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Face Recognition Object Detection

Self-driving car Language translation



At Their Core: ML Training and Serving
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ML on Real-World, Large-Scale Data
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Many ML Data are 
Highly Distributed and Rapidly Growing

Training 
Data

Serving 
Data



Challenge: ML Serving on Rapidly-Growing Data
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ML Serving System ?

High Cost to Process 
Data at Ingest Time

Long Latency to Process 
Data at Query Time

Find video frames 
with trucks Traffic cameras in a city

Computation Challenge



Challenge: ML Training on Highly-Distributed Data
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ML 
Model

High Cost and Long Latency to
Train ML Models over Geo-Distributed Data

Communication 
Challenge

What happens to ML if training data partitions are 
not IID (independent and identically distributed)?

Statistical 
Challenge



Thesis Statement

The latency and cost of ML training and serving on 
highly-distributed and rapidly-growing data can be 
improved by one to two orders of magnitude 
by designing ML systems that exploit the 
characteristics of ML algorithms,                                    
ML model structures, and application data
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Overview of Our Approach
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ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for 
Decentralized ML
Ø Address the statistical challenge

ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge



Overview of Our Approach
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ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge

ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for 
Decentralized ML
Ø Address the statistical challenge



Video Data are Rapidly Growing

Massive video recordings are happening 
everywhere

10



Querying Objects in Videos using ML Serving

• Find all trucks among traffic videos in a city last week
• Find all people in garage videos in a company last night
à Query execution requires running detector & classifier CNNs 
à It is slow and costly on massive videos
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Ingest Time Analysis: Too Costly

• Analyzing live videos at ingest time can make query fast
• But it is costly
• Potentially wasteful (ingest all garage cameras vs. query one)
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Ingest Query

Object Class → [Frames]

$380/month/stream



Query Time Analysis: Too Slow
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Query

1. Kang et al., NoScope, PVLDB’17

• Analyzing videos at query time can save cost
• Frame down-sampling / skipping
• CNN specialization / cascading
• But it still very slow (5 hr for a month-long video [1])

Ingest



Our Goal

Enable low-latency and low-cost querying over 
rapidly growing video datasets
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CNN,
Accuracy target

Low-Latency and Low-Cost 
Video Querying System 

Query 
object class

FramesFrames

Frames with trucks



Background: Convolutional Neural Networks

• A Convolutional Neural Network (CNN) outputs the 
probability of each class

• Based on the extracted features (high-level representation)
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Convolutional + 
Rectification Layer

Pooling Layer

…
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.

.

Fully-Connected Layer Pr(Truck) ✓
Pr(Moving Van)
Pr(Bus)
Pr(Car)
Pr(Person)

Extracted 
Features



ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency

Focus System: Low-latency query with low-
cost ingest
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Low-Cost Ingestion: Cheaper CNNs

• Process video frames with a cheap CNN at ingest time
• Compressed and Specialized CNN: fewer layers / weights 

and are specialized for each video stream
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Objects Specialized, 

Compressed CNN

CNN
specialization

FramesFramesFrames

IndexExpensive CNN



Challenge: Cheap CNNs are Less Accurate 

• Cheaper CNNs are less accurate than                           
the expensive CNNs 

The best result from the expensive CNN is within the 
top-K results of the cheaper CNN
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Rank Expensive CNN Cheap CNN
1 Truck Moving Van
2 Moving Van Airplane
3 Passenger Car Truck

4 Recreational 
vehicle Passenger Car



Recall, Precision and Top-K Results
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0%

50%

100%
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Number of selected results (K)

ResNet18 ResNet18 (4 fewer layers)
ResNet18 (6 fewer layers) >99% Recall

Recall: Fraction of relevant objects that are selected
Precision: Fraction of selected objects that are relevant

Cheap CNNs can achieve high recall                          
with small top-K results

Ground-truth CNN: YOLOv2 (80 classes)

Cheaper CNN →Lower Recall



Solution: Split Ingest- and Query-time Work
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Objects
Specialized, 

Compressed CNN

CNN
specialization

FramesFramesFrames

Top-K Index

Ingest-time Query-time

Expensive CNN

Frames with 
trucks

Querying for 
trucks

High Recall High Precision

Query-time work is done 
only on queried videos 
(reduce waste)

