
Machine Learning Systems for
Highly-Distributed and
Rapidly-Growing Data

Kevin Hsieh
September 5, 2019

2

Face Recognition Object Detection

Self-driving car Language translation

At Their Core: ML Training and Serving

3

?

Key Objectives: Low Latency and Low Cost

Training
Data

ML
Training

ML
Model

ML
Serving

Serving
Data

Image classification

ML on Real-World, Large-Scale Data

4

Many ML Data are
Highly Distributed and Rapidly Growing

Training
Data

Serving
Data

Challenge: ML Serving on Rapidly-Growing Data

5

ML Serving System ?

High Cost to Process
Data at Ingest Time

Long Latency to Process
Data at Query Time

Find video frames
with trucks Traffic cameras in a city

Computation Challenge

Challenge: ML Training on Highly-Distributed Data

6

ML
Model

High Cost and Long Latency to
Train ML Models over Geo-Distributed Data

Communication
Challenge

What happens to ML if training data partitions are
not IID (independent and identically distributed)?

Statistical
Challenge

Thesis Statement

The latency and cost of ML training and serving on
highly-distributed and rapidly-growing data can be
improved by one to two orders of magnitude
by designing ML systems that exploit the
characteristics of ML algorithms,
ML model structures, and application data

7

Overview of Our Approach

8

ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for
Decentralized ML
Ø Address the statistical challenge

ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge

Overview of Our Approach

9

ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge

ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for
Decentralized ML
Ø Address the statistical challenge

Video Data are Rapidly Growing

Massive video recordings are happening
everywhere

10

Querying Objects in Videos using ML Serving

• Find all trucks among traffic videos in a city last week
• Find all people in garage videos in a company last night
à Query execution requires running detector & classifier CNNs
à It is slow and costly on massive videos

11

Ingest Time Analysis: Too Costly

• Analyzing live videos at ingest time can make query fast
• But it is costly
• Potentially wasteful (ingest all garage cameras vs. query one)

12

Ingest Query

Object Class → [Frames]

$380/month/stream

Query Time Analysis: Too Slow

13

Query

1. Kang et al., NoScope, PVLDB’17

• Analyzing videos at query time can save cost
• Frame down-sampling / skipping
• CNN specialization / cascading
• But it still very slow (5 hr for a month-long video [1])

Ingest

Our Goal

Enable low-latency and low-cost querying over
rapidly growing video datasets

14

CNN,
Accuracy target

Low-Latency and Low-Cost
Video Querying System

Query
object class

FramesFrames

Frames with trucks

Background: Convolutional Neural Networks

• A Convolutional Neural Network (CNN) outputs the
probability of each class

• Based on the extracted features (high-level representation)

15

Convolutional +
Rectification Layer

Pooling Layer

…
.
.
.

.

.

.

Fully-Connected Layer Pr(Truck) ✓
Pr(Moving Van)
Pr(Bus)
Pr(Car)
Pr(Person)

Extracted
Features

ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency

Focus System: Low-latency query with low-
cost ingest

16

Low-Cost Ingestion: Cheaper CNNs

• Process video frames with a cheap CNN at ingest time
• Compressed and Specialized CNN: fewer layers / weights

and are specialized for each video stream

17
Objects Specialized,

Compressed CNN

CNN
specialization

FramesFramesFrames

IndexExpensive CNN

Challenge: Cheap CNNs are Less Accurate

• Cheaper CNNs are less accurate than
the expensive CNNs

The best result from the expensive CNN is within the
top-K results of the cheaper CNN

18

Rank Expensive CNN Cheap CNN
1 Truck Moving Van
2 Moving Van Airplane
3 Passenger Car Truck

4 Recreational
vehicle Passenger Car

Recall, Precision and Top-K Results

19

0%

50%

100%

1 2 3 4

Re
ca

ll

Number of selected results (K)

ResNet18 ResNet18 (4 fewer layers)
ResNet18 (6 fewer layers) >99% Recall

Recall: Fraction of relevant objects that are selected
Precision: Fraction of selected objects that are relevant

Cheap CNNs can achieve high recall
with small top-K results

Ground-truth CNN: YOLOv2 (80 classes)

Cheaper CNN →Lower Recall

Solution: Split Ingest- and Query-time Work

20

Objects
Specialized,

Compressed CNN

CNN
specialization

FramesFramesFrames

Top-K Index

Ingest-time Query-time

Expensive CNN

Frames with
trucks

Querying for
trucks

High Recall High Precision

Query-time work is done
only on queried videos
(reduce waste)

Object Class → [Objects]
Object → Frame

ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency

Focus System: Low-latency query with low-
cost ingest

21

Low-Latency Query: Redundancy Elimination

• Approximate indexing ➔ non-trivial work at query time
• A larger K ➔ more query-time work

• Images with similar feature vectors are visually similar
• Minimize the work at query time ➔ clustering similar objects

based on the extracted features

22
Extracted
Features

……

Query-time work is done only once per cluster

Adding Feature-based Clustering

23

Objects
Specialized,

Compressed CNN

CNN
specialization

FramesFramesFrames

Top-K Index

Ingest-time Query-time

Expensive CNN

Frames with
trucksObject

clusters

Top-K
results

Centroid
objects

Querying for
trucks

Object Class → [Clusters]
Cluster → Centroid, [Objects], [Frames]

