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Abstract

Programmability, performance portability, and resource e�ciency have emerged as critical chal-
lenges in harnessing complex and diverse architectures today to obtain high performance and energy
e�ciency. While there is abundant research, and thus signi�cant improvements, at di�erent levels
of the stack that address these very challenges, in this thesis, we observe that we are fundamentally
limited by the interfaces and abstractions between the application and the underlying system/hard-
ware—speci�cally, the hardware-software interface. The existing narrow interfaces poses two critical
challenges. First, signi�cant e�ort and expertise are required to write high-performance code to
harness the full potential of today’s diverse and sophisticated hardware. Second, as a hardware/system
designer, architecting faster and more e�cient systems is challenging as the vast majority of the
program’s semantic content gets lost in translation with today’s hardware-software interface. Moving
towards the future, these challenges in programmability and e�ciency will be even more intractable
as we architect increasingly heterogeneous and sophisticated systems.
This thesis makes the case for rich low-overhead cross-layer abstractions as a highly e�ective

means to address the above challenges. These abstractions are designed to communicate higher-level
program information from the application to the underlying system and hardware in a highly e�cient
manner, requiring only minor additions to the existing interfaces. In doing so, they enable a rich
space of hardware-software cooperative mechanisms to optimize for performance. We propose 4
di�erent approaches to designing richer abstractions between the application, system software, and
hardware architecture in di�erent contexts to signi�cantly improve programmability, portability,
and performance in CPUs and GPUs: (i) Expressive Memory: A unifying cross-layer abstraction to
express and communicate higher-level program semantics from the application to the underlying
system/architecture to enhance memory optimization; (ii) The Locality Descriptor: A cross-layer
abstraction to express and exploit data locality in GPUs; (iii) Zorua: A framework to decouple the pro-
gramming model from management of on-chip resources and parallelism in GPUs; (iv) Assist Warps:
A helper-thread abstraction to dynamically leverage underutilized compute/memory bandwidth in
GPUs to perform useful work. In this thesis, we present each concept and describe how communicating
higher-level program information from the application can enable more intelligent resource manage-
ment by the architecture and system software to signi�cantly improve programmability, portability,
and performance in CPUs and GPUs.
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Chapter 1

Introduction

E�cient management of compute and memory resources, today and in the future, is as critical
as ever to maximize system performance and energy e�ciency. Important goals when it comes
to e�ectively managing system resources include: programmability, to minimize programmer
e�ort in optimizing for performance; portability of software optimizations across architectures
with di�erent resources/characteristics and in the presence of co-running applications that share
resources; and resource e�ciency, to maximize utilization of all available resources and e�ectively
leverage features of a given architecture.

The importance of managing the diverse compute/memory resources in an easy-to-program,
portable, and e�cient manner has inspired a large body of research in programming languages,
software frameworks, compilers, and architectures. We, however, argue that ever-growing com-
plexity at each level of the stack cannot, in isolation, fully achieve the three-fold goal of pro-
grammability, portability, and resource e�ciency: we are fundamentally constrained by current
cross-layer abstractions that are not designed to optimize for these goals. The levels of the com-
puting stack—application (the application/programming model), system (OS/runtime/compiler),
and architecture (the hardware architecture)—still interact with the traditional interfaces and ab-
stractions (e.g., virtual memory, instruction set architecture (ISA)), which were primarily designed
to convey functionality, rather than for the e�cient management of resources which is critical for
performance.

1.1 Motivation: Narrow Hardware-So�ware Interfaces Con-
strain Performance, Programmability, and Portability.

The existing interfaces have two important implications that make achieving programmability,
portability, and resource e�ciency signi�cantly challenging:
Implication 1: Diminishing returns from hardware-only approaches. The existing inter-

faces between layers of the computing stack, e.g., the instruction-set architecture (ISA) and virtual
memory, strip any application down to the basics of what is required to execute code correctly: a
sequence of instructions and memory accesses. Higher-level information—even the simple notion
of data structures, their access semantics, data types, and properties—are all lost in translation. In
other words, there is a large semantic gap between the application and the underlying system/hard-
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ware. Today, system designers work around this gap and the vast majority of optimizations in
the hardware architecture (optimizing caches, memory, coherence, computation, and so on) try
to predict/infer program behavior. However, these approaches are fundamentally limited by
how much application information is visible. Hence, we are seeing diminishing returns from
hardware-only approaches in general-purpose computing. There have been numerous proposals
for cross-layer optimizations and hardware-software cooperative mechanisms, but since they
require full-stack changes for a single optimization, they are challenging to adopt.
Implication 2: Application/system manages low-level hardware resources with limited

visibility and access. With the existing narrow hardware-software interface, the architecture is
heavily constrained in resource management. Thus, we rely on the application software to do much
of the heavy lifting in optimizing code to the speci�cs of each architecture. The application and
system software need to be aware of low-level system resources, and manage them appropriately
to tune for performance. GPU programming is challenging task today, as many hardware resources
that are critical for performance need to be directly allocated and managed by the programmer.
This causes challenges in programmability, portability, and resource e�ciency. The software may
not always have visibility into available resources such as available cache space (e.g., in virtualized
environments) and even if it does, software has little access to many hardware features that are
critical when optimizing for performance (e.g., caching policies, memory mapping). Furthermore,
software cannot easily adapt to changes in the runtime environment (e.g, co-running applications,
input data).

1.2 Our Approach: Rich Cross-Layer Abstractions to Enable
Hardware-So�ware Cooperative Mechanisms

In this thesis, we propose unifying cross-layer abstractions to bridge the semantic gap between
the application and underlying system/hardware. These abstractions directly communicate higher-
level program information, such as data structure semantics, parallelism, and data access properties,
to the lower levels of the stack: compiler, OS, and hardware. This information is conveyed by
the programmer using our programming abstractions or automatically inferred using software
tools. These abstractions enable a rich space of hardware-software cooperative mechanisms
to improve performance. The abstractions are expressive enough to convey a wide range of
program information. At the same time, they are designed to be highly portable and low overhead,
requiring only small additions to existing interfaces. This makes them highly practical and easy to
adopt. We look at 4 di�erent contexts in CPUs and GPUs where new rich cross-layer abstractions
enable new hardware-software cooperative mechanisms that address challenges in performance,
programmability, and portability.
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Cross-layer cooperative mechanisms are highly e�ective because providing the compiler, OS,
and hardware a global view of program behavior, ahead of time, enables these components to
actively optimize resources accordingly. For example, we demonstrated that knowledge of data
structures and their access semantics enables the OS to place data intelligently in memory to
maximize locality and parallelism (Chapter 2). Similarly, knowledge of the locality semantics
of GPU programs enables the hardware thread scheduler to co-locate threads that share data
at the same core to enhance data locality (Chapter 3). These are just two simple examples in a
large space of hardware-software codesigns in general-purpose processors, including numerous
previously-proposed cross-layer optimizations.

In this thesis, we propose cross-layer abstractions, along with the new hardware-software
mechanisms that they enable in di�erent contexts in CPUs and GPUs, including: (1) rich pro-
gramming abstractions that enable expression of application-level information and programmer
intent, completely agnostic to the underlying system and hardware; (2) a cross-layer system that
e�ciently integrates the OS/runtime system and compiler, enabling these components to �exibly
tap into a rich reservoir of application information; and (3) a low-overhead implementation in the
hardware architecture.

This thesis, hence, provides evidence for the following thesis statement:
A rich low-overhead cross-layer interface that communicates higher-level application

information to hardware enables many hardware-so�ware cooperative mechanisms that
signi�cantly improve performance, portability, and programmability.

1.3 Key Benefits
While there is a wide space of research opportunities into what a rich cross-layer abstraction

enables, the bene�ts we demonstrated are detailed below.
(1) Enabling intelligent and application-speci�c cross-layer optimizations in the sys-

tem/hardware: In addition to the aforementioned examples, more generally, communicating
program information enables more intelligent cross-layer optimizations to manage caches, mem-
ory, coherence, computation, and so on. Examples of this information include semantics of how
a program accesses its data structures and properties of the data itself. The system/hardware
can now e�ectively adapt to the application at runtime to improve overall system performance
(Chapter 2, 3): For example, the Locality Descriptor (Chapter 3) leverages knowledge of an appli-
cation’s data access properties to enable coordinated thread scheduling and data placement in
NUMA (non-uniform memory access) architectures. A richer cross-layer abstraction also enables
customized optimizations: Expressive Memory (Chapter 2) in CPUs enables adding specialization
in the memory hierarchy to accelerate speci�c applications/code segments. For example, the
abstraction enables transparently integrating a customized prefetcher for di�erent types of data
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structures and their access semantics (e.g, hash table, linked list, tensor). Similarly, with Assist
Warps (Chapter 5), we demonstrate customized hardware data compression in GPUs, speci�c to
the data layout of any data structure.
(2) Enabling hardware to do more for productivity and portability: In addition to per-

formance, access to program semantics and programmer intent enables hardware to improve
productivity and portability. We demonstrate (Chapter 2-5) that architectural techniques can
improve the performance portability of optimized code and reduce the e�ort required to write
performant code when privy to the semantics of software optimizations (e.g., cache tiling, graph
locality optimizations). For example, by communicating to hardware the tile size and access pattern
when using a cache-blocking optimization (e.g., in stencils and linear algebra), the cache can
intelligently coordinate eviction policies and hardware prefetchers to retain as much as possible of
the tile in the cache, irrespective of available cache space (Chapter 2). This avoids cache thrashing
and the resulting performance cli�s that may occur when the available cache is less than what the
program was optimized for—thus improving performance portability. Similarly, performance cli�s
are rampant in GPU programs, requiring great precision in tuning code to e�ciently use resources
such as scratchpad memory, registers, and the available parallelism. We demonstrate how enabling
more intelligent hardware can signi�cantly alleviate performance cli�s and enhance productivity
and portability in GPUs via careful management of resources at runtime (Chapter 4, 5).

1.4 Overview of Research
We propose 4 di�erent approaches to designing richer abstractions between the application,

system software, and hardware architecture, which we brie�y describe next.

1.4.1 Expressive Memory [339]: A rich and low-overhead cross-layer ab-
straction in CPUs to enable hardware-so�ware cooperative mecha-
nisms in memory (Chapter 2)

In this work, we proposed a new cross-layer interface in CPUs, Expressive Memory (XMem), to
communicate higher-level program semantics from the application to the operating system and
architecture. To retain the existing abstraction as is, we instead associate higher-level program
semantics with data in memory. Examples of this information include: (i) data structure semantics
and access properties; (ii) properties of the data values contained in the data structures, e.g.,
data sparsity, data type; (iii) data locality. The OS and any component in hardware (e.g., cache,
memory controller) can simply query the XMem system with any memory address to retrieve the
associated program information. XMem was architected such that the entire interface is simply
de�ned by three key operators that are recognized by all levels of the stack—CREATE, MAP, and
ACTIVATE. These operators enable rich expressiveness to describe more complex semantics in any
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programming language. These operators can be demonstrably implemented with low overhead
and are portable across di�erent architectures. We demonstrated signi�cant bene�ts in enabling
the system/hardware to do more for performance, productivity, and portability and specializing
for di�erent applications. The abstraction was designed to �exibly support many cross-layer
optimizations. To demonstrate its utility and generality, we presented 9 di�erent use cases.

1.4.2 The Locality Descriptor [336]: Expressing and leveraging data lo-
cality in GPUs with a rich cross-layer abstraction (Chapter 3)

While modern GPU programming models are designed to explicitly express parallelism, there is
no clear way to express semantics of the program itself: i.e., how the thousands of concurrent
threads access its data structures. We designed a rich cross-layer abstraction that describes how
the hierarchy of threads in the GPU programming model access each data structure and the
access semantics/properties of the data structures themselves. We then leverage this abstraction
to signi�cantly improve the e�cacy and ease with which we can exploit data locality in modern
GPUs—both reuse-based locality, to make e�cient use of the caches, and NUMA locality, to place
data and computation in near proximity in a non-uniform memory access (NUMA) system.

Exploiting data locality in GPUs today is a challenging but elusive feat both to the programmer
and the architect. Software has no access to key components (such as the thread scheduler) and
hardware misses key information such as: which threads share data? We designed a powerful
abstraction (named by its use case: the Locality Descriptor) that communicates the locality
semantics of any application to the hardware. This enables hardware to transparently coordinate
many locality optimizations such as co-scheduling threads that share data at the same core and
placing data close to the threads that use it. The programming interface is designed to be seamlessly
integrated into modern GPU programming models (e.g., CUDA and OpenCL). The abstraction’s
semantics are de�ned such that it can be automatically generated via software tools and is highly
portable, making no assumptions about the underlying architecture.

1.4.3 Zorua [337, 338]: Decoupling the GPU programming model from
hardware resource management (Chapter 4)

In accelerators, such as modern day GPUs, the available parallelism as well as the memory
resources need to be explicitly managed by the programmer. There exists no powerful abstraction
between the architecture and the programming model, and the management of many hardware
resources is tied to the programming model itself. This leads to underutilization of resources
(and hence, signi�cant loss in performance) when the application is not well tuned for a given
GPU. Even when an application is perfectly tuned for one GPU, there can still be a signi�cant
degradation in performance when running the same program on a di�erent GPU. Furthermore, it
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is unclear how to write such architecture-speci�c programs in virtualized environments, where
the same resources are being shared by multiple programs.

To achieve the three-fold goal of enhanced programmability, portability, and resource e�ciency,
we designed a new hardware-software cooperative framework, Zorua, to enhance the interface
between the programming model and architecture for the management of several critical compute
and memory resources. Zorua decouples the resource management as speci�ed by the program-
ming model and the actual utilization in the system hardware by e�ectively virtualizing each
of the resources (register �le, scratchpad memory, and thread slots) in hardware. Zorua also
communicates �ne-grained information regarding the application’s future resource requirements
at regular intervals to the hardware with a new hardware-software interface. This virtualization,
along with the rich interface, enables the hardware to intelligently and dynamically manage these
resources depending on the application behavior and makes the performance of any program far
less sensitive to the software-provided resource speci�cation. High performance is thus made
far easier to attain and performance is portable across generations of the architecture which may
have varying amounts of each resource.

1.4.4 Assist Warps [340, 341]: A cross-layer abstraction and hardware-
so�ware framework to leverage idle memory and compute resources
(Chapter 5)

In modern throughput-oriented processors, even with highly optimized code, imbalances between
the compute/memory resources requirements of an application and the resources available in
hardware can lead to signi�cant idling of compute units and available memory bandwidth. The
current programming models and interface to the architecture provide no simple abstraction to
manage the utilization of critical resources such as memory/compute bandwidth and on-chip
memory. To leverage this undesirable wastage to perform useful work, we propose a new hardware-
software abstraction—the assist warp—in the GPU programming model and architecture. Assist
warps enable light-weight execution of helper-thread code alongside the primary application
to perform optimizations to accelerate the program (such as data compression or prefetching)
and perform background tasks, system-level tasks, etc. Assist warps automatically adapt to the
availability of resources and unbalances in the primary application’s execution to increase overall
e�ciency and throughput.

