data can be a partially �lled matrix X , where every entry is a

user’s rating for a movie, each row corresponding to a user, and each column corresponding to

a speci�c movie. Matrix factorization factorizes X into factor matrices L and R such that their

product approximates X (i.e., X ≈ LR). Like other systems [51, 71, 175], we implement MF

using the stochastic gradient descent (SGD) algorithm. Each worker is assigned a portion of the

known entries in X . �e L matrix is stored locally in each worker, and the R matrix is stored in

parameter servers. Our experiments use the Net�ix dataset, a 480K-by-18K sparse matrix with

100M known entries. �ey are con�gured to factor the matrix into the product of two matrices,

each with rank 500.

Topic Modeling (TM) is an unsupervised method for discovering hidden semantic struc-

tures (topics) in an unstructured collection of documents, each consisting of a bag (multi-set) of

words [34]. TM discovers the topics via word co-occurrence. For example, “policy” is more likely

to co-occur with “government” than “bacteria”, and thus “policy” and “government” are catego-

rized to the same topic associated with political terms. Further, a document with many instances

of “policy” would be assigned a topic distribution that peaks for the politics-related topics. TM

learns the hidden topics and the documents’ associations with those topics jointly. Common ap-

plications for TM include community detection in social networks and news categorizations. We

implement our TM solver using collapsed Gibbs sampling [67]. We use the Nytimes dataset [117],

which has 100M words in 300K documents with a vocabulary size of 100K. Our experiments

classify words and documents into 500 topics.

Image Classi�cation (IC) is a task to classify images into categories, and the state-of-the-

art approach is using deep learning and convolutional neural networks (CNNs) [101]. Given a

set of images with known categories (training data), the ML algorithm trains a CNN to learn the

relationship between the image features and their categories. �e trained CNN is then used to

predict the categories of another set of images (test data). We use GoogLeNet [146], one of the

state-of-the-art CNNs as our model. We train GoogLeNet using stochastic gradient descent with

back propagation [132]. As training a CNN with a large number of images requires substantial

54

computation, doing so on CPUs can take hundreds of machines over a week [46]. Instead, we

use distributed GPUs with a popular deep learning framework, Ca�e [89], which is hosted by

a state-of-the-art GPU-specialized parameter server system, GeePS [52]. Our experiments use

the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC12) [133] dataset, which

consists of 1.3M training images and 50K test images. Each image is labeled as one of the 1,000

pre-de�ned categories.

5.4.3 Performance Metrics and Algorithm Convergence Criteria

We use two performance metrics to evaluate the e�ectiveness of a globally distributed ML system.

�e �rst metric is the execution time until algorithm convergence. We use the following algorithm

convergence criterion, based on guidance from our ML experts: if the value of the objective func-

tion (the objective value) in an algorithm changes by less than 2% over the course of 10 iterations,

we declare that the algorithm has converged [71]. In order to ensure that each algorithm accu-

rately converges to the optimal point, we �rst run each algorithm on our local cluster until it

converges, and we record the absolute objective value. �e execution time of each se�ing is the

time it takes to converge to this absolute objective value.

�e second metric is the cost of algorithm convergence. We calculate the cost based on the cost

model of Amazon EC2 [26], including the cost of the server time and the cost of data transfer on

WANs. We use the on-demand pricing of Amazon EC2 published for January 2017 as our cost

model [26]. As the pricing might change over time, we provide the details of the cost model in

Table 5.1. �e CPU instance is c4.4xlarge or m4.4xlarge, depending on the availability

in each EC2 region. �e GPU instance is g2.8xlarge. �e low-cost instance (m4.xlarge)

is the one used for centralizing input data. All the instance costs are shown in USD per hour. All

WAN data transfer costs are shown in USD per GB.

5.5 Evaluation Results

We evaluate the e�ectiveness of Gaia by evaluating three types of systems/deployments:

(1) Baseline, two state-of-the-art parameter server systems (IterStore [51] for MF and TM,

GeePS [52] for IC) that are deployed across multiple data centers. Every worker machine handles

the data in its data center, while the parameter servers are distributed evenly across all the data

centers; (2) Gaia, our prototype systems based on IterStore and GeePS, deployed across multiple

data centers; and (3) LAN, the baseline parameter servers (IterStore and GeePS) that are deployed

within a single data center (also on 22 machines) that already hold all the data, representing the

55

Region

CPU

Instance

GPU

Instance

Low-cost

Instance

Send to

WANs

Recv. from

WANs

Virginia $0.86 $2.60 $0.22 $0.02 $0.01

California $1.01 $2.81 $0.22 $0.02 $0.01

Oregon $0.86 $2.60 $0.22 $0.02 $0.01

Ireland $0.95 $2.81 $0.24 $0.02 $0.01

Frankfurt $1.03 $3.09 $0.26 $0.02 $0.01

Tokyo $1.11 $3.59 $0.27 $0.09 $0.01

Seoul $1.06 $3.59 $0.28 $0.08 $0.01

Singapore $1.07 $4.00 $0.27 $0.09 $0.01

Sydney $1.08 $3.59 $0.27 $0.14 $0.01

Mumbai $1.05 $3.59 $0.26 $0.09 $0.01

São Paulo $1.37 $4.00 $0.34 $0.16 $0.01

Table 5.1: Cost model details

ideal case of all communication on a LAN. For each system, we evaluate two ML synchroniza-

tion models: BSP and SSP (Section 2.1). For Baseline and LAN, BSP and SSP are used among

all worker machines, whereas for Gaia, they are used only within each data center. For be�er

readability, we present the results for BSP �rst and show the results for SSP in Section 5.5.6.

5.5.1 Performance on EC2 Deployment

We �rst present the performance of Gaia and Baseline when they are deployed across 11 EC2

data centers. Figure 5.7 shows the normalized execution time until convergence for our ML appli-

cations, normalized to Baseline on EC2. �e data label on each bar is the speedup over Baseline

for the respective deployment. As Section 6.1.2 discusses, we run only MF on EC2 due to the high

monetary cost of WAN data transfer. �us, we present the results of MF on all three platforms,

while we show the results of TM and IC only on our emulation platforms. As Figure 5.7a shows,

our emulation platform (Emulation-EC2) matches the execution time of our real EC2 deployment

(Amazon-EC2) very well. We make two major observations.

First, we �nd that Gaia signi�cantly improves the performance of Baseline when deployed

globally across many EC2 data centers. For MF, Gaia provides a speedup of 2.0× over Baseline.

Furthermore, the performance of Gaia is very similar to the performance of LAN, indicating

that Gaia almost a�ains the performance upper bound with the given computation resources.

For TM, Gaia delivers a similar speedup (2.0×) and is within 1.25× of the ideal speed of LAN.

For IC, Gaia provides a speedup of 5.6× over Baseline, which is within 1.32× of the LAN speed,

indicating that Gaia is also e�ective on a GPU-based ML system. �e gap between Baseline

56

2.0X 2.0X1.8X 1.8X

3.8X 3.7X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Amazon-EC2

Emulation-EC2
Emulation-Full-Speed

(a)Matrix Factorization (MF)

2.0X
2.5X

3.7X 4.8X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Emulation-EC2
Emulation-Full-Speed

(b) Topic Modeling (TM)

5.6X 7.5X6.0X 8.5X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Emulation-EC2
Emulation-Full-Speed

(c) Image Classi�cation (IC)

Figure 5.7: Normalized execution time until convergence when deployed across 11 EC2 regions

and our emulation cluster

and LAN is larger for IC than for the other two applications. �is is because the GPU-based ML

system generates parameter updates at a higher rate than the CPU-based one, and therefore the

limited WAN bandwidth slows it down more signi�cantly.

57

Second, Gaia provides a higher performance gain when deployed on a more powerful plat-

form. As Figure 5.7 shows, the performance gap between Baseline and LAN signi�cantly in-

creases on Emulation-Full-Speed compared to the slower platform Emulation-EC2. �is is ex-

pected because the WAN bandwidth becomes a more critical bo�leneck when the computation

time reduces and the LAN bandwidth increases. Gaia successfully mitigates the WAN bo�leneck

in this more challenging Emulation-Full-Speed se�ing, and improves the system performance by

3.8× for MF, 3.7× for TM, and 6.0× for IC over Baseline, approaching the speedups provided

by LAN.

5.5.2 Performance and WAN Bandwidth

To understand how Gaia performs under di�erent amounts of WAN bandwidth, we evaluate two

se�ings where Baseline and Gaia are deployed across two data centers with two WAN band-

width con�gurations: (1) V/C WAN, which emulates the WAN bandwidth between Virginia and

California, representing a se�ing within the same continent; and (2) S/SWAN, which emulates the

WAN bandwidth between Singapore and São Paulo, representing the lowest WAN bandwidth be-

tween any two Amazon EC2 sites. All the experiments are conducted on our emulation platform

at full speed. Figures 5.8 and 5.9 show the results. �ree observations are in order.

3.7X 3.5X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Matrix Factorization

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

3.7X 3.9X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Topic Modeling

Baseline Gaia LAN

7.4X 7.4X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Image Classification

Baseline Gaia LAN

Figure 5.8: Normalized execution time until convergence with the WAN bandwidth between

Virginia and California

First, Gaia successfully matches the performance of LAN when WAN bandwidth is high (V/C

WAN). As Figure 5.8 shows, Gaia achieves a speedup of 3.7× for MF, 3.7× for TM, and 7.4× for

IC. For all three ML applications, the performance of Gaia on WANs is almost the same as LAN

performance.

Second, Gaia still performs very well when WAN bandwidth is low (S/S WAN, Figure 5.9):

58

25X 24X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Matrix Factorization

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

14X 17X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Topic Modeling

Baseline Gaia LAN

54X 54X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Image Classification

Baseline Gaia LAN

Figure 5.9: Normalized execution time until convergence with the WAN bandwidth between

Singapore and São Paulo

Gaia provides a speedup of 25.4× for MF, 14.1× for TM, and 53.5× for IC, and successfully ap-

proaches LAN performance. �ese results show that our design is robust for both CPU-based and

GPU-based ML systems, and it can deliver high performance even under scarce WAN bandwidth.

�ird, for MF, the performance of Gaia (on WANs) is slightly be�er than LAN performance.

�is is because we run ASP between di�erent data centers, and the workers in each data center

need to synchronize only with each other locally in each iteration. As long as the mirror updates

on WANs are timely, each iteration of Gaia can be faster than that of LAN, which needs to

synchronize across all workers. While Gaia needs more iterations than LAN due to the accuracy

loss, Gaia can still outperform LAN due to the faster iterations.

5.5.3 Cost Analysis

Figure 5.10 shows the monetary cost of running ML applications until convergence based on the

Amazon EC2 cost model, normalized to the cost of Baseline on 11 EC2 regions. Cost is divided

into three components: (1) the cost of machine time spent on computation, (2) the cost of machine

time spent on waiting for networks, and (3) the cost of data transfer across di�erent data centers.

As we discuss in Section 5.1.1, there is no cost for data transfer within a single data center in

Amazon EC2. �e data label on each bar shows the factor by which the cost of Gaia is cheaper

than the cost of each respective Baseline. We evaluate all three deployment setups that we discuss

in Sections 5.5.1 and 5.5.2. We make two major observations.

First, Gaia is very e�ective in reducing the cost of running a geo-distributed ML application.

Across all the evaluated se�ings, Gaia is 2.6× to 59.0× cheaper than Baseline. Not surprisingly,

the major cost saving comes from the reduction of data transfer on WANs and the reduction of

machine time spent on waiting for networks. For the S/S WAN se�ing, the cost of waiting for

59

4.2X 6.0X 28.5X
0

0.5
1

1.5
2

2.5

Baseline Gaia Baseline Gaia Baseline Gaia

EC2-ALL V/C WAN S/S WAN
N

or
m

lia
ed

 C
os

t Machine Cost (Compute)
Machine Cost (Network)
Communication Cost

(a)Matrix Factorization (MF)

2.6X
5.7X 18.7X

0
0.5

1
1.5

2
2.5

Baseline Gaia Baseline Gaia Baseline Gaia

EC2-ALL V/C WAN S/S WAN

N
or

m
lia

ed
 C

os
t Machine Cost (Compute)

Machine Cost (Network)
Communication Cost

(b) Topic Modeling (TM)

8.5X 10.7X 59.0X
0

0.5
1

1.5
2

2.5
3

3.5
4

Baseline Gaia Baseline Gaia Baseline Gaia

EC2-ALL V/C WAN S/S WAN

N
or

m
lia

ed
 C

os
t Machine Cost (Compute)

Machine Cost (Network)
Communication Cost

(c) Image Classi�cation (IC)

Figure 5.10: Normalized monetary cost of Gaia vs. Baseline

networks is a more important factor than the other two se�ings, because it takes more time to

transfer the same amount of data under low WAN bandwidth. As Gaia signi�cantly improves

system performance and reduces data communication overhead, it signi�cantly reduces both cost

sources. We conclude that Gaia is a cost-e�ective system for geo-distributed ML applications.

Second, Gaia reduces data transfer cost much more when deployed on a smaller number

of data centers. �e reason is that Gaia needs to broadcast the signi�cant updates to all data

centers, so communication cost is higher as the number of data centers increases. While we

employ network overlays (Section 5.3.5) to mitigate this e�ect, there is still more overhead with

more than two data centers. Nonetheless, the cost of Gaia is still much cheaper (4.2×/2.6×/8.5×)

than Baseline even when deployed across 11 data centers.

60

5.5.4 Comparisons with Centralized Data

Gaia obtains its good performance without moving any raw data, greatly reducing WAN costs

and respecting privacy and data sovereignty laws that prohibit raw data movement. For se�ings

in which raw data movement is allowed, Table 5.2 summarizes the performance and cost com-

parisons between Gaia and the centralized data approach (Centralized), which moves all the

geo-distributed data into a single data center and then runs the ML application over the data. We

make Centralized very cost e�cient by moving the data into the cheapest data center in each

se�ing, and we use low cost machines (m4.xlarge [26]) to move the data. We make two major

observations.

Table 5.2: Comparison between Gaia and Centralized

Application Se�ing

Gaia Speedup

over Centralized

Gaia cost /

Centralized cost

MF

EC2-ALL 1.11 3.54

V/C WAN 1.22 1.00

S/S WAN 2.13 1.17

TM

EC2-ALL 0.80 6.14

V/C WAN 1.02 1.26

S/S WAN 1.25 1.92

IC

EC2-ALL 0.76 3.33

V/C WAN 1.12 1.07

S/S WAN 1.86 1.08

First, Gaia outperforms Centralized for most se�ings, except for TM and IC in the EC2-ALL

se�ing. Other than these two cases, Gaia provides a 1.02–2.13× speedup over Centralized. �is

is because Gaia does not need to wait for data movement over WANs, and the performance of

Gaia is very close to that of LAN. On the other hand, Centralized performs be�er when there

is a performance gap between Gaia and LAN, especially in the se�ing of all 11 data centers for

TM and IC. �e data movement overhead of Centralized is smaller in this se�ing because each

data center has only a small fraction of the data, and Centralized moves the data from all data

centers in parallel.

Second, Centralized is more cost-e�cient than Gaia, but the gap is small in the two data

centers se�ing. �is is because the total WAN tra�c of Gaia is still larger than the size of the

training data, even though Gaia signi�cantly reduces the communication overhead over Base-

line. �e cost gap is larger in the se�ing of 11 data centers (3.33–6.14×) than in two data centers

(1.00–1.92×), because the WAN tra�c of Gaia is positively correlated with the number of data

61

centers (Section 5.3.5).

5.5.5 E�ect of Synchronization Mechanisms

One of the major design considerations of ASP is to ensure that the signi�cant updates arrive

in a timely manner to guarantee algorithm convergence. To understand the e�ectiveness of our

proposed synchronization mechanisms (i.e., ASP selective barrier and mirror clock), we run MF

and TM on Gaia with both mechanisms disabled across 11 EC2 regions. Figure 5.11 shows the

progress toward algorithm convergence with the synchronization mechanisms enabled (Gaia)

and disabled (Gaia Async). For MF, lower object value is be�er, while for TM, higher is be�er.