Reduce redundant work at
query time

Features Clusters

Experimental Setup

• Video Datasets
• 11 live traffic and enterprise videos
• Each video stream is evaluated for 12 hours

• Accuracy Targets
• 99% recall and 99% precision w.r.t. YOLOv2

• Baselines
• Ingest-heavy: Analyzes all frames with YOLOv2 at ingest time and

stores the inverted index for query
• NoScope [VLDB’17]: A query-optimized system that analyzes frames

only at query time

24

Average End-to-End Performance

25

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Q
ue

ry
 L

at
en

cy

Ingest Cost

Better

Better

NoScope (5 hours/month/stream)

Ingest-heavy
($380/month/stream)

Focus

162X Faster
(5 hours ➔ 2 mins/month/stream)

57X Cheaper
($380➔$7/month/stream)

Focus achieves low-latency query with low-cost ingest

Balanced

Opt-Ingest

Opt-Query
0

0.005

0.01

0.015

0 0.01 0.02 0.03

Other Applications

26

Other Video Apps
- Face Recognition
- Emotion Detection

Audio
find audio segments
with a word

Bioinformatics
- Brain signals
- Medical images

Geoinformatics
- Satellite images
- …

Process large and growing data with CNNs to answer
“after the fact” queries

Overview of Our Approach

27

ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge

ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for
Decentralized ML
Ø Address the statistical challenge

ML Training on Geo-Distributed Data

28

ML
Model

Centralizing Data is Infeasible [1, 2, 3]

• Moving data over wide-area networks (WANs) can be
extremely slow

• It is also subject to data sovereignty laws

29

1. Vulimiri et al., NSDI’15
2. Pu et al., SIGCOMM’15
3. Viswanathan et al., OSDI’16

Geo-distributed ML is Challenging

• No ML system is designed to run across data centers
(up to 53X slowdown in our study)

30

Our Goal

• Develop a geo-distributed ML system
• Minimize communication over wide-area networks
• Retain the accuracy and correctness of

ML algorithms
• Without requiring changes to the algorithms

31

Worker
Machine N

Parameter
Server

Background: Parameter Server Architecture

• The parameter server architecture has been
widely adopted in many ML systems

32

…Worker
Machine 1

Data 1

Parameter
Server

ML ModelUpdateUpdate

ReadRead …

Training Data

Data N

UpdateUpdate

ReadRead

…

Synchronization is critical to the accuracy
and correctness of ML algorithms

Deploy Parameter Servers on WANs
• Deploying parameter servers across data centers requires

a lot of communication over WANs (up to 53X slowdown)

33

Worker
Machine N

Parameter
Server

…Worker
Machine 1

Parameter
Server

ML Model

…

Data Center 1 Data Center 2

Gaia System Overview
• Key idea: Decouple the synchronization model within

the data center from the synchronization model
between data centers

34

Parameter
Server

Data Center 1

Parameter
Server

Worker
Machine

Local Sync

Parameter
Server

Parameter
Server

…

Data Center 2

Worker
Machine
Worker

Machine
…

Approximately Correct
Model Copy

Approximately Correct
Model Copy

Remote
Sync

Communicate over WANs
only significant updates

95.6% 95.2% 97.0%

0%

20%

40%

60%

80%

100%

10% 5% 1% 0.5% 0.1% 0.05% 0.01%In
si

gn
ifi

ca
nt

 U
pd

at
es

 %

Threshold of Significant Updates

Matrix Factorization Topic Modeling Image Classification

Key Finding: Study of Update Significance

35

The vast majority of updates are
insignificant

Approximate Synchronous Parallel

The significance filter
• Filter updates based on their significance

ASP selective barrier
• Ensure significant updates are read in time

Mirror clock
• Safe guard for pathological cases

36

The Significance Filter

37

Worker
Machine

Parameter
Server

Parameter X
Value Aggregated Update

Update (Δ1) on X

Significance
Function

Other
Parameters

Significance
Threshold>?

!"". $%&'()
*'+,)

1%
/

1%

Update (Δ2) on X

Δ1Δ1+Δ20

Approximate Synchronous Parallel

The significance filter
• Filter updates based on their significance

ASP selective barrier
• Ensure significant updates are read in time

Mirror clock
• Safeguard for pathological cases

38

ASP Selective Barrier

39

Data Center 1 Data Center 2

Parameter Server Parameter Server

Significant
Update

Significant
Update

Significant
Update

Significant
Update

Arrive too late!