Object Class → [Objects]
Object → Frame



ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency

Focus System: Low-latency query with low-
cost ingest
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Low-Latency Query: Redundancy Elimination

• Approximate indexing ➔ non-trivial work at query time
• A larger K ➔ more query-time work 

• Images with similar feature vectors are visually similar
• Minimize the work at query time ➔ clustering similar objects 

based on the extracted features
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Extracted 
Features

……

Query-time work is done only once per cluster



Adding Feature-based Clustering
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Objects
Specialized, 

Compressed CNN

CNN
specialization

FramesFramesFrames

Top-K Index 

Ingest-time Query-time

Expensive CNN

Frames with 
trucksObject 

clusters

Top-K 
results

Centroid
objects

Querying for 
trucks

Object Class → [Clusters]
Cluster → Centroid, [Objects], [Frames]

Reduce redundant work at 
query time

Features Clusters



Experimental Setup 

• Video Datasets
• 11 live traffic and enterprise videos
• Each video stream is evaluated for 12 hours

• Accuracy Targets
• 99% recall and 99% precision w.r.t. YOLOv2 

• Baselines
• Ingest-heavy: Analyzes all frames with YOLOv2 at ingest time and 

stores the inverted index for query
• NoScope [VLDB’17]: A query-optimized system that analyzes frames     

only at query time
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Average End-to-End Performance
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Other Applications
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Other Video Apps
- Face Recognition
- Emotion Detection

Audio
find audio segments 
with a word

Bioinformatics
- Brain signals
- Medical images

Geoinformatics
- Satellite images
- …

Process large and growing data with CNNs to answer 
“after the fact” queries



Overview of Our Approach
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ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge

ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for 
Decentralized ML
Ø Address the statistical challenge



ML Training on Geo-Distributed Data

28

ML 
Model



Centralizing Data is Infeasible [1, 2, 3]

• Moving data over wide-area networks (WANs) can be  
extremely slow

• It is also subject to data sovereignty laws
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1. Vulimiri et al., NSDI’15
2. Pu et al., SIGCOMM’15
3. Viswanathan et al., OSDI’16



Geo-distributed ML is Challenging

• No ML system is designed to run across data centers
(up to 53X slowdown in our study)
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Our Goal

• Develop a geo-distributed ML system
• Minimize communication over wide-area networks
• Retain the accuracy and correctness of                   

ML algorithms
• Without requiring changes to the algorithms
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Worker 
Machine N

Parameter
Server

Background: Parameter Server Architecture

• The parameter server architecture has been           
widely adopted in many ML systems
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…Worker 
Machine 1

Data 1

Parameter
Server

ML ModelUpdateUpdate

ReadRead …

Training Data

Data N

UpdateUpdate

ReadRead

…

Synchronization is critical to the accuracy 
and correctness of ML algorithms



Deploy Parameter Servers on WANs
• Deploying parameter servers across data centers requires    

a lot of communication over WANs (up to 53X slowdown)

33

Worker 
Machine N

Parameter
Server

…Worker 
Machine 1

Parameter
Server

ML Model

…

Data Center 1 Data Center 2 



Gaia System Overview
• Key idea: Decouple the synchronization model within

the data center from the synchronization model 
between data centers
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Parameter
Server

Data Center 1 

Parameter
Server

Worker 
Machine

Local Sync

Parameter
Server

Parameter
Server

…

Data Center 2 

Worker 
Machine
Worker 

Machine
…

Approximately Correct 
Model Copy

Approximately Correct 
Model Copy

Remote 
Sync

Communicate over WANs
only significant updates
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Key Finding: Study of Update Significance
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The vast majority of updates are 
insignificant



Approximate Synchronous Parallel

The significance filter
• Filter updates based on their significance

ASP selective barrier
• Ensure significant updates are read in time

Mirror clock
• Safe guard for pathological cases

36



The Significance Filter
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Approximate Synchronous Parallel

The significance filter
• Filter updates based on their significance

ASP selective barrier
• Ensure significant updates are read in time

Mirror clock
• Safeguard for pathological cases
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ASP Selective Barrier
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Data Center 1 Data Center 2 

Parameter Server Parameter Server
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Update
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Update
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Update
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Arrive too late!