1.5 Related Work
In this section, we provide a brief overview of prior work that address similar challenges in

enhancing programmability, portability, and resource e�ciency and works that propose cross-layer
interfaces. We then contrast the general approaches taken by these works with the approaches

6



taken in this thesis. We discuss related work speci�c to each of the proposed works at the end of
each chapter.

1.5.1 Expressive Programming Models and Runtime Systems

Numerous software-only approaches tackle the disconnect between an application, the OS,
and the underlying resources via programming models and runtime systems that allow explicit
expression of data locality and independence [35, 36, 44, 56, 60, 101, 122, 306, 329, 330, 334, 365]
in the programming model. This explicit expression enables the programmer and/or runtime
system to make e�ective memory placement decisions in a NUMA system or produce code that
is optimized to e�ectively leverage the cache hierarchy. For example, the Legion programming
system [35] provides software abstractions to describe properties of data such as locality and
independence. The programmer and runtime system can then explicitly place data in the memory
hierarchy to maximize parallelism and memory e�ciency. These approaches in general have
several shortcomings. First, they are entirely software-based and are hence limited to using the
existing interfaces to the architectural resources. Second, programming model-based approaches
require rewriting applications to suit the model. For example, programs need to adapted to the
Legion programming model to expose parallelism and locality using the model’s abstractions.
This requires explicit programmer e�ort to ensure correctness is retained. Third, these systems
are very speci�c to an application type (e.g., operations on tiles [334], arrays [101]). Only those
programs that can be expressed with Legion’s task-based programming model can leverage its
bene�ts.

In contrast, in this thesis, we proposed abstractions (Chapter 2-5), that are, �rst, cross-layer, and
are hence not limited to existing interfaces between hardware and software and enable hardware-
software cooperative mechanisms. As we demonstrate, this enables signi�cant performance,
programmability, and portability bene�ts. Second, all the abstractions proposed in this thesis retain
existing programming models and execution paradigms to minimize programmer and developer
e�ort. Third, each approach taken in this thesis is general and is not limited to any programming
language or application. Programming model/runtime system approaches are orthogonal to our
proposed approaches, and can leverage the abstractions we propose to enable a wider range of
optimizations.

1.5.2 Leveraging Hints, Annotations, and So�ware Management for Per-
formance Optimization

A large body of prior work aims to leverage the bene�ts of static program information in the
form of hints, annotations, or directives in performance optimization. For example, Cooperative
Cache Scrubbing [291] is a hardware-software mechanism that communicates to the cache which
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data blocks will not be used any longer in the program (dead blocks), so they can be evicted from the
cache to make space for more useful data. More generally, these include (i) hint-based approaches,
such as software prefetch instructions [1] and cache bypass/insertion/eviction hints [41, 42, 50,
120, 144, 219, 256, 257, 275, 291, 292, 332, 350, 366]; (ii) hardware-software cooperative prefetch
techniques [64, 69, 96, 105, 117, 145, 164, 305, 349, 353] that use compiler analysis or annotations to
inform a hardware prefetch engine; and (iii) program annotations to place data in heterogeneous
memories (e.g., [9, 209, 217]).

The approaches taken in this thesis, XMem (Chapter 2), Locality Descriptor (Chapter 3),
Zorua (Chapter 4), and CABA (Chapter 5), di�er from these works in several ways. First, many
of these prior works seek to inform hardware components with speci�c directives that override
dynamic policies by enforcing static policies. This loss in dynamism introduces challenges when
the workload behavior changes, the underlying architecture changes or is unknown (portability),
or in the presence of co-running applications [196,236,337]. Our approaches do not direct policy at
any component but only provide higher-level program semantics. System/hardware components
can use this information to supplement their dynamic management policies. Second, these prior
works are speci�c to an optimization (e.g., prefetching, cache insertion/eviction). For example,
Cooperative Cache Scrubbing is only applicable to dead block eviction from the cache. Our
approaches, XMem (Chapter 2) and Locality Descriptor (Chapter 3), however, provide a general
interface to communicate program semantics that can be leveraged by many system/architectural
components.

1.5.3 Enhancing Programming Ease and Portability in GPUs

There is a large body of work that aims to improve programmability and portability of modern
GPU applications using software tools, such as auto-tuners [82, 89, 172, 295, 311], optimizing
compilers [62, 133, 160, 211, 368, 369], and high-level programming languages and runtimes [88,
124, 274, 333]. For example, Porple [62] is an optimizing compiler that automatically selects the
memory allocation in registers and scratchpad memory for GPU programs. hiCUDA [124] is a
directive-based programming language that automatically chooses the lower-level speci�cations
required in GPU programs (i.e., registers, scratchpad, threads per block), based on the directives
provided by the programmer. These tools tackle a multitude of optimization challenges, and have
been demonstrated to be very e�ective in generating high-performance portable code.

However, there are several shortcomings in these works in contrast with our works, Locality
Descriptor (Chapter 3) and Zorua (Chapter 4). First, these prior works often require pro�ling
runs [62,82,295,311,368,369] on the GPU to determine the best performing resource speci�cations.
Porple requires runtime pro�ling to determine the program’s access patterns before selecting how
much register space or scratchpad memory should be allocated to the program. These runs have to
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be repeated for each new input set and GPU generation. Second, software-based approaches still
require signi�cant programmer e�ort to write code in a manner that can be exploited by software to
optimize the resource utilization. hiCUDA requires rewriting any program with its directive-based
language. Zorua (Chapter 4) is software transparent and the Locality Descriptor (Chapter 3) does
not require rewriting the application, but only requires provide hint-based annotations that do not
a�ect program correctness. Third, selecting the best-performing resource speci�cations statically
using software tools is a challenging task in virtualized environments (e.g., clouds), where it is
unclear which kernels may be run together on the same Streaming Multiprocessor (SM) or where
it is not known, a priori, which GPU generation the application may execute on. Finally, software
tools assume a �xed amount of available resources. This leads to dynamic underutilization due
to static allocation of resources, which cannot be easily addressed by these tools. None of the
above tools, including Porple and hiCUDA, can handle dynamic recompilation in the presence of
co-running applications or address dynamic underutilization of hardware resources. Furthermore,
these prior works are largely orthogonal can be used in conjunction with our proposed approaches
to further improve performance.

1.5.4 Tagged Architectures

Prior work proposes to associate software-de�ned metadata with each memory location in
the form of tagged/typed memory [86, 102, 356, 380]. These proposals are typically used for
�ne-grained memory access protection, debugging, etc., and usually incur non-trivial perfor-
mance/storage overhead. For example, PUMP [86] associates every word in the memory system
with a software-de�ned metadata tag. These tags are then used to enforce security policies in
hardware, e.g., avoiding bu�er over�ows. In contrast, XMem (Chapter 2) aims to deliver general
program semantics to many system/hardware components to aid in performance optimization. This
necessitates a low overhead implementation that is also general enough to enable a wide range of
cross-layer optimizations, while not sacri�cing programmability. While a fundamental component
of XMem is the metadata tracking system similar to tagged memories, to achieve the above goal in
performance optimization requires several other key components: a hardware-software translator
that enables a many cross-layer optimizations with a common set of information provided by the
programmer and alleviates challenges in portability and programmability; and a full hardware-
software system design that partitions work between the compiler, OS, and hardware to minimize
system complexity. Furthermore, XMem is designed to enable a number of features and bene�ts
that cannot be obtained from tagged/typed architectures: (i) a �exible and extensible abstraction
to dynamically describe program behavior with XMemLib; and (ii) low-overhead interfaces to
many hardware components to easily access the expressed semantics, including the prefetcher,
caches, memory controller, etc. PARD [218] and Labeled RISC-V [375] are tagged architectures
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that enable labeling memory requests with tags to applications, VMs, etc. These tags are used to
convey an application’s QoS, security requirements, etc., to hardware. XMem is similar in that it
provides an interface to hardware to convey information from software. However, unlike these
works [218, 375], we design a new abstraction (the atom) to �exibly express program semantics
that can be seamlessly integrated into programming languages, runtime systems, and modern
ISAs. The atom lends itself to a low-overhead implementation to convey software semantics to
hardware components dynamically and at �exible granularities. XMem can potentially leverage
tagged architectures to communicate atom IDs to di�erent hardware components. Hence, PARD
and Labeled RISC-V are complementary to XMem.
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Chapter 2

Expressive Memory

This chapter proposes a rich low-overhead interface to enable the operating system and hard-
ware architecture to leverage key higher-level program information regarding how an application
accesses its data to optimize memory system performance in CPUs. We �rst motivate the pro-
grammability, portability, and resource e�ciency challenges that exist in modern CPUs when
optimizing for memory system performance. We then describe our proposed cross-layer abstrac-
tion, Expressive Memory, and detail its design and e�ectiveness in addressing these challenges.

2.1 Overview
As discussed in Section 1, traditionally, the key interfaces between the software stack and

the architecture (the ISA and virtual memory) have been primarily designed to convey program
functionality to ensure the program is executed as required by software. An application is converted
into ISA instructions and a series of accesses to virtual memory for execution in hardware. The
application is, hence, stripped down to the basics of what is necessary to execute the program
correctly, and the higher-level semantics of the program are lost. For example, even the simple
higher-level notion of di�erent data structures in a program is not available to the OS or hardware
architecture, which deal only with virtual/physical pages and addresses. While the higher-level
semantics of data structures may be irrelevant for correct execution, these semantics could prove
very useful to the system for performance optimization.

There is, in other words, a disconnect or semantic gap between the levels of the computing stack
when it comes to conveying higher-level program semantics from the application to the wide
range of system-level and architectural components that aim to improve performance. While the
implications of the disconnect are far-reaching, in this work, we narrow the focus to a critical
component in determining the overall system e�ciency, the memory subsystem. Modern systems
employ a large variety of components to optimize memory performance (e.g., prefetchers, caches,
memory controllers). The semantic gap has two important implications:
Implication 1. The OS and hardware memory subsystem components are forced to predict or

infer program behavior when optimizing for performance. This is challenging because: (i) each
component (e.g., L1 cache, memory controller) sees only a localized view of the data accesses
made by the application and misses the bigger picture, (ii) specialized hardware may be required
for each component optimizing for memory, and (iii) the optimizations are typically only reactive

11



as the program behavior is not known a priori.
Implication 2. Software is forced to optimize code to the speci�cs of the underlying architecture

(e.g., by tuning tile size to �t a speci�c cache size). Memory resource availability, however,
can change or be unknown (e.g., in virtualized environments or in the presence of co-running
applications). As a result, software optimizations are often unable to make accurate assumptions
regarding memory resource availability, leading to signi�cant challenges in performance portability.

The challenges of predicting program behavior and hence the bene�ts of knowledge from
software in memory system optimization are well known [9, 42, 50, 64, 69, 92, 117, 120, 144, 209,
219, 236, 256, 257, 275, 291, 292, 332, 349, 350, 353, 366]. There have been numerous hardware-
software cooperative techniques proposed in the form of �ne-grain hints implemented as new ISA
instructions (to aid cache replacement, prefetching, etc.) [42, 50, 120, 144, 219, 256, 257, 275, 291, 292,
332, 350, 366], program annotations or directives to convey program semantics and programmer
intent [9, 92, 120, 209, 236], or hardware-software co-designs for speci�c optimizations [64, 69,
117, 349, 353]. These approaches, however, have two signi�cant shortcomings. First, they are
designed for a speci�c memory optimization and are limited in their implementation to address
only challenges speci�c to that optimization. As a result, they require changes across the stack for
a single optimization (e.g., cache replacement, prefetching, or data placement). Second, they are
often very speci�c directives to instruct a particular component to behave in a certain manner (e.g.,
instructions to prefetch speci�c data or prioritize certain cache lines). These speci�c directives
create portability and programmability concerns because these optimizations may not apply across
di�erent architectures and they require signi�cant e�ort to understand the hardware architecture
to ensure the directives are useful.
Our Goal. In this work, we ask the question: can we design a unifying general abstraction

and a cohesive set of interfaces between the levels of the system stack to communicate key program
semantics from the application to all the system-level and architectural components? In response,
we present Expressive Memory (XMem), a rich cross-layer interface that provides a new view of
the program data to the entire system. Designing XMem in a low-overhead, extensible, and general
manner requires addressing several non-trivial challenges involving con�icting tradeo�s between
generality and overhead, programmability and e�ectiveness (§2.2.2). In this work, we provide a
�rst attempt at designing a new end-to-end system to achieve our goal while addressing these
challenges.
Expressive Memory comprises two key components:
(1) The Atom. We introduce a new hardware-software abstraction, the atom, which is a

region of virtual memory with a set of well-de�ned properties (§2.3.1). Each atom maps to
data that is semantically similar, e.g., a data structure, a tile in an array, or any pool of data
with similar properties. Programs explicitly specify atoms that are communicated to the OS
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and hardware. Atoms carry program information such as: (i) data properties (e.g., data type,
sparsity, approximability), (ii) access properties (e.g., access pattern, read-write characteristics),
and (iii) data locality (e.g., data reuse, working set). The atom can also track properties of data
that change during program execution.
(2) System and Cross-layer Interfaces. Figure 1 presents an overview of this component:

(i) The interface to the application enables software to explicitly express atoms via program
annotation, static compiler analysis, or dynamic pro�ling ¶; (ii) The XMem system enables
summarizing, conveying, and storing the expressed atoms ·; (iii) The interface to the OS and
architectural components (e.g., caches, prefetchers) provides key supplemental information to aid
optimization ¸. This interface enables any system/architectural component to simply query the
XMem system for the higher-level semantics attached to a memory address ¹.

Application Expression  
(Annotation/Profiling/Static Analysis) 

Summarize + Convey + Save 

Interface to 
Application 

Interface to  
System/Architecture 

Expressive 
Memory  
(XMem) 
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2 

Query 

DRAM 
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. . . 

Optimization 

Prefetcher 
Memory 

Controller 
Caches 

4 

Figure 1: XMem: the system and interfaces.

Use Cases. XMem is designed to be a general interface to aid a wide range of memory opti-
mizations. In this work, we �rst demonstrate the bene�ts of XMem in enhancing the portability
of software-based cache optimizations (§3.4.4). The e�ectiveness of such optimizations (e.g., cache
tiling [47, 72, 131, 223, 352, 362, 376]) is highly susceptible to changes in cache space availability: If
the available cache space at runtime is less than what the program was optimized for, cache thrash-
ing often ensues. We demonstrate that by leveraging data locality semantics (working set size and
data reuse), we can enhance and coordinate the cache management and prefetching policies to
avoid cache thrashing and ensure high hit rates are retained, thereby improving the portability of
the optimization. We demonstrate that when software optimizations inaccurately assume available
cache space, XMem reduces the loss in performance from 55% in the baseline system to 6% on
average. Second, we demonstrate the performance bene�ts of intelligent OS-based page placement
in DRAM by leveraging knowledge of data structures and their access semantics (§2.6). XMem
improves performance by (i) isolating regular data structures with high row bu�er locality in
separate banks and (ii) spreading out irregular data structures across many banks/channels to
maximize parallelism. Our experimental evaluation demonstrates an 8.5% average performance
improvement (up to 31.9%) over state-of-the-art techniques.
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Table 1: Summary of the example memory optimizations that XMem aids.
Memory
optimization

Example semantics provided
by XMem

Example Bene�ts of XMem

Cache
management

(i) Distinguishing between data
structures or pools of similar
data; (ii) Working set size;
(iii) Data reuse

Enables: (i) applying di�erent caching policies to di�erent data structures or
pools of data; (ii) avoiding cache thrashing by knowing the active working
set size; (iii) bypassing/prioritizing data that has no/high reuse.