Data Center 1 Data Center 2

Parameter Server Parameter Server

Significant
Update

Significant
Update

Significant
Update

Significant
Update

Selective
Barrier

Only workers that depend on
these parameters are blocked

Experimental Setup

• Applications
• Matrix Factorization with the Netflix dataset
• Topic Modeling with the Nytimes dataset
• Image Classification with the ILSVRC12 dataset

• Hardware platform
• 22 machines with emulated EC2 WAN bandwidth
• We validated the performance with a real EC2 deployment

• Baseline
• IterStore (Cui et al., SoCC’14) and GeePS (Cui et al., EuroSys’16) on WAN

• Performance metrics
• Execution time until algorithm convergence
• Monetary cost of algorithm convergence

40

25.4X 14.1X
53.5X

23.8X 17.3X 53.7X

0

0.2

0.4

0.6

0.8

1

Matrix
Factorization

Topic Modeling Image
Classification

Baseline Gaia LAN

3.7X 3.7X
7.4X

3.5X 3.9X
7.4X

0

0.2

0.4

0.6

0.8

1

Matrix
Factorization

Topic Modeling Image
Classification

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

Performance and WAN Bandwidth

41

V/C WAN
(Virginia/California)

S/S WAN
(Singapore/São Paulo)Gaia is at most 1.23X of LAN speeds

2.6X
5.7X

18.7X

0

0.5

1

1.5

2

2.5

B
as

el
in

e

G
ai

a

B
as

el
in

e

G
ai

a

B
as

el
in

e

G
ai

a

EC2-ALL V/C WAN S/S WAN

Results – EC2 Monetary Cost

42

4.2X 6.0X 28.5X
0

0.5

1

1.5

2

2.5

B
as

el
in

e

G
ai

a

B
as

el
in

e

G
ai

a

B
as

el
in

e

G
ai

a

EC2-ALL V/C WAN S/S WAN

N
or

m
lia

ed
 C

os
t

Communication Cost
Machine Cost (Network)
Machine Cost (Compute)

Matrix Factorization Topic Modeling

8.5X 10.7X 59.0X
0

0.5
1

1.5
2

2.5
3

3.5
4

B
as

el
in

e

G
ai

a

B
as

el
in

e

G
ai

a

B
as

el
in

e

G
ai

a

EC2-ALL V/C WAN S/S WAN

Image Classification

Gaia is 2.6-59.0X cheaper than Baseline

Overview of Our Approach

43

ML Serving over Large, Rapidly-Growing Datasets [OSDI’18]

Ø Address the computation challenge

ML Training over Geo-Distributed Data [NSDI’17]

Ø Address the communication challenge

Understanding The Non-IID Data Partition Problem for
Decentralized ML
Ø Address the statistical challenge

Real-World Data can be Highly Skewed (Non-IID)

44

What happens to ML if
data partitions are not IID?

Studying ML over Non-IID Data Partitions

45

ML Application Decentralized
Learning Algorithm

× ×

Degree of
Deviation from IID

• Image Classification
(with various DNNs
and datasets)

• Face recognition

• Gaia [NSDI’17]: only send updates above a threshold

• Federated Average [AISTATS’17]: local steps then average

• Deep Gradient Compression [ICLR’18]: send top 0.1% of updates

Non-IID Data: Setup
• Task: Classify an image into one of the object classes

46

Apple ✓

• Each data center has some classes of images

DNN

Show results for 2 to 5 partitions…Only gets worse with more partitions

-11% -12%

-68%
0%

25%

50%

75%

100%

IID data Non-IID data

To
p-

1
Va

lid
at

io
n

A
cc

ua
rc

y
BSP Gaia (15X faster)

Federated Average (15X faster) Deep Gradient Compression (20X faster)

Results: GoogleNet over CIFAR-10

47

All decentralized ML approaches lose significant accuracy
Tight synchronization (BSP) is accurate but too slow

0%
25%
50%
75%

100%

IID data Non-IID data IID data Non-IID data IID data Non-IID data

LeNet AlexNet ResNet20

Va
lid

at
io

n
A

cc
ur

ac
y

BSP Gaia (15X faster)
Federated Average (15X faster) Deep Gradient Compression (20X faster)

0%

25%

50%

75%

IID Data Non-IID data IID Data Non-IID data

GoogleNet ResNet10

To
p-

1
Va

lid
at

io
n

Ac
cu

ra
cy

BSP Gaia FedAvg DeepGradientCompression

Similar Results across the Board

48

0%

50%

100%

Shuffled Data Skewed Data
LF

W
 V

al
id

at
io

n
A

cc
ua

rc
y

BSP Gaia FedAvg

Image Classification (CIFAR-10)

Image Classification (ImageNet) Face RecognitionNon-IID data is a pervasive and fundamental problem

Even BSP cannot solve this problem for DNNs with
Batch Normalization Layers

The Degree of Deviation from IID is a
Key Factor

49

-1.3% -0.5% -1.1%-3.0% -1.5% -2.6%-4.8% -3.5%
-6.5%-5.3% -5.1%

-8.5%

60%

65%

70%

75%

80%

BSP Gaia Federated
Averaging

Deep Gradient
Compression

20% Non-IID 40% Non-IID 60% Non-IID 80% Non-IID

More deviation from IID
makes the problem more difficult

CIFAR-10 with GN-LeNet

Quick Summary (so far)

•Non-IID Data Quagmire: non-IID data partition
is a pervasive and fundamental problem

•Even communicating everything cannot solve
this problem for DNNs with batch normalization

•The degree of deviation from IID is a key factor

50

Solution for
Batch Normalization

51

Background: Batch Norm Layer

52

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X)