0E+00
1E+08
2E+08
3E+08
4E+08
5E+08
6E+08
7E+08
8E+08
9E+08
1E+09

0 50 100 150 200 250 300 350

O
bj

ec
tiv

e v
al

ue

Time (Seconds)

Gaia
Gaia_Async

convergence value

(a)Matrix Factorization (MF)

-1.5E+09
-1.4E+09
-1.3E+09
-1.2E+09
-1.1E+09
-1.0E+09
-9.0E+08

0 250 500 750 1000

O
bj

ec
tiv

e v
al

ue

Time (Seconds)

Gaia
Gaia_Async

convergence Value

(b) Topic Modeling (TM)

Figure 5.11: Progress toward algorithm convergence with and without Gaia’s synchronization

mechanisms

As Figure 5.11 shows, Gaia steadily reaches algorithm convergence for both applications.

In contrast, Gaia Async diverges from the optimum point at ˜100 seconds for MF. For TM,

Gaia Async looks like it makes faster progress at the beginning of execution because it elim-

inates the synchronization overhead. However, it makes very slow progress a�er ˜200 seconds

and does not reach the value that results in convergence until 1100 seconds. It may take a long

time for Gaia Async to reach that point, if ever. �us, the lack of synchronization leads to

worse model quality than that achieved by using proper synchronization mechanisms. Both re-

sults demonstrate that the synchronization mechanisms we introduce in ASP are e�ective and

vital for deploying ML algorithms on Gaia on WANs.

62

5.5.6 Performance Results of SSP

We present the performance results of SSP for MF (Matrix Factorization) and TM (Topic Modeling)

here. We do not present the results of SSP for IC (Image Classi�cation) because SSP has worse

performance than BSP for IC [52]. In our evaluation, BSP and SSP are used among all worker

machines for Baseline and LAN, whereas for Gaia, they are used only within each data center.

To show the performance di�erence between BSP and SSP, we show both results together.

SSP Performance on EC2 Deployment

Similar to Section 5.5.1, Figures 5.12 and 5.13 show the execution time until convergence for MF

and TM, normalized to Baseline with BSP on EC2. �e data label above each bar shows the

speedup over Baseline for the respective deployment and synchronization model.

2.0X 2.0X 1.5X 1.5X1.8X 1.8X
1.3X 1.3X

3.8X 3.7X 3.0X 2.7X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN Baseline Gaia LAN

BSP SSP

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Amazon-EC2
Emulation-EC2
Emulation-Full-Speed

Figure 5.12: Normalized execution time of MF until convergence when deployed across 11 EC2

regions

We see that Gaia signi�cantly improves the performance of Baseline with SSP. For MF,

Gaia provides a speedup of 1.3–3.0× over Baseline with SSP, and successfully approaches the

speedups of LAN with SSP. For TM, Gaia achieves speedups of 1.5–2.0× over Baseline. Note

that for TM, Gaia with BSP outperforms Gaia with SSP. �e reason is that SSP allows using stale,

and thus inaccurate, values in order to get the bene�t of more e�cient communication. However,

compared to Baseline, the bene�t of employing SSP to reduce communication overhead is much

smaller for Gaia because it uses SSP only to synchronize a small number of machines within a

data center. �us, the cost of inaccuracy outweighs the bene�t of SSP in this case. Fortunately,

Gaia decouples the synchronization model within a data center from the synchronization model

across di�erent data centers. �us, we can freely choose the combination of synchronization

models that works be�er for Gaia.

63

2.0X
2.5X

1.5X 1.7X

3.7X
4.8X

2.0X

3.5X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN Baseline Gaia LAN

BSP SSP

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Emulation-EC2

Emulation-Full-Speed

Figure 5.13: Normalized execution time of TM until convergence when deployed across 11 EC2

regions

SSP Performance and WAN Bandwidth

Similar to Section 5.5.2, Figures 5.14 and 5.15 show the normalized execution time until conver-

gence on two deployments: V/C WAN and S/S WAN. �e data label above each bar shows the

speedup over Baseline for the respective deployment and synchronization model.

3.7X 2.6X3.5X 2.3X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(a)Matrix Factorization (MF)

3.7X 3.1X3.9X 3.2X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(b) Topic Modeling (TM)

Figure 5.14: Normalized execution time until convergence with the WAN bandwidth between

Virginia and California

We �nd that Gaia performs very well compared to Baseline with SSP in both high WAN

bandwidth (V/C WAN) and low WAN bandwidth (S/S WAN) se�ings. For V/C WAN, Gaia

achieves a speedup of 2.6× for MF and 3.1× for TM over Baseline with SSP. For both appli-

cations, the performance of Gaia is almost the same as the performance of LAN. For S/S WAN,

64

25X 16X24X 14X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(a)Matrix Factorization (MF)

14X 17X17X 21X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(b) Topic Modeling (TM)

Figure 5.15: Normalized execution time until convergence with the WAN bandwidth between

Singapore and São Paulo

Gaia provides a speedup of 15.7× / 16.8× for MF / TM over Baseline with SSP, and success-

fully approaches the LAN speedups. We conclude that Gaia provides signi�cant performance

improvement over Baseline, irrespective of the synchronization model used by Baseline.

5.6 Summary

In this chapter, we introduce Gaia, a new ML system that is designed to e�ciently run ML algo-

rithms on globally-generated data over WANs, without any need to change the ML algorithms.

Gaia decouples the synchronization within a data center (LANs) from the synchronization across

di�erent data centers (WANs), enabling �exible and e�ective synchronization over LANs and

WANs. We introduce a new synchronization model, Approximate Synchronous Parallel (ASP),

to e�ciently utilize the scarce and heterogeneous WAN bandwidth while ensuring convergence

of the ML algorithms with a theoretical guarantee. Using ASP, Gaia dynamically eliminates in-

signi�cant, and thus unnecessary, communication over WANs. Our evaluation shows that Gaia

signi�cantly outperforms two state-of-the-art parameter server systems on WANs, and is within

0.94–1.40× of the speed of running the same ML algorithm on a LAN. Gaia also signi�cantly

reduces the monetary cost of running the same ML algorithm on WANs, by 2.6–59.0×. We con-

clude that Gaia is a practical and e�ective system to enable globally-distributed ML applications,

and we believe the ideas behind Gaia’s system design for communication across WANs can be

applied to many other large-scale distributed ML systems.

65

Appendix

5.A Convergence Proof of SGD under ASP

Stochastic Gradient Descent is a very popular algorithm, widely used for �nding the mini-

mizer/maximizer of a criterion (sum of di�erentiable functions) via iterative steps. �e intuition

behind the algorithm is that we randomly select an initial point x0 and keep moving toward the

negative direction of the gradient, producing a sequence of points xi, i = 1, ...n until we detect

that moving further decreases (increases) the minimization (maximization, respectively) criterion

only negligibly.

Formally, step t of the SGD algorithm is de�ned as:

xt = xt−1 − ηt∇ft(xt) = xt−1 − ηtgt = xt−1 + ut (5.1)

where ηt is the step size at step t, ∇ft(xt) or gt is the gradient at step t, and ut = ηtgt is the

update of step t.

Let us de�ne an order of the updates up to step t. Suppose that the algorithm is distributed in

D data centers, each of which uses P machines, and the logical clocks that mark progress start

at 0. �en,

ut = ud,p,c = ub t
P
c mod D, t mod P, b t

DP
c (5.2)

represents a mapping that loops through clocks (c = b t
DP
c) and for each clock loops through data

centers (d = b t
P
c mod D) and for each data center loops through its workers (p = t mod P).

We now de�ne a reference sequence of states that a single machine serial execution would go

through if the updates were observed under the above ordering:

xt = x0 +

t∑
t′=1

ut′ (5.3)

66

Let ∆c denote the threshold of mirror clock di�erence between di�erent data centers. At clock

c, letAd,c denote the (c−∆c)-width window of updates at data center d: Ad,c = [0, P−1]×[0, c−
∆c − 1]. Also, let Kd,c denote the subset of Ad,c of signi�cant updates (i.e., those broadcast to

other data centers) and Ld,c denote the subset of Ad,c of the insigni�cant updates (not broadcast)

from this data center. Clearly, Kd,c and Ld,c are disjoint and their union equals Ad,c.

Let s denote a user-chosen staleness threshold for SSP. Let x̃t denote the sequence of noisy

(i.e., inaccurate) views of the parameters xt. Let Bd,c denote the 2s-width window of updates at

data center d: Bd,c = [0, P − 1]× [c− s, c+ s− 1]. A worker p in data center d will de�nitely see

its own updates and may or may not see updates from other workers that belong to this window.

�en, Md,c denotes the set of updates that are not seen in x̃t and are seen in xt, whereas Nd,c

denotes the updates that are seen in x̃t and not seen in xt. �e sets Md,c and Nd,c are disjoint

and their union equals the set Bd,c.

We de�ne the noisy view x̃t using the above mapping:

x̃d,p,c =

P−1∑
p′=0

c−s−1∑
c′=0

ud,p′,c′ +

c−1∑
c′=c−s

ud,p,c′

+
∑

(p′,c′)∈B′d,c⊂Bd,c

ud,p′,c′ +
∑
d′ 6=d

[∑
(p′,c′)∈Kd′,c′

ud′,p′,c′
]

(5.4)

�e di�erence between the reference view xt and the noisy view x̃t becomes:

x̃t − xt = x̃d,p,c − xt = x̃b t
P
c mod D,t mod P,b t

DP
c − xt =

−
∑
i∈Md,c

ui +
∑
i∈Nd,c

ui −
∑
d′ 6=d

∑
i∈Ld′,c

ui

+
∑
d′ 6=d

[
−

∑
i∈Md′,c

ui +
∑

i∈Nd′,c

ui

]
(5.5)

Finally, let D(x,x′) denote the distance between points x,x′ ∈ Rn
:

D(x,x′) =
1

2
‖x− x′‖2. (5.6)

We now prove the following lemma:

67

Lemma. For any x∗, x̃t ∈ Rn
,

〈x̃t − x∗, g̃t〉 =
1

2
ηt‖g̃t‖2 +

D(x∗,xt)−D(x∗,xt+1)

ηt

+
[
−
∑
i∈Md,c

ηi〈g̃i, g̃t〉+
∑
i∈Nd,c

ηi〈g̃i, g̃t〉
]

+
∑
d′ 6=d

[
−
∑

i∈Ld′,c

ηi〈g̃i, g̃t〉
]

+
∑
d′ 6=d

[
−

∑
i∈Md′,c

ηi〈g̃i, g̃t〉+
∑

i∈Nd′,c

ηi〈g̃i, g̃t〉
]

(5.7)

Proof.

D(x∗,xt+1)−D(x∗,xt) =
1

2
‖x∗ − xt+1‖2 −

1

2
‖x∗ − xt‖2

=
1

2
‖x∗ − xt + xt − xt+1‖2 −

1

2
‖x∗ − xt‖2

=
1

2
‖x∗ − xt + ηtg̃t‖2 −

1

2
‖x∗ − xt‖2

=
1

2
〈x∗ − xt + ηtg̃t,x

∗ − xt + ηtg̃t〉 −
1

2
〈x∗ − xt,x

∗ − xt〉

=
1

2
〈x∗ − xt,x

∗ − xt〉+
1

2
〈ηtg̃t, ηtg̃t〉+ 〈x∗ − xt, ηtg̃t〉

− 1

2
〈x∗ − xt,x

∗ − xt〉

=
1

2
ηt

2‖g̃t‖2 + ηt〈x∗ − xt, g̃t〉

=
1

2
ηt

2‖g̃t‖2 − ηt〈xt − x∗, g̃t〉

=
1

2
ηt

2‖g̃t‖2 − ηt〈xt − x̃t + x̃t − x∗〉

=
1

2
ηt

2‖g̃t‖2 − ηt〈xt − x̃t, g̃t〉 − ηt〈x̃t − x∗, g̃t〉 =⇒

〈x̃t − x∗, g̃t〉 =
1

2
ηt‖g̃t‖2 +

D(x∗,xt)−D(x∗,xt+1)

ηt

− 〈xt − x̃t, g̃t〉 (5.8)

Substituting the RHS of Equation 5.5 into Equation 5.8 completes the proof.

�eorem 1. (Convergence of SGD under ASP).

68

Suppose that, in order to compute the minimizer x∗ of a convex function f(x) =
∑T

t=1 ft(x),

with ft, t = 1, 2, . . . , T , convex, we use stochastic gradient descent on one component∇ft at a time.

Suppose also that 1) the algorithm is distributed in D data centers, each of which uses P machines,

2) within each data center, the SSP protocol is used, with a �xed staleness of s, and 3) a �xed mirror

clock di�erence ∆c is allowed between any two data centers. Let ut = −ηt∇ft(x̃t), where the step
size ηt decreases as ηt = η√

t
and the signi�cance threshold vt decreases as vt = v√

t
. If we further

assume that: ‖∇ft(x)‖ ≤ L, ∀x ∈ dom(ft) and max(D(x,x′)) ≤ ∆2,∀x,x′ ∈ dom(ft). �en,

as T →∞,

R[X] =

T∑
t=1

ft(x̃t)− f(x∗) = O(
√
T)

and therefore

lim
T→∞

R[X]

T
→ 0

Proof.

R[X] =
T∑
t=1

ft(x̃t)− ft(x∗)

≤
T∑
t=1

〈∇ft(x̃t), x̃t − x∗〉 (convexity of ft)

=

T∑
t=1

〈g̃t, x̃t − x∗〉

=
T∑
t=1

[
1

2
ηt‖g̃t‖2 +

D(x∗,xt)−D(x∗,xt+1)

ηt

+
∑
d′ 6=d

[
−
∑

i∈Ld′,c

ηi〈g̃i, g̃t〉
]

+
[
−
∑
i∈Md,c

ηi〈g̃i, g̃t〉+
∑
i∈Nd,c

ηi〈g̃i, g̃t〉
]

+
∑
d′ 6=d

[
−

∑
i∈Md′,c

ηi〈g̃i, g̃t〉+
∑

i∈Nd′,c

ηi〈g̃i, g̃t〉
]]

(5.9)

69

We �rst bound the upper limit of the term:

T∑
t=1

1
2
ηt‖g̃t‖2

:

T∑
t=1

1

2
ηt‖g̃t‖2 ≤

T∑
t=1

1

2
ηtL

2 (‖∇ft(x)‖ ≤ L)

=

T∑
t=1

1

2

η√
t
L2

=
1

2
ηL2

T∑
t=1

1√
t

(

T∑
t=1

1√
t
≤ 2
√
T)

≤ 1

2
ηL22

√
T = ηL2

√
T (5.10)

Second, we bound the upper limit of the term:

T∑
t=1

D(x∗,xt)−D(x∗,xt+1)
ηt

:

T∑
t=1

D(x∗,xt)−D(x∗,xt+1)

ηt

=
D(x∗,x1)

η1
− D(x∗,xT+1)

ηT
+

T∑
t=2

D(x∗,xt)(
1

ηt
− 1

ηt−1
)

≤ ∆2

η
− 0 +

∆2

η

T∑
t=2

[
√
t−
√
t− 1] (max(D(x,x′)) ≤ ∆2)

=
∆2

η
+

∆2

η
[
√
T − 1]

=
∆2

η

√
T (5.11)

�ird, we bound the upper limit of the term:

T∑
t=1

∑
d′ 6=d

[
−

∑
i∈Ld′,c

ηi〈g̃i, g̃t〉
]
:

70

T∑
t=1

∑
d′ 6=d

[
−
∑

i∈Ld′,c

ηi〈g̃i, g̃t〉
]

≤
T∑
t=1

(D − 1)
[
−
∑

i∈Ld′,c

ηi〈g̃i, g̃t〉
]
≤

T∑
t=1

(D − 1)vt

= (D − 1)
T∑
t=1

v√
t− (s+ ∆c + 1)P

≤ (D − 1)v
T∑

t=(s+∆c+1)P+1

1√
T − (s+ ∆c + 1)P

≤ 2(D − 1)v
√
T − (s+ ∆c + 1)P

≤ 2(D − 1)v
√
T

≤ 2Dv
√
T (5.12)

where the fourth inequality follows from the fact that:

T∑
t=(s+∆c+1)P+1

1√
T−(s+∆c+1)P

≤
√
T − (s+ ∆c + 1)P .