Page
placement in
DRAM
e.g., [237, 258]

(i) Distinguishing between data
structures; (ii) Access pattern;
(iii) Access intensity

Enables page placement at the data structure granularity to (i) isolate data
structures that have high row bu�er locality and (ii) spread out concurrently-
accessed irregular data structures across banks and channels to improve
parallelism.

Cache/memory
compression
e.g., [22, 93, 97,
263, 265–267,
340]

(i) Data type: integer, �oat, char;
(ii) Data properties: sparse,
pointer, data index

Enables using a di�erent compression algorithm for each data structure based
on data type and data properties, e.g., sparse data encodings, FP-speci�c
compression, delta-based compression for pointers [267].

Data
prefetching
e.g., [31, 309,
310, 343]

(i) Access pattern: strided,
irregular, irregular but repeated
(e.g., graphs), access stride;
(ii) Data type: index, pointer

Enables (i) highly accurate software-driven prefetching while leveraging the
bene�ts of hardware prefetching (e.g., by being memory bandwidth-aware,
avoiding cache thrashing); (ii) using di�erent prefetcher types for di�erent
data structures: e.g., stride [31], tile-based [69], pattern-based [268, 309, 310,
343], data-based for indices/pointers [78, 96], etc.

DRAM cache
management
e.g., [150, 151,
153, 226, 227,
372, 374]

(i) Access intensity; (ii) Data
reuse; (iii) Working set size

(i) Helps avoid cache thrashing by knowing working set size [374]; (ii) Better
DRAM cache management via reuse behavior and access intensity informa-
tion.

Approximation
in memory
e.g., [99, 229,
230, 286, 287,
327, 371]

(i) Distinguishing between
pools of similar data; (ii) Data
properties: tolerance towards
approximation

Enables (i) each memory component to track how approximable data is (at
a �ne granularity) to inform approximation techniques; (ii) data placement
in heterogeneous reliability memories [217].

Data
placement:
NUMA
systems
e.g., [8, 81]

(i) Data partitioning across
threads (i.e., relating data to
threads that access it);
(ii) Read-Write properties

Reduces the need for pro�ling or data migration (i) to co-locate data with
threads that access it and (ii) to identify Read-Only data, thereby enabling
techniques such as replication.

Data
placement:
hybrid
memories
e.g., [92, 201,
346]

(i) Read-Write properties
(Read-Only/Read-Write);
(ii) Access intensity; (iii) Data
structure size; (iv) Access
pattern

Avoids the need for pro�ling/migration of data in hybrid memories to (i) ef-
fectively manage the asymmetric read-write properties in NVM (e.g., placing
Read-Only data in the NVM) [92,346]; (ii) make tradeo�s between data struc-
ture "hotness" and size to allocate fast/high bandwidth memory [9]; and
(iii) leverage row-bu�er locality in placement based on access pattern [372].

Managing
NUCA
systems
e.g., [125,236]

(i) Distinguishing pools of
similar data; (ii) Access
intensity; (iii) Read-Write or
Private-Shared properties

(i) Enables using di�erent cache policies for di�erent data pools (similar
to [236]); (ii) Reduces the need for reactive mechanisms that detect sharing
and read-write characteristics to inform cache policies.
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More generally, Table 1 presents nine example memory optimizations and the bene�ts XMem
can provide over prior works that propose these optimizations in a specialized manner. XMem’s
bene�ts arise in three ways. First, it provides a unifying, central interface for a wide range of
optimizations that use many of the same semantics. Second, it partitions data into pools of
semantically-similar data. This enables using di�erent policies (e.g., cache policies, compression
algorithms) for di�erent pools of data. Third, it enhances optimizations by providing higher-
level semantics that (i) are unavailable locally to each component at runtime (e.g., distinguishing
between data structures, data properties), (ii) are challenging to accurately infer (e.g., working
set size, data reuse) or (iii) require pro�ling/monitoring to determine (e.g., read-only/read-write,
private/shared data characteristics).

This work makes the following contributions:
• This work is the �rst attempt to design a holistic and general cross-layer interface to communicate

higher-level program semantics to the di�erent system and architectural components in order
to enable more e�ective memory optimizations in modern CPUs.

• To this end, we introduce XMem, which comprises a new software-hardware abstraction—the
Atom—and a full end-to-end system design. XMem (i) is general and �exible enough to cover
a wide range of program semantics and use cases, (ii) is completely decoupled from system
functionality and a�ects only performance not correctness, (iii) can react to phase changes in
data properties during execution, and (iv) has a low-overhead implementation.

• We quantitatively demonstrate the bene�ts of using XMem to (i) improve the portability of
software-based cache optimizations by leveraging data locality semantics and (ii) enhance OS-
based DRAM placement by leveraging semantics of data structures and their access properties.
We highlight seven other use cases (Table 1).

2.2 Goals and Challenges

2.2.1 Key Requirements

There are several key requirements and invariants that drive the design of the proposed system:
(i) Supplemental and hint-based. The new interface should not a�ect functionality or cor-

rectness of the program in any way—it provides only supplemental information to help improve
performance. This reduces the necessity of obtaining precise or detailed hints, and system imple-
mentation can be simpler as information can be conveyed/stored imprecisely.
(ii) Architecture agnosticism. The abstraction for expressing semantics must be based on the

application characteristics rather than the speci�cs of the system, e.g., cache size, memory banks
available. This means that the programmer/software need not be aware of the precise workings of
the memory system resources, and it signi�cantly alleviates the portability challenges when the
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programmer/software optimizes for performance.
(iii) Generality and extensibility. The interface should be general enough to �exibly express

a wide range of program semantics that could be used to aid many system-level and architectural
(memory) optimizations, and extensible to support more semantics and optimizations.

(iv) Low overhead. The interface must be amenable to an implementation with low storage
area and performance overheads, while preserving the semantics of existing interfaces.

2.2.2 Challenges

Current system and architectural components see only a description of the program’s data in
terms of virtual/physical addresses. To provide higher-level program-related semantics, we need to
associate each address with much more information than is available to the entire system today,
addressing the following three challenges:
Challenge 1: Granularity of expression. The granularity of associating program semantics

with program data is challenging because the best granularity for expressing program semantics is
program dependent. Semantics could be available at the granularity of an entire data structure, or
at much smaller granularities, such as a tile in an array. We cannot simply map program semantics
to every individual virtual address as that would incur too much overhead, and the �xed granularity
of a virtual page may be too coarse-grained, in�exible and challenging for programmers to reason
about.
Challenge 2: Generality vs. specialization. Our architecture-agnosticism requirement

implies that we express higher-level information from the application’s or the programmer’s point
of view—without any knowledge/assumptions of the memory resources or speci�c directives
to a hardware component. As a consequence, much of the conveyed information may be either
irrelevant, too costly to manage e�ectively, or too complex for di�erent hardware components to
easily use. For example, hardware components like prefetchers are operated by simple hardware
structures and need only know prefetchable access patterns. Hence, the abstraction must be
(i) high-level and architecture-agnostic, so it can be easily expressed by the programmer and
(ii) general, in order to express a range of information useful to many components. At the same
time, it should be still amenable to translation into simple directives for each component.
Challenge 3: Changing data semantics. As the program executes, the semantics of the

data structures and the way they are accessed can change. Hence, we need to be able to express
dynamic data attributes in static code, and these changing attributes need to be conveyed to the
running system at the appropriate time. This ensures that the data attributes seen by the memory
components are accurate any time during execution. Continual updates to data attributes at
runtime can impose signi�cant overhead that must be properly managed to make the approach
practical.
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2.3 Our Approach: Expressive Memory
We design Expressive Memory (XMem), a new rich cross-layer interface that enables explicit

expression and availability of key program semantics. XMem comprises two key components: (i) a
new hardware-software abstraction with a well-de�ned set of properties to convey program seman-
tics and (ii) a rich set of interfaces to convey and store that information at di�erent system/memory
components.

2.3.1 The Atom Abstraction

We de�ne a new hardware-software abstraction, called an Atom, that serves as the basic unit
of expressing and conveying program semantics to the system and architecture. An atom forms
both an abstraction for information expressed as well as a handle for communicating, storing, and
retrieving the conveyed information across di�erent levels of the stack. Application programs
can dynamically create atoms in the program code, each of which describes a speci�c range of
program data at any given time during execution. The OS and hardware architecture can then
interpret atoms speci�ed in the program when the program is executed. There are three key
components to an atom: (i) Attributes: higher-level data semantics that it conveys; (ii) Mapping:
the virtual address range that it describes; and (iii) State: whether the atom is currently active or
inactive.

2.3.2 Semantics and Invariants of an Atom

We de�ne the invariants of the atom abstraction and then describe the operators that realize
the semantics of the atom.
• Homogeneity: All the data that maps to the same atom has the same set of attributes.
• Many-to-One VA-Atom Mapping: At any given time, any virtual address (VA) can map to at
most one atom. Hence, the system/architecture can query for the atom (if any) associated with a
VA and thereby obtain any attributes associated with the VA, at any given time.
• Immutable Attributes: While atoms are dynamically created, the attributes of an atom cannot
be changed once created. To express di�erent attributes for the same data, a new atom should
be created. Atom attributes can, hence, be speci�ed statically in the program code. Because
any atom’s attributes cannot be updated during execution, these attributes can be summarized
and conveyed to the system/architecture at compile/load time before execution. This minimizes
expensive communication at runtime (Challenge 3).
• Flexible mapping to data: Any atom can be �exibly and dynamically mapped/unmapped to
any set of data of any size. By selectively mapping and/or unmapping data to the same atom, an
atom can be mapped to non-contiguous data (Challenge 1).
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• Activation/Deactivation: While the attributes of an atom are immutable and statically speci-
�ed, an atom itself can be dynamically activated and deactivated in the program. The attributes
of an atom are recognized by the system only when the atom is currently active. This enables
updating the attributes of any data region as the program executes: when the atom no longer
accurately describes the data, it is deactivated and a new atom is mapped to the data. This ensures
that the system always sees the correct data attributes during runtime, even though the attributes
themselves are communicated earlier at load time (Challenge 3).
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Figure 2: Overview of the three atom operators.

To manipulate the three components (Attributes, Mapping, and State), there are three correspond-
ing operations that can be performed on an atom via a corresponding library call: (i) CREATE an
atom, providing it with immutable statically-speci�ed attributes; (ii) MAP/UNMAP an atom to/from
a range of data; and (iii) ACTIVATE/DEACTIVATE an atom to dynamically tell the memory system
that the attributes of the atom are now (in)valid for the data the atom is mapped to.

Figure 2 depicts an overview of the atom operators. Atoms are �rst created in the program
with statically-speci�ed attributes ¶. During memory allocation (e.g., malloc), data structures are
allocated ranges of virtual memory. After allocation, atoms with the appropriate attributes can be
�exibly mapped to the corresponding VA range that each atom describes ·. Once the mapped
atom is activated, all the system components recognize the attributes as valid ¸. Data can be easily
remapped to a di�erent atom that describes it better as the program moves into a di�erent phase
of execution (using the MAP operator ·), or just unmapped  when the atom no longer accurately
describes the data. The MAP/UNMAP operator can be �exibly called to selectively map/unmap
multiple data ranges to/from the same atom at any granularity. The ACTIVATE/DEACTIVATE

operator dynamically validates/invalidates the atom attributes relating to all data the atom is
mapped to.

2.3.3 A�ributes of an Atom and Use Cases

Each atom contains an extensible set of attributes that convey the key program semantics to
the rest of the system. Table 1 lists example use cases for these attributes. The three classes of
attributes (to date) are:
(1) Data Value Properties: An expression of the attributes of the data values contained in the
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data pool mapped to an atom. It is implemented as an extensible list using a single bit for each
attribute. These attributes include data type (e.g., INT32, FLOAT32, CHAR8) and data properties
(e.g., SPARSE, APPROXIMABLE, POINTER, INDEX).

(2) Access Properties: This describes three key characteristics of the data the atom is mapped
to:
• AccessPattern: This attribute de�nes the PatternType, currently either REGULAR (with a
speci�c stride that is also speci�ed), IRREGULAR (when the access pattern is repeatable within
the data range, but with no repeated stride, e.g., graphs), or NON_DET (when there is no repeated
pattern).
• RWChar: This attribute describes the read-write characteristics of data at any given time, currently
either READ_ONLY, READ_WRITE, or WRITE_ONLY. It could also be extended to include varying
degrees of read-write intensity, and include shared/private information.
• AccessIntensity: This attribute conveys the access frequency or “hotness” of the data relative
to other data at any given time. This attribute can be provided by the programmer, compiler, or
pro�ler. It is represented using an 8-bit integer, with 0 representing the lowest frequency. Higher
values imply an increasing amount of intensity relative to other data. Hence, this attribute conveys
an access intensity ranking between di�erent data mapped to di�erent atoms.
(3) Data Locality: This attribute serves to express software optimizations for cache locality

explicitly (e.g., cache tiling, stream bu�ers, partitions, etc.). The key attributes include working set
size (which is inferred from the size of data the atom is mapped to) and reuse, for which we use a
simple 8-bit integer (0 implying no reuse and higher values implying a higher amount of reuse
relative to other data).

Note that the atom abstraction and its interface do not a priori limit the program attributes
that an atom can express. This makes the interface �exible and forward-compatible in terms of
extending and changing the expressed program semantics. The above attributes have been selected
for their memory optimization bene�ts (Table 1) and ready translation into simple directives for
the OS and hardware components.