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X)

∂x
and

∂Norm(x,X)

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

Batch normalization enables larger learning rates,
which make convergence much faster and avoid sharp

local minimum (generalize better)

Analysis: Batch Mean Divergence

53

0%
10%
20%
30%
40%
50%
60%
70%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

D
iff

 /
 M

ea
n

Channels

IID NONIID

Diff / Mean = ABS(Mean1 – Mean2) / AVG(Mean1, Mean2)

(2 partitions)

Each partition uses very different mean for
normalization – no way to reconcile in the end

Alternatives to Batch Normalization

• Weight Normalization [Salimans et al., NeurIPS’16]

• Layer Normalization [Ba et al., arXiv’16]
• Batch Renormalization [Ioffe, NeurIPS’17]
• Separate approaches for Mean and Variance
• Gradient clipping

54
All of them fail on non-IID data

Solution: Use Group Normalization
[Wu and He, ECCV’18]

55

4 Wu and He
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2.

Group-wise computation. Group convolutions have been presented by AlexNet
[28] for distributing a model into two GPUs. The concept of groups as a di-
mension for model design has been more widely studied recently. The work of
ResNeXt [7] investigates the trade-off between depth, width, and groups, and
it suggests that a larger number of groups can improve accuracy under similar
computational cost. MobileNet [38] and Xception [39] exploit channel-wise (also
called “depth-wise”) convolutions, which are group convolutions with a group
number equal to the channel number. ShuffleNet [40] proposes a channel shuffle
operation that permutes the axes of grouped features. These methods all in-
volve dividing the channel dimension into groups. Despite the relation to these
methods, GN does not require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [3].

3 Group Normalization

The channels of visual representations are not entirely independent. Classical
features of SIFT [14], HOG [15], and GIST [41] are group-wise representations
by design, where each group of channels is constructed by some kind of his-
togram. These features are often processed by group-wise normalization over
each histogram or each orientation. Higher-level features such as VLAD [42]
and Fisher Vectors (FV) [43] are also group-wise features where a group can be
thought of as the sub-vector computed with respect to a cluster.

Analogously, it is not necessary to think of deep neural network features
as unstructured vectors. For example, for conv1 (the first convolutional layer)
of a network, it is reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural images. If conv1 hap-
pens to approximately learn this pair of filters, or if the horizontal flipping (or
other transformations) is made into the architectures by design [44,45], then the
corresponding channels of these filters can be normalized together.

The higher-level layers are more abstract and their behaviors are not as
intuitive. However, in addition to orientations (SIFT [14], HOG [15], or [44,45]),
there are many factors that could lead to grouping, e.g ., frequency, shapes,
illumination, textures. Their coefficients can be interdependent. In fact, a well-
accepted computational model in neuroscience is to normalize across the cell

Introduced for better training with super-small batches
We apply as a solution to the Batch Norm problem for non-IID data

79.5% 78.2% 80.3%
63.1%

78.9% 77.1% 79.7% 79.7%
67.1%

53.8% 50.2%

10.0%

79.2%
64.5% 70.0% 70.2%

0%
20%
40%
60%
80%

100%

BSP Gaia Federated
Averaging

Deep
Gradient

Compression

BSP Gaia Federated
Averaging

Deep
Gradient

Compression

BatchNorm GroupNorm

IID Non-IID

LeNet Results with Group Normalization

56

GroupNorm recovers the accuracy loss in BatchNorm
with non-IID data using BSP

GroupNorm significantly improves accuracy for all
decentralized learning algorithms with non-IID data

On-going Work:
Towards a Solution for
Arbitrarily Non-IID Data

57

Solution Overview

58

1. Periodic model
traveling

ØTo measure Accuracy
Gap

ØUnderperforming data

2. Communication
tightness control

ØLess deviation from
IID data requires less
communication

Promising Preliminary Results
• All results achieves the same accuracy as BSP

59AlexNet, 2 partitions, Gaia

140X
44X

337X
122X

1

10

100

1000

IID Data Non-IID Data

Co
m

m
un

ic
at

io
n

Sa
vi

ng
ov

er
 B

SP
 (t

im
es

)

Communication Control Oracle

Summary

60

Low-Latency and Low-Cost ML on
Highly-Distributed and Rapidly-Growing Data

Computation
Challenge

Communication
Challenge

Statistical
Challenge

ML Serving over Large,
Rapidly-Growing
Datasets (video)
[OSDI’18]

ML Training over
Geo-Distributed Data
[NSDI’17]

Understanding The Non-IID
Data Partition Problem for
Decentralized ML

Machine Learning Systems for
Highly-Distributed and
Rapidly-Growing Data

Acknowledgements

Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodik,
Gregory R. Ganger, Phillip B. Gibbons, Aaron Harlap,
Dimitris Konomis, Onur Mutlu, Amar Phanishayee,

Matthai Philipose, Shivaram Venkataraman, Nandita Vijaykumar

Backup Slides for Gaia

62

WAN: Low Bandwidth and High Cost
• WAN bandwidth is 15X smaller than LAN bandwidth on average,

and up to 60X smaller
• In Amazon EC2, the monetary cost of WAN communication is

up to 38X the cost of renting machines

63

VirginiaCaliforniaOregonIre landFrankfurtTokyoSeoulSingaporeSydneyMumbaiSão Paulo