Fourth, we bound the upper limit of the term:

T∑
t=1

[
−

∑
i∈Md,c

ηi〈g̃i, g̃t〉+
∑

i∈Nd,c
ηi〈g̃i, g̃t〉

]
:

71

T∑
t=1

[
−
∑
i∈Md,c

ηi〈g̃i, g̃t〉+
∑
i∈Nd,c

ηi〈g̃i, g̃t〉
]

≤
T∑
t=1

[|Md,c|+ |Nd,c |]ηmax(1,t−(s+1)P)L
2

= L2
[(s+1)P∑

t=1

[|Md,c|+ |Nd,c|]η

+
T∑

t=(s+1)P+1

[|Md,c|+ |Nd,c|]ηt−(s+1)P

]

= L2
[(s+1)P∑

t=1

[|Md,c|+ |Nd,c|]η

+
T∑

t=(s+1)P+1

[|Md,c|+ |Nd,c|]
η√

t− (s+ 1)P

]

≤ ηL2
[(s+1)P∑

t=1

2s(P − 1)

+

T∑
t=(s+1)P+1

2s(P − 1)
1√

t− (s+ 1)P

]

= 2ηL2s(P − 1)
[
(s+ 1)P +

T∑
t=(s+1)P+1

1√
T − (s+ 1)P

]
≤ 2ηL2s(P − 1)

[
(s+ 1)P + 2

√
T − (s+ 1)P

]
≤ 2ηL2s(P − 1)[(s+ 1)P + 2

√
T]

= 2ηL2s(s+ 1)(P − 1)P + 4ηL2s(P − 1)
√
T

≤ 2ηL2(s+ 1)(s+ 1)(P − 1)P + 4ηL2(s+ 1)(P − 1)
√
T

= 2ηL2(s+ 1)2(P − 1)P + 4ηL2(s+ 1)(P − 1)
√
T

≤ 2ηL2(s+ 1)2PP + 4ηL2(s+ 1)P
√
T

= 2ηL2[(s+ 1)P]2 + 4ηL2(s+ 1)P
√
T (5.13)

where the �rst inequality follows from the fact that ηmax(1,t−(s+1)P) ≥ ηt, t ∈ Md,t ∪ Nd,t, the

second inequality follows from the fact that |Md,t|+ |Nd,t| ≤ 2s(P − 1), and the third inequality

follows from the fact that

T∑
t=(s+1)P+1

[
1√

T−(s+1)P

]
≤ 2
√
T − (s+ 1)P .

72

Similarly, ∀d′ ∈ D′ = D \ {d}, we can prove that:

T∑
t=1

[
−

∑
i∈Md′,c

ηi〈g̃i, g̃t〉+
∑

i∈Nd′,c

ηi〈g̃i, g̃t〉
]
≤

2ηL2[(s+ ∆c + 1)P]2 + 4ηL2(s+ ∆c + 1)P
√
T

which implies:

T∑
t=1

∑
d′ 6=d

[
−

∑
i∈Md′,c

ui +
∑

i∈Nd′,c

ui

]
≤

D
[
2ηL2[(s+ ∆c + 1)P]2 + 4ηL2(s+ ∆c + 1)P

√
T
]

By combining all the above upper bounds, we have:

R[X] ≤ ηL2
√
T +

∆2

η

√
T + 2Dv

√
T + 2ηL2[(s+ 1)P]2

+ 4ηL2(s+ 1)P
√
T

+D
[
2ηL2[(s+ ∆c + 1)P]2 + 4ηL2(s+ ∆c + 1)P

√
T
]

= O(
√
T) (5.14)

and thus lim
T→∞

R[X]
T
→ 0.

73

Chapter 6

�e Non-IID Data Partition Problem for

Decentralized ML

As Chapter 5 discusses, the advancement of machine learning (ML) is heavily dependent on the

processing of massive amounts of data. �e most timely and relevant data, however, are o�en

generated at di�erent devices all over the world, e.g., data collected by mobile phones and video

cameras. Because of communication and privacy constraints, gathering all these data for cen-

tralized processing is impractical/infeasible, motivating the need for ML training over widely

distributed data (decentralized learning). For example, as Chapter 5 describes, geo-distributed

learning [80] trains a global ML model over data spread across geo-distributed data centers. Simi-

larly, federated learning [112] trains a centralized model over data from a large number of devices

(mobile phones).

Key Challenges in Decentralized Learning. �ere are two key challenges in decentralized

learning. First, training a model over decentralized data using traditional training approaches (i.e.,

those designed for centralized data) requires massive communication, which drastically slows

down the training process because the communication is bo�lenecked by the limited wide-area

or mobile network bandwidth [80, 112]. Second, decentralized data are typically generated at

di�erent contexts, which can lead to signi�cant di�erences in the distribution of the data across

data partitions. For example, facial images collected by cameras will re�ect the demographics of

each camera’s location, and images of kangaroos will be collected only from cameras in Australia

or zoos. Unfortunately, existing decentralized learning algorithms (e.g., [80, 109, 112, 143, 150])

mostly focus on reducing communication, as they either (i) assume the data partitions are in-

dependent and identically distributed (IID) or (ii) conduct only a very limited study on non-IID

data partitions. �is leaves a key question mostly unanswered: What happens to di�erent ML

74

applications and decentralized learning algorithms when their training data partitions are not IID?

Our Goal and Key Findings. In this work, we aim to answer the above key question by con-

ducting the �rst detailed empirical study of the impact of non-IID data partitions on decentralized

learning. Our study covers various ML applications, ML models, training datasets, decentralized

learning algorithms, and degrees of deviation from IID. We focus on deep neural networks (DNNs)

as they are the most relevant solutions for our applications. Our study reveals three key �ndings:

1. Training over non-IID data partitions is a fundamental and pervasive problem for decentral-

ized learning. All three decentralized learning algorithms in our study su�er from major

model quality loss (or even divergence) when run on non-IID data partitions, across all

applications, models, and training datasets in our study.

2. DNNs with batch normalization [86] are particularly vulnerable to non-IID data partitions,

su�ering signi�cant model quality loss even under BSP, the most communication-heavy

approach to decentralized learning.

3. �e degree of deviation from IID (the skewness) is a key determinant of the di�culty level

of the problem.

�ese �ndings reveal that non-IID data is an important yet heavily understudied challenge in

decentralized learning, worthy of extensive study.

Solutions. As two initial steps towards addressing this vast challenge, we �rst show that

among the many proposed alternatives to batch normalization, group normalization [164] avoids

the skew-induced accuracy loss of batch normalization under BSP. With this �x, all models in

our study perform well under BSP for non-IID data, and the problem can be viewed as a trade-

o� between accuracy and communication frequency. Intuitively, there is a tug-of-war among the

di�erent data partitions, with each partition pulling the model to re�ect its data, and only frequent

communication, tuned to the skew-induced accuracy loss, can save the overall model accuracy

of the algorithms in our study. Accordingly, we present SkewScout, a system-level approach

that adapts the communication frequency of decentralized learning algorithms to accuracy loss,

by cross-validating model accuracy across data partitions (model traveling). Our experimental

results show that SkewScout’s adaptive approach automatically reduces communication by 9.6×
(under high skew) to 34.1× (under mild skew) while retaining the accuracy of BSP.

6.1 Background and Setup

We provide background on decentralized learning and popular algorithms for this learning se�ing

(§6.1.1) and then describe our study’s experimental setup (§6.1.2).

75

6.1.1 Decentralized Learning

In a decentralized learning se�ing, we aim to train a ML model w based on all the training data

samples (xi, yi) that are generated and stored in one of theK partitions (denoted as Pk). �e goal

of the training is to �t w to all data samples. Typically, most decentralized learning algorithms

assume the data samples are independent and identically distributed (IID) among di�erent Pk,

and we refer to such a se�ing as the IID se�ing. Conversely, we call it the Non-IID se�ing if such

an assumption does not hold.

We evaluate three popular decentralized learning algorithms to see how they perform on

di�erent applications over the IID and Non-IID se�ings. �ese algorithms can be used with a

variety of stochastic gradient descent (SGD) approaches, and aim to reduce communication, either

among data partitions (Pk) or between the data partitions and a centralized server.

• Gaia [80], a geo-distributed learning algorithm that dynamically eliminates insigni�cant

communication among data partitions. Each partition Pk accumulates updates ∆wj to each

model weight wj locally, and communicates ∆wj to all other data partitions only when its

relative magnitude exceeds a prede�ned threshold (Algorithm 1 in Appendix 6.A)

• FederatedAveraging [112], a popular algorithm for federated learning that combines lo-

cal SGD on each client with model averaging. Speci�cally, FederatedAveraging selects a

subset of the partitions Pk in each epoch, runs a prespeci�ed number of local SGD steps on

each selected Pk, and communicates the resulting models back to a centralized server. �e

server averages all these models and uses the averaged w as the starting point for the next

epoch (Algorithm 2 in Appendix 6.A).

• DeepGradientCompression [109], a popular algorithm that communicates only a pre-

speci�ed amount of gradients each epoch, with various techniques to retain model quality

such as momentum correction, gradient clipping [121], momentum factor masking, and

warm-up training [65] (Algorithm 3 in Appendix 6.A).

In addition to these decentralized learning algorithms, we also show the results of using BSP

(bulk synchronous parallel) [154] over the IID and Non-IID se�ings. BSP is signi�cantly slower

than the above algorithms because it does not seek to reduce communication: All updates from

eachPk are accumulated and shared among all data partitions a�er each training iteration (epoch).

As noted earlier, for decentralized learning, there is a natural tension between the frequency of

communication and the quality of the resulting model: di�ering distributions among the Pk pull

the model in di�erent directions—more frequent communication helps mitigate this “tug-of-war”

in order that the model well-represents all the data. �us, BSP, with its full communication every

76

iteration, is used as the target baseline for model quality for each application.

As noted above, all three decentralized learning algorithms and BSP can use a variety of SGD

algorithms to train ML models. �roughout the study, we use a popular training algorithm, vanilla

momentum SGD [123], to train the DNNs models.

6.1.2 Experimental Setup

Our study consists of three dimensions: (i) ML applications/models, (ii) decentralized learning

algorithms, and (iii) degree of deviation from IID. We explore all three dimensions with rigorous

experimental methodologies. In particular, we make sure the accuracy of our trained ML models

on IID data matches the reported accuracy in corresponding papers. To our knowledge, this is

the �rst detailed empirical study on ML over non-IID data partitions.

Applications. We evaluate di�erent deep learning applications, DNN model structures, and

training datasets:

• Image Classification with four DNN models (AlexNet [99], GoogLeNet [146],

LeNet [102], and ResNet [73]) over two datasets (CIFAR-10 [98] and ImageNet [133]). We

use the validation data accuracy as the model quality metric.

• Face Recognition with the center-loss face model [163] over the CASIA-WebFace [170]

dataset. We use veri�cation accuracy on the LFW dataset [83] as the model quality metric.

For all applications, we tune the training parameters (e.g., learning rate, minibatch size, num-

ber of epochs, etc.) such that the baseline model (BSP in the IID se�ing) achieves the model

quality of the original paper. We then use these training parameters in all other se�ings. We

further ensure that training/validation accuracy has stopped improving by the end of all our ex-

periments. It is worth noting that tuning the training parameters could result in di�erent model

quality results in both IID and Non-IID se�ings, but they are not the main focus on this study. We

leave the exploration of more combinations of training parameters to future work. Appendix 6.B

lists all major training parameters in our study.

Non-IID Data Partitions. We create non-IID data partitions by partitioning datasets using

the labels on the data, i.e., using image class for image classi�cation and person identities for face

recognition. �is partitioning emulates real-world non-IID se�ings, which o�en involve highly

unbalanced label distributions across di�erent locations (e.g., kangaroos only in Australia or zoos,

a person’s face in only a few locations worldwide). We control the degree of deviation from IID

by controlling the fraction of data that are non-IID. For example, 20% non-IID indicates 20% of

the dataset are partitioned by labels, while the remaining 80% are partitioned randomly.

77

Hyper-Parameters Selection. �e algorithms we study provide the following hyper-

parameters (see Appendix 6.A for the detail of these algorithms) to control the amount of com-

munication (and hence the training time):

• Gaia uses T0, the initial threshold to determine if a ∆wj is signi�cant. Starting with this

initial T0, the signi�cance threshold decreases whenever the learning rate decreases.

• FederatedAveraging uses IterLocal to control the number of local SGD steps on each

selected Pk.

• DeepGradientCompression uses s to control the sparsity of updates (update magnitudes

in top s percentile are exchanged). Following the original paper [109], s follows a warm-

up scheduling: 75%, 93.75%, 98.4375%, 99.6%, 99.9%. We use a hyper-parameter Ewarm, the

number of epochs for each warm-up sparsity, to control the duration of the warm-up. For

example, if Ewarm = 4, s is 75% in epochs 1–4, 93.75% in epochs 5–8, 98.4375% in epochs

9–12, 99.6% in epochs 13–16, and 99.9% in epochs 17+.

We select a hyper-parameter θ of each decentralized learning algorithms (T0, IterLocal,Ewarm)

so that (i) θ achieves the same model quality as BSP in the IID se�ing and (ii) θ achieves similar

communication savings across the three decentralized learning algorithms. We study the sensi-

tivity of our �ndings to the choice of θ in §6.3.2.

6.2 Non-IID Study: Results Overview

�is chapter seeks to answer the question as to what happens to ML applications, ML models, and

decentralized learning algorithms when their training data partitions are not IID. In this section,

we provide an overview of our �ndings, showing that non-IID data partitions cause major model

quality loss, across all applications, models, and algorithms in our study. We discuss the results

for Image Classification in §6.2.1 and §6.2.2 and for Face Recognition in §6.2.3.

6.2.1 Image Classi�cation with CIFAR-10

We �rst present the model quality with di�erent decentralized learning algorithms over the IID

and Non-IID se�ings for Image Classification over the CIFAR-10 dataset. We use �ve partitions

(K = 5) in this evaluation. As the CIFAR-10 dataset consists of ten object classes, each data

partition has two object classes in the Non-IID se�ing. Figure 6.1 shows the results with four

popular DNNs (AlexNet, GoogLeNet, LeNet, and ResNet). According to the hyper-parameter

78

-65% -12%

-67%
-39%-16% -15%

-67%

-56%-3%

-69%

-30%
-74%

0%
20%
40%
60%
80%

100%

IID Data Non-IID Data IID Data Non-IID Data IID Data Non-IID Data IID Data Non-IID Data

AlexNet GoogLeNet LeNet ResNet20

To
p-

1
Va

lid
at

io
n

Ac
cu

ra
cy

BSP Gaia FederatedAveraging DeepGradientCompression

Figure 6.1: Top-1 validation accuracy for ImageClassification over the CIFAR-10 dataset. Each

“-x%” label indicates the accuracy loss from BSP in the IID setting.

criteria in §6.1.2, we select T0 = 10% for Gaia, IterLocal = 20 for FederatedAveraging, and

Ewarm = 8 for DeepGradientCompression. We make two major observations.

1) It is a pervasive problem. All three decentralized learning algorithms lose signi�cant

model quality for all four DNNs in the Non-IID se�ing. We see that while these algorithms retain

the validation accuracy of BSP in the IID se�ing with 15×–20× communication savings (agreeing

with the results from the original papers for these algorithms), they lose 3% to 74% validation ac-

curacy in the Non-IID se�ing. Simply running these algorithms for more epochs would not help

because the training/validation accuracy has already stopped improving. Furthermore, the train-

ing is completely diverged in some cases, such as DeepGradientCompression with GoogLeNet

and ResNet20 (DeepGradientCompression with ResNet20 also diverges in the IID se�ing). �e

pervasiveness of the problem is quite surprising, as we have a diverse set of decentralized learn-

ing algorithms and DNNs. While BSP can retain model quality for most of the DNNs (AlexNet,

GoogLeNet, and LeNet), its heavy communication (an order of magnitude more than these de-

centralized learning algorithms) makes it impractical for most decentralized learning scenarios

that are bo�lenecked by communication. �is result shows that Non-IID data is a pervasive and

challenging problem for decentralized learning, and this problem has been heavily overlooked.

§6.3 discusses the cause of this problem.

2) Even BSP cannot completely solve this problem. We see that even BSP, with its full

communication every iteration, cannot retain model quality for some DNNs in the Non-IID set-

ting. In particular, the validation accuracy of ResNet20 in the Non-IID se�ing is 39% lower than

that in the IID se�ing. �is �nding suggests that, for some DNNs, it may not be possible to solve

the Non-IID data challenge by communicating more frequently between data partitions (Pk). We

�nd that this problem not only exists in ResNet20, but in all DNNs we study with batch normal-

ization layers (ResNet10, BN-LeNet [86] and Inception-v3 [147]). We discuss this problem and

potential solutions in §6.4.