Data Center 1 Data Center 2 

Parameter Server Parameter Server

Significant 
Update
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Update

Significant 
Update

Significant 
Update

Selective
Barrier

Only workers that depend on 
these parameters are blocked



Experimental Setup 

• Applications
• Matrix Factorization with the Netflix dataset
• Topic Modeling with the Nytimes dataset
• Image Classification with the ILSVRC12 dataset

• Hardware platform
• 22 machines with emulated EC2 WAN bandwidth
• We validated the performance with a real EC2 deployment

• Baseline
• IterStore (Cui et al., SoCC’14) and GeePS (Cui et al., EuroSys’16) on WAN

• Performance metrics
• Execution time until algorithm convergence
• Monetary cost of algorithm convergence

40
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V/C WAN
(Virginia/California)

S/S WAN
(Singapore/São Paulo)Gaia is at most 1.23X of LAN speeds
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Overview of Our Approach
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ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge

ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for 
Decentralized ML
Ø Address the statistical challenge



Real-World Data can be Highly Skewed (Non-IID)
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What happens to ML if 
data partitions are not IID? 



Studying ML over Non-IID Data Partitions 
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ML Application Decentralized 
Learning Algorithm

× ×

Degree of 
Deviation from IID

• Image Classification 
(with various DNNs 
and datasets)

• Face recognition

• Gaia [NSDI’17]: only send updates above a threshold

• Federated Average [AISTATS’17]: local steps then average

• Deep Gradient Compression [ICLR’18]: send top 0.1% of updates



Non-IID Data: Setup
• Task: Classify an image into one of the object classes
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Apple ✓

• Each data center has some classes of images

DNN

Show results for 2 to 5 partitions…Only gets worse with more partitions
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All decentralized ML approaches lose significant accuracy
Tight synchronization (BSP) is accurate but too slow
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Even BSP cannot solve this problem for DNNs with 
Batch Normalization Layers



The Degree of Deviation from IID is a 
Key Factor
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Quick Summary (so far)

•Non-IID Data Quagmire: non-IID data partition 
is a pervasive and fundamental problem

•Even communicating everything cannot solve 
this problem for DNNs with batch normalization 

•The degree of deviation from IID is a key factor

50



Solution for
Batch Normalization

51



Background: Batch Norm Layer
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vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

Batch normalization enables larger learning rates, 
which make convergence much faster and avoid sharp 

local minimum (generalize better)



Analysis: Batch Mean Divergence
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Alternatives to Batch Normalization

• Weight Normalization [Salimans et al., NeurIPS’16]

• Layer Normalization [Ba et al., arXiv’16]
• Batch Renormalization [Ioffe, NeurIPS’17]
• Separate approaches for Mean and Variance
• Gradient clipping

54
All of them fail on non-IID data



Solution: Use Group Normalization 
[Wu and He, ECCV’18]
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4 Wu and He
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Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2.

Group-wise computation. Group convolutions have been presented by AlexNet
[28] for distributing a model into two GPUs. The concept of groups as a di-
mension for model design has been more widely studied recently. The work of
ResNeXt [7] investigates the trade-off between depth, width, and groups, and
it suggests that a larger number of groups can improve accuracy under similar
computational cost. MobileNet [38] and Xception [39] exploit channel-wise (also
called “depth-wise”) convolutions, which are group convolutions with a group
number equal to the channel number. ShuffleNet [40] proposes a channel shuffle
operation that permutes the axes of grouped features. These methods all in-
volve dividing the channel dimension into groups. Despite the relation to these
methods, GN does not require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [3].

3 Group Normalization

The channels of visual representations are not entirely independent. Classical
features of SIFT [14], HOG [15], and GIST [41] are group-wise representations
by design, where each group of channels is constructed by some kind of his-
togram. These features are often processed by group-wise normalization over
each histogram or each orientation. Higher-level features such as VLAD [42]
and Fisher Vectors (FV) [43] are also group-wise features where a group can be
thought of as the sub-vector computed with respect to a cluster.

Analogously, it is not necessary to think of deep neural network features
as unstructured vectors. For example, for conv1 (the first convolutional layer)
of a network, it is reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural images. If conv1 hap-
pens to approximately learn this pair of filters, or if the horizontal flipping (or
other transformations) is made into the architectures by design [44,45], then the
corresponding channels of these filters can be normalized together.