0
100
200
300
400
500
600
700
800
900

1000

Virg
ini

a

Cali
for

nia

Oreg
on

Ire
lan

d

Fra
nk

fur
t

To
ky

o
Seo

ul

Sing
ap

ore

Syd
ne

y

Mum
ba

i

Sao
 P

au
loN

et
w

or
k

Ba
nd

w
id

th
 (M

b/
s)

11 Amazon EC2 Regions

11
 Amaz

on EC2 R
eg

ions

3.7X 3.5X

23.8X

5.9X 4.4X

24.2X

0
5

10
15
20
25

LAN EC2-ALL V/C WAN S/S WANN
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

un
til

 C
on

ve
rg

en
ce
IterStore Bӧsen

ML System Performance on WANs

1) Cui et al., “Exploiting Iterative-ness for Parallel ML Computations”,
SoCC’14

2) Wei et al., “Managed Communication and Consistency for Fast Data-
Parallel Iterative Analytics”, SoCC’15 64

Running ML systems on WANs can
seriously slow down ML applications

11 EC2 Regions

Virginia / California
Singapore / São Paulo

Matrix Factorization

Problem: Broadcast Significant Updates

65

Communication overhead is proportional
to the number of data centers

Mitigation: Overlay Networks and Hubs

66

Save communication on WANs by
aggregating the updates at hubs

Data Center Group Data Center Group
Data Center Group

Data Center Group

Hub

Hub
Hub

Hub

3.8X 3.7X
6.0X

3.7X 4.8X
8.5X

0

0.2

0.4

0.6

0.8

1

Matrix Factorization Topic Modeling Image Classification

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

Performance – 11 EC2 Data Centers

67

Gaia achieves 3.7-6.0X speedup over Baseline
Gaia is at most 1.40X of LAN speeds

Compare Against Centralizing Approach

68

Gaia Speedup over
Centralize

Gaia to Centralize
Cost Ratio

Matrix Factorization EC2-ALL 1.11 3.54
V/C WAN 1.22 1.00
S/S WAN 2.13 1.17

Topic Modeling EC2-ALL 0.80 6.14
V/C WAN 1.02 1.26
S/S WAN 1.25 1.92

Image Classification EC2-ALL 0.76 3.33
V/C WAN 1.12 1.07
S/S WAN 1.86 1.08

SSP Performance – 11 Data Centers

69

2.0X 2.0X 1.5X 1.5X1.8X 1.8X
1.3X 1.3X

3.8X 3.7X 3.0X 2.7X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Baseline Gaia LAN Baseline Gaia LAN

BSP SSP

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Amazon-EC2
Emulation-EC2
Emulation-Full-Speed

Matrix Factorization

SSP Performance – 11 Data Centers

70

Topic Modeling

2.0X
2.5X 1.5X 1.7X

3.7X 4.8X
2.0X

3.5X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Baseline Gaia LAN Baseline Gaia LAN

BSP SSP

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Emulation-EC2

Emulation-Full-Speed

SSP Performance – V/C WAN

71

Matrix Factorization

3.7X 2.6X3.5X 2.3X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

Baseline Gaia LAN

Topic Modeling

3.7X 3.1X3.9X 3.2X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

Baseline Gaia LAN

SSP Performance – S/S WAN

72

Matrix Factorization Topic Modeling

25X 16X24X 14X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

Baseline Gaia LAN

14X 17X17X 21X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

Baseline Gaia LAN

Backup Slides for Focus

73

ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency

Focus System: Low-latency query with low-
cost ingest

74

Ingest Cost vs. Query Latency

75

Q
ue

ry
 La

te
nc

y

Ingest Cost

Optimize for
Ingest Cost

Balance
Optimize for
Query Latency

• Parameter selection → trading off ingest cost vs. query latency
• The cheap CNN at ingest time
• K in the top-K approximate indexing
• Clustering threshold for feature-based clustering
• … / A set of configurations

Low latency
Rarely queriedEnable trade-offs to meet application’s need

Effect of Different Components

76

89X
162X

1

10

100

1000

au
bu

rn
_c

be
lle

vu
e_

d

be
nd

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd

Av
g

Fa
st

er
 th

an
 N

oS
co

pe
 b

y
(fa

ct
or

)

Approximate indexing +Clustering

Both techniques are important to Focus

Ingest Cost by Video

77

35X
66X 67X 84X

40X 38X
92X 60X 44X

84X 53X 57X

1

10

100

au
b

ur
n

_c

au
b

ur
n

_r

be
lle

vu
e_

d

be
lle

vu
e_

r

be
n

d

ja
ck

so
n

_h

ja
ck

so
n

_t
s

co
ra

l

la
us

an
n

e

ox
fo

rd

si
tt

ar
d

Traffic Surveillance Avg

In
ge

st
 c

he
ap

er
 t

ha
n

In

ge
st

-h
ea

vy
 b

y
(f

ac
to

r)
Ingest-NoScope Focus

Query Latency by Video

78

304X
46X

444X
75X 40X

288X
46X 122X 322X 607X 350X 162X

1
10

100
1000

au
bu

rn
_c

au
bu

rn
_r

be
lle

vu
e_

d

be
lle

vu
e_

r

be
nd

ja
ck

so
n_

h

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd

Traffic Surveillance Avg

Q
ue

ry
 fa

st
er

 th
an

No

Sc
op

e
by

 (f
ac

to
r)