79

6.2.2 Image Classi�cation with ImageNet

We study Image Classification over the ImageNet dataset [133] dataset (1,000 image classes)

to see if the Non-IID data problem exists in di�erent datasets. We use two partitions (K = 2)

in this experiment so each partition gets 500 image classes. According to the hyper-parameter

criteria in §6.1.2, we select T0 = 40% for Gaia, IterLocal = 200 for FederatedAveraging, and

Ewarm = 4 for DeepGradientCompression.

-27.2% -10.6%-16.3% -8.1%
0.0%

-61.7%

-61.7%

0%

25%

50%

75%

IID Data Non-IID Data IID Data Non-IID Data

GoogLeNet ResNet10

To
p-

1
Va

lid
at

io
n

Ac
cu

ra
cy

BSP Gaia FederatedAveraging DeepGradientCompression

Figure 6.2: Top-1 validation accuracy for ImageClassification over the ImageNet dataset. Each

“-x%” label indicates the accuracy loss from BSP in the IID setting.

�e same trend in di�erent datasets. Figure 6.2 illustrates the validation accuracy in the

IID and Non-IID se�ings. Interestingly, we observe the same problems in the ImageNet dataset,

whose number of classes is two orders of magnitude more than the CIFAR-10 dataset. First, we

see that Gaia and FederatedAveraging lose signi�cant validation accuracy (8.1% to 27.2%) for

both DNNs in the Non-IID se�ing. On the other hand, while DeepGradientCompression is able

to retain the validation accuracy for GoogLeNet in the Non-IID se�ing, it cannot converge to a

useful model for ResNet10. Second, BSP also cannot retain the validation accuracy for ResNet10

in the Non-IID se�ing, which concurs with our observation in the CIFAR-10 study. �ese results

show that the Non-IID data problem not only exists in various decentralized learning algorithms

and DNNs, but also exists in di�erent datasets.

6.2.3 Face Recognition

We further examine another popular ML application, Face Recognition, to see if the Non-IID

data problem is a fundamental challenge across di�erent applications. We again use two partitions

(K = 2) in this evaluation, and we store di�erent people’s faces in di�erent partitions in the Non-

IID se�ing. According to the hyper-parameter criteria in §6.1.2, we select T0 = 20% for Gaia,

IterLocal = 50 for FederatedAveraging, and Ewarm = 8 for DeepGradientCompression. It is

worth noting that the veri�cation process of Face Recognition is fundamentally di�erent from

80

Image Classification, as Face Recognition does not use the classi�cation layer (and thus the

training labels) at all in the veri�cation process. Instead, for each pair of veri�cation images, the

trained DNN is used to compute a feature vector for each image, and the distance between these

feature vectors is used to determine if the two images belong to the same person.

-48.3%
-48.3%

0%

50%

100%

IID Data Non-IID Data

LF
W

 V
er

ifi
ca

tio
n

Ac
cu

ar
cy

BSP Gaia FederatedAveraging

Figure 6.3: LFW veri�cation accuracy for Face Recognition. Each “-x%” label indicates the

accuracy loss from BSP in the IID setting.

�e same problem in di�erent applications. Figure 6.3 presents the LFW veri�cation

accuracy using di�erent decentralized learning algorithms in the IID and Non-IID se�ings. Again,

the same problem happens in this application: these decentralized learning algorithms work well

in the IID se�ing, but they lose signi�cant accuracy in the Non-IID se�ing. In fact, both Gaia

and FederatedAveraging cannot converge to a useful model in the Non-IID se�ing, and their

50% accuracy is from random guessing (the veri�cation process is a series of binary questions).

�is result is particularly noteworthy as Face Recognition uses a vastly di�erent veri�cation

process that does not rely on the training labels, which are used to create the Non-IID se�ing

to begin with. We conclude that Non-IID data is a fundamental and pervasive problem across

various applications, datasets, models, and decentralized learning algorithms.

6.3 Problems of Decentralized Learning Algorithms

�e results in §6.2 show that three diverse decentralized learning algorithms all su�er drastic

accuracy loss in the Non-IID se�ing. We investigate the potential reasons for this (§6.3.1) and the

sensitivity to hyper-parameter choice (§6.3.2).

6.3.1 Reasons for Model�ality Loss

Gaia. We extract the Gaia-trained models from both partitions (denoted DC-0 and DC-1) for

Image Classification over the ImageNet dataset, and then evaluate the validation accuracy of

81

each model based on the image classes in each partition. As Figure 6.4 shows, the validation

accuracy is pre�y consistent among the two sets of image classes when training the model in

the IID se�ing: the results for IID DC-0 Model are shown, and IID DC-1 Model is the same.

However, the validation accuracy varies drastically under the Non-IID se�ing (Non-IID DC-0

Model and Non-IID DC-1 Model). Speci�cally, both models perform well for the image classes in

their respective partition, but they perform very poorly for the image classes that are not in their

respective partition. �is reveals that using Gaia in the Non-IID se�ing results in completely

di�erent models among data partitions, and each model is only good for recognizing the image

classes in its data partition.

0%

20%

40%

60%

80%

Classes in DC-0 Classes in DC-1

To
p-

1
Va

lid
at

io
n

Ac
cu

ra
cy

IID DC-0 Model Non-IID DC-0 Model Non-IID DC-1 Model

Figure 6.4: Top-1 validation accuracy (ImageNet) for models in di�erent partitions.

�is raises the following question: How does Gaia produce completely di�erent models in

the Non-IID se�ing, given that Gaia synchronizes all signi�cant updates (∆wj) to ensure that

the di�erences across models in each weight wj is insigni�cant (§6.1)? To answer this, we �rst

compare each weight wj in the Non-IID DC-0 and DC-1 Models, and �nd that the average dif-

ference among all the weights is only 0.5% (re�ecting that the threshold for signi�cance in the

last epoch was 1%). However, we �nd that given the same input image, the neuron values are

vastly di�erent (at an average di�erence of 173%). �is �nding suggests that small model di�er-

ences can result in completely di�erent models. Mathematically, this is because weights are both

positive and negative: a small percentage di�erence in individual weights of a neuron can lead

to a large percentage di�erence in its value. As Gaia eliminates insigni�cant communication,

it creates an opportunity for models in each data partition to specialize for the image classes in

their respective data partition, at the expense of other classes.

DeepGradientCompression. While local model specialization explains why Gaia performs

poorly in the Non-IID se�ing, it is still unclear why other decentralized learning algorithms

also exhibit the same problem. More speci�cally, DeepGradientCompression and Federated-

Averaging always maintain one global model, hence there is no room for local model specializa-

82

tion. To understand why these algorithms perform poorly, we study the average residual update

delta (||∆wi/wi||) with DeepGradientCompression. �is number represents the magnitude of

the gradients that have not yet been exchanged among di�erent Pk, due to its communicating

only a �xed number of gradients in each epoch (§6.1). �us, it can be seen as the amount of

gradient divergence among di�erent Pk.

Figure 6.5 depicts the average residual update delta for the �rst 20 training epochs when train-

ing ResNet20 over the CIFAR-10 dataset. We show only the �rst 20 epochs because the training

diverges a�er that in the Non-IID se�ing. As the �gure shows, the average residual update delta

is an order of magnitude higher in the Non-IID se�ing (283%) than that in the IID se�ing (27%).

Hence, each Pk generates large gradients in the Non-IID se�ing, which is not surprising as each

Pk sees vastly di�erent training data in the Non-IID se�ing. However, these large gradients are

not synchronized because DeepGradientCompression sparsi�es the gradients at a �xed rate.

When they are �nally synchronized, they may have diverged so much from the global model that

they lead to the divergence of the whole model. Our experiments also support this proposition,

as we see DeepGradientCompression diverges much more o�en in the Non-IID se�ing.

0%

200%

400%

600%

0 5 10 15 20

Av
er

ag
e

re
sid

ua
l

up
da

te
 d

el
ta

 (%
)

Epoch

IID Non-IID

Figure 6.5: Average residual update delta (%) for DeepGradientCompression over the �rst 20

epochs.

FederatedAveraging. �e above analysis for DeepGradientCompression can also apply

to FederatedAveraging, which delays communication from each Pk by a �xed number of local

iterations. If the weights in di�erent Pk diverge too much, the synchronized global model can

lose accuracy or completely diverge [174]. We validate this by plo�ing the average local weight

update delta for FederatedAveraging at each global synchronization (||∆wi/wi||, where wi

is the averaged global model weight). Figure 6.6 depicts this number for the �rst 25 training

epochs when training AlexNet over the CIFAR-10 dataset. As the �gure shows, the average local

83

weight update delta in the Non-IID se�ing (48.5%) is much higher than that in the IID se�ing

(20.2%), which explains why Non-IID data partitions lead to major accuracy loss for Federated-

Averaging. �e di�erence is less pronounced than with DeepGradientCompression, so the

impact on accuracy is smaller.

0%

50%

100%

150%

1 3 5 7 9 11 13 15 17 19 21 23 25

Av
er

ag
e

Lo
ca

l W
ei

gh
t

Up
da

te
 D

el
ta

 (%
)

Epoch

IID Non-IID
311%

Figure 6.6: Average local update delta (%) for FederatedAveraging over the �rst 25 epochs.

6.3.2 Algorithm Hyper-Parameters

We now study the sensitivity of the non-IID problem to hyper-parameter choice. Table 6.1

presents the Gaia results for varying its T0 hyper-parameter (§6.1.2) when training on CIFAR-10,

and we leave the results for the other two algorithms to Appendix 6.C. As the table shows, we

study seven choices for T0 and compare the results with BSP. We make two major observations.

First, almost all hyper-parameter se�ings lose signi�cant accuracy in the Non-IID se�ing

(relative to BSP in the IID se�ing). Even with a relatively conservative hyper-parameter se�ing

(e.g., T0 = 2%, the most communication-intensive of the choices shown), we still see 4.4% to 35.7%

accuracy loss among these DNNs. On the other hand, the exact same hyper-parameter choice for

Gaia in the IID se�ing can achieve close to BSP-level accuracy (within 1.1%). We see the same

trend with much more aggressive hyper-parameter se�ings as well (e.g., T0 = 40%). �is shows

that the problem of Non-IID data partitions is not speci�c to particular hyper-parameter se�ings,

and that hyper-parameter se�ings that work well in the IID se�ing may perform poorly in the

Non-IID se�ing.

Second, more conservative hyper-parameter se�ings (which implies more frequent communi-

cation among thePk) o�en greatly decrease the accuracy loss in the Non-IID se�ing. For example,

the validation accuracy with T0 = 2% is signi�cantly higher than the one with T0 = 30%. �is

84

Con�guration

AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%

T0 = 2% 73.8% 70.5% 78.4% 56.5% 76.9% 52.6% 83.1% 48.0%

T0 = 5% 73.2% 71.4% 77.6% 75.6% 74.6% 10.0% 83.2% 43.1%

T0 = 10% 73.0% 10.0% 78.4% 68.0% 76.7% 10.0% 84.0% 45.1%

T0 = 20% 72.5% 37.6% 77.7% 67.0% 77.7% 10.0% 83.6% 38.9%

T0 = 30% 72.4% 26.0% 77.5% 23.9% 78.6% 10.0% 81.3% 39.4%

T0 = 40% 71.4% 20.1% 77.2% 33.4% 78.3% 10.1% 82.1% 28.5%

T0 = 50% 10.0% 22.2% 76.2% 26.7% 78.0% 10.0% 77.3% 28.4%

Table 6.1: Top-1 validation accuracy (CIFAR-10) varying Gaia’s T0 hyper-parameter. �e con�g-

urations with more than 2% accuracy loss from BSP in the IID setting are highlighted. Note that

larger settings for T0 mean signi�cantly greater communication savings.

suggests that we may be able to use more frequent communication among thePk for higher model

quality in the Non-IID se�ing (mitigating the “tug-of-war” among the Pk (§6.1.1)). However, this

trend is not monotonic, as several more conservative hyper-parameter se�ings result in worse

models (e.g., GoogLeNet with T0 = 2% vs. T0 = 20%). We conclude that hyper-parameter tuning

alone may not solve all the problems in the Non-IID se�ing, but it is a direction worth further

exploration.

6.4 Batch Normalization: Problem and Solution

As §6.2 discusses, even BSP cannot retain model quality in the Non-IID se�ing for DNNs with

batch normalization layers. Given how popular batch normalization is, this is a problem that

can have far-reaching rami�cations. We �rst discuss why batch normalization is particularly

vulnerable in the Non-IID se�ing (§6.4.1) and then study alternative normalization techniques,

including one—Group Normalization—that works be�er in this se�ing (§6.4.2).

6.4.1 �e Problem of Batch Normalization in the Non-IID Setting

Batch normalization [86] (BatchNorm) is one of the most popular mechanisms in deep learning,

and it has been employed by default in most deep learning models (more than 11,000 citations).

85

BatchNorm enables faster and more stable DNN training because it enables larger learning rates,

which in turn make convergence much faster and help avoid sharp local minimum (hence, the

model generalizes be�er).

How BatchNorm works. BatchNorm aims to stabilize a DNN by normalizing the input

distribution of selected layers such that the inputs xi on each channel i of the layer have zero mean

(µxi = 0) and unit variance (σxi = 1). Because the global mean and variance is una�ainable with

stochastic training, BatchNorm uses minibatch mean and variance as an estimate of the global

mean and variance. Speci�cally, for each minibatch B, BatchNorm calculates the minibatch mean

µB and variance σB, and then uses µB and σB to normalize each xi in B [86]. Recent work shows

that BatchNorm enables larger learning rates because: (i) BatchNorm corrects large gradient

updates that could result in divergence [33] and (ii) BatchNorm makes the underlying problem’s

landscape signi�cantly more smooth [136].

BatchNorm and the Non-IID setting. While BatchNorm is e�ective in practice, its depen-

dence on minibatch mean and variance (µB and σB) is known to be problematic in certain se�ings.

�is is because BatchNorm uses µB and σB for training, but it typically uses an estimated global

mean and variance (µ and σ) for validation. If there is a major mismatch between these means

and variances, the validation accuracy is going to be low because the input distribution during

validation does not match the distribution during training. �is can happen if the minibatch size

is small or the sampling of minibatches is not IID [85]. �e Non-IID se�ing in our study exacer-

bates this problem because each data partition Pk sees very di�erent training samples. Hence, the

µB and σB in each Pk can vary signi�cantly in the Non-IID se�ing, and the synchronized global

model may not work for any set of data. Worse still, we cannot simply increase the minibatch

size or do be�er minibatch sampling to solve this problem, because in the Non-IID se�ing the

underlying training dataset in each Pk does not represent the global training dataset.

We validate if there is indeed major divergence in µB and σB among di�erent Pk in the Non-

IID se�ing. We calculate the divergence of µB as the di�erence between µB in di�erent Pk over

the average µB (i.e., it is
||µB,P0−µB,P1 ||

||AV G(µB,P0 , µB,P1)|| for two partitions P0 and P1). We use the average

µB over every 100 minibatches in each Pk so that we get be�er estimation. Figure 6.7 depicts

the divergence of µB for each channel of the �rst layer of BN-LeNet, which is constructed by

inserting BatchNorm to LeNet a�er each convolutional layer. As we see, the divergence of µB

is signi�cantly larger in the Non-IID se�ing (between 6% to 51%) than that in the IID se�ing

(between 1% to 5%). We also observe the same trend in minibatch variances σB (not shown). As

discussed earlier, this phenomenon is detrimental to training: Each Pk uses very di�erent µB and

σB to normalize its model, but the resultant global model can use only one µ and σ which cannot

86

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
in

ib
at

ch
 M

ea
n

Di
ve

rg
en

ce

Channel

IID Non-IID

Figure 6.7: Minibatch mean divergence for the �rst layer of BN-LeNet over CIFAR-10 using two

Pk.

match all of these diverse batch means and variances. As this problem has nothing to do with the

frequency of communication among Pk, it explains why even BSP cannot retain model accuracy

for BatchNorm in the Non-IID se�ing.

6.4.2 Alternatives to Batch Normalization

As the problem of BatchNorm in the Non-IID se�ing is due to its dependence on minibatches, the

natural solution is to replace BatchNorm with alternative normalization mechanisms that are not

dependent on minibatches. Unfortunately, most existing alternative normalization mechanisms

have their own drawbacks. We �rst discuss the normalization mechanisms that have major short-

comings, and then we discuss one particular mechanism that may be used as a potential solution.