The higher-level layers are more abstract and their behaviors are not as
intuitive. However, in addition to orientations (SIFT [14], HOG [15], or [44,45]),
there are many factors that could lead to grouping, e.g ., frequency, shapes,
illumination, textures. Their coefficients can be interdependent. In fact, a well-
accepted computational model in neuroscience is to normalize across the cell

Introduced for better training with super-small batches
We apply as a solution to the Batch Norm problem for non-IID data 
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GroupNorm recovers the accuracy loss in BatchNorm
with non-IID data using BSP

GroupNorm significantly improves accuracy for all 
decentralized learning algorithms with non-IID data



On-going Work:
Towards a Solution for
Arbitrarily Non-IID Data
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Solution Overview
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1. Periodic model 
traveling

ØTo measure Accuracy 
Gap

ØUnderperforming data

2. Communication 
tightness control

ØLess deviation from 
IID data requires less 
communication



Promising Preliminary Results
• All results achieves the same accuracy as BSP

59AlexNet, 2 partitions, Gaia
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Summary

60

Low-Latency and Low-Cost ML on 
Highly-Distributed and Rapidly-Growing Data

Computation 
Challenge

Communication 
Challenge

Statistical 
Challenge

ML Serving over Large, 
Rapidly-Growing 
Datasets  (video)
[OSDI’18]

ML Training over            
Geo-Distributed Data 
[NSDI’17]

Understanding The Non-IID 
Data Partition Problem for 
Decentralized ML



Machine Learning Systems for 
Highly-Distributed and 
Rapidly-Growing Data
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WAN: Low Bandwidth and High Cost
• WAN bandwidth is 15X smaller than LAN bandwidth on average, 

and up to 60X smaller
• In Amazon EC2, the monetary cost of WAN communication is        

up to 38X the cost of renting machines
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Running ML systems on WANs can 
seriously slow down ML applications
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Problem: Broadcast Significant Updates
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Communication overhead is proportional 
to the number of data centers



Mitigation: Overlay Networks and Hubs
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Save communication on WANs by 
aggregating the updates at hubs

Data Center Group Data Center Group 
Data Center Group 

Data Center Group 

Hub

Hub
Hub

Hub



3.8X 3.7X
6.0X

3.7X 4.8X
8.5X

0

0.2

0.4

0.6

0.8

1

Matrix Factorization Topic Modeling Image Classification

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

Performance – 11 EC2 Data Centers

67

Gaia achieves 3.7-6.0X speedup over Baseline
Gaia is at most 1.40X of LAN speeds



Compare Against Centralizing Approach
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Gaia Speedup over 
Centralize

Gaia to Centralize 
Cost Ratio

Matrix Factorization EC2-ALL 1.11 3.54
V/C WAN 1.22 1.00
S/S WAN 2.13 1.17

Topic Modeling EC2-ALL 0.80 6.14
V/C WAN 1.02 1.26
S/S WAN 1.25 1.92

Image Classification EC2-ALL 0.76 3.33
V/C WAN 1.12 1.07
S/S WAN 1.86 1.08



SSP Performance – 11 Data Centers
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SSP Performance – 11 Data Centers
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SSP Performance – V/C WAN
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SSP Performance – S/S WAN
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Backup Slides for Focus
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ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency

Focus System: Low-latency query with low-
cost ingest
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Ingest Cost vs. Query Latency
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Optimize for 
Query Latency

• Parameter selection → trading off ingest cost vs. query latency
• The cheap CNN at ingest time
• K in the top-K approximate indexing
• Clustering threshold for feature-based clustering
• … / A set of configurations 

Low latency
Rarely queriedEnable trade-offs to meet application’s need 



Effect of Different Components
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Ingest Cost by Video
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Query Latency by Video
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Trade-off Alternatives
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Sensitivity – Number of Classes

• We study the sensitivity to the number of object class using 
1,000 ImageNet classes

• The results show that Focus is 
• 15× faster in query latency 
• 57× cheaper in ingest cost than the baseline systems
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Implementation Architecture
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Backup Slides for 
Skewed Data Partitions
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The Skewness of Partitions is a Key Factor
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Models only work well for the classes 
that they have seen



How Do Models Diverge?
• Key operation in these DNNs: Convolution

Kevin Hsieh © October 19 http://www.pdl.cmu.edu/ 85

Avg 0.5% 
diff

Avg 173% diff
+20
+19 * +0.50

-0.55

Param 0Input
= -0.45

+20
+19 *

+0.495
-0.5555

Param 1 (1% diff vs. Param 0)Input
= -0.6545

Small model differences can result in 
completely different models

45% diff!!