Trade-off Alternatives

79

1

10

100

1000

Op
t-I

Op
t-Q

Op
t-I

Op
t-Q

Op
t-I

Op
t-Q

Op
t-I

Op
t-Q

Op
t-I

Op
t-Q

Op
t-I

Op
t-Q

Op
t-I

Op
t-Q

Op
t-I

Op
t-Q

auburn_cbellevue_d bend jackson_ts coral lausanne oxford sittard

Im
pr

ov
em

en
ts

 (f
ac

to
r) Ingest Cheaper by Query Faster by

Sensitivity – Number of Classes

• We study the sensitivity to the number of object class using
1,000 ImageNet classes

• The results show that Focus is
• 15× faster in query latency
• 57× cheaper in ingest cost than the baseline systems

80

Implementation Architecture

81

Frame / object
extraction

Objects Ingest CNN
evaluation

Feature
vector

clustering
Approximate index

Ingest Processor

Specialized
model training

GT-CNN,
Accuracy target

Model and
parameter selection

Ingest CNN
and

parameters

Stream Tuner

Trade-off
policy

Query
object class

Centroid
object

selection

GT-CNN
evaluation

FramesFrames

Frames with queried
object class

Query ProcessorM1

M2

M3

IP1

IP2 IP3

ST1

ST2

QP1 QP2

Backup Slides for
Skewed Data Partitions

82

The Skewness of Partitions is a Key Factor

83

0%
20%
40%
60%
80%

100%

Shuffled Data 40% Skewed
Data

80% Skewed
Data

100% Skewed
Data

LF
W

 V
al

id
at

io
n

Ac
cu

ar
cy

BSP Gaia (TH=2%) Gaia (TH=1%)

Face Recognition

We can relax communication with
less skewed data partitions

0
0.2
0.4
0.6
0.8

CLS (0 -
124)

CLS (125 -
249)

CLS (250 -
374)

CLS (375 -
499)

CLS (500 -
624)

CLS (625 -
749)

CLS (750 -
874)

CLS (875 -
999)To

p-
1

Te
st

 A
cc

ur
ac

y

i.i.d. DC-0 Model non-i.i.d. DC-0 Model non-i.i.d. DC-1 Model

Result: Model Comparison

84

Models only work well for the classes
that they have seen

How Do Models Diverge?
• Key operation in these DNNs: Convolution

Kevin Hsieh © October 19 http://www.pdl.cmu.edu/ 85

Avg 0.5%
diff

Avg 173% diff
+20
+19 * +0.50

-0.55

Param 0Input
= -0.45

+20
+19 *

+0.495
-0.5555

Param 1 (1% diff vs. Param 0)Input
= -0.6545

Small model differences can result in
completely different models

45% diff!!

Why ResNet? Batch Norm Layer

86

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X)

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X)

∂x
and

∂Norm(x,X)

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

(test time uses global
mean/average)

Scale and shift are
implemented as another
layer (Scale) to learn ! and β.
This layer is not required if
the following activation layer
is linear (e.g., ReLU)

Why Batch Norm is Sensitive to Sampling?

• When applying Batch Norm on SGD, we use mini-batch mean
and variance to normalize each minibatch

• If sampling is stratified at training time, the internal variance of
each mini-batch will be reduced

• It will still be normalized but it is not a good estimate of underlying data
distribution

• Also, at test time we use global mean and variance, which is different
the stratified sampling at training time

87

Alternatives to Batch Normalization

• Weight Normalization
• Use L2 norm to normalize weights
• May need a mean-only batch normalization layer

• Layer Normalization
• Use the sum of all neurons to estimate mean and variance
• May not work if there is a large difference between different neurons in

the same layer (such as CNNs)
• Self-Normalizing Neural Networks

• Use a scaled exponential linear units to make the NN normalize by
itself

• Still trying to normalize the mean and variance within a layer
• Works better for FNNs with mostly fully connected layers

88

Top-1 validation accuracy (CIFAR-10)
varying Gaia’s T0 hyper-parameter

89

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
T0 = 2% 73.8% 70.5% 78.4% 56.5% 76.9% 52.6% 83.1% 48.0%
T0 = 5% 73.2% 71.4% 77.6% 75.6% 74.6% 10.0% 83.2% 43.1%
T0 = 10% 73.0% 10.0% 78.4% 68.0% 76.7% 10.0% 84.0% 45.1%
T0 = 20% 72.5% 37.6% 77.7% 67.0% 77.7% 10.0% 83.6% 38.9%
T0 = 30% 72.4% 26.0% 77.5% 23.9% 78.6% 10.0% 81.3% 39.4%
T0 = 40% 71.4% 20.1% 77.2% 33.4% 78.3% 10.1% 82.1% 28.5%
T0 = 50% 10.0% 22.2% 76.2% 26.7% 78.0% 10.0% 77.3% 28.4%

Table 1: Top-1 validation accuracy (CIFAR-10) varying Gaia’s T0 hyper-parameter. The configura-
tions with more than 2% accuracy loss from BSP in the IID setting are highlighted. Note that larger
settings for T0 mean significantly greater communication savings.