Weight Normalization [135]. Weight Normalization (WeightNorm) is a normalization

scheme that normalizes the weights in a DNN as oppose to the neurons (which is what BatchNorm

and most other normalization techniques do). WeightNorm is not dependent on minibatches as

it is normalizing the weights. However, while WeightNorm can e�ectively control the variance

of the neurons, it still needs a mean-only BatchNorm in many cases to achieve the model quality

and training speeds of BatchNorm [135]. �is mean-only BatchNorm makes WeightNorm vul-

nerable to the Non-IID se�ing again, because there is a large divergence in µB among the Pk in

the Non-IID se�ing (§6.4.1).

Layer Normalization [30]. Layer Normalization (LayerNorm) is a technique that is inspired

by BatchNorm. Instead of computing the mean and variance of a minibatch for each channel,

LayerNorm computes the mean and variance across all channels for each sample. Speci�cally, if

the inputs are four-dimensional vectors B × C ×W × H (batch × channel × width × height),

87

BatchNorm produces C means and variances along the B × W × H dimensions. On the other

hand, LayerNorm produces Bmeans and variances along the C×W×H dimensions (per-sample

mean and variance). As the normalization is done on a per-sample basis, LayerNorm is not de-

pendent on minibatches. However, LayerNorm makes a key assumption that all inputs make

similar contributions to the �nal prediction. But this assumption does not hold for some models

such as convolutional neural networks, where the activation of neurons should not be normal-

ized with non-activated neurons. As a result, BatchNorm still outperforms LayerNorm for these

models [30].

Batch Renormalization [85]. Batch Renormalization (BatchReNorm) is an extension to

BatchNorm that aims to alleviate the problem of small minibatches (or inaccurate minibatch

mean, µB, and variance, σB). BatchReNorm achieves this by incorporating the estimated global

mean (µ) and variance (σ) during training, and introducing two hyper-parameters to contain

the di�erence between (µB, σB) and (µ, σ). �ese two hyper-parameters are gradually relaxed

such that the earlier training phase is more like BatchNorm, and the later phase is more like

BatchReNorm.

BatchNorm BatchReNorm

IID Non-IID IID Non-IID

78.8% 65.4% 78.1% 75.3%

Table 6.2: Top-1 validation accuracy (CIFAR-10) with BatchNorm and BatchReNorm for BN-

LeNet, using BSP withK = 2 partitions.

We evaluate BatchReNorm with BN-LeNet over CIFAR-10 to see if BatchReNorm can solve

the problem of Non-IID data partitions. We replace all BatchNorm layers with BatchReNorm lay-

ers, and we carefully select the BatchReNorm hyper-parameters so that BatchReNorm achieves

the highest validation accuracy in both the IID and Non-IID se�ings. Table 6.2 shows the Top-1

validation accuracy. We see that while BatchNorm and BatchReNorm achieve similar accuracy in

the IID se�ing, they both perform worse in the Non-IID se�ing. In particular, while BatchReNorm

performs much be�er than BatchNorm in the Non-IID se�ing (75.3% vs. 65.4%), BatchReNorm

still loses∼3% accuracy compared to the IID se�ing. �is is not surprising, because BatchReNorm

still relies on minibatches to certain degree, and prior work has shown that BatchReNorm’s per-

formance still degrades when the minibatch size is small [85]. Hence, BatchReNorm cannot com-

pletely solve the problem of Non-IID data partitions, which is a more challenging problem than

small minibatches.

88

Group Normalization [164]. Group Normalization (GroupNorm) is an alternative nor-

malization mechanism that aims to overcome the shortcomings of BatchNorm and LayerNorm.

GroupNorm divides adjacent channels into groups of a prespeci�ed size Gsize, and computes the

per-group mean and variance for each input sample. Speci�cally, for a four-dimensional input

B × C ×W ×H, GroupNorm partitions the set of channels (C) into multiple groups (G) of size

Gsize. GroupNorm then computes |B| · |G|means and variances along the Gsize×W ×H dimen-

sion. Hence, GroupNorm does not depend on minibatches for normalization (the shortcoming

of BatchNorm), and GroupNorm does not assume all channels make equal contributions (the

shortcoming of LayerNorm).

We evaluate GroupNorm with BN-LeNet over CIFAR-10 to see if we can use GroupNorm as an

alternative to BatchNorm in the Non-IID se�ing. We carefully select Gsize = 2, which works best

with this DNN. Figure 6.8 shows the Top-1 validation accuracy with GroupNorm and BatchNorm

across decentralized learning algorithms. We make two major observations.

79.5% 78.2% 80.3%
63.1%

78.9% 77.1% 79.7% 79.7%
67.1%

53.8% 50.2%

10.0%

79.2%
64.5% 70.0% 70.2%

0%
20%
40%
60%
80%

100%

BSP Gaia Federated
Averaging

Deep
Gradient

Compression

BSP Gaia Federated
Averaging

Deep
Gradient

Compression

BatchNorm GroupNorm

IID Non-IID

Figure 6.8: Top-1 validation accuracy (CIFAR-10) with BatchNormandGroupNorm for BN-LeNet

withK = 5 partitions.

First, GroupNorm successfully recovers the accuracy loss of BatchNorm with BSP in the Non-

IID se�ing. As the �gure shows, GroupNorm with BSP achieves 79.2% validation accuracy in the

Non-IID se�ing, which is as good as the accuracy in the IID se�ing. �is shows GroupNorm can

be used as an alternative to BatchNorm to overcome the Non-IID data challenge for BSP. Second,

GroupNorm dramatically helps the decentralized learning algorithms to improve model accuracy

in the Non-IID se�ing as well. We see that with GroupNorm, there is 14.4%, 8.9% and 8.7% accu-

racy loss for Gaia, FederatedAveraging and DeepGradientCompression, respectively. While

the accuracy losses are still signi�cant, they are be�er than their BatchNorm counterparts by an

additive 10.7%, 19.8% and 60.2%, respectively.

Summary. Overall, our study shows that GroupNorm [164] can be a good alternative to

89

BatchNorm in the Non-IID se�ing, especially for computer vision tasks. For BSP, it �xes the prob-

lem, while for decentralized learning algorithms, it greatly decreases the accuracy loss. However,

it is worth noting that BatchNorm is widely adopted in many DNNs, hence, more study should

done to see if GroupNorm can always replace BatchNorm for di�erent applications and DNN

models. As for other tasks such as recurrent (e.g., LSTM [76]) and generative (e.g., GAN [63])

models, other normalization techniques such as LayerNorm [30] can be good options because

(i) they are shown to be e�ective in these tasks and (ii) they are not dependent on minibatches,

hence, they are unlikely to su�er the problems of BatchNorm in the Non-IID se�ing.

6.5 Degree of Deviation from IID

Our study in §6.2–§6.4 assumes a strict case of non-IID data partitions, where each training label

only exists in a data partition exclusively. While this assumption may be a reasonable approxima-

tion for some applications (e.g., for Face Recognition, a person’s face image may exist only in a

data partition for a geo-region in which the person lives), it could be an extreme case for other ap-

plications (e.g., Image Classification). Here, we study how the problem of non-IID data changes

with the degree of deviation from IID (the skewness) by controlling the fraction of data that are

non-IID (§6.1.2). Figure 6.9 illustrates the CIFAR-10 Top-1 validation accuracy of AlexNet and

GN-LeNet (our name for BN-LeNet with GroupNorm replacing BatchNorm, Figure 6.8) in the

20%, 40%, 60% and 80% non-IID se�ing. We make two key observations.

-5.8% -3.4%
-7.6% -4.0%

-9.2%
-5.7%

-10.4%
-7.3%

60%

65%

70%

75%

80%

BSP Gaia Federated
Averaging

Deep Gradient
Compression

20% Non-IID 40% Non-IID 60% Non-IID 80% Non-IID

(a) AlexNet

-1.3% -0.5% -1.1%-3.0% -1.5% -2.6%-4.8% -3.5%
-6.5%-5.3% -5.1%

-8.5%

60%

65%

70%

75%

80%

BSP Gaia Federated
Averaging

Deep Gradient
Compression

20% Non-IID 40% Non-IID 60% Non-IID 80% Non-IID

(b) GN-LeNet

Figure 6.9: Top-1 validation accuracy (CIFAR-10) over various degrees of non-IID data. We have

zoomed in on 60% accuracy and above. �e “-x%” label on each bar indicates the accuracy loss

from BSP in the IID setting.

1) Partial non-IID data is also problematic. We see that for all three decentralized learning

algorithms, partial non-IID data still cause major accuracy loss. Even with a small degree of non-

IID data such as 20%, we still see 5.8% and 3.4% accuracy loss for Gaia and FederatedAveraging

in AlexNet (Figure 6.9a). �e only exception is AlexNet withDeepGradientCompression, which

90

retains model accuracy in these partial non-IID se�ings. However, the same technique su�ers

signi�cant accuracy loss for GN-LeNet in the partial non-IID se�ings (Figure 6.9b). We conclude

that the problem of non-IID data does not occur only with exclusive non-IID data partitioning,

and hence, the problem exists in a vast majority of practical decentralized se�ings.

2) �e degree of deviation from IID o�en determines the di�culty level of the prob-

lem. We observe that the degree of skew changes the landscape of the problem signi�cantly.

In most cases, the model accuracy gets worse with higher degrees of skew, and the accuracy

gap between 80% and 20% non-IID data can be as large as 7.4% (GN-LeNet with DeepGradient-

Compression). We see that while most decentralized learning algorithms can retain model qual-

ity with certain degree of non-IID data, there is usually a limit. For example, when training over

20% non-IID data, all three decentralized learning algorithms stay within 1.3% accuracy loss for

GN-LeNet (Figure 6.9b). However, their accuracy losses become unacceptable when they are

dealing with 40% or higher non-IID data.

6.6 Our Approach: SkewScout

To address the problem of non-IID data partitions, we introduce SkewScout, a generic, system-

level approach that enables communication-e�cient decentralized learning over arbitrarily non-

IID data partitions. We provide an overview of SkewScout (§6.6.1), describe its key mechanisms

(§6.6.2), and present evaluation results (§6.6.3).

6.6.1 Overview of SkewScout

�e goal of SkewScout is a system-level solution that (i) enables high-accuracy, communication-

e�cient decentralized learning over arbitrarily non-IID data partitions; and (ii) is general enough

to be applicable to a wide range of ML applications, ML systems, and decentralized learning

algorithms. To this end, we design SkewScout as a system-level module that can be integrated

with various decentralized learning algorithms and ML systems.

Figure 6.10 overviews the SkewScout design.

• Estimate the degree of deviation from IID. As §6.5 shows, knowing the degree of skew

is very useful to determine an appropriate solution. To learn this key information, Skew-

Scout periodically moves the ML model from one data partition (Pk) to another during

training (model traveling, ¶ in Figure 6.10). SkewScout then evaluates how well a model

performs on a remote data partition by evaluating the model accuracy with a subset of

91

Model
Travelling

P0 P1

Accuracy Loss
Estimation

Adaptive
Communication

Control

1

2

3

Figure 6.10: Overview of SkewScout

training data on the remote node. As we already know the training accuracy of this model in

its originated data partition, we can infer the accuracy loss in this remote data partition (·).

�e accuracy loss is essentially the performance gap for the same model over two di�erent

data partitions, which can be used as an approximation of the degree of skew. For example,

it is very likely that a remote data partition consists of very di�erent data characteristics

if the model in the local data partition has reached training accuracy 60%, but the same

model achieves only 30% accuracy in the remote data partition. More importantly, accuracy

loss directly captures the extent to which the model underperforms on the di�erent data

partition.

• Adaptive communication control (¸). Based on the accuracy loss SkewScout learns

from model traveling, SkewScout controls the tightness of communication among data

partitions to retain model quality. SkewScout controls the communication tightness by

automatically tuning the hyper-parameters of the decentralized learning algorithm (§6.3.2).

�is tuning process is essentially solving an optimization problem that aims to minimize

communication among data partitions while keeping accuracy loss within a reasonable

threshold (§6.6.2 provides more details).

SkewScout handles non-IID data partitions in a manner that is transparent to ML applica-

tions and decentralized learning algorithms, and it controls communication based on the accuracy

loss across partitions. �us, we do not need to use the most conservative mechanism (e.g., BSP)

all the time, and can adapt to whatever skew is present for the particular ML application and its

training data partitions (§6.5).

92

6.6.2 Mechanism Details

We now discuss the mechanisms of SkewScout in detail.

Accuracy Loss. �e accuracy loss between data partitions represents the degree of model di-

vergence. As §6.3.1 discusses, ML models in di�erent data partitions tend to specialize for their

training data, especially when we use decentralized learning algorithms to relax communication.

Figure 6.11 demonstrates the above observation by plo�ing the accuracy loss between di�er-

ent data partitions when training GoogleNet over CIFAR-10 with Gaia. Two observations are

in order. First, the accuracy drop changes drastically from the IID se�ing (0.4% on average) to

the Non-IID se�ing (39.6% on average). �is is expected as each data partition sees very di�er-

ent training data in the Non-IID se�ing, which leads to very di�erent models in di�erent data

partitions. Second, more conservative hyper-parameters can lead to smaller accuracy drop in the

Non-IID se�ing. For example, the accuracy drop for T0 = 2% is signi�cantly smaller than for

larger se�ings of T0.

-10%
40%
90%

140%

20 40 60 80 100 120

Ac
cu

ra
cy

 D
ro

p,

IID
 s

et
tin

g

Epochs

2% 5% 10% 20%

-10%
40%
90%

140%

20 40 60 80 100 120Ac
cu

ra
cy

 D
ro

p,

N
on

-II
D

se
tt

in
g

Epochs
Figure 6.11: Training accuracy drop between data partitions when training GoogleNet over

CIFAR-10 with Gaia. Each bar represents a T0 for Gaia

Based on the above observation, we can use accuracy loss (i) to estimate how much the models

diverge from each other (re�ecting training data di�erences); and (ii) to serve as an objective

function for communication control. With accuracy loss, we do not need any domain-speci�c

information from each ML application to learn and adapt to di�erent degrees of deviation from

IID, which makes SkewScout much more widely applicable.

93

Communication Control. �e goal of communication control is to retain model quality while

minimizing communication among data partitions. Speci�cally, given a set of hyper-parameters

θt for each iteration (or minibatch) t, the optimization problem for SkewScout is to minimize

the total amount of communication for a data partition Pk:

argmin
θ,MTP

⌈
T (θ)
MTP

⌉∑
mt=0

(mt+1)·MTP∑
t=mt·MTP

C(θt) +

⌈
T (θ)
MTP

⌉∑
mt=0

CM

 (6.1)

where T (θ) is the total number of iterations to achieve the target model accuracy given all

hyper-parameters θ throughout the training, C(θt) is the amount of communication given θt,

MTP is the period size (in iterations) for model traveling, and CM is the communication cost

for the ML model (for model traveling).

In practice, however, it is impossible to optimize for Equation 6.1 with one-pass training be-

cause we cannot know T (θ) with di�erent θ unless we train the model multiple times. We solve

this problem by optimizing a proxy problem, which aims to minimize the communication while

keeping the accuracy loss to a small threshold σAL so that we can control model divergence caused

by non-IID data partitions. Speci�cally, our target function is:

argmin
θt

(
λAL (max(0, AL(θt)− σAL)) + λC

C(θt)

CM

)
(6.2)

where AL(θt) is the accuracy loss based on the previously selected hyper-parameter (we

memoize the most recent value for each θ), and λAL, λC are given parameters to determine the

weight of accuracy loss and communication, respectively. We can employ various auto-tuning

algorithms with Equation 6.2 to select θt such as hill climbing, stochastic hill climbing [134], and

simulated annealing [155]. Note that we make MTP not tunable here to further simplify the

tuning.

Model Traveling Overhead. Using model traveling to learn accuracy loss can lead to heavy

communication overhead if we need to do so for each pair of data partitions, especially if we

have a large number of data partitions. For broadcast-based decentralized learning se�ings (e.g.,

geo-distributed learning), we leverage the idea of overlay network in Gaia to reduce the com-

munication overhead for model traveling. Speci�cally, we use hubs to combine and broadcast

models [80]. �e extra hops incurred are �ne since model traveling is not latency sensitive. As

for server-client decentralized learning se�ings (e.g., federated learning), SkewScout only needs

to control the communication frequency between server and clients, and the overhead of model

traveling can be combined with model downloading at the beginning of each communication

94

round between the server and clients.