2.3.4 The XMem System: Key Design Choices

Before we describe XMem’s system implementation, we explain the rationale behind the key
design choices.
• Leveraging Hardware Support: For the XMem design, we leverage hardware support for
two major reasons. First, a key design goal for XMem is to minimize the runtime overhead of
tracking and retrieving semantics at a �ne granularity (even semantics that change as the program
executes). We hence leverage support in hardware to e�ciently perform several key functionalities
of the XMem system—mapping/unmapping of semantics to atoms and activating/deactivating

19



atoms at runtime. This avoids the high overhead of frequent system calls, memory updates, etc.
Second, we aim to enable the many hardware-managed components in the memory hierarchy to
leverage XMem. To this end, we use hardware support to e�ciently transmit key semantics to the
di�erent hardware components.
• Software Summarization and Hardware Tracking: Because the potential atoms and their
attributes are known statically (by examining the application program’s CREATE calls), the compiler
can summarize them at compile time, and the OS can load them into kernel memory at load time.
The program directly communicates an atom’s active status and address mapping(s) at runtime
(via MAP and ACTIVATE calls) with the help of new instructions in the ISA (§2.4) and hardware
support. This minimizes expensive software intervention/overhead at runtime. In other words,
the static CREATE operator is handled in software before program execution and the dynamic MAP
and ACTIVATE operators are handled by hardware at runtime.
• Centralized Global Tracking and Management: All the statically-de�ned atoms in the
program are assigned a global Atom ID (within a process) that the entire system recognizes.
Tracking which atoms are active at runtime and the inverse mapping between a VA and atom ID
is also centralized at a global hardware table, to minimize storage and communication cost (i.e., all
architectural components access the same table to identify the active atom for a VA).
• Private Attributes and Attribute Translation: The atom attributes provided by the appli-
cation may be too complex and excessive for easy interpretation by components like the cache
or prefetcher. To address this challenge (Challenge 2), when the program is loaded for execution
or after a context switch, the OS invokes a hardware translator that converts the higher-level
attributes to sets of speci�c primitives relevant to each hardware component and the optimization
the component performs. Such speci�c primitives are then saved privately at each component,
e.g., the prefetcher saves only the access pattern for each atom.

2.3.5 XMem: Interfaces and Mechanisms

Figure 3 depicts an overview of the system components to implement the semantics of XMem.
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Figure 3: XMem: Overview of the components.

Programmer/Application Interface. The application interface to XMem is via a library,
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Table 2: The XMem operators and corresponding XMemLib functions and ISA instructions
(sizes/lengths in bytes).

XMem
Op

XMemLib Functions (Application Interface) XMem ISA Insts (Architecture In-
terface)

CREATE AtomID CreateAtom(data_prop, access_pattern, reuse,
rw_characteristics)

No ISA instruction required

MAP/UNMAP

AtomMap(atom_id, start_addr, size, map_or_unmap)
Atom2DMap(atom_id, start_addr, lenX, sizeX, sizeY,
map_or_unmap) Atom3DMap(atom_id, start_addr, lenX, lenY,
sizeX, sizeY, sizeZ, map_or_unmap)

ATOM_MAP AtomID, Dimensionality
ATOM_UNMAP AtomID,
Dimensionality
Address ranges speci�ed in AMU-speci�c
registers

ACTIVATE/
DEACTIVATE

AtomActivate(atom_id)
AtomDeactivate(atom_id)

ATOM_ACTIVATE AtomID
ATOM_DEACTIVATE AtomID

XMemLib (¶). An atom is de�ned by a class data structure that de�nes the attributes of the atom
and the operator functions (CREATE, MAP/UNMAP, and ACTIVATE/DEACTIVATE). An atom and its
static attributes can be instantiated in the program code (CREATE) by the programmer, autotuner,
or compiler.
System/Architecture Interface. XMemLib communicates with the OS and architecture in the

following two ways.
First, at compile time, the compiler summarizes all the atoms in the program statically and

creates a table for atom attributes, indexed by atom ID. During run time, the same static atom can
have many instances (e.g., within a for loop or across multiple function calls). All of the calls to
create the same atom will, however, be mapped to the same static atom (and Atom ID). This is
possible because atom attributes are immutable. However, the address mapping of each atom is
typically not known at compile time because virtual address ranges are only resolved at runtime.
The compiler creates a table of all the atoms in the program along with the atom attributes. This
table is placed in the atom segment of the program object �le (·). When the program is loaded
into memory for execution by the OS, the OS also reads the atom segment and saves the attributes
for each atom in the GLOBAL ATTRIBUTE TABLE (GAT¸), which is managed by the OS in kernel
space. The OS also invokes a hardware translator (¹) that converts the higher-level attributes
saved in the GAT to sets of speci�c hardware primitives relevant to each hardware component,
and saves them in a per-component PRIVATE ATTRIBUTE TABLE (PATº), managed in hardware
by each component.

Second, at run time, XMem operators, in the form of function calls in XMemLib, are translated
into ISA instructions that inform the system and architecture of the atoms’ activation/deactivation
and mapping. Conceptually, the MAP/UNMAP operator (») is converted into ISA instructions that
update the ATOM ADDRESS MAP (AAM¼), which enables looking up the atom ID associated with a
physical address (PA). We use the PA to index the AAM instead of the VA to simplify the table design
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(§2.4.2). The ACTIVATE/DEACTIVATE operator (½) is converted into ISA instructions that update
an atom’s active status in the ATOM STATUS TABLE (AST¾). The AST and AAM are managed by the
Atom Management Unit (AMU ¿). Because tables with entries for each PA are infeasible, we use
simple mechanisms to avoid them. These mechanisms, and the functioning and implementation
of these hardware and software components, are described in §2.4.2.
Flexibility and Extensibility. The system/architecture interface ensures that the ISA and the

microarchitecture need only implement the three operators, but does not dictate what application
attributes can be conveyed. The attributes are stored in the binary as a separate metadata segment
with a version identi�er to identify the information format. The information format can be
enhanced across architecture generations, ensuring �exibility and extensibility, while the version
identi�er ensures forward/backward compatibility. Any future architecture can interpret the
semantics and older XMem architectures can simply ignore unknown formats.

2.4 XMem: Detailed Design
We now detail the design and implementation of the interfaces and components in XMem. We

describe the application, OS, and architecture interfaces (§2.4.1), the key components of XMem
(§2.4.2), the use of XMem in virtualized environments (§2.4.3), and the overheads of our design
(§2.4.4).

2.4.1 The Interfaces

Application Interface. The primary interface between XMem and the application is XMemLib,
a library that provides type de�nitions and function calls for atoms. XMemLib includes an atom
class de�nition with the attributes described in §2.3.3. XMemLib provides three types of XMem
operations on atoms in the form of function calls. These operations are the interface to manipulate
the attributes, mappings and state of an atom. Table 2 summarizes the de�nition of all the functions
(also discussed below):

(1) CREATE: The function CreateAtom creates an atom with the attributes speci�ed by the input
parameters, and returns an Atom ID. Multiple invocations of CreateAtom at the same place in the
program code always return the same Atom ID (without reinvoking the function).
(2) MAP/UNMAP: These functions take an Atom ID and an address range as parameters, and

invoke corresponding ISA instructions to tell the Atom Management Unit (AMU) to update the
Atom Address Map (§2.4.2). We create multiple functions so that we can easily map or unmap
multi-dimensional data structures (e.g., 2D/3D arrays). For example, Atom2DMap maps/unmaps a
2D block of data of width sizeX and height sizeY, in a 2D data structure that has a row length
lenX.
(3) ACTIVATE/DEACTIVATE: The functions AtomActivate and AtomDeactivate serve to (de)activate
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the speci�ed atom at any given time. They invoke corresponding ISA instructions that update the
Atom Status Table (§2.4.2) at run time.

Operating System Interface. XMem interfaces with the OS in two ways. First, the OS man-
ages the Global Attribute Table (GAT) (§2.4.2), which holds the attributes of all the atoms
in each application. Second, the OS can optionally query for the static mapping between VA
ranges and atoms through an interface to the memory allocator. This interface ensures that
the OS knows the mapping before the virtual pages are mapped to physical pages, so that the
OS can perform static optimizations, such as memory placement based on program semantics.
Speci�cally, we augment the memory allocation APIs (e.g., malloc) to take Atom ID as a pa-
rameter. The memory allocator, in turn, passes the Atom ID to the OS via augmented system
calls that request virtual pages. The memory allocator maintains the static mapping between
atoms and virtual pages by returning virtual pages that match the requesting Atom ID. The
compiler converts the pair A=malloc(size); AtomMap(atomID,A,size); into this augmented
API: A=malloc(size,atomID); AtomMap(atomID,A,size);. This interface enables the OS to
manipulate the virtual-to-physical address mapping without extra system call overheads.
Architecture Interface. We add two new ISA instructions to enable XMem to talk to the

hardware at run time: (i) ATOM_MAP/ATOM_UNMAP tells the Atom Management Unit (AMU) to
update the address ranges of an atom. When this instruction is executed, the parameters required
to convey the address mapping for the di�erent mapping types (Table 2) are implicitly saved in
AMU-speci�c registers and accessed by the AMU. To map or unmap the address range to/from the
speci�ed atom, the AMU asks the Memory Management Unit (MMU) to translate the virtual address
ranges speci�ed by ATOM_MAP to physical address ranges, and updates the Atom Address Map

(AAM) (§2.4.2). (ii) ATOM_ACTIVATE/ATOM_DEACTIVATE causes the AMU to update the Atom Status

Table (AST) to activate/deactivate the speci�ed atom.

2.4.2 System Design: Key Components

The system/architecture retrieves the data semantics associated with each memory address in
three steps: (i) determine to which atom (if any) a given address maps; (ii) determine whether the
atom is active; and (iii) retrieve the atom attributes. XMem enables this with four key components:
(1) Atom Address Map (AAM): This component determines the latest atom (if any) associated

with any PA. Because the storage overhead of maintaining a mapping table between each address
and Atom ID would be prohibitively large, we employ an approximate mapping between atoms and
address ranges at a con�gurable granularity. The system decides the smallest address range unit the
AAM stores for each address-range-to-atom mapping. The default granularity is 8 cache lines (512B),
which means each consecutive 512B can map only to one atom. This design signi�cantly reduces
the storage overhead as we need only store one Atom ID for each 512B (0.2% storage overhead
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assuming an 8-bit Atom ID). We can reduce this overhead further by increasing the granularity or
limiting the number of atoms in each application. For instance, if we support only 6-bit Atom IDs
with a 1KB address range unit, the storage overhead becomes 0.07%. Note that because XMem
provides only hints to the system, our approximate mapping may cause optimization inaccuracy
but it has no impact on functionality and correctness.

To make it easy to look up the Atom ID for each address, the AAM stores the Atom IDs consecu-
tively for all the physical pages. The index of the table is the physical page index and each entry
stores all Atoms IDs in each page. In the default con�guration, each of the Atom IDs require 8B of
storage per page (8 bits times 8 subpages). With this design, the OS or the hardware architecture
can simply use the physical address that is queried as the table index to �nd the Atom ID.

We use the PA instead of the VA to index this table because (i) there are far fewer PAs compared
to VAs and (ii) this enables the simpli�ed lookup scheme discussed above.
(2) Atom Status Table (AST): We use a bitmap to store the status (active or inactive) of all

atoms in each application. Because CreateAtom assigns atom IDs consecutively starting at 0, this
table is e�ciently accessed using the atom ID as index. Assuming up to 256 atoms per application
(all benchmarks in our experiments had under 10 atoms, all in performance-critical sections), the
AST is only 32B per application. The Atom Management Unit (AMU) updates the bitmap when
an ATOM_(DE)ACTIVATE instruction is executed.
(3) Attribute Tables (GAT and PAT) and the Attribute Translator: As discussed in §2.3.4,

we store the attributes of atoms in a Global Attribute Table (GAT) and multiple Private

Attribute Tables (PAT). GAT is managed by the OS in kernel space. Each hardware component
that bene�ts from XMem maintains its own PAT, which stores a translated version of the attributes
(an example of this is in §3.4.4). This translation is done by the Attribute Translator, a hardware
runtime system that translates attributes for each component at program load time and during a
context switch.
(4) AtomManagement Unit (AMU): This is a hardware unit that is responsible for (i) managing

the AAM and AST and (ii) looking up the Atom ID given a physical address. When the CPU executes
an XMem ISA instruction, the CPU sends the associated command to the AMU to update the AAM (for
ATOM_MAP or ATOM_UNMAP) or the AST (for ATOM_ACTIVATE). For higher-dimensional data mappings,
the AMU converts the mapping to a linear mapping at the AAM granularity and broadcasts this
mapping to all the hardware components that require accurate information of higher-dimensional
address mappings (see §3.4.4 for an example).

A hardware component determines the Atom ID of a speci�c physical address (PA) by sending
an ATOM_LOOKUP request to the AMU, which uses the PA as the index into the AAM. To avoid memory
accesses for all the ATOM_LOOKUP requests, each AMU has an atom lookaside bu�er (ALB), which
caches the results of recent ATOM_LOOKUP requests. The functionality of an ALB is similar to a
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TLB in an MMU, so the AMU accesses the AAM only on ALB misses. The tags for the ALB are the
physical page indexes, while the data are the Atom IDs in the physical pages. In our evaluation,
we �nd that a 256-entry ALB can cover 98.9%1 of the ATOM_LOOKUP requests.

2.4.3 XMem in Virtualized Environments

Virtualized environments employ virtual machines (VMs) or containers that execute applications
over layers of operating systems and hypervisors. The existence of multiple address spaces that
are seen by the guest and host operating systems, along with more levels of abstraction between
the application and the underlying hardware resources, makes the design of hardware-software
mechanisms challenging. XMem is, however, designed to seamlessly function in these virtualized
environments, as we describe next.
XMem Components. The primary components of XMem include the AAM, AST, the PATs, and

the GAT. Each of these components function with no changes in virtualized environments: (i) AAM:
The hardware-managed AAM, which maps physical addresses to atom IDs, is indexed by the host
physical address. As a result, this table is globally shared across all processes running on the system
irrespective of the presence of multiple levels of virtualization. (ii) AST and PATs: All atoms are
tracked at the process level (irrespective of whether the processes belong to the same or di�erent
VMs). The per-process hardware-managed tables (AST and PATs) are reloaded during a context
switch to contain the state and attributes of the atoms that belong to the currently-executing
process. Hence, the functioning of these tables remains the same in the presence of VMs or
containers. (iii) GAT: The GAT is software-managed and is maintained by each guest OS. During
context switches, a register is loaded with a host physical address that points to the new process’
GAT and AST.
XMem Interfaces. The three major interfaces (CREATE, MAP/UNMAP, and

ACTIVATE/DEACTIVATE) require no changes for operation in virtualized environments.
The CREATE operator is handled in software at compile time by the guest OS and all created
atoms are loaded into the GAT by the guest OS at program load time. The MAP/UNMAP operator
communicates directly with the MMU to map the host physical address to the corresponding
atom ID using the XMem ISA instructions. The ACTIVATE/DEACTIVATE operator simply updates
the AST, which contains the executing process’ state.
Optimizations. OS-based software optimizations (e.g., DRAM placement in §2.6) require that

the OS have visibility into the available physical resources. The physical resources may however
be abstracted away from the guest OS in the presence of virtualization. In this case, the resource
allocation and its optimization needs to be handled by the hypervisor or host OS for all the VMs
1Does not include the Gramschmidt [270] workload, which requires a more sophisticated caching policy than LRU to
handle large strides.
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that it is hosting. To enable the hypervisor/host OS to make resource allocation decisions, the guest
OS also communicates the attributes of the application’s atoms to the hypervisor. For hardware
optimizations (e.g., caching policies, data compression), the hardware components (e.g., caches,
prefetchers) retrieve the atom attributes for each process using the AAM and PATs. This is the same
mechanism irrespective of the presence of virtualization. These components use application/VM
IDs to distinguish between addresses from di�erent applications/VMs (similar to prior work [218]
or modern commercial virtualization schemes [19, 140]).