5.1 The Problem of Batch Normalization in the Non-IID Setting

Batch normalization [20] (BatchNorm) is one of the most popular mechanisms in deep learning,
and it has been employed by default in most deep learning models (more than 11,000 citations).
BatchNorm enables faster and more stable DNN training because it enables larger learning rates,
which in turn make convergence much faster and help avoid sharp local minimum (hence, the model
generalizes better).

How BatchNorm works. BatchNorm aims to stabilize a DNN by normalizing the input distribution
of selected layers such that the inputs xi on each channel i of the layer have zero mean (µxi = 0)
and unit variance (�xi = 1). Because the global mean and variance is unattainable with stochastic
training, BatchNorm uses minibatch mean and variance as an estimate of the global mean and
variance. Specifically, for m values in each minibatch B = {x1, . . . , xm}, BatchNorm calculates
the minibatch mean µB and variance �B, and then uses µB and �B to normalize each xi in B [20].
Recent work shows that BatchNorm enables larger learning rates because: (i) BatchNorm corrects
large gradient updates that could result in divergence [5] and (ii) BatchNorm makes the underlying
problem’s landscape significantly more smooth [37].

BatchNorm and the Non-IID setting. While BatchNorm is effective in practice, its dependence on
minibatch mean and variance (µB and �B) is known to be problematic in certain settings. This is
because BatchNorm uses µB and �B for training, but it typically uses an estimated global mean and
variance (µ and �) for validation. If there is a major mismatch between these means and variances,
the validation accuracy is going to be low because the input distribution during validation does not
match the distrinution during training. This can happen if the minibatch size is small or the sampling
of minibatches is not IID [19]. The Non-IID setting in our study exacerbates this problem because
each data partition Pk sees very different training samples. Hence, the µB and �B in each Pk can
vary significantly in the Non-IID setting, and the synchronized global model may not work for any

set of data. Worse still, we cannot simply increase the minibatch size or do better minibatch sampling
to solve this problem, because in the Non-IID setting the underlying training dataset in each Pk does
not represent the global training dataset.

We validate if there is indeed major divergence in µB and �B among different Pk in the Non-IID
setting. We calculate the divergence of µB as the difference between µB in different Pk over the
average µB (i.e., it is ||µB,P0�µB,P1 ||

||AVG(µB,P0 , µB,P1)||
for two partitions P0 and P1). We use the average µB over

every 100 minibatches in each Pk so that we get better estimation. Figure 7 depicts the divergence of
µB for each channel of the first layer of BN-LeNet, which is constructed by inserting BatchNorm
to LeNet after each convolutional layer. As we see, the divergence of µB is significantly larger in
the Non-IID setting (between 6% to 51%) than that in the IID setting (between 1% to 5%). We
also observe the same trend in minibatch variances �B. As discussed earlier, this phenomenon is
detrimental to training: Each Pk uses very different µB and �B to normalize its model, but the

8

CIFAR-10 Top-1 validation accuracy with
various Federated Averaging hyper-
parameters.

90

Model
Minibatch size
per node
(4 nodes)

Momentum Weight
decay Learning rate Total epochs

center-loss 64 0.9 0.0005 ⌘0 = 0.025, divides by
10 at epoch 4 and 6 7

Table 5: Major training parameters for FACE RECOGNITION over CASIA-WebFace.

C More Algorithm Hyper-Parameter Results

We only present the results with various hyper-parameters for Gaia in §4.2. We show the results for
FederatedAveraging and DeepGradientCompression here. We make the same observation as
§4.2 for these algorithms (Table 6 and 7).

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
IterLocal = 5 73.7% 62.8% 75.8% 68.9% 79.7% 67.3% 73.6% 31.3%
IterLocal = 10 73.5% 60.1% 76.4% 64.8% 79.3% 63.2% 73.4% 28.0%
IterLocal = 20 73.4% 59.4% 76.3% 64.0% 79.1% 10.1% 73.8% 28.1%
IterLocal = 50 73.5% 56.3% 75.9% 59.6% 79.2% 55.6% 74.0% 26.3%
IterLocal = 200 73.7% 53.2% 76.8% 52.9% 79.4% 54.2% 75.7% 27.3%
IterLocal = 500 73.0% 24.0% 76.8% 20.8% 79.6% 19.4% 74.1% 24.0%
IterLocal = 1000 73.4% 23.9% 76.1% 20.9% 78.3% 19.0% 74.3% 22.8%

Table 6: CIFAR-10 Top-1 validation accuracy with various FederatedAveraging hyper-parameters.
The configurations that lose more than 2% accuracy are highlighted. Note that larger settings for
IterLocal mean significantly greater communication savings.