6.6.3 Evaluation Results

We implement and evaluate SkewScout in a GPU parameter server system [52] based on

Ca�e [89]. We evaluate several aforementioned auto-tuning algorithms and we �nd that hill

climbing provides the best results. We compare SkewScout with two other baselines: (1) BSP:

the most communication-heavy approach that retains model quality in all Non-IID se�ings; and

(2) Oracle: the ideal, yet unrealistic, approach that selects the most communication-e�cient θ

that retains model quality by running all possible θ in each se�ing prior to measured execution.

Figure 6.12 shows the communication savings over BSP for both SkewScout and Oracle when

training with Gaia. Note that all results achieve the same validation accuracy as BSP. We make

two observations.

34.1

19.9

9.6

51.8

24.9

10.6

0

10

20

30

40

50

60

20% Non-IID 60% Non-IID 100% Non-IID

Co
m

m
un

ic
at

io
n

Sa
vi

ng

ov
er

 B
SP

 (t
im

es
)

SkewScout Oracle

(a) AlexNet

29.6

19.1

9.9

42.1

23.6

11.0

0

10

20

30

40

50

20% Non-IID 60% Non-IID 100% Non-IID

Co
m

m
un

ic
at

io
n

Sa
vi

ng

ov
er

 B
SP

 (t
im

es
)
SkewScout Oracle

(b) GoogLeNet

Figure 6.12: Communication savings over BSP with SkewScout and Oracle for training over

CIFAR-10.

First, SkewScout is much more e�ective than BSP in handling Non-IID se�ings. Overall,

SkewScout achieves 9.6–34.1× communication savings over BSP in various Non-IID se�ings

without sacri�cing model accuracy. As expected, SkewScout saves more communication with

less skewed data because SkewScout can loosen communication in these se�ings (§6.5).

Second, SkewScout is not far from the ideal Oracle baseline. Overall, SkewScout only

requires 1.1–1.5×more communication than Oracle to achieve the same model accuracy. Skew-

Scout cannot match the communication savings of Oracle because: (i) SkewScout needs to

do model traveling periodically, which leads to some extra overheads; and (ii) for some θ, high

accuracy loss at the beginning can still end up with a high quality model, which SkewScout

95

cannot foresee. As Oracle requires many runs in practice, we conclude that SkewScout is an

e�ective, one-pass solution for decentralized learning over non-IID data partitions.

6.7 Summary

As most timely and relevant ML data are generated at di�erent places, decentralized learning

provides an important path for ML applications to leverage these decentralized data. However,

decentralized data are o�en generated at di�erent contexts, which leads to a heavily understud-

ied problem: non-IID training data partitions. We conduct a detailed empirical study of this prob-

lem, revealing three key �ndings. First, we show that training over non-IID data partitions is a

fundamental and pervasive problem for decentralized learning, as all decentralized learning algo-

rithms in our study su�er major accuracy loss in the Non-IID se�ing. Second, we �nd that DNNs

with batch normalization are particularly vulnerable in the Non-IID se�ing, with even the most

communication-heavy approach being unable to retain model quality. We further discuss the

cause and potential solution to this problem. �ird, we show that the di�culty level of the non-

IID data problem varies greatly with the degree of deviation from IID. Based on these �ndings,

we present SkewScout, a system-level approach to minimizing communication while retaining

model quality even under non-IID data. We hope that the �ndings and insights in this chapter,

as well as our open source code, will spur further research into the fundamental and important

problem of non-IID data in decentralized learning.

96

Appendix

6.A Details of Decentralized Learning Algorithms

Algorithm 1 Gaia [80] on node k for vanilla momentum SGD

Input: initial weights w0 = {w0[0], ..., w0[M]}
Input: K data partitions (or data centers); initial signi�cance threshold T0

Input: local minibatch size B; momentum m; learning rate η; local dataset Xk
1: uk0 ← 0; vk0 ← 0
2: wk0 ← w0

3: for t = 0, 1, 2, ... do
4: b← (sample B data samples from Xk)
5: ukt+1 ← m · ukt − η · 5f(wkt , b)
6: wkt+1 ← wkt + ukt+1

7: vkt+1 ← vkt + ukt+1 . Accumulate weight updates

8: for j = 0, 1, ...M do

9: S ← || v
k
t+1

wkt+1
|| > Tt . Check if accumulated updates are signi�cant

10: ṽkt+1[j]← vkt+1[j]� S . Share signi�cant updates with other Pk
11: vkt+1[j]← vkt+1[j]� ¬S . Clear signi�cant updates locally

12: end for

13: for i = 0, 1, ...K; i 6= k do

14: wkt+1 ← wkt+1 + ṽit+1 . Apply signi�cant updates from other Pk
15: end for

16: Tt+1 ← update threshold(Tt) . Decreases whenever the learning rate decreases

17: end for

97

Algorithm 2 FederatedAveraging [112] on node k for vanilla momentum SGD

Input: initial weights w0; K data partitions (or clients)

Input: local minibatch size B; local iteration number IterLocal
Input: momentum m; learning rate η; local dataset Xk

1: uk ← 0
2: for t = 0, 1, 2, ... do
3: wkt ← wt . Get the latest weight from the server

4: for i = 0, ...IterLocal do
5: b← (sample B data samples from Xk)

6: uk ← m · uk − η · 5f(wkt , b)
7: wkt ← wkt + uk

8: end for

9: all reduce: wt+1 ←
∑K

k=1
1
K
wkt . Average weights among all partitions

10: end for

Algorithm 3 DeepGradientCompression [109] on node k for vanilla momentum SGD

Input: initial weights w0 = {w0[0], ..., w0[M]}
Input: K data partitions (or data centers); s% update sparsity

Input: local minibatch size B; momentum m; learning rate η; local dataset Xk
1: uk0 ← 0; vk0 ← 0
2: for t = 0, 1, 2, ... do
3: b← (sample B data samples from Xk)
4: gkt+1 ← −η · 5f(wt, b)
5: gkt+1 ← gradient clipping(gkt+1) . Gradient clipping

6: ukt+1 ← m · ukt + gkt+1

7: vkt+1 ← vkt + ukt+1 . Accumulate weight updates

8: T ← s% of ||vkt+1|| . Determine the threshold for sparsi�ed updates

9: for j = 0, 1, ...M do

10: S ← ||vkt+1|| > T . Check if accumulated updates are top s%
11: ṽkt+1[j]← vkt+1[j]� S . Share top updates with other Pk
12: vkt+1[j]← vkt+1[j]� ¬S . Clear top updates locally

13: ukt+1[j]← ukt+1[j]� ¬S . Clear the history of top updates (momentum correction)

14: end for

15: wt+1 = wt +
∑K

k=1 ṽ
k
t+1 . Apply top updates from all Pk

16: end for

98

6.B Training Parameters

Tables 6.3, 6.4, 6.5 list major training parameters for all the applications, models, and datasets in

our study.

Model

Minibatch size

per node

(5 nodes)

Momentum

Weight

decay

Learning rate Total epochs

AlexNet 20 0.9 0.0005

η0 = 0.0002, divides by

10 at epoch 64 and 96

128

GoogLeNet 20 0.9 0.0005

η0 = 0.002, divides by

10 at epoch 64 and 96

128

LeNet, BN-LeNet,

GN-LeNet

20 0.9 0.0005

η0 = 0.002, divides by

10 at epoch 64 and 96

128

ResNet-20 20 0.9 0.0005

η0 = 0.002, divides by

10 at epoch 64 and 96

128

Table 6.3: Major training parameters for Image Classification over CIFAR-10

Model

Minibatch size

per node

(8 nodes)

Momentum

Weight

decay

Learning rate Total epochs

GoogLeNet 32 0.9 0.0002

η0 = 0.0025, polynomial

decay, power = 0.5

60

ResNet-10 32 0.9 0.0001

η0 = 0.00125, polynomial

decay, power = 1

64

Table 6.4: Major training parameters for Image Classification over ImageNet. Polynomial

decay means η = η0 · (1− iter

max iter
)power

.

6.C More Algorithm Hyper-Parameter Results

In §6.3.2 we presented results varyingGaia’s T0 hyper-parameter. In this section, we show results

for FederatedAveraging and DeepGradientCompression, varying their respective hyper-

parameters. We make the same observations as §6.3.2 for these algorithms (Tables 6.6 and 6.7).

99

Model

Minibatch size

per node

(4 nodes)

Momentum

Weight

decay

Learning rate Total epochs

center-loss 64 0.9 0.0005

η0 = 0.025, divides by

10 at epoch 4 and 6

7

Table 6.5: Major training parameters for Face Recognition over CASIA-WebFace.

Con�guration

AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%

IterLocal = 5 73.7% 62.8% 75.8% 68.9% 79.7% 67.3% 73.6% 31.3%

IterLocal = 10 73.5% 60.1% 76.4% 64.8% 79.3% 63.2% 73.4% 28.0%

IterLocal = 20 73.4% 59.4% 76.3% 64.0% 79.1% 10.1% 73.8% 28.1%

IterLocal = 50 73.5% 56.3% 75.9% 59.6% 79.2% 55.6% 74.0% 26.3%

IterLocal = 200 73.7% 53.2% 76.8% 52.9% 79.4% 54.2% 75.7% 27.3%

IterLocal = 500 73.0% 24.0% 76.8% 20.8% 79.6% 19.4% 74.1% 24.0%

IterLocal = 1000 73.4% 23.9% 76.1% 20.9% 78.3% 19.0% 74.3% 22.8%

Table 6.6: CIFAR-10 Top-1 validation accuracy with various FederatedAveraging hyper-

parameters. �e con�gurations that losemore than 2% accuracy are highlighted. Note that larger

settings for IterLocal mean signi�cantly greater communication savings.

100

Con�guration

AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%

Ewarm = 8 75.5% 72.3% 78.3% 10.0% 80.3% 47.2% 10.0% 10.0%

Ewarm = 4 75.5% 75.7% 79.4% 61.6% 10.0% 47.3% 10.0% 10.0%

Ewarm = 3 75.9% 74.9% 78.9% 75.7% 64.9% 50.5% 10.0% 10.0%

Ewarm = 2 75.7% 76.7% 79.0% 58.7% 10.0% 47.5% 10.0% 10.0%

Ewarm = 1 75.4% 77.9% 78.6% 74.7% 10.0% 39.9% 10.0% 10.0%

Table 6.7: CIFAR-10 Top-1 validation accuracy with various DeepGradientCompression

hyper-parameters. �e con�gurations that lose more than 2% accuracy are highlighted. Note

that smaller settings for Ewarm mean signi�cantly greater communication savings.

101

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

�e goal of this thesis is to enable low-latency and low-cost ML training and serving over

real-world, large-scale data, which are highly distributed and rapidly growing. �ese highly-

distributed and rapidly-growing data pose major computation, communication, and statistical

challenges to ML. In this thesis, we demonstrate that the latency and cost of ML training and

serving over such real-world data can be improved by one to two orders of magnitude by design-

ing ML systems that exploit the characteristics of ML algorithms, ML model structures, and ML

training/serving data. We present three directions to address the aforementioned challenges.

First, we present Focus (Chapter 4), a system that provides both low-cost and low-latency

querying over large, continuously-growing datasets such as videos. Focus’ architecture �exibly

and e�ectively divides the query processing work between ingest time and query time. At ingest

time (on live videos), Focus uses cheap techniques to construct an approximate index. At query

time, Focus leverages this approximate index to provide low latency, but compensates for the

lower accuracy of the cheap CNNs through the judicious use of an expensive CNN. �is archi-

tecture enables orders-of-magnitude faster queries with only a small investment at ingest time,

and allows �exibly trading o� ingest cost and query latency. Our evaluations using real-world

videos from tra�c, surveillance, and news domains show that Focus reduces ingest cost on av-

erage by 48× (up to 92×) and makes queries on average 125× (up to 607×) faster compared to

state-of-the-art baselines at two ends of the design spectrum (ingest heavy or query heavy). �e

ideas and insights behind Focus can be applied to designing e�cient systems for many other

forms of querying on large and continuously-growing datasets in many domains, such as audio,

bioinformatics, and geoinformatics.

102

Second, we present Gaia (Chapter 5), a �rst general geo-distributed ML system that (1) di�er-

entiates the communication over a LAN from the communication over WANs to make e�cient

use of the scarce and heterogeneous WAN bandwidth, and (2) is general and �exible enough to

deploy a wide range of ML algorithms while requiring no change to the ML algorithms them-

selves. We present a new ML synchronization model, Approximate Synchronous Parallel (ASP),

whose key idea is to dynamically eliminate insigni�cant communication between data centers

while still guaranteeing the correctness of ML algorithms by ensuring that all signi�cant updates

are synchronized in time. Our experiments on our prototypes of Gaia running across 11 Amazon

EC2 global regions and on a cluster that emulates EC2 WAN bandwidth show that, compared to

two two state-of-the-art distributed ML training systems, Gaia (1) signi�cantly improves perfor-

mance, by 1.8–53.5×, (2) has performance within 0.94–1.40× of running the same ML algorithm

on a local area network (LAN) in a single data center, and (3) signi�cantly reduces the monetary

cost of running the same ML algorithm on WANs, by 2.6–59.0×.

Finally, we present a �rst detailed study and a system-level solution (Chapter 6) on the prob-

lem of non-IID data partitions for decentralized learning. Our study reveals three key �ndings.

First, to our knowledge, our study is the �rst to show that the problem of non-IID data parti-

tions is a fundamental and pervasive challenge for decentralized learning, as it exists in all ML

applications, DNN models, training datasets, and decentralized learning algorithms in our study.

Second, we make a new observation showing that the challenge of non-IID data partitions is

particularly problematic for DNNs with batch normalization, even under the most conservative

communication approach. Finally, we show that the di�culty level of this problem varies with

the degree of deviation from IID. With these �ndings in mind, we present SkewScout, a system-

level approach that adapts the communication frequency of decentralized learning algorithms to

the (skew-induced) accuracy loss between data partitions. We also show that group normaliza-

tion can recover much of the skew-induced accuracy loss of batch normalization. We hope that

our �ndings will facilitate more solution developments for this important but heavily overlooked

challenge in decentralized learning.

7.2 Future Research Directions

�is dissertation opens up several future research directions. In this section, we discuss several

future directions in which the idea and approaches described in this thesis can be applied or

extended to tackle these problems for ML over highly-distributed and continuously-growing data.

103

7.2.1 ML Serving for Growing and Distributed Data

Chapter 4 presents Focus, a system that provides low-cost and low-latency ML serving over

rapidly-growing datasets. However, many rapidly-growing datasets are also distributed in many

places, such as tra�c and enterprise cameras. �is poses an interesting dimension that is not

considered by Focus: communication between data generators (e.g., cameras) and ML serving

providers (e.g., cloud). As most modern cameras are equipped with some processing capability,

there is an opportunity to design an e�cient ML serving system for growing and distributed

datasets. For example, we can build approximate indexes using camera’s processors, and only

transmit necessary information to the cloud. We can then intelligently decide which part of the

videos needs to be sent to the cloud based on user queries. Similarly, we can design a system

that runs part of the processing on edge clusters instead of data centers so that the system can

support real-time object detection with much shorter turnaround latency. In general, building an

end-to-end ML serving system for distributed and growing data is a promising research direction.

7.2.2 ML Training Systems for Intermittent Networks

Chapter 5 introduces Gaia to mitigate limited WAN bandwidth when training over geo-

distributed data. However, there is another challenge with limited connectivity: intermi�ent

network connection. While Gaia uses some mechanisms (§5.2.4) to ensure all data centers are

always synchronized, this can lead to very high cost if connection to some data centers is lost for

an extended period of time (as all other data centers are idle waiting). �e other extreme approach

is to disregard the disconnected participants and keep training, which may work well if there are

thousands or millions of participants (e.g., federated learning [112]) but may not be a good solu-

tion for few training participants (e.g., geo-distributed learning). It is still unclear how to build a

ML training system that can handle intermi�ent connection reliably and e�ciently. Speci�cally,

the system should be able to keep making progress while waiting for the disconnected partic-

ipants, but allow the disconnected participants to catch up if their connections are recovered.

Tackling this challenge will further enable practical ML training over highly-distributed data.

7.2.3 Training Local and Global Models for Non-IID Data Partitions

An alternative solution to ML training over non-IID data partition is to train local models that

�t the data distribution in each data partition, while leveraging data from other data partitions

to improve model quality (such as federated multi-task learning [143] or semi-cyclic SGD [56]).