2.4.4 Overhead Analysis

The overheads of XMem fall into four categories: memory storage overhead, instruction over-
head, hardware area overhead, and context switch overhead, all of which are small:
(1) Memory storage overhead. The storage overhead comes from the tables that maintain

the attributes, status, and mappings of atoms (AAM, AST, GAT, and PAT). As §2.4.2 discusses, the AST
is very small (32B). The GAT and PAT are also small as the attributes of each atom need 19B, so each
GAT needs only 2.8KB assuming 256 atoms per application. AAM is the largest table in XMem, but
it is still insigni�cant as it takes only 0.2% of the physical memory (e.g., 16MB on a 8GB system),
and it can be made even smaller by increasing the granularity of the address range unit (§2.4.2).
(2) Instruction overhead. There are instruction overheads when applications invoke the

XMemLib functions to create, map/unmap, activate/deactivate atoms, which execute XMem in-
structions. We �nd this overhead negligible because: (i) XMem does not use extra system calls to
communicate with the OS, so these operations are very lightweight; (ii) the program semantics or
data mapping do not change very frequently. Among the workloads we evaluate, an additional
0.014% instructions on average (at most, 0.2%) are executed.
(3) Hardware area overhead. XMem introduces two major hardware components, Attribute

Translator and AMU. We evaluate the storage overhead of these two components (including the
AMU-speci�c registers) using CACTI 6.5 [325] at 14 nm process technology, and �nd that their
area is 0.144 mm2, or 0.03% of a modern Xeon E5-2698 CPU.
(4) Context switch overhead. XMem introduces one extra register for context switches—it

stores the pointer to AST and GAT (stored consecutively for each application) in the AMU. AAM
does not need a context-based register because it is a global table. The OS does not save the
AMU-speci�c registers for MAP/UNMAP (Table 2) as the information is saved in the AAM. One more
register adds very small overhead (two instructions, ≤ 1 ns) to the OS context switch (typically
3-5 µs). Context switches also require �ushing the ALBs and PATs. Because these structures are
small, the overhead is also commensurately small (~700 ns).
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2.5 Use Case 1: Cache Management
Cache management is a well-known complex optimization problem with substantial prior

work in both software (e.g., code/compiler optimizations, auto tuners, reuse hints) and hardware
(advanced replacement/insertion/partitioning policies). XMem seeks to supplement both software
and hardware approaches by providing key program semantics that are challenging to infer at run-
time. As a concrete end-to-end example, we describe and evaluate how XMem enhances dynamic
policies to improve the portability and e�ectiveness of static software-based cache optimizations
under varying cache space availability (as a result of co-running applications or unknown cache
size in virtualized environments).

Many software techniques statically tune code by sizing the active working set in the application
to maximize cache locality and reuse—e.g., hash-join partitioning [46] in databases, cache tiling [47,
72, 131, 223, 352, 362, 376] in linear algebra and stencils, cache-conscious data layout [323] for
similarity search [37]. XMem improves the portability and e�ectiveness of static optimizations
when resource availability is unknown by conveying the optimization intent to hardware—i.e.,
XMem conveys which high-reuse working set (e.g., tile) should be kept in the cache. It does not
dictate exactly what caching policy to use to do this. The hardware cache leverages the conveyed
information to keep the high-reuse working set of each application in the cache by prioritizing
such data over other low-reuse data. In cases where the active working set does not �t in the
available cache space, the cache mitigates thrashing by pinning part of the working set and then
prefetches the rest based on the expressed access pattern.

2.5.1 Evaluation Methodology

We model and evaluate XMem using zsim [288] with a DRAMSim2 [278] DRAM model. We
use the Polybench suite [270], a collection of linear algebra, stencil, and data mining kernels. We
use PLUTO [47], a polyhedral locality optimizer that uses cache tiling to statically optimize the
kernels. We evaluate kernels that can be tiled within three dimensions and a wide range of tile
sizes (from 64B to 8MB), ensuring the total work is always the same.

2.5.2 Evaluation Results

Overall performance. To understand the cache tiling challenge, in Figure 4, we plot the
execution time of 12 kernels, which are statically compiled with di�erent tile sizes. For each
workload, we show the results of two systems: (i) Baseline, the baseline system with a high-
performance cache replacement policy (DRRIP [146]) and a multi-stride prefetcher [31] at L3; and
(ii) XMem, the system with the aforementioned cache management and prefetching mechanisms.
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Figure 5: Maximum execution time with di�erent cache sizes when code is optimized
for a 2MB cache.

For the Baseline system, execution time varies signi�cantly with tile size, making tile size
selection a challenging task. Small tiles signi�cantly reduce the reuse in the application and can be
on average 28.7% (up to 2× ¶) slower than the best tile size. Many optimizations, hence, typically
size the tile to be as big as what can �t in the available cache space [33, 72]. However, when an
optimization makes incorrect assumptions regarding available cache space (e.g., in virtualized
environments or due to co-running applications), the tile size may exceed the available cache space.
We �nd that this can lead to cache thrashing and severe slowdown (64.8% on average, up to 7.6×·),
compared to the performance with an optimized tile size. XMem, however, signi�cantly reduces this
slowdown from cache thrashing in the largest tile sizes to 26.9% on average (up to 4.6×¸). XMem’s
large improvement comes from accurate pinning (that retains part of the high-reuse working set
in the cache) and more accurate prefetching (that fetches the remaining working set).
Performance portability. To evaluate portability bene�ts from the reduced impact of cache
thrashing in large tile sizes, we run the following experiment. For each workload, we pick a tile size
optimized for a 2MB cache, and evaluate the same program binary on a 2MB cache and 2 smaller
caches (1MB and 512KB). Figure 5 depicts the maximum execution time among these three cache
sizes for both Baseline and XMem, normalized to Baseline with a 2MB cache. When executing
with less cache space, we �nd that XMem increases the execution time by only 6%, compared to
the Baseline’s 55%. Hence, we conclude that by leveraging the program semantics, XMem greatly
enhances the performance portability of applications by reducing the impact of having less cache
space than what the program is optimized for.
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2.6 Use Case 2: Data Placement in DRAM
O�-chip main memory (DRAM) latency is a major performance bottleneck in modern CPUs [84,

163,238,240,354]. The performance impact of this latency is in large part determined by two factors:
(i) Row Bu�er Locality (RBL) [179, 239]: how often requests access the same DRAM row in a bank
consecutively. Consecutive accesses to the same open row saves the long latency required to close
the already-open row and open the requested row. (ii) Memory Level Parallelism (MLP) [114, 240]:
the number of concurrent accesses to di�erent memory banks or channels. Serving requests in
parallel overlaps the latency of the di�erent requests. A key factor that determines the DRAM
access pattern—and thus RBL and MLP—is how the program’s data is mapped to the DRAM
channels, banks, and rows. This data placement is controlled by (i) the OS (via the virtual-to-
physical address mapping) and (ii) the memory controller (via the mapping of physical addresses
to DRAM channels/banks/rows).

To improve RBL and MLP, prior works use both the OS (e.g., [43, 87, 149, 205–207, 210, 228, 237,
258, 318, 359, 377]) and the memory controller (e.g., [55, 111, 132, 165, 335, 384, 385]) to introduce
randomness in how data is mapped to the DRAM channels/banks/rows or partition banks/channels
between di�erent threads or applications. While e�ective, these techniques are unaware of the
di�erent semantics of data structures in an application, and hence su�er from two shortcomings.
First, to determine the properties of data, an application needs to be pro�led before execution
or pages need to be migrated reactively based on runtime behavior. Second, these techniques
apply the same mapping for all data structures within the application, even if RBL and MLP vary
signi�cantly across di�erent data structures.

XMem enables distinguishing between data structures and provides key access semantics to
the OS. Together with the knowledge of the underlying banks, channels, ranks, etc. and other
co-running applications, the OS can create an intelligent mapping at the data structure granularity.
Based on the data structure access patterns, the OS can (i) improve RBL by isolating data structures
with high RBL from data structures that could cause interference if placed in the same bank
and (ii) improve MLP by spreading out accesses to concurrently-accessed data structures across
multiple banks and channels.

2.6.1 Evaluation Methodology

We use zsim [288] and DRAMSim2 [278] for evaluation. We strengthen our baseline system
in three ways: (i) We use the best-performing physical DRAM mapping, among all the seven
mapping schemes in DRAMSim2 and the two proposed in [165, 384], as our baseline; (ii) We
randomize virtual-to-physical address mapping, which is shown to perform better than the Buddy
algorithm [258]; (iii) For each workload, we enable the L3 prefetcher only if it improves perfor-
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mance. We evaluate a wide range of workloads from SPEC CPU2006 [312], Rodinia [61], and
Parboil [316] and show results for 27 memory intensive workloads (with L3 MPKI > 1).

2.6.2 Evaluation Results

We evaluate three systems: (i) Baseline, the strengthened baseline system; (ii) XMem, DRAM
placement using XMem; (iii) an ideal system that has perfect RBL, which represents the best
performance possible by improving RBL. Figure 6a shows the speedup of the last two systems over
Baseline. Figure 6b shows the corresponding memory read latency, normalized to Baseline. We
make two observations.
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Figure 6: Leveraging XMem for DRAM placement.

First, XMem-based DRAM placement improves performance across a range of workloads: by
8.5% on average over Baseline, up to 31.9%. It is a signi�cant improvement as the absolute
upper-bound for any DRAM row-bu�er optimization is 24.4% (Ideal). Among the 27 workloads,
only 5 workloads do not see much improvement—they either (i) have less than 3% headroom
to begin with (sc and histo) or (ii) are dominated by random accesses (mcf, xalancbmk, and
bfsRod). Second, the performance improvement of XMem-based DRAM placement comes from
the signi�cant reduction in average memory latency, especially read latency, which is usually on
the critical path. On average, XMem reduces read latency by 12.6%, up to 31.4%. Write latency is
reduced by 6.2% (not shown).

We conclude that leveraging both the program semantics provided by XMem and knowledge of
the underlying DRAM organization enables the OS to create intelligent DRAM mappings at a �ne
(data structure) granularity, thereby reducing memory latency and improving performance.

2.7 Related Work
To our knowledge, this is the �rst work to design a holistic and general cross-layer interface

to enable the entire system and architecture to be aware of key higher-level program semantics
that can be leveraged in memory optimization. We now brie�y discuss closely related prior work
speci�c to XMem. A more general comparison of approaches taken in XMem is discussed in
Section 1.5.
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Expressive programming models and runtime systems. Numerous software-only ap-
proaches tackle the disconnect between an application, the OS, and the underlying memory
resources via programming models and runtime systems that allow explicit expression of data
locality and independence [35, 36, 44, 56, 60, 101, 122, 306, 329, 330, 334, 365] in the programming
model. This explicit expression enables the programmer and/or runtime system to make e�ective
memory placement decisions in a NUMA system or produce code that is optimized to e�ectively
leverage the cache hierarchy. These approaches have several shortcomings. First, they are en-
tirely software-based and are hence limited to using the existing interfaces to the architectural
resources. Second, unlike XMem, which is general and only hint-based, programming model-
based approaches require rewriting applications to suit the model, while ensuring that program
correctness is retained. Third, these systems are speci�c to an application type (e.g., operations
on tiles, arrays). XMem is a general interface that is not limited to any programming language,
application, or architecture. These approaches are orthogonal to XMem, and XMem can be built
into them to enable a wider range of memory.

The Locality Descriptor [336] is a cross-layer abstraction to express data locality in GPUs. This
abstraction is similar in spirit to XMem in bridging the semantic gap between hardware and
software. However, the Locality Descriptor is primarily designed to convey locality semantics to
leverage cache and NUMA locality in GPUs. XMem aims to convey general program semantics
to aid memory optimization. This goal imposes di�erent design challenges, requires describing
a di�erent set of semantics, and requires optimizing a di�erent set of architectural techniques,
leading to a very di�erent cross-layer design for the abstraction.
Leveraging hints, annotations, and software management for memory optimization.

A large body of prior work aims to leverage the bene�ts of static program information in the form of
hints, annotations, or directives in memory optimization. These include (i) hint-based approaches,
such as software prefetch instructions [1] and cache bypass/insertion/eviction hints [41, 42, 50,
120, 144, 219, 256, 257, 275, 291, 292, 332, 350, 366]; (ii) hardware-software cooperative prefetch
techniques [64, 69, 96, 105, 117, 145, 164, 305, 349, 353] that use compiler analysis or annotations to
inform a hardware prefetch engine; and (iii) program annotations to place data in heterogeneous
memories (e.g., [9, 209, 217]). XMem di�ers from these works in several ways. First, many of these
approaches seek to inform hardware components with speci�c directives that override dynamic
policies by enforcing static policies. This loss in dynamism introduces challenges when the
workload behavior changes, the underlying architecture changes or is unknown (portability), or
in the presence of co-running applications [196, 236, 337]. XMem does not direct policy at any
component but only provides higher-level program semantics. The memory components can use
this information to supplement their dynamic management policies. Second, the approaches are
speci�c to an optimization (e.g., prefetching, cache insertion/eviction). XMem provides a general
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holistic interface to communicate program semantics that can be leveraged by a wide range of
system/architectural components for optimization.

The closest work to ours is Whirlpool [236], which provides a memory allocator to statically
classify data into pools. Each pool is then managed di�erently at runtime to place data e�ciently in
NUCA caches. Whirlpool is similar to XMem in the ability to classify data into similar types and in
retaining the bene�ts of dynamic management. However, XMem is (i) more versatile, as it enables
dynamically classifying/reclassifying data and expressing more powerful program semantics than
just static data classi�cation and (ii) a general and holistic interface that can be used for a wide
range of use cases, including Whirlpool itself. Several prior works [38, 39, 68, 75, 77, 100, 331] use
runtime systems or the OS to aid in management of the cache. These approaches are largely
orthogonal to XMem and can be used in conjunction with XMem to provide more bene�t.
Tagged Architectures. Prior work proposes to associate software-de�ned metadata with each

memory location in the form of tagged/typed memory [86, 102, 356, 380]. These proposals are
typically used for �ne-grained memory access protection, debugging, etc., and usually incur
non-trivial performance/storage overhead. In contrast, XMem aims to deliver general program
semantics to many system/hardware components to aid in performance optimization with low
overhead. To this end, XMem is designed to enable a number of features and bene�ts that cannot be
obtained from tagged/typed architectures: (i) a �exible and extensible abstraction to dynamically
describe program behavior with XMemLib; and (ii) low-overhead interfaces to many hardware
components to easily access the expressed semantics. PARD [218] and Labeled RISC-V [375]
are tagged architectures that enable labeling memory requests with tags to applications, VMs,
etc. These tags are used to convey an application’s QoS, security requirements, etc., to hardware.
XMem is similar in that it provides an interface to hardware to convey information from software.
However, unlike these works [218,375], we design a new abstraction (the atom) to �exibly express
program semantics that can be seamlessly integrated into programming languages, runtime
systems, and modern ISAs. The atom lends itself to a low-overhead implementation to convey
software semantics to hardware components dynamically and at �exible granularities. XMem
can potentially leverage tagged architectures to communicate atom IDs to di�erent hardware
components. Hence, PARD and Labeled RISC-V are complementary to XMem.