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
Ewarm = 8 75.5% 72.3% 78.3% 10.0% 80.3% 47.2% 10.0% 10.0%
Ewarm = 4 75.5% 75.7% 79.4% 61.6% 10.0% 47.3% 10.0% 10.0%
Ewarm = 3 75.9% 74.9% 78.9% 75.7% 64.9% 50.5% 10.0% 10.0%
Ewarm = 2 75.7% 76.7% 79.0% 58.7% 10.0% 47.5% 10.0% 10.0%
Ewarm = 1 75.4% 77.9% 78.6% 74.7% 10.0% 39.9% 10.0% 10.0%

Table 7: CIFAR-10 Top-1 validation accuracy with various DeepGradientCompression hyper-
parameters. The configurations that lose more than 2% accuracy are highlighted. Note that smaller
settings for Ewarm mean significantly greater communication savings.

17

CIFAR-10 Top-1 validation accuracy with
various DeepGradientCompression hyper-
parameters

91

Model
Minibatch size
per node
(4 nodes)

Momentum Weight
decay Learning rate Total epochs

center-loss 64 0.9 0.0005 ⌘0 = 0.025, divides by
10 at epoch 4 and 6 7

Table 5: Major training parameters for FACE RECOGNITION over CASIA-WebFace.

C More Algorithm Hyper-Parameter Results

We only present the results with various hyper-parameters for Gaia in §4.2. We show the results for
FederatedAveraging and DeepGradientCompression here. We make the same observation as
§4.2 for these algorithms (Table 6 and 7).

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
IterLocal = 5 73.7% 62.8% 75.8% 68.9% 79.7% 67.3% 73.6% 31.3%
IterLocal = 10 73.5% 60.1% 76.4% 64.8% 79.3% 63.2% 73.4% 28.0%
IterLocal = 20 73.4% 59.4% 76.3% 64.0% 79.1% 10.1% 73.8% 28.1%
IterLocal = 50 73.5% 56.3% 75.9% 59.6% 79.2% 55.6% 74.0% 26.3%
IterLocal = 200 73.7% 53.2% 76.8% 52.9% 79.4% 54.2% 75.7% 27.3%
IterLocal = 500 73.0% 24.0% 76.8% 20.8% 79.6% 19.4% 74.1% 24.0%
IterLocal = 1000 73.4% 23.9% 76.1% 20.9% 78.3% 19.0% 74.3% 22.8%

Table 6: CIFAR-10 Top-1 validation accuracy with various FederatedAveraging hyper-parameters.
The configurations that lose more than 2% accuracy are highlighted. Note that larger settings for
IterLocal mean significantly greater communication savings.

Configuration AlexNet GoogLeNet LeNet ResNet20

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

BSP 74.9% 75.0% 79.1% 78.9% 77.4% 76.6% 83.7% 44.3%
Ewarm = 8 75.5% 72.3% 78.3% 10.0% 80.3% 47.2% 10.0% 10.0%
Ewarm = 4 75.5% 75.7% 79.4% 61.6% 10.0% 47.3% 10.0% 10.0%
Ewarm = 3 75.9% 74.9% 78.9% 75.7% 64.9% 50.5% 10.0% 10.0%
Ewarm = 2 75.7% 76.7% 79.0% 58.7% 10.0% 47.5% 10.0% 10.0%
Ewarm = 1 75.4% 77.9% 78.6% 74.7% 10.0% 39.9% 10.0% 10.0%

Table 7: CIFAR-10 Top-1 validation accuracy with various DeepGradientCompression hyper-
parameters. The configurations that lose more than 2% accuracy are highlighted. Note that smaller
settings for Ewarm mean significantly greater communication savings.

17

Prior Work

•Distributed ML training with centralized data
•Distributed ML training with decentralized data
•Communication-efficient ML training algorithms
•Low-latency ML serving systems

92

• Examples: DistBelief [NIPS’12], Petuum [SIGKDD’15],
TensorFlow [OSDI’16]

• Do not tackle the challenges of
highly-distributed data

• Example: Federated Learning [AISTATS’17]

• Coordinates mobile devices to train an ML model
using wireless networks

• Do not directly tackle the challenge of
non-IID data partitions

• ML training algorithms to reduce the dependency on
intensive parameter updates

• Not general (algorithm-specific solution)
• Do not tackle the challenge of

non-IID data partitions

• Examples: TensorFlow Serving, Clipper [NSDI’17]

• Do not focus on serving large, rapidly-growing data
• Query latency on large-scale data is still slow with

state-of-the-art systems
• e.g., 5 hours to query a month-long video on NoScope [VLDB’17]

It is challenging to achieve low-latency and low-cost ML
over highly-distributed and rapidly-growing data

Other Contributions

93

Processing-in-Memory

Automatic
offloading
[ISCA’16,

SC’17]

Pointer
chasing

accelerator
[ICCD’16]

Cache
coherence

[CAL’17,
ISCA’19]

Bulk
bit-wise

ops
[CAL’16]

Cross-layer abstractions

Expressive
Memory
[ISCA’18]

Locality
descriptor

in GPUs
[ISCA’18]

GPU
programma

bility
[MICRO’16]

Memory

Variable
DRAM latency

[SIGMETRICS’16]