However, existing approaches have major shortcomings as they are either not general for all ML

104

applications (such as DNNs), (2) not communication e�cient, or (3) unable to provide a global

model, which is still important when local models are ine�ective. A be�er approach is to develop

an ML system that trains both local and global models in a communication e�cient manner, at the

same time. One possibility to design such a system is that we can leverage the idea of multi-task

learning to partition an ML model into local and global part, and then we can apply decentralized

learning algorithms (such as Gaia in Chapter 5) and solutions like SkewScout (Chapter 6) to

make training of the global part communication e�cient and resilient in the Non-IID se�ings.

We can then explore mechanisms to construct a complete global model based on the global part

and local part of the model.

7.2.4 ML Training Systems for Non-IID Data over Space and Time

Chapter 6 only discusses one form of non-IID data, which is non-IID data over space with multiple

partitions. More generally, rapidly-growing data can also vary signi�cantly over time, which

adds another dimension to the non-IID data problem. Prior work on non-IID data over time (i.e.,

continuous learning [120]) does not consider the space dimension. As most timely and relevant

ML data are continuously generated at many di�erent locations, it is important to explore ML

systems that can handle non-IID data in both space and time. �e goals of such a system are the

capability to: (1) detect data change over time in each location; (2) e�ciently and incrementally

update the local and global models; and (3) tailor to the application requirements on historical

data. We believe the ideas presented in this thesis can be extended to this interesting future

direction.

105

Other Works of the Author

During the course of my Ph.D., I have been interested in several topics beyond ML systems, such

as novel hardware architectures and accelerators and their integration into the so�ware stack. I

had opportunities to work on these topics through collaboration with fellow graduate students

and industrial collaborators. �ese projects not only broadened my horizon, they also helped me

in learning research fundamentals. I would like to acknowledge these projects in this chapter.

In the early years of my Ph.D., I have worked on several projects on processing-in-memory

(PIM), a promising paradigm that places computation close to data in memory. �is provides a

new opportunity to alleviate the main memory bo�leneck in modern computers (also known as

the “memory wall” [166]). In collaboration with Eiman Ebrahimi, Gwangsun Kim, and others,

we designed mechanisms to enable GPU computation o�oading to memory without burdening

the programmer [79, 95]. In collaboration with Amirali Boroumand, we proposed e�cient cache

coherence mechanisms for PIM architectures [36, 37]. In collaboration with Vivek Seshadri, we

proposed low-overhead mechanisms for bulk bitwise operations in DRAM [138]. Finally, I also

worked on architecting a pointer chasing accelerator in memory [61, 81].

In collaboration with Nandita Vijaykumar, we have architected rich cross-layer abstractions

to enhance programmability, performance portability, and performance in CPUs and GPUs. �ree

contributions are made in this line of work: (1) Expressive Memory [158]: a cross-layer abstrac-

tion to express and communicate higher-level program information from the application to the

underlying OS/hardware to enhance memory optimizations; (2) �e Locality Descriptor [156]:

a cross-layer abstraction to express data locality in GPUs; and (3) Zorua [157]: a framework to

decouple the programming models from on-chip resource managements. We demonstrated sig-

ni�cant performance bene�ts from enabling cross-layer optimizations.

In collaboration with Kevin Chang, we worked on mechanisms to reduce DRAM latency. We

comprehensively characterized hundreds of DRAM chips and made several new observations

about latency variation within DRAM. We further proposed a mechanism that exploits latency

variation across DRAM cells within a DRAM chip to improve system performance [42].

106

Bibliography

[1] “Avigilon,” h�p://avigilon.com/products/.

[2] “City Cam, WebcamSi�ard: Town Square Si�ard (NL),” h�ps://www.youtube.com/watch?

v=Zb9koIwo3Js.

[3] “City of Auburn North Ross St and East Magnolia Ave,” h�ps://www.youtube.com/watch?

v=cjuskMMYlLA.

[4] “City of Auburn Toomer’s Corner Webcam,” h�ps://www.youtube.com/watch?v=yJAk

FozAmI.

[5] “Genetec,” h�ps://www.genetec.com/.

[6] “Greenwood Avenue Bend, Oregon,” h�ps://www.youtube.com/watch?v=SNz323Cyago.

[7] “Jackson Hole Wyoming USA Town Square,” h�ps://www.youtube.com/watch?v=

psfFJR3vZ78.

[8] “L2̂ Norm,” h�p://mathworld.wolfram.com/L2-Norm.html.

[9] “Lausanne, Place de la Palud,” h�ps://www.youtube.com/watch?v=GdhEsWcV4iE.

[10] “Linux Tra�c Control.” h�p://tldp.org/HOWTO/Tra�c-Control-HOWTO/intro.html

[11] “MongoDB,” h�ps://www.mongodb.com/.

[12] “Nvidia Tesla P100,” h�p://www.nvidia.com/object/tesla-p100.html.

[13] “Opencv 3.4,” h�p://opencv.org/opencv-3-4.html.

[14] “OpenCV GPU-accelerated computer vision,” h�ps://docs.opencv.org/2.4/modules/gpu/

doc/gpu.html.

[15] “Oxford Martin School Webcam - Broad Street, Oxford,” h�ps://www.youtube.com/watch?

v=Qhq4vQdfrFw.

[16] “TensorFlow Serving,” h�ps://www.tensor�ow.org/serving/.

[17] “Top Video Surveillance Trends for 2016,” h�ps://technology.ihs.com/api/binary/572252.

107

http://avigilon.com/products/
https://www.youtube.com/watch?v=Zb9koIwo3Js
https://www.youtube.com/watch?v=Zb9koIwo3Js
https://www.youtube.com/watch?v=cjuskMMYlLA
https://www.youtube.com/watch?v=cjuskMMYlLA
https://www.youtube.com/watch?v=yJAk_FozAmI
https://www.youtube.com/watch?v=yJAk_FozAmI
https://www.genetec.com/
https://www.youtube.com/watch?v=SNz323Cyago
https://www.youtube.com/watch?v=psfFJR3vZ78
https://www.youtube.com/watch?v=psfFJR3vZ78
http://mathworld.wolfram.com/L2-Norm.html
https://www.youtube.com/watch?v=GdhEsWcV4iE
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://www.mongodb.com/
http://www.nvidia.com/object/tesla-p100.html
http://opencv.org/opencv-3-4.html
https://docs.opencv.org/2.4/modules/gpu/doc/gpu.html
https://docs.opencv.org/2.4/modules/gpu/doc/gpu.html
https://www.youtube.com/watch?v=Qhq4vQdfrFw
https://www.youtube.com/watch?v=Qhq4vQdfrFw
https://www.tensorflow.org/serving/
https://technology.ihs.com/api/binary/572252

[18] “Wikipedia: Pareto e�ciency,” h�ps://en.wikipedia.org/wiki/Pareto e�ciency.

[19] “Deep neural networks for acoustic modeling in speech recognition: �e shared views of

four research groups,” IEEE Signal Process. Mag., 2012.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wa�enberg, M. Wicke, Y. Yu, and

X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015,

so�ware available from tensor�ow.org. h�p://tensor�ow.org/

[21] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying convolutional neural net-

works concepts to hybrid NN-HMM model for speech recognition,” in ICASSP, 2012.

[22] D. Agarwal, B. Long, J. Traupman, D. Xin, and L. Zhang, “LASER: a scalable response

prediction platform for online advertising,” in WSDM, 2014.

[23] A. Ahmed, M. Aly, J. Gonzalez, S. M. Narayanamurthy, and A. J. Smola, “Scalable inference

in latent variable models,” in WSDM, 2012.

[24] A. Albert, J. Kaur, and M. C. Gonzalez, “Using convolutional networks and satellite imagery

to identify pa�erns in urban environments at a large scale,” in SIGKDD, 2017.

[25] Amazon, “AWS global infrastructure.” h�ps://aws.amazon.com/about-aws/

global-infrastructure/

[26] Amazon, “Amazon EC2 pricing,” Janurary 2017. h�ps://aws.amazon.com/ec2/pricing/

[27] “Apache Mahout,” h�p://mahout.apache.org/.

[28] “Apache Spark MLlib,” h�p://spark.apache.org/mllib/.

[29] A. Auradkar, C. Botev, S. Das, D. D. Maagd, A. Feinberg, P. Ganti, L. Gao, B. Ghosh,

K. Gopalakrishna, B. Harris, J. Koshy, K. Krawez, J. Kreps, S. Lu, S. Nagaraj, N. Narkhede,

S. Pachev, I. Perisic, L. Qiao, T. �iggle, J. Rao, B. Schulman, A. Sebastian, O. Seeliger, A. Sil-

berstein, B. Shkolnik, C. Soman, R. Sumbaly, K. Surlaker, S. Topiwala, C. Tran, B. Varadara-

jan, J. Westerman, Z. White, D. Zhang, and J. Zhang, “Data infrastructure at LinkedIn,” in

ICDE, 2012.

[30] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol. abs/1607.06450,

2016.

108

https://en.wikipedia.org/wiki/Pareto_efficiency
http://tensorflow.org/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/ec2/pricing/
http://mahout.apache.org/
http://spark.apache.org/mllib/

[31] A. Babenko and V. S. Lempitsky, “Aggregating deep convolutional features for image re-

trieval,” in ICCV, 2015.

[32] A. Babenko, A. Slesarev, A. Chigorin, and V. S. Lempitsky, “Neural codes for image re-

trieval,” in ECCV, 2014.

[33] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger, “Understanding batch normaliza-

tion,” in NeurIPS, 2018.

[34] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” JMLR, 2003.

[35] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Mon-

fort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-

driving cars,” CoRR, vol. abs/1604.07316, 2016.

[36] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarungnirun, K. Hsieh,

N. Hajinazar, K. T. Malladi, H. Zheng, and O. Mutlu, “CoNDA: e�cient cache coherence

support for near-data accelerators,” in Proceedings of the 46th International Symposium on

Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019, 2019, pp. 629–642.

h�ps://doi.org/10.1145/3307650.3322266

[37] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi, H. Zheng,

and O. Mutlu, “LazyPIM: An e�cient cache coherence mechanism for processing-in-

memory,” Computer Architecture Le�ers, vol. 16, no. 1, 2017.

[38] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, “Parallel coordinate descent for L1-

regularized loss minimization,” in ICML, 2011.

[39] S. Brutzer, B. Höferlin, and G. Heidemann, “Evaluation of background subtraction tech-

niques for video surveillance,” in CVPR, 2011.

[40] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M. Fumarola, “Towards geo-distributed

machine learning,” CoRR, 2016.

[41] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over an evolving data

stream with noise,” in SIAM International Conference on Data Mining, 2006.

[42] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko, S. M.

Khan, and O. Mutlu, “Understanding latency variation in modern DRAM chips: Experi-

mental characterization, analysis, and optimization,” in SIGMETRICS, 2016.

[43] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang,

“MXNet: A �exible and e�cient machine learning library for heterogeneous distributed

systems,” CoRR, vol. abs/1512.01274, 2015.

109

https://doi.org/10.1145/3307650.3322266

[44] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing neural net-

works with the hashing trick,” CoRR, vol. abs/1504.04788, 2015.

[45] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan, “Automatic road detection and

centerline extraction via cascaded end-to-end convolutional neural network,” IEEE Trans.

Geoscience and Remote Sensing, 2017.

[46] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project Adam: Building an

e�cient and scalable deep learning training system,” in OSDI, 2014.

[47] C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and K. Olukotun, “Map-Reduce for

machine learning on multicore,” in NIPS, 2006.

[48] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang, M. J. Franklin, A. Ghodsi, and M. I.

Jordan, “�e missing piece in complex analytics: Low latency, scalable model management

and serving with velox,” in CIDR, 2015.

[49] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica, “Clipper: A

low-latency online prediction serving system,” in NSDI, 2017.

[50] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B.

Gibbons, G. A. Gibson, and E. P. Xing, “Exploiting bounded staleness to speed up big data

analytics,” in USENIX ATC, 2014.

[51] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R. Ganger, P. B.

Gibbons, G. A. Gibson, and E. P. Xing, “Exploiting iterative-ness for parallel ML computa-

tions,” in SoCC, 2014, so�ware available at h�ps://github.com/cuihenggang/iterstore.

[52] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “GeePS: Scalable deep learning

on distributed GPUs with a GPU-specialized parameter server,” in EuroSys, 2016, so�ware

available at h�ps://github.com/cuihenggang/geeps.

[53] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing, “Analysis of high-performance

distributed ML at scale through parameter server consistency models,” in AAAI, 2015.

[54] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W.

Senior, P. A. Tucker, K. Yang, and A. Y. Ng, “Large scale distributed deep networks,” in NIPS,

2012.

[55] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” in �e Annals

of Statistics, 2004.

[56] H. Eichner, T. Koren, B. McMahan, N. Srebro, and K. Talwar, “Semi-cyclic stochastic gradi-

ent descent,” in ICML, 2019.

110

[57] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation: Informed scheduling for

asynchronous message passing,” in UAI, 2006.

[58] ESnet and Lawrence Berkeley National Laboratory, “iperf3.” h�p://so�ware.es.net/iperf/

[59] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov, “DeViSE:

A deep visual-semantic embedding model,” in NIPS, 2013.

[60] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix factorization with

distributed stochastic gradient descent,” in SIGKDD, 2011.

[61] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu, “Enabling the

adoption of processing-in-memory: Challenges, mechanisms, future research directions,”

Beyond-CMOS Technologies for Next Generation Computer Design, Springer, 2019.

[62] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph: Distributed graph-

parallel computation on natural graphs,” in OSDI, 2012.

[63] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.

Courville, and Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.

[64] Google, “Google data center locations.” h�ps://www.google.com/about/datacenters/inside/

locations/index.html

[65] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,

Y. Jia, and K. He, “Accurate, large minibatch SGD: training ImageNet in 1 hour,” CoRR, vol.

abs/1706.02677, 2017.

[66] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and P. Patel, “�e cost of a cloud: research

problems in data center networks,” Computer Communication Review, 2009.

[67] T. L. Gri�ths and M. Steyvers, “Finding scienti�c topics,” Proceedings of the National

Academy of Sciences of the United States of America, 2004.

[68] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. G. Dhoot, A. R. Kumar,

A. Agiwal, S. Bhansali, M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute, A. Gubarev,

S. Venkataraman, and D. Agrawal, “Mesa: Geo-replicated, near real-time, scalable data

warehousing,” PVLDB, 2014.

[69] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy, “MCDNN:

An approximation-based execution framework for deep stream processing under resource

constraints,” in MobiSys, 2016.

[70] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for e�cient

111

http://software.es.net/iperf/
https://www.google.com/about/datacenters/inside/locations/index.html
https://www.google.com/about/datacenters/inside/locations/index.html

neural network,” in NIPS, 2015.

[71] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing,

“Addressing the straggler problem for iterative convergent parallel ML,” in SoCC, 2016.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti�ers: Surpassing human-level

performance on imagenet classi�cation,” in ICCV, 2015.

[73] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” inCVPR,

2016.

[74] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing grouped aggregation in geo-

distributed streaming analytics,” in HPDC, 2015.

[75] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. R. Ganger, and E. P.

Xing, “More e�ective distributed ML via a stale synchronous parallel parameter server,” in

NIPS, 2013.

[76] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,

no. 8, 1997.

[77] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wa�enhofer,

“Achieving high utilization with so�ware-driven WAN,” in SIGCOMM, 2013.

[78] K. Hsieh, G. Ananthanarayanan, P. Bodı́k, S. Venkataraman, P. Bahl, M. Philipose, P. B.

Gibbons, and O. Mutlu, “Focus: �erying large video datasets with low latency and low

cost,” in OSDI, 2018.

[79] K. Hsieh, E. Ebrahimi, G. Kim, N. Cha�erjee, M. O’Connor, N. Vijaykumar, O. Mutlu,

and S. W. Keckler, “Transparent o�oading and mapping (TOM): Enabling programmer-

transparent near-data processing in GPU systems,” in ISCA, 2016.

[80] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons, and O. Mutlu,

“Gaia: Geo-distributed machine learning approaching LAN speeds,” in NSDI, 2017.

[81] K. Hsieh, S. M. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and O. Mutlu,

“Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms, evalua-

tion,” in ICCD, 2016.

[82] K. Hsieh, A. Phanishayee, O. Mutlu, and P. B. Gibbons, “�e Non-IID data quagmire of

decentralized machine learning,” CoRR, vol. abs/1910.00189, 2019.