2.8 Summary
This work makes the case for richer cross-layer interfaces to bridge the semantic gap between

the application and the underlying system and architecture. To this end, we introduce Expressive
Memory (XMem), a holistic cross-layer interface that communicates higher-level program seman-
tics from the application to di�erent system-level and architectural components (such as caches,
prefetchers, and memory controllers) to aid in memory optimization. XMem improves the perfor-
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mance and portability of a wide range of software and hardware memory optimization techniques
by enabling them to leverage key semantic information that is otherwise unavailable. We evaluate
and demonstrate XMem’s bene�ts for two use cases: (i) static software cache optimization, by
leveraging data locality semantics, and (ii) OS-based page placement in DRAM, by leveraging
the ability to distinguish between data structures and their access patterns. We conclude that
XMem provides a versatile, rich, and low overhead interface to bridge the semantic gap in order
to enhance memory system optimization. We hope XMem encourages future work to explore
re-architecting the traditional interfaces to enable many other bene�ts that are not possible today.
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Chapter 3

The Locality Descriptor

This chapter proposes a rich cross-layer abstraction to address a key challenge in modern GPUs:
leveraging data locality. We demonstrate how existing abstractions in the GPU programming
model are insu�cient to expose the signi�cant data locality exhibited by GPU programs. We then
propose a �exible abstraction that enables the application to express data locality concisely and,
thus, enables the driver and hardware to leverage any data locality to improve performance.

3.1 Overview
Graphics Processing Units (GPUs) have evolved into powerful programmable machines that

deliver high performance and energy e�ciency to many important classes of applications today.
E�cient use of memory system resources is critical to fully harnessing the massive computational
power o�ered by a GPU. A key contributor to this e�ciency is data locality—both (i) reuse of
data within the application in the cache hierarchy (reuse-based locality) and (ii) placement of data
close to the computation that uses it in a non-uniform memory access (NUMA) system (NUMA
locality) [25, 134, 174, 231].

Contemporary GPU programming models (e.g., CUDA [249], OpenCL [20]) are designed to
harness the massive computational power of a GPU by enabling explicit expression of parallelism
and control of software-managed memories (scratchpad memory and register �le). However, there
is no clear explicit way to express and exploit data locality—i.e., data reuse, to better utilize the
hardware-managed cache hierarchy, or NUMA locality, to e�ciently use a NUMA memory system.
Challenges with Existing Interfaces. Since there is no explicit interface in the programming

model to express and exploit data locality, expert programmers use various techniques such as soft-
ware scheduling [197] and prefetch/bypass hints [246, 360] to carefully manage locality to obtain
high performance. However, all such software approaches are signi�cantly limited for three rea-
sons. First, exploiting data locality is a challenging task, requiring a range of hardware mechanisms
such as thread scheduling [63, 115, 157, 166, 186, 192, 197, 241, 348, 357], cache bypassing/prioriti-
zation [26, 194, 198–200, 202, 232, 328, 360, 361, 386], and prefetching [147, 158, 187, 191, 208, 301],
to which software has no easy access. Second, GPU programs exhibit many di�erent types of
data locality, e.g., inter-CTA (reuse of data across Cooperative Thread Arrays or thread blocks),
inter-warp and intra-warp locality. Often, multiple di�erent techniques are required to exploit
each type of locality, as a single technique in isolation is insu�cient [26, 158, 184, 197, 253]. Hence,
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software-only approaches quickly become tedious and di�cult programming tasks. Third, any
software optimization employing �ne-grained ISA instructions to manage caches or manipulating
thread indexing to alter CTA scheduling is not portable to a di�erent architecture with a di�erent
CTA scheduler, di�erent cache sizes, etc [337].

At the same time, software-transparent architectural techniques miss critical program semantics
regarding locality inherent in the algorithm. For example, CTA scheduling is used to improve data
locality by scheduling CTAs that share data at the same core. This requires knowledge of which
CTAs share data—knowledge that cannot easily be inferred by the architecture [63, 197]. Similarly,
NUMA locality is created by placing data close to the threads that use it. This requires a priori
knowledge of which threads access what data to avoid expensive reactive page migration [53, 54].
Furthermore, many architectural techniques, such as prefetching or cache bypassing/prioritization,
would bene�t from knowledge of the application’s access semantics.

ACase Study. As a motivating example, we examine a common locality pattern of CTAs sharing
data (inter-CTA locality), seen in the histo benchmark (Parboil [316]). histo has a predominantly
accessed data structure (sm_mappings). Figure 7 depicts how this data structure ¬ is accessed by
the CTA grid . All threads in GPU programs are partitioned into a multidimensional grid of CTAs.
CTAs with the same color access the same data range (also colored the same) ®. As depicted,
there is plentiful reuse of data between CTAs ¯ and the workload has a very deterministic access
pattern.

Today, however, exploiting reuse-based locality or NUMA locality for this workload, at any
level of the compute stack, is a challenging task. The hardware architecture, on the one hand,
misses key program information: knowledge of which CTAs access the same data ¯, so they can
be scheduled at the same SM (Streaming Multiprocessor); and knowledge of which data is accessed
by those CTAs °, so that data can be placed at the same NUMA zone. The programmer/compiler,
on the other hand, has no easy access to hardware techniques such as CTA scheduling or data
placement. Furthermore, optimizing for locality is a tedious task as a single technique alone is
insu�cient to exploit locality (§3.2). For example, to exploit NUMA locality, we need to coordinate
data placement with CTA scheduling to place data close to the CTAs that access it. Hence, neither
the programmer, the compiler, nor hardware techniques can easily exploit the plentiful data locality
in this workload.
Our Approach. To address these challenges, we introduce the Locality Descriptor: a cross-layer

abstraction to express and exploit di�erent forms of data locality that all levels of the compute
stack—from application to architecture—recognize. The Locality Descriptor (i) introduces a �exible
and portable interface that enables the programmer/software to explicitly express and optimize
for data locality and (ii) enables the hardware to transparently coordinate a range of architectural
techniques (such as CTA scheduling, cache management, and data placement), guided by the
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Figure 7: Inter-CTA data locality in histo (Parboil).

knowledge of key program semantics. Figure 8 shows how the programmer or compiler can use
the Locality Descriptor to leverage both reuse-based locality and NUMA locality. We brie�y
summarize how the Locality Descriptor works here, and provide an end-to-end description in the
rest of the chapter.

cudaMalloc(sm_mappings, size);

LocalityDescriptor ldesc(sm_mappings, size, INTER-THREAD, tile,

loc, priority);

Tile	SemanticsLocality	Type

Locality
Semantics

1
Data	Structure

3

2

4

6Address
Range 5

Figure 8: The Locality Descriptor specification for histo.

First, each instance of a Locality Descriptor describes a single data structure’s locality character-
istics (in Figure 8, sm_mappings ¶) and conveys the corresponding address range ·. Second, we
de�ne several fundamental locality types as a contract between the software and the architecture.
The locality type, which can be INTER-THREAD, INTRA-THREAD, or NO-REUSE, drives the underlying
optimizations used to exploit it. In histo, INTER-THREAD ¸ describes inter-CTA locality. The
locality type ¸ and the locality semantics º, such as access pattern, inform the architecture to
use CTA scheduling and other techniques that exploit the corresponding locality type (described
in §3.3.3). Third, we partition the data structure into data tiles that are used to relate data to the
threads that access it. In Figure 7, each data range that has the same color (and is hence accessed
by the same set of CTAs) forms a data tile. Data tiles and the threads they access are described
by the tile semantics ¹ (§3.3.3), which informs the architecture which CTAs to schedule together
and which data to place at the same NUMA zone. Fourth, we use a software-provided priority »

to reconcile optimizations between Locality Descriptors for di�erent data structures in the same
program if they require con�icting optimizations (e.g., di�erent CTA scheduling strategies).

We evaluate the bene�ts of using Locality Descriptors to exploit di�erent forms of both reuse-
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based locality and NUMA locality. We demonstrate that Locality Descriptors e�ectively leverage
program semantics to improve performance by 26.6% on average (up to 46.6%) when exploiting
reuse-based locality in the cache hierarchy, and by 53.7% (up to 2.8X) when exploiting NUMA
locality.

The major contributions of this work are:
• This is the �rst work to propose a holistic cross-layer approach to explicitly express and exploit

data locality in GPUs as a �rst class entity in both the programming model and the hardware
architecture.

• We design the Locality Descriptor, which enables (i) the software/programmer to describe data
locality in an architecture-agnostic manner and (ii) the architecture to leverage key program
semantics and coordinate many architectural techniques transparently to the software. We archi-
tect an end-to-end extensible design to connect �ve architectural techniques (CTA scheduling,
cache bypassing, cache prioritization, data placement, prefetching) to the Locality Descriptor
programming abstraction.

• We comprehensively evaluate the e�cacy and versatility of the Locality Descriptor in leveraging
di�erent types of reuse-based and NUMA locality, and demonstrate signi�cant performance
improvements over state-of-the-art approaches.

3.2 Motivation
We use two case studies to motivate our work: (i) Inter-CTA locality, where di�erent CTAs

access the same data and (ii) NUMA locality in a GPU with a NUMA memory system.

3.2.1 Case Study 1: Inter-CTA Locality

A GPU kernel is formed by a compute grid, which is a 3D grid of Cooperative Thread Arrays
(CTAs). Each CTA, in turn, comprises a 3D array of threads. Threads are scheduled for execution
at each Streaming Multiprocessor (SM) at a CTA granularity. Inter-CTA locality [63, 115, 186,
192, 197, 348, 357] is data reuse that exists when multiple CTAs access the same data. CTA
scheduling [63, 115, 186, 192, 197, 348, 357] is a technique that is used to schedule CTAs that share
data at the same SM to exploit inter-CTA locality at the per-SM local L1 caches.

To study the impact of CTA scheduling, we evaluate 48 scheduling strategies, each of which
groups (i.e., clusters) CTAs di�erently: either along the grid’s X, Y, or Z dimensions, or in di�erent
combinations of the three. The goal of CTA scheduling for locality is to maximize sharing between
CTAs at each SM and e�ectively reduce the amount of data accessed by each SM. Hence, as a
measure of how well CTA scheduling improves locality for each workload, in Figure 9 we plot
the minimum working set at each SM (normalized to baseline) across all 48 scheduling strategies.
We de�ne working set as the average number of uniquely accessed cache lines at each SM. A

37



smaller working set implies fewer capacity misses, more sharing, and better locality. Figure 9 also
shows the maximum performance improvement among all evaluated scheduling strategies for
each benchmark.

0
0.2

0.4
0.6

0.8
1

1.2

1.4
Minimum Working Set (Normalized to Baseline) Maximum Speedup over Baseline

CTA Sched. Sensitive CTA Sched. Insensitive 

Figure 9: CTA scheduling: performance and working set.

Figure 9 shows that even though CTA scheduling signi�cantly reduces the working set of CTA-
scheduling-sensitive applications (on the left) by 54.5%, it has almost no impact on performance
(only 3.3% on average across all applications). To understand this minimal impact on performance,
in Figure 10 we plot the corresponding increase in L1 hit rate for the speci�c scheduling strategy
that produced the smallest working set (only for the scheduling-sensitive workloads). We also
plot the increase in in�ight hit rate, which we measure as the number of MSHR hits, i.e., another
thread already accessed the same cache line, but the line has not yet been retrieved from memory
and hits at the MSHRs.
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Figure 10: CTA scheduling: L1 hit rate and L1 inflight hit rate.

Figure 10 shows that CTA scheduling has little impact in improving the L1 hit rate (by 3%
on average) with the exception of D2D and C2D. This explains the minimal performance impact.
CTA scheduling, however, a substantially increases L1 in�ight hit rate (by 20% on average). This
indicates that even though there is higher data locality due to more threads sharing the same data,
these threads wait for the same data at the same time. As a result, the increased locality simply
causes more threads to stall, rather than improving hit rate. Hence, while CTA scheduling is very
e�ective in exposing data locality, we still need to address other challenges (e.g., threads stalling
together) to obtain performance gains from improved data locality. Furthermore, determining
which scheduling strategy to use is another challenge, as each application requires a di�erent
strategy to maximize locality based on the program’s sharing pattern.
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In summary, to exploit inter-CTA locality (i) the hardware-controlled CTA scheduler needs to
know which CTAs access the same data, to choose an appropriate scheduling strategy (this requires
knowledge of program semantics) and (ii) a scheduling strategy that exposes locality in the cache
is not necessarily su�cient for translating locality into performance (we need to coordinate other
techniques).

3.2.2 Case Study 2: NUMA Locality

For continued scaling, future GPUs are expected to employ non-uniform memory access (NUMA)
memory systems. This can be in the form of multiple memory stacks [134, 174], uni�ed virtual
address spaces in multi-GPU/heterogeneous systems [8, 53, 54, 177, 190, 284, 389] or multi-chip
modules, where SMs and memory modules are partitioned into NUMA zones or multiple GPU
modules [25,231]. Figure 11 depicts the system evaluated in [25] with four NUMA zones. A request
to a remote NUMA zone goes over the lower bandwidth inter-module interconnect, has higher
latency, and incurs more tra�c compared to local requests [25]. To maximize performance and
e�ciency, we need to control (i) how data is placed across NUMA zones and (ii) how CTAs are
scheduled to maximize local accesses.

X dim 

L2 + 
DRAM 

SMs 

NUMA  
Zone 0 

Page 3 

Page 2 

Page 1 

Page 0 

NUMA  Zone 0 

NUMA  Zone 1 

NUMA  Zone 2 

NUMA  Zone 3 

Y dim 

CTA Grid 
(partitioned across 

NUMA zones) 

Access  
Type 1  

Page 0 

Page 1 

Page 2 

Page 3 

Access  
Type 2  

Data 
Structure 

1 

2 3 

(a) A NUMA system. (b) Placing data in a NUMA system. 

NUMA  
Zone 2 

NUMA  
Zone 3 

Each page is 
accessed by CTAs 

from different zones  

Each page is accessed 
by CTAs from the 

same zone  

L2 + 
DRAM 

SMs 

NUMA  
Zone 1 

L2 + 
DRAM 

SMs 

L2 + 
DRAM 

SMs 

Figure 11: NUMA locality.

To understand why this is a challenging task, let us consider the heuristic-based hardware
mechanism proposed in [25], where the CTA grid is partitioned across the 4 NUMA zones such
that contiguous CTAs are scheduled at the same SM. Data is placed at the page granularity (64KB)
at the NUMA zone where it is �rst accessed, based on the heuristic that consecutive CTAs are
likely to share the same page(s). Figure 11 depicts a CTA grid (¶), which is partitioned between
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NUMA zones in this manner—consecutive CTAs along the X dimension are scheduled at the same
NUMA zone. This heuristic-based mechanism works well for Access Type 1 (·), where CTAs
that are scheduled at the same NUMA zone access the same page(s) (the color scheme depicts
which CTAs access what data). However, for Access Type 2 (·), this policy fails as a single page is
shared by CTAs that are scheduled at di�erent zones. Two challenges cause this policy to fail. First,
suboptimal scheduling: the simple scheduling policy [25] does not always co-schedule CTAs that
share the same pages at the same zone. This happens when scheduling is not coordinated with the
application’s access pattern. Second, large and �xed page granularity: more CTAs than what can
be scheduled at a single zone may access the same page. This happens when there are �ne-grained
accesses by many CTAs to each page and when di�erent data structures are accessed by the CTAs
in di�erent ways. For these reasons (as we evaluate in §3.6.2), a heuristic-based approach is often
ine�ective at exploiting NUMA locality.