Why ResNet? Batch Norm Layer
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vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

(test time uses global 
mean/average)

Scale and shift are 
implemented as another 
layer (Scale) to learn ! and β. 
This layer is not required if 
the following activation layer 
is linear (e.g., ReLU)



Why Batch Norm is Sensitive to Sampling?

• When applying Batch Norm on SGD, we use mini-batch mean 
and variance to normalize each minibatch

• If sampling is stratified at training time, the internal variance of 
each mini-batch will be reduced

• It will still be normalized but it is not a good estimate of underlying data 
distribution

• Also, at test time we use global mean and variance, which is different 
the stratified sampling at training time
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Alternatives to Batch Normalization

• Weight Normalization
• Use L2 norm to normalize weights
• May need a mean-only batch normalization layer

• Layer Normalization
• Use the sum of all neurons to estimate mean and variance
• May not work if there is a large difference between different neurons in 

the same layer (such as CNNs)
• Self-Normalizing Neural Networks 

• Use a scaled exponential linear units to make the NN normalize by 
itself

• Still trying to normalize the mean and variance within a layer
• Works better for FNNs with mostly fully connected layers

88



Top-1 validation accuracy (CIFAR-10) 
varying Gaia’s T0 hyper-parameter

89

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
T0 = 2% 73.8% 70.5% 78.4% 56.5% 76.9% 52.6% 83.1% 48.0%
T0 = 5% 73.2% 71.4% 77.6% 75.6% 74.6% 10.0% 83.2% 43.1%
T0 = 10% 73.0% 10.0% 78.4% 68.0% 76.7% 10.0% 84.0% 45.1%
T0 = 20% 72.5% 37.6% 77.7% 67.0% 77.7% 10.0% 83.6% 38.9%
T0 = 30% 72.4% 26.0% 77.5% 23.9% 78.6% 10.0% 81.3% 39.4%
T0 = 40% 71.4% 20.1% 77.2% 33.4% 78.3% 10.1% 82.1% 28.5%
T0 = 50% 10.0% 22.2% 76.2% 26.7% 78.0% 10.0% 77.3% 28.4%

Table 1: Top-1 validation accuracy (CIFAR-10) varying Gaia’s T0 hyper-parameter. The configura-
tions with more than 2% accuracy loss from BSP in the IID setting are highlighted. Note that larger
settings for T0 mean significantly greater communication savings.

5.1 The Problem of Batch Normalization in the Non-IID Setting

Batch normalization [20] (BatchNorm) is one of the most popular mechanisms in deep learning,
and it has been employed by default in most deep learning models (more than 11,000 citations).
BatchNorm enables faster and more stable DNN training because it enables larger learning rates,
which in turn make convergence much faster and help avoid sharp local minimum (hence, the model
generalizes better).

How BatchNorm works. BatchNorm aims to stabilize a DNN by normalizing the input distribution
of selected layers such that the inputs xi on each channel i of the layer have zero mean (µxi = 0)
and unit variance (�xi = 1). Because the global mean and variance is unattainable with stochastic
training, BatchNorm uses minibatch mean and variance as an estimate of the global mean and
variance. Specifically, for m values in each minibatch B = {x1, . . . , xm}, BatchNorm calculates
the minibatch mean µB and variance �B, and then uses µB and �B to normalize each xi in B [20].
Recent work shows that BatchNorm enables larger learning rates because: (i) BatchNorm corrects
large gradient updates that could result in divergence [5] and (ii) BatchNorm makes the underlying
problem’s landscape significantly more smooth [37].