[83] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A

database for studying face recognition in unconstrained environments,” University of Mas-

112

sachuse�s, Amherst, Tech. Rep. 07-49, October 2007.

[84] C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-distributed datacenters,” in

SoCC, 2015.

[85] S. Io�e, “Batch renormalization: Towards reducing minibatch dependence in batch-

normalized models,” in NIPS, 2017.

[86] S. Io�e and C. Szegedy, “Batch normalization: Accelerating deep network training by re-

ducing internal covariate shi�,” in ICML, 2015.

[87] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural networks

with low rank expansions,” CoRR, vol. abs/1405.3866, 2014.

[88] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, and M. I. Jordan,

“Communication-e�cient distributed dual coordinate ascent,” in NIPS, 2014.

[89] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and

T. Darrell, “Ca�e: Convolutional architecture for fast feature embedding,” CoRR, 2014.

[90] J. Jiang, G. Ananthanarayanan, P. Bodı́k, S. Sen, and I. Stoica, “Chameleon: scalable adap-

tation of video analytics,” in SIGCOMM, 2018.

[91] S. E. Kahou, C. J. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre, R. Memisevic, P. Vin-

cent, A. C. Courville, Y. Bengio, R. C. Ferrari, M. Mirza, S. Jean, P. L. Carrier, Y. Dauphin,

N. Boulanger-Lewandowski, A. Aggarwal, J. Zumer, P. Lamblin, J. Raymond, G. Desjardins,

R. Pascanu, D. Warde-Farley, A. Torabi, A. Sharma, E. Bengio, K. R. Konda, and Z. Wu,

“Combining modality speci�c deep neural networks for emotion recognition in video,” in

ICMI, 2013.

[92] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “NoScope project website,” h�ps:

//github.com/stanford-futuredata/noscope.

[93] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “NoScope: Optimizing deep

CNN-based queries over video streams at scale,” PVLDB, 2017.

[94] A. Karpathy, G. Toderici, S. She�y, T. Leung, R. Sukthankar, and F. F. Li, “Large-scale video

classi�cation with convolutional neural networks,” in CVPR, 2014.

[95] G. Kim, N. Cha�erjee, M. O’Connor, and K. Hsieh, “Toward standardized near-data pro-

cessing with unrestricted data placement for GPUs,” in SC, 2017.

[96] J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gibson, and E. P. Xing, “STRADS: a

distributed framework for scheduled model parallel machine learning,” in EuroSys, 2016.

113

https://github.com/stanford-futuredata/noscope
https://github.com/stanford-futuredata/noscope

[97] K. Kloudas, R. Rodrigues, N. M. Preguiça, and M. Mamede, “PIXIDA: optimizing data par-

allel jobs in wide-area data analytics,” PVLDB, 2015.

[98] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of

Toronto, Tech. Rep., 2009.

[99] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classi�cation with deep convolu-

tional neural networks,” in NIPS, 2012.

[100] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter bulk transfers with

netstitcher,” in SIGCOMM, 2011.

[101] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D.

Jackel, “Backpropagation applied to handwri�en zip code recognition,” Neural Computa-

tion, 1989.

[102] Y. LeCun, L. Bo�ou, Y. Bengio, P. Ha�ner et al., “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, 1998.

[103] G. Lee, J. J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy, “�e uni�ed logging infrastructure for

data analytics at Twi�er,” PVLDB, 2012.

[104] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,

and B. Su, “Scaling distributed machine learning with the parameter server,” in OSDI, 2014.

[105] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication e�cient distributed machine

learning with the parameter server,” in NIPS, 2014.

[106] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classi�cation

with convolutional neural network,” in ICARCV, 2014.

[107] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature pyramid

networks for object detection,” in CVPR, 2017.

[108] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,

“Microso� COCO: common objects in context,” in ECCV, 2014.

[109] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient compression: Reducing

the communication bandwidth for distributed training,” in ICLR, 2018.

[110] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein, “Distributed

GraphLab: A framework for machine learning in the cloud,” VLDB, 2012.

[111] E. K. Lua, J. Crowcro�, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of peer-

to-peer overlay network schemes,” IEEE Communications Surveys and Tutorials, 2005.

114

[112] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

e�cient learning of deep networks from decentralized data,” in AISTATS, 2017.

[113] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai,

M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar,

“MLlib: Machine learning in Apache Spark,” CoRR, 2015.

[114] Microso�, “Azure regions.” h�ps://azure.microso�.com/en-us/region

[115] Microso�, “Microso� Cognitive Toolkit.” h�ps://www.microso�.com/en-us/

cognitive-toolkit/

[116] W. Neiswanger, C. Wang, and E. P. Xing, “Asymptotically exact, embarrassingly parallel

MCMC,” in UAI, 2014.

[117] “New York Times dataset,” h�p://www.ldc.upenn.edu/.

[118] D. Newman, A. U. Asuncion, P. Smyth, and M. Welling, “Distributed algorithms for topic

models,” JMLR, 2009.

[119] L. O’Callaghan, N. Mishra, A. Meyerson, and S. Guha, “Streaming-data algorithms for high-

quality clustering,” in ICDE, 2002.

[120] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning

with neural networks: A review,” Neural Networks, vol. 113, 2019.

[121] R. Pascanu, T. Mikolov, and Y. Bengio, “On the di�culty of training recurrent neural net-

works,” in ICML, 2013.

[122] Q. Pu, G. Ananthanarayanan, P. Bodı́k, S. Kandula, A. Akella, P. Bahl, and I. Stoica, “Low

latency geo-distributed data analytics,” in SIGCOMM, 2015.

[123] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Net-

works, vol. 12, no. 1, 1999.

[124] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation and degradation in

JetStream: Streaming analytics in the wide area,” in NSDI, 2014.

[125] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features o�-the-shelf: An

astounding baseline for recognition,” in CVPR Workshops, 2014.

[126] B. Recht, C. Ré, S. J. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing

stochastic gradient descent,” in NIPS, 2011.

[127] J. Redmon and A. Farhadi, “YOLO9000: Be�er, faster, stronger,” CoRR, vol. abs/1612.08242,

2016.

115

https://azure.microsoft.com/en-us/region
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
http://www.ldc.upenn.edu/

[128] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection

with region proposal networks,” in NIPS, 2015.

[129] P. Richtárik and M. Takác, “Distributed coordinate descent method for learning with big

data,” CoRR, 2013.

[130] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Ga�a, and Y. Bengio, “FitNets: Hints for

thin deep nets,” CoRR, vol. abs/1412.6550, 2014.

[131] H. R. Roth, L. Lu, J. Liu, J. Yao, A. Se�, K. M. Cherry, L. Kim, and R. M. Summers, “Im-

proving computer-aided detection using convolutional neural networks and random view

aggregation,” IEEE Trans. Med. Imaging, 2016.

[132] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Cognitive modeling, 1988.

[133] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recog-

nition challenge,” IJCV, 2015.

[134] S. J. Russell and P. Norvig, Arti�cial intelligence: a modern approach. Malaysia; Pearson

Education Limited,, 2016.

[135] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to ac-

celerate training of deep neural networks,” in NIPS, 2016.

[136] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help opti-

mization?” in NeurIPS, 2018.

[137] F. Schro�, D. Kalenichenko, and J. Philbin, “FaceNet: A uni�ed embedding for face recog-

nition and clustering,” in CVPR, 2015.

[138] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and

T. C. Mowry, “Fast bulk bitwise AND and OR in DRAM,” Computer Architecture Le�ers,

vol. 14, no. 2, 2015.

[139] O. Shamir, N. Srebro, and T. Zhang, “Communication-e�cient distributed optimization us-

ing an approximate Newton-type method,” in ICML, 2014.

[140] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy, “Fast video classi�cation via adaptive

cascading of deep models,” in CVPR, 2017.

[141] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in CCS, 2015.

[142] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

116

recognition,” in ICLR, 2015.

[143] V. Smith, C. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learning,” in

NIPS, 2017.

[144] A. J. Smola and S. M. Narayanamurthy, “An architecture for parallel topic models,” VLDB,

2010.

[145] S. Stober, D. J. Cameron, and J. A. Grahn, “Using convolutional neural networks to recog-

nize rhythm stimuli from electroencephalography recordings,” in NIPS, 2014.

[146] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” in CVPR, 2015.

[147] C. Szegedy, V. Vanhoucke, S. Io�e, J. Shlens, and Z. Wojna, “Rethinking the inception ar-

chitecture for computer vision,” in CVPR, 2016.

[148] M. Takác, A. S. Bijral, P. Richtárik, and N. Srebro, “Mini-batch primal and dual methods for

SVMs,” in ICML, 2013.

[149] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, (First Edition). Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.

[150] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D
2

: Decentralized training over decentral-

ized data,” in ICML, 2018.

[151] TeleGeography, “Global Internet geography.” h�ps://www.telegeography.com/

research-services/global-internet-geography/

[152] A. �usoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S. Sarma, R. Murthy, and H. Liu,

“Data warehousing and analytics infrastructure at Facebook,” in SIGMOD, 2010.

[153] K. I. Tsianos, S. F. Lawlor, and M. G. Rabbat, “Communication/computation tradeo�s in

consensus-based distributed optimization,” in NIPS, 2012.

[154] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, 1990.

[155] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated annealing: �eory

and applications. Springer, 1987, pp. 7–15.

[156] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu, “�e Locality Descriptor:

A holistic cross-layer abstraction to express data locality in GPUs,” in ISCA, 2018.

[157] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. M. Khan, A. Shrestha, S. Ghose, A. Jog, P. B.

Gibbons, and O. Mutlu, “Zorua: A holistic approach to resource virtualization in GPUs,” in

MICRO, 2016.

117

https://www.telegeography.com/research-services/global-internet-geography/
https://www.telegeography.com/research-services/global-internet-geography/

[158] N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko, E. Ebrahimi, N. Hajinazar,

P. B. Gibbons, and O. Mutlu, “A case for richer cross-layer abstractions: Bridging the se-

mantic gap with expressive memory,” in ISCA, 2018.

[159] R. Viswanathan, A. Akella, and G. Ananthanarayanan, “Clarinet: WAN-aware optimization

for analytics queries,” in OSDI, 2016.

[160] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese, “WANalytics: Analytics

for a geo-distributed data-intensive world,” in CIDR, 2015.

[161] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and G. Varghese, “Global

analytics in the face of bandwidth and regulatory constraints,” in NSDI, 2015.

[162] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P.

Xing, “Managed communication and consistency for fast data-parallel iterative analytics,”

in SoCC, 2015.

[163] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep

face recognition,” in ECCV, 2016.

[164] Y. Wu and K. He, “Group normalization,” in ECCV, 2018.

[165] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Basse�, and H. V. Madhyastha, “SPANStore:

Cost-e�ective geo-replicated storage spanning multiple cloud services,” in SOSP, 2013.

[166] W. A. Wulf and S. A. McKee, “Hi�ing the memory wall: implications of the obvious,”

SIGARCH Computer Architecture News, vol. 23, no. 1, 1995.

[167] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu,

“Petuum: A new platform for distributed machine learning on big data,” in SIGKDD, 2015.

[168] E. P. Xing, Q. Ho, P. Xie, and W. Dai, “Strategies and principles of distributed machine

learning on big data,” CoRR, 2015.

[169] Z. Xu, Y. Yang, and A. G. Hauptmann, “A discriminative CNN video representation for

event detection,” in CVPR, 2015.

[170] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” CoRR, vol.

abs/1411.7923, 2014.

[171] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “PrIter: A distributed framework for prioritized

iterative computations,” in SoCC, 2011.

[172] Y. Zhang, J. C. Duchi, and M. J. Wainwright, “Communication-e�cient algorithms for sta-

tistical optimization,” JMLR, 2013.

118

[173] Y. Zhang and X. Lin, “DiSCO: Distributed optimization for self-concordant empirical loss,”

in ICML, 2015.

[174] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-IID

data,” CoRR, vol. abs/1806.00582, 2018.

[175] M. Zinkevich, A. J. Smola, and J. Langford, “Slow learners are fast,” in NIPS, 2009.

[176] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized stochastic gradient descent,”

in NIPS, 2010.

119

	1 Introduction
	1.1 Thesis Statement
	1.2 Overview of Our Approach
	1.2.1 ML Serving over Large, Rapidly-Growing Datasets (e.g., Videos)
	1.2.2 ML Training over Geo-Distributed Data
	1.2.3 The Non-IID Data Partition Problem for Decentralized ML

	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Distributed ML Training Systems
	2.2 Convolutional Neural Networks

	3 Related Work
	3.1 Distributed ML Training Systems with Centralized Data
	3.2 Distributed ML Training with Decentralized Data
	3.3 Communication-Efficient ML Training Algorithms
	3.4 Low-Latency ML Serving Systems

	4 ML Serving over Large, Rapidly-Growing Datasets: A Case Study of Video Queries
	4.1 Characterizing Real-world Videos
	4.1.1 Excluding large portions of videos
	4.1.2 Limited set of object classes in each video
	4.1.3 Feature vectors for finding duplicate objects

	4.2 Overview of Focus
	4.3 Video Ingest & Querying Techniques
	4.3.1 Approximate Index via Cheap Ingest
	4.3.2 Video-specific Specialization of Ingest CNN
	4.3.3 Redundant Object Elimination
	4.3.4 Trading off Ingest Cost and Query Latency

	4.4 Implementation
	4.4.1 Ingest Processor
	4.4.2 Stream Tuner
	4.4.3 Query Processor

	4.5 Evaluation
	4.5.1 Methodology
	4.5.2 End-to-End Performance
	4.5.3 Effect of Different Focus Components
	4.5.4 Ingest Cost vs. Query Latency Trade-off
	4.5.5 Sensitivity to Recall/Precision Target
	4.5.6 Sensitivity to Object Class Numbers

	4.6 Other Applications
	4.7 Summary

	5 ML Training over Geo-Distributed Data
	5.1 Motivation
	5.1.1 WAN Network Bandwidth and Cost
	5.1.2 ML System Performance on WANs

	5.2 Our Approach: Gaia
	5.2.1 Key Challenges
	5.2.2 Gaia System Overview
	5.2.3 Study of Update Significance
	5.2.4 Approximate Synchronous Parallel
	5.2.5 Summary of Convergence Proof

	5.3 Implementation
	5.3.1 Gaia System Key Components
	5.3.2 System Operations and Communication
	5.3.3 Advanced Significance Functions
	5.3.4 Tuning of Significance Thresholds
	5.3.5 Overlay Network and Hub

	5.4 Methodology
	5.4.1 Experiment Platforms
	5.4.2 Applications
	5.4.3 Performance Metrics and Algorithm Convergence Criteria

	5.5 Evaluation Results
	5.5.1 Performance on EC2 Deployment
	5.5.2 Performance and WAN Bandwidth
	5.5.3 Cost Analysis
	5.5.4 Comparisons with Centralized Data
	5.5.5 Effect of Synchronization Mechanisms
	5.5.6 Performance Results of SSP

	5.6 Summary

	Appendices
	5.A Convergence Proof of SGD under ASP

	6 The Non-IID Data Partition Problem for Decentralized ML
	6.1 Background and Setup
	6.1.1 Decentralized Learning
	6.1.2 Experimental Setup

	6.2 Non-IID Study: Results Overview
	6.2.1 Image Classification with CIFAR-10
	6.2.2 Image Classification with ImageNet
	6.2.3 Face Recognition

	6.3 Problems of Decentralized Learning Algorithms
	6.3.1 Reasons for Model Quality Loss
	6.3.2 Algorithm Hyper-Parameters

	6.4 Batch Normalization: Problem and Solution
	6.4.1 The Problem of Batch Normalization in the Non-IID Setting
	6.4.2 Alternatives to Batch Normalization

	6.5 Degree of Deviation from IID
	6.6 Our Approach: SkewScout
	6.6.1 Overview of SkewScout
	6.6.2 Mechanism Details
	6.6.3 Evaluation Results

	6.7 Summary

	Appendices
	6.A Details of Decentralized Learning Algorithms
	6.B Training Parameters
	6.C More Algorithm Hyper-Parameter Results

	7 Conclusion and Future Directions
	7.1 Conclusion
	7.2 Future Research Directions
	7.2.1 ML Serving for Growing and Distributed Data
	7.2.2 ML Training Systems for Intermittent Networks
	7.2.3 Training Local and Global Models for Non-IID Data Partitions
	7.2.4 ML Training Systems for Non-IID Data over Space and Time