3.2.3 Other Typical Locality Types

We describe other locality types, caused by di�erent access patterns, and require other opti-
mizations for locality next.
Inter-warp Locality. Inter-warp locality is data reuse between warps that belong to the same/d-

i�erent CTAs. This type of locality occurs in stencil programs (workloads such as hotspot [61]
and stencil [316]), where each thread accesses a set of neighboring data elements, leading to
data reuse between neighboring warps. Inter-warp locality is also a result of misaligned accesses
to cache lines by threads in a warp [183, 184, 191], since data is always fetched at the cache line
granularity (e.g., streamcluster [61] and backprop [61]). Inter-warp locality has short reuse
distances [184] as nearby warps are typically scheduled together and caching policies such as LRU
can exploit a signi�cant portion of this locality. However, potential for improvement exists using
techniques such as inter-warp prefetching [191, 197, 253] or CTA scheduling to co-schedule CTAs
that share data [197].
Intra-thread Locality. This is reuse of data by the same thread (seen in LIBOR [247] and

lavaMD [61]), where each thread operates on its own working set. Local memory usage in the
program is also an example of this type of locality. The key challenge here is cache thrashing
because (i) the overall working set of workloads with this locality type is large due to lack of
sharing among threads and (ii) the reuse distance per thread is large as hundreds of threads
are swapped in and out by the GPU’s multithreading before the data is reused by the same
thread. Techniques that have been proposed to address cache thrashing include cache bypassing
or prioritization (e.g. pinning) of di�erent forms [26, 30, 194, 198–200, 202, 232, 328, 360, 361, 386]
and/or warp/CTA throttling [166, 167, 197, 277].
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3.2.4 Key Takeaways & Our Goal

In summary, locality in GPUs can be of di�erent forms depending on the GPU program. Each
locality type presents di�erent challenges that need to be addressed. Tackling each challenge often
requires coordination of multiple techniques (such as CTA scheduling and cache bypassing), many
of which software has no easy access to. Furthermore, to be e�ective, some of these techniques
(e.g., CTA scheduling, memory placement) require knowledge of program semantics, which is
prohibitively di�cult to infer at run time.

Our goal is to design a holistic cross-layer abstraction—that all levels of the compute stack
recognize—to express and exploit the di�erent forms of data locality. Such an abstraction should
enable connecting a range of architectural techniques with the locality properties exhibited by
the program. In doing so, the abstraction should (i) provide the programmer/software a simple,
yet powerful interface to express data locality and (ii) enable architectural techniques to leverage
key program semantics to optimize for locality.

3.3 Locality Descriptor: Abstraction
Figure 12 depicts an overview of our proposed abstraction. The goal is to connect program

semantics and programmer intent (¶) with the underlying architectural mechanisms (·). By
doing so, we enable optimization at di�erent levels of the stack: (i) as an additional knob for static
code tuning by the programmer, compiler, or autotuner (¸), (ii) runtime software optimization (¹),
and (iii) dynamic architectural optimization (¼) using a combination of architectural techniques.
This abstraction interfaces with a parallel GPU programming model like CUDA (º) and conveys
key program semantics to the architecture through low overhead interfaces (»).
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Figure 12: Overview of the proposed abstraction.
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3.3.1 Design Goals

We set three goals that drive the design of our proposed abstraction: (i) Supplemental and
hint-based only: The abstraction should be an optional add-on to optimize for performance,
requiring no change to the rest of the program, nor should it impact the program’s correctness.
(ii) Architecture-agnosticism: The abstraction should abstract away any low-level details of the
architecture (e.g., cache size, number of SMs, caching policy). Raising the abstraction level
improves portability, reduces programming e�ort, and enables architects to �exibly design and
improve techniques across GPU generations, transparently to the software. (iii) Generality and
�exibility: The abstraction should �exibly describe a wide range of locality types typically seen in
GPU programs. It should be easy to extend what the abstraction can express and the underlying
architectural techniques that can bene�t from it.

3.3.2 Example Program

We describe the Locality Descriptor with the help of the histo (Parboil [316]) workload example
described in §1. We begin with an overview of how a Locality Descriptor is speci�ed for histo
and then describe the key ideas behind the Locality Descriptor’s components. Figure 13 depicts a
code example from this application. The primary data structure is sm_mappings, which is indexed
by a function of the thread and block index only along the X dimension. Hence, the threads that
have the same index along the X dimension access the same part of this data structure.

__global__ void histo_main_kernel(…){ 

 ...  

 unsigned int local_scan_load = blockIdx.x * blockDim.x + 

threadIdx.x; 

 ...  

 while (local_scan_load < num_elements) { 

  uchar4 sm = sm_mappings[local_scan_load] 

  local_scan_load += blockDim.x * gridDim.x; 

  ... 

 } 

} 

Data is shared by all 
threads/CTAs with 
the same X index 

Figure 13: Code example from histo (Parboil).

Figure 14 depicts the data locality in this application in more detail. ¬ is the CTA grid and  is
the sm_mappings data structure. The CTAs that are colored the same access the same data range
(also colored the same). As §1 discusses, in order to describe locality with the Locality Descriptor
abstraction, we partition each data structure in data tiles ® that group data shared by the same
CTAs. In addition, we partition the CTA grid along the X dimension into compute tiles ¯ to group
together CTAs that access the same data tile. We then relate the compute and data tiles with
a compute-data mapping ° to describe which compute tile accesses which data tile. Figure 15
depicts the code example to express the locality in this example with a Locality Descriptor. As §1
describes, the key components of a Locality Descriptor are: the associated data structure (¶), its
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locality type (·), tile semantics (¸), locality semantics (¹), and its priority (º). We now describe
each component in detail.
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Figure 14: Data locality and compute/data tiles in histo.

1 uchar4 *sm_mappings; 

2 size_t size = X_len * Y_len * sizeof(uchar4); 

3 cudaMalloc(sm_mappings, size); 

4 Tile_t tile((X_tile, Y_len, 1), (1, GridSize.y, 1), (1, 0, 0)) 

 

5 LocalitySemantics_t loc(COACCESSED, REGULAR, X_len);  

 

6 LocalityDescriptor ldesc(sm_mappings, size, INTER_THREAD, tile,  

                                                          loc, 1); 

 

Data Tile Compute Tile Compute-Data Map 

Sharing Type Access Pattern Stride 

Data structure 1 Locality type 2 

Tile semantics 3 

Locality semantics 4 

Priority 5 

Figure 15: Locality Descriptor example for histo.

3.3.3 An Overview of Key Ideas and Components

Figure 16 shows an overview of the components of the Locality Descriptor. We now describe
the �ve key components and the key insights behind their design.
Data Structure (¶). We build the abstraction around the program’s data structures (each

speci�ed with its base address and size). Each instance of the Locality Descriptor describes the
locality characteristics of a single data structure. Designing the Locality Descriptor around the
program’s data structures is advantageous for two reasons. First, it ensures architecture-agnosticism
as a data structure is a software-level concept, easy for the programmer to reason about. Second,
it is natural to tie locality properties to data structures because in GPU programming models, all
threads typically access a given data structure in the same way. For example, some data structures
are simply streamed through by all threads with no reuse. Others are heavily reused by groups of
threads.
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Figure 16: Overview of the Locality Descriptor.

Locality Type (·). Each instance of the Locality Descriptor has an explicit locality type, which
forms a contract or basis of understanding between software and hardware. This design choice
leverages the known observation that locality type often determines the underlying optimization
mechanisms (§3.2). Hence, software need only specify locality type and the system/architecture
transparently employs a di�erent set of architectural techniques based on the speci�ed type. We
provide three fundamental types: (i) INTRA-THREAD: when the reuse of data is by the same thread
itself, (ii) INTER-THREAD: when the reuse of data is due to sharing of data between di�erent threads
(e.g., inter-warp or inter-CTA locality), and (iii) NO-REUSE: when there is no reuse of data (NUMA
locality can still be exploited, as described below). If a data structure has multiple locality types
(e.g., if a data structure has both intra-thread and inter-thread reuse), multiple Locality Descriptors
with di�erent types can be speci�ed for that data structure. We discuss how these cases are
handled in §3.4.
Tile Semantics (¸). As data locality is essentially the outcome of how computation accesses

data, we need to express the relation between compute and data. To do this, we �rst need a unit of
computation and data as a basis. To this end, we partition the data structure into a number of data
tiles (D-Tiles) and the compute grid into a number of compute tiles (C-Tiles). Speci�cally, a D-Tile
is a 3D range of data elements in a data structure and a C-Tile is a 3D range of threads or CTAs in
the 3D compute grid (e.g., ® and ¯ in Figure 14).

This design provides two major bene�ts. First, it provides a �exible and architecture-agnostic
scheme to express locality types. For example, to express INTER-THREAD locality, a D-Tile is the
range of data shared by a set of CTAs; and each such set of CTAs forms a C-Tile. To express
INTRA-THREAD locality, a C-Tile is just a single thread and the D-Tile is the range of data that is
reused by that single thread. Second, such decomposition is intrinsic and conceptually similar to
the existing hierarchical tile-based GPU programming model. Tile partitioning can hence be done
easily by the programmer or the compiler using techniques such as [53, 54]. For irregular data
structures (e.g, graphs), which cannot be easily partitioned, the Locality Descriptor can be used to
describe the entire data structure. This imposes little limitation as such data structures exhibit an
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irregular type of locality that cannot be easily described by software.
We further reduce complexity in expression by stipulating only an imprecise description of

locality. There are two primary instances of this. First, we use a simple 1:1 mapping between
C-Tile and D-Tile. This is a non-limiting simpli�cation because data locality is fundamentally
about grouping threads and data based on sharing. If multiple C-Tiles access the same D-Tile, a
bigger C-Tile should simply be speci�ed. In an extreme case, where the entire data structure is
shared by all threads, we should only have one C-Tile and one D-Tile. In another case, where there
is only intra-thread locality (no sharing among threads), there is a natural 1:1 mapping between
each thread and its working set. This simpli�cation would be an approximation in cases with
irregular sharing, which is out of the Locality Descriptor’s scope because of the high complexity
and low potential. Second, C-Tile and D-Tile partitioning implies that the grouping of threads and
data needs to be contiguous—a C-Tile cannot access a set of data elements that is interleaved with
data accessed by a di�erent C-Tile. This is, again, a non-limiting requirement as contiguous data
elements are typically accessed by neighboring threads to maximize spatial locality and reduce
memory tra�c. If there is an interleaved mapping between C-Tiles and the D-Tiles they access,
the C-Tiles and D-Tiles can be approximated by merging them into bigger tiles until they are
contiguous. This design drastically reduces the expression complexity and covers typical GPU
applications.

Speci�cally, the tile semantics are expressed in three parts: (i) D-Tile dimensions: The number
of data elements (in each dimension) that form a D-Tile. Depending on the data structure, the
unit could be any data type. In the histo example (® in Figure 14), the D-Tile dimensions
are (X_tile, Y_len, 1), where X_tile is the range accessed by a single C-Tile along the X

dimension, Y_len is the full length of the data structure (in data elements) along the Y dimension.
(ii) C-Tile dimensions: The number of CTAs in each dimension that form a C-Tile. The compute
tile dimensions in the histo example (¯ in Figure 14) are (1, GridDim.y, 1): 1 CTA along the
X dimension, GridDim.y is the length of the whole grid along the Y dimension, and since this is a
2D grid, the Z dimension is one. (iii) Compute-data map: We use a simple function to rank which
order to traverse C-Tiles �rst in the 3D compute grid as we traverse the D-Tiles in a data structure
in X→Y→Z order. For example, the mapping function (3,1,2) implies that when D-Tiles are
traversed in the X→Y→Z order, and the C-Tiles are traversed in the Y→Z→X order. In our histo
example, this mapping (° in Figure 14) is simply (1,0,0) as the C-Tiles need only be traversed
along the X dimension. This simple function saves runtime overhead, but more complex functions
can also be used.
Locality Semantics (¹). This component describes the type of reuse in the data structure

as well as the access pattern. §3.4 describes how this information is used for optimization. This
component has two parts: Sharing Type (») and Access Pattern (¼). There are two options for
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Sharing Type (º) to re�ect the typical sharing patterns. COACCESSED indicates that the entire
D-Tile is shared by all the threads in the corresponding C-Tile. NEARBY indicates that the sharing
is more irregular, with nearby threads in the C-Tile accessing nearby data elements (the form of
sharing seen due to misaligned accesses to cache lines or stencil-like access patterns [184, 197]).
Sharing type can be extended to include other sharing types between threads (e.g., partial sharing).
Access Pattern (») is primarily used to inform the prefetcher and includes whether the access
pattern is REGULAR or IRREGULAR, along with a stride (½) within the D-Tile for a REGULAR access
pattern.
Priority (º). Multiple Locality Descriptors may require con�icting optimizations (e.g., di�erent

CTA scheduling strategies). We ensure that these con�icts are rare by using a con�ict resolution
mechanism described in §3.4. When a con�ict cannot be resolved, we use a software-provided
priority to give precedence to certain Locality Descriptors. This design gives the software more
control in optimization, and ensures the key data structure(s) are prioritized. This priority is also
used to give precedence to a certain locality type, when there are multiple Locality Descriptors
with di�erent types for the same data structure.

3.4 Locality Descriptor: Detailed Design
We detail the design of the programmer/compiler interface (º in Figure 12), runtime optimiza-

tions (¹), and the architectural interface and mechanisms (· and ¼)—CTA scheduling, memory
placement, cache management, and prefetching.

3.4.1 The Programmer/Compiler Interface

The Locality Descriptor can be speci�ed in the code after the data structure is initialized and
copied to global memory. Figure 15 is an example. If the semantics of a data structure change
between kernel calls, its Locality Descriptor can be re-speci�ed between kernel invocations.

The information to specify the Locality Descriptor can be extracted in three ways. First,
the compiler can use static analysis to determine forms of data locality, without programmer
intervention, using techniques like [63, 197] for inter-CTA locality. Second, the programmer
can annotate the program (as was done in this work), which is particularly useful when the
programmer wishes to hand-tune code for performance and to specify the priority ordering of data
structures when resolving potential optimization con�icts (§3.3.3). Third, software tools such as
auto-tuners or pro�lers [82, 171, 294] can determine data locality and access patterns via dynamic
analysis.

During compilation, the compiler extracts the variables that determine the address range of
each Locality Descriptor, so the system can resolve the virtual addresses at run time. The compiler
then summarizes the Locality Descriptor semantics corresponding to these address ranges and
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places this information in the object �le.