BatchNorm and the Non-IID setting. While BatchNorm is effective in practice, its dependence on
minibatch mean and variance (µB and �B) is known to be problematic in certain settings. This is
because BatchNorm uses µB and �B for training, but it typically uses an estimated global mean and
variance (µ and �) for validation. If there is a major mismatch between these means and variances,
the validation accuracy is going to be low because the input distribution during validation does not
match the distrinution during training. This can happen if the minibatch size is small or the sampling
of minibatches is not IID [19]. The Non-IID setting in our study exacerbates this problem because
each data partition Pk sees very different training samples. Hence, the µB and �B in each Pk can
vary significantly in the Non-IID setting, and the synchronized global model may not work for any

set of data. Worse still, we cannot simply increase the minibatch size or do better minibatch sampling
to solve this problem, because in the Non-IID setting the underlying training dataset in each Pk does
not represent the global training dataset.

We validate if there is indeed major divergence in µB and �B among different Pk in the Non-IID
setting. We calculate the divergence of µB as the difference between µB in different Pk over the
average µB (i.e., it is ||µB,P0�µB,P1 ||

||AVG(µB,P0 , µB,P1 )||
for two partitions P0 and P1). We use the average µB over

every 100 minibatches in each Pk so that we get better estimation. Figure 7 depicts the divergence of
µB for each channel of the first layer of BN-LeNet, which is constructed by inserting BatchNorm
to LeNet after each convolutional layer. As we see, the divergence of µB is significantly larger in
the Non-IID setting (between 6% to 51%) than that in the IID setting (between 1% to 5%). We
also observe the same trend in minibatch variances �B. As discussed earlier, this phenomenon is
detrimental to training: Each Pk uses very different µB and �B to normalize its model, but the

8



CIFAR-10 Top-1 validation accuracy with 
various Federated Averaging hyper-
parameters.
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Model
Minibatch size
per node
(4 nodes)

Momentum Weight
decay Learning rate Total epochs

center-loss 64 0.9 0.0005 ⌘0 = 0.025, divides by
10 at epoch 4 and 6 7

Table 5: Major training parameters for FACE RECOGNITION over CASIA-WebFace.

C More Algorithm Hyper-Parameter Results

We only present the results with various hyper-parameters for Gaia in §4.2. We show the results for
FederatedAveraging and DeepGradientCompression here. We make the same observation as
§4.2 for these algorithms (Table 6 and 7).

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
IterLocal = 5 73.7% 62.8% 75.8% 68.9% 79.7% 67.3% 73.6% 31.3%
IterLocal = 10 73.5% 60.1% 76.4% 64.8% 79.3% 63.2% 73.4% 28.0%
IterLocal = 20 73.4% 59.4% 76.3% 64.0% 79.1% 10.1% 73.8% 28.1%
IterLocal = 50 73.5% 56.3% 75.9% 59.6% 79.2% 55.6% 74.0% 26.3%
IterLocal = 200 73.7% 53.2% 76.8% 52.9% 79.4% 54.2% 75.7% 27.3%
IterLocal = 500 73.0% 24.0% 76.8% 20.8% 79.6% 19.4% 74.1% 24.0%
IterLocal = 1000 73.4% 23.9% 76.1% 20.9% 78.3% 19.0% 74.3% 22.8%

Table 6: CIFAR-10 Top-1 validation accuracy with various FederatedAveraging hyper-parameters.
The configurations that lose more than 2% accuracy are highlighted. Note that larger settings for
IterLocal mean significantly greater communication savings.

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
Ewarm = 8 75.5% 72.3% 78.3% 10.0% 80.3% 47.2% 10.0% 10.0%
Ewarm = 4 75.5% 75.7% 79.4% 61.6% 10.0% 47.3% 10.0% 10.0%
Ewarm = 3 75.9% 74.9% 78.9% 75.7% 64.9% 50.5% 10.0% 10.0%
Ewarm = 2 75.7% 76.7% 79.0% 58.7% 10.0% 47.5% 10.0% 10.0%
Ewarm = 1 75.4% 77.9% 78.6% 74.7% 10.0% 39.9% 10.0% 10.0%

Table 7: CIFAR-10 Top-1 validation accuracy with various DeepGradientCompression hyper-
parameters. The configurations that lose more than 2% accuracy are highlighted. Note that smaller
settings for Ewarm mean significantly greater communication savings.

17



CIFAR-10 Top-1 validation accuracy with 
various DeepGradientCompression hyper-
parameters

91

Model
Minibatch size
per node
(4 nodes)

Momentum Weight
decay Learning rate Total epochs

center-loss 64 0.9 0.0005 ⌘0 = 0.025, divides by
10 at epoch 4 and 6 7

Table 5: Major training parameters for FACE RECOGNITION over CASIA-WebFace.

C More Algorithm Hyper-Parameter Results

We only present the results with various hyper-parameters for Gaia in §4.2. We show the results for
FederatedAveraging and DeepGradientCompression here. We make the same observation as
§4.2 for these algorithms (Table 6 and 7).

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
IterLocal = 5 73.7% 62.8% 75.8% 68.9% 79.7% 67.3% 73.6% 31.3%
IterLocal = 10 73.5% 60.1% 76.4% 64.8% 79.3% 63.2% 73.4% 28.0%
IterLocal = 20 73.4% 59.4% 76.3% 64.0% 79.1% 10.1% 73.8% 28.1%
IterLocal = 50 73.5% 56.3% 75.9% 59.6% 79.2% 55.6% 74.0% 26.3%
IterLocal = 200 73.7% 53.2% 76.8% 52.9% 79.4% 54.2% 75.7% 27.3%
IterLocal = 500 73.0% 24.0% 76.8% 20.8% 79.6% 19.4% 74.1% 24.0%
IterLocal = 1000 73.4% 23.9% 76.1% 20.9% 78.3% 19.0% 74.3% 22.8%

Table 6: CIFAR-10 Top-1 validation accuracy with various FederatedAveraging hyper-parameters.
The configurations that lose more than 2% accuracy are highlighted. Note that larger settings for
IterLocal mean significantly greater communication savings.

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
Ewarm = 8 75.5% 72.3% 78.3% 10.0% 80.3% 47.2% 10.0% 10.0%
Ewarm = 4 75.5% 75.7% 79.4% 61.6% 10.0% 47.3% 10.0% 10.0%
Ewarm = 3 75.9% 74.9% 78.9% 75.7% 64.9% 50.5% 10.0% 10.0%
Ewarm = 2 75.7% 76.7% 79.0% 58.7% 10.0% 47.5% 10.0% 10.0%
Ewarm = 1 75.4% 77.9% 78.6% 74.7% 10.0% 39.9% 10.0% 10.0%

Table 7: CIFAR-10 Top-1 validation accuracy with various DeepGradientCompression hyper-
parameters. The configurations that lose more than 2% accuracy are highlighted. Note that smaller
settings for Ewarm mean significantly greater communication savings.
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Prior Work

•Distributed ML training with centralized data
•Distributed ML training with decentralized data
•Communication-efficient ML training algorithms
•Low-latency ML serving systems

92

• Examples: DistBelief [NIPS’12], Petuum [SIGKDD’15], 
TensorFlow [OSDI’16]

• Do not tackle the challenges of                               
highly-distributed data

• Example: Federated Learning [AISTATS’17]

• Coordinates mobile devices to train an ML model 
using wireless networks

• Do not directly tackle the challenge of                  
non-IID data partitions

• ML training algorithms to reduce the dependency on 
intensive parameter updates 

• Not general (algorithm-specific solution)
• Do not tackle the challenge of                                

non-IID data partitions

• Examples: TensorFlow Serving, Clipper [NSDI’17]

• Do not focus on serving large, rapidly-growing data
• Query latency on large-scale data is still slow with                     

state-of-the-art systems 
• e.g., 5 hours to query a month-long video on NoScope [VLDB’17]

It is challenging to achieve low-latency and low-cost ML 
over highly-distributed and rapidly-growing data



Other Contributions
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Processing-in-Memory

Automatic 
offloading
[ISCA’16, 

SC’17]

Pointer 
chasing 

accelerator
[ICCD’16]

Cache 
coherence

[CAL’17, 
ISCA’19]

Bulk 
bit-wise 

ops
[CAL’16]

Cross-layer abstractions

Expressive 
Memory
[ISCA’18]

Locality 
descriptor 

in GPUs
[ISCA’18]

GPU 
programma

bility
[MICRO’16]

Memory

Variable 
DRAM latency

[SIGMETRICS’16]