3.4.2 Runtime Optimization

At run time, the GPU driver and runtime system determine how to exploit the locality character-
istics expressed in the Locality Descriptors based on the speci�cs of the underlying architectural
components (e.g., number of SMs, NUMA zones). Doing so includes determining the: (i) CTA
scheduling strategy, (ii) caching policy (prioritization and bypassing), (iii) data placement strategy
across NUMA zones, and (iv) prefetching strategy. In this work, we provide an algorithm to
coordinate these techniques. Both, the set of techniques used and the algorithm to coordinate
them, are extensible. As such, more architectural techniques can be added and the algorithm can
be enhanced. We �rst describe the algorithm that determines which architectural techniques are
employed for di�erent locality types, and then detail each architectural technique in the following
subsections.

Figure 17 depicts the �owchart that determines which optimizations are employed. The algo-
rithm depicted works based on the three locality types. First, for INTER-THREADLocality Descriptors,
we employ CTA scheduling (§3.4.3) to expose locality. We also use other techniques based on the
access pattern and the sharing type: (i) For COACCESSED sharing with a REGULAR access pattern,
we use guided stride prefetching (§3.4.5) to overlap the long latencies when many threads are
stalled together waiting on the same data; (ii) For COACCESSED sharing with a IRREGULAR access
pattern, we employ cache prioritization using soft pinning (§3.4.4) to keep data in the cache long
enough to exploit locality; (iii) For NEARBY sharing, we use simple nextline prefetching tailored to
the frequently-occurring access pattern. Second, for an INTRA-THREAD Locality Descriptor, we
employ a thrash-resistant caching policy, hard pinning (§3.4.4), to keep a part of the working set
in the cache. Third, for a NO-REUSE Locality Descriptor, we use cache bypassing as the data is
not reused. In a NUMA system, irrespective of the locality type, we employ CTA scheduling and
memory placement to minimize accesses to remote NUMA zones. If there are con�icts between
di�erent data structures, they are resolved using the priority order, as described in §3.4.3 and
§3.4.6.

3.4.3 CTA Scheduling

Figure 18 depicts an example of CTA scheduling for the CTA grid (¶) from our example (histo,
§3.3.2). The default CTA scheduler (·) traverses one dimension at a time (X → Y → Z), and
schedules CTAs at each SM in a round robin manner, ensuring load balancing across SMs. Since
this approach does not consider locality, the default scheduler schedules CTAs that access the
same data at di�erent SMs (·).

The Locality Descriptor guided CTA scheduling (¸) shows how we expose locality by grouping
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Figure 17: Flowchart of architectural optimizations leveraging Locality Descriptors.
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Figure 18: CTA scheduling example.

CTAs in each C-Tile into a cluster. Each cluster is then scheduled at the same SM. In this example,
we spread the last C-Tile (CT4) across three SMs to trade o� locality for parallelism. To enable
such application-speci�c scheduling, we need an algorithm to use the Locality Descriptors to drive
a CTA scheduling policy that (i) schedules CTAs from the same C-Tile (that share data) together to
expose locality, (ii) ensures all SMs are fully occupied, and (iii) resolves con�icts between multiple
Locality Descriptors. We use Algorithm 1 to form CTA clusters, and schedule each formed cluster
at the same SM in a non-NUMA system.2 In a NUMA system, we �rst partition the CTAs across
the di�erent NUMA zones (see §3.4.6), and then use Algorithm 1 within each NUMA zone.

The algorithm �rst ensures that each Locality Descriptor has enough C-Tiles for all SMs. If
that is not the case, it splits C-Tiles (lines 3–7), to ensure we have enough clusters to occupy
all SMs. Second, the algorithm uses the C-Tiles of the highest priority Locality Descriptor as the
initial CTA clusters (line 8), and then attempts to merge the lower-priority Locality Descriptors
(lines 9–16).3 Merging tries to �nd a cluster that also groups CTAs with shared data in other
lower-priority Locality Descriptors while keeping the clusters larger than the number of SMs (�rst
step). By scheduling the merged cluster at each SM, the system can expose locality for multiple
data structures. The GPU driver runs Algorithm 1 before launching the kernel to determine the
2This algorithm optimizes only for the L1 cache, but it can be extended to optimize for the L2 cache as well.
3Although the algorithm starts by optimizing the highest priority XMem, it is designed to �nd a scheduling strategy
that is optimized for all XMems. Only when no such strategy can be found (i.e., when there are con�icts), is the
highest priority XMem prioritized over others.
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Algorithm 1 Forming CTA clusters using Locality Descriptors
1: Input: LDesc1...N : all N Locality Descriptors, sorted by priority (highest �rst)
2: Output: CLS = (CLSX ,CLSY ,CLSZ ): the �nal cluster dimensions
3: for i = 1 to N do . Step 1: Split C-Tiles into 2 to ensure each LDesc has enough C-Tiles for all SMs (to load balance)
4: while CT_NUM(LDesci) < SMNUM and CT_DIM(LDesci) != (1, 1, 1,) do
5: Divide the C-Tile of LDesci into 2 along the largest dimension
6: end while
7: end for
8: CLS← CT_DIM(LDesc1) . Each cluster is now formed by each of the highest priority LDesc’s C-Tiles after splitting
9: for i = 2 to N do . Step 2: Merge the C-Tiles of lower priority LDescs to form larger clusters to also leverage locality from lower priority

LDescs
10: for d in (X ,Y,Z) do
11: MCLSd ←CLSd× MAX (FLOOR(CT_DIM(LDesci) / CLSd ) , 1) . Merge C-Tiles along each dimension
12: end for
13: if CT_NUM(MCLS) ≥ SMNUM then . Ensure there are enough C-Tiles for all SMs
14: CLS←MCLS
15: end if
16: end for

CTA scheduling policy.

3.4.4 Cache Management

The Locality Descriptor enables the cache to distinguish reuse patterns of di�erent data struc-
tures and apply policies accordingly. We use two caching mechanisms that can be further extended.
First, cache bypassing (e.g., [194, 198–200, 202, 232, 328, 360, 361, 386]), which does not insert data
that has no reuse (NO-REUSE locality type) into the cache. Second, cache prioritization, which
inserts some data structures into the cache with higher priority than the others. We implement
this in two ways: (i) hard pinning and (ii) soft pinning. Hard pinning is a mechanism to prevent
cache thrashing due to large working sets by ensuring that part of the working set stays in the
cache. We implement hard pinning by inserting all hard-pinned data with the highest priority
and evicting a speci�c cache way (e.g., the 0th way) when all cache lines in the same set have
the highest priority. Doing so protects the cache lines in other cache ways from being repeatedly
evicted. We use a timer to automatically reset all priorities to unpin these pinned lines periodically.
Soft pinning, on the other hand, simply prioritizes one data structure over others without any
policy to control thrashing. As §3.4.2 discusses, we use hard pinning for data with INTRA-THREAD

locality type, which usually has a large working set as there is very limited sharing among threads.
We use soft pinning for data with INTER-THREAD locality type to ensure that this data is retained
in the cache until other threads that share the data access it.

3.4.5 Prefetching

As §3.2 discusses, using CTA scheduling alone to expose locality hardly improves performance,
as the increased locality causes more threads to stall, waiting for the same critical data at the same
time (see the L1 in�ight hit rate, Figure 9). As a result, the memory latency to this critical data be-
comes the performance bottleneck, since there are too few threads left to hide the memory latency.
We address this problem by employing a hardware prefetcher guided by the Locality Descriptor to
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prefetch the critical data ahead of time. We employ a prefetcher only for INTER-THREAD Locality
Descriptors because the data structures they describe are shared by multiple threads, and hence, are
more critical to avoid stalls. The prefetcher is triggered when an access misses the cache on these
data structures. The prefetcher is instructed based on the access pattern and the sharing type. As
Figure 17 shows, there are two cases. First, for NEARBY sharing, the prefetcher is directed to simply
prefetch the next cache line. Second, for COACCESSED sharing with a REGULAR access pattern, the
prefetched address is a function of (i) the access stride, (ii) the number of bytes that are accessed
at the same time (i.e., the width of the data tile), and, (iii) the size of the cache, as prefetching
too far ahead means more data needs to be retained in the cache. The address to prefetch is
calculated as: current address + (L1_size/(number_of_active_tiles*data_tile_width)

* stride). The number_of_active_tiles is the number of D-Tiles that the prefetcher is actively
prefetching. The equation decreases the prefetch distance when there are more active D-Tiles to
reduce thrashing. This form of controlled prefetching avoids excessive use of memory bandwidth
by only prefetching data that is shared by many threads, and has high accuracy as it is informed
by the Locality Descriptor.

3.4.6 Memory Placement

As §3.2.2 discusses, exploiting locality on a NUMA system requires coordination between
CTA scheduling and memory placement such that CTAs access local data within each NUMA
zone. There are two major challenges (depicted in Figure 11 in §3.2.2): (i) how to partition data
among NUMA zones at a �ne granularity. A paging-based mechanism (e.g., [25]) does not solve
this problem as a large �xed page size is typically ine�ective (§3.2.2), while small page sizes are
prohibitively expensive to manage [29], and (ii) how to partition CTAs among NUMA zones to
exploit locality among multiple data structures that may be accessed di�erently by the CTAs in
the program. To address these two challenges, we use a �exible data mapping scheme, which we
describe below, and a CTA partitioning algorithm that leverages this scheme.
Flexible Fine-granularity Data Mapping. We enhance the mapping between physical ad-

dresses and NUMA zones to enable data partitioning at a �exible granularity, smaller than a page
(typically 64KB). Speci�cally, we use consecutive bits within the physical address itself to index
the NUMA zone (similar to [134] in a di�erent context). We allow using a di�erent set of bits for
di�erent data structures. Thus, each data structure can be partitioned across NUMA zones at a
di�erent granularity.4 Figure 19 shows how this is done for the example in §3.2.2. As the �gure
shows, CTAs in each NUMA zone ¶ access the same page (64KB) for data structure A ·, but they
4We limit the bits that can be chosen to always preserve the minimum DRAM burst size (128B) by always specifying
a size between 128B-64KB (bits 7-16). We always use bit 16/17 for granularities larger than 64KB as we can �exibly
map virtual pages to the desired NUMA zone using the page table. We enable �exible bit mapping by modifying the
hardware address decoder in the memory controller.
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only access the same quarter-page (16KB) for data structure B ¸. If we partition data across NUMA
zones only at the page granularity [25], most accesses to data structure B would access remote
NUMA zones. With our mechanism, we can choose bits 16-17 (which interleaves data between
NUMA zones at a 64KB granularity) and bits 14-15 (which interleaves data at a 16KB granularity)
in the physical address to index the NUMA zone for data structures A and B respectively. Doing
so results in all accesses to be in the local NUMA zone for both data structures.
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Figure 19: Memory placement with Locality Descriptors.

This design has two constraints. First, we can partition data only at a power-of-two granularity.
Our �ndings, however, show that this is not a limiting constraint because (i) regular GPU kernels
typically exhibit power-of-two strides across CTAs (consistent with [134]); and (ii) even with
non-power-of-two strides, this approach is still reasonably e�ective compared to page-granularity
placement (as shown quantitatively in §3.6.2). Second, to avoid cases where a data structure is not
aligned with the interleaving granularity, we require that the GPU runtime align data structures
at the page granularity.
CTA Scheduling Coordinated with Data Placement. To coordinate memory placement

with CTA scheduling, we use a simple greedy search algorithm (Algorithm 2) that partitions the
CTAs across the NUMA zones and selects the most e�ective address mapping bits for each data
structure. We provide a brief overview here.

The algorithm evaluates the e�cacy of all possible address mappings for the data structure
described by the highest-priority Locality Descriptor (line 4). This is done by determining which
N consecutive bits between bit 7-16 in the physical address are the most e�ective bits to index
NUMA zones for that data structure (where N is the base-2-log of the number of NUMA zones). To
determine which mapping is the most e�ective, the algorithm �rst determines the corresponding
CTA partitioning scheme for that address mapping using the NUMA_PART function (line 5). The
NUMA_PART function simply schedules each C-Tile at the NUMA zone where the D-Tile it accesses
is placed (based on the address mapping that is being tested). The 1:1 C-Tile/D-Tile compute
mapping in the Locality Descriptor gives us the information to easily do this. To evaluate the
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e�ectiveness or utility of each address mapping and the corresponding CTA partitioning scheme,
we use the COMP_UTIL function (line 7). This function calculates the ratio of local/remote accesses
for each mapping.

Algorithm 2 CTA partitioning and memory placement for NUMA
1: Input: LDesc1...N : all N Locality Descriptors, sorted by priority (highest �rst)
2: Output 1: CTA_NPART : the �nal CTA partitioning for NUMA zones
3: Output 2: MAP1...N : the address mapping bits for each LDesc
4: for b_hi = 7 to 16 do . Test all possible mappings for the highest-priority LDesc
5: CTA_PARTb_hi← NUMA_PART(LDesc1, b_hi) . Partition the CTAs based on the address mapping being evaluated
6: best_util_all← 0 . best_util_all: the current best utility
7: utilb_hi← COMP_UTIL(N, LDesc1, CTA_PARTb_hi, b_hi) . Calculate the utility of the CTA partitioning scheme + address mapping
8: for i = 2 to N do . Test other LDescs
9: T MAPi← 7 . T MAP: temporary mapping

10: best_util← 0 . best_util: the utility with the best mapping
11: for b_lo = 7 to 16 do . Test all possible address mappings
12: util← COMP_UTIL(N− i+1, LDesci, CTA_PARTb_hi, b_lo) . Calculate overall best mapping
13: if util > best_util then
14: T MAPi← b_lo; best_util← util . update the best mapping
15: end if
16: end for
17: utilb_hi← utilb_hi +best_util . update the new best utility
18: end for
19: if utilb_hi > best_util_all then
20: MAP← T MAP; MAP1← b_hi;
21: best_util_all← utilb_hi; CTA_NPART ←CTA_PARTb_hi
22: end if
23: end for

Since we want a CTA partitioning scheme that is e�ective for multiple data structures, we also
evaluate how other data structures can be mapped, based on each CTA partitioning scheme tested
for the high-priority data structure (line 8). Based on which of the tested mappings has the highest
overall utility, we �nally pick the CTA partitioning scheme and an address mapping scheme for
each data structure (line 12).

The GPU driver runs Algorithm 2 when all the dynamic information is available at run time
(i.e., number of NUMA zones, CTA size, data structure size, etc.). The overhead is negligible
because: (i) most GPU kernels have only several data structures (i.e., small N), and (ii) the two
core functions (NUMA_PART and COMP_UTIL) are very simple due to the 1:1 C-Tile/D-Tile mapping.

The Locality Descriptor method is more �exible and versatile than a �rst-touch page migration
scheme [25], which (i) requires demand paging to be enabled, (ii) is limited to a �xed page size,
(iii) always schedules CTA in a �xed manner. With the knowledge of how CTAs access data
(i.e., the D-Tile-C-Tile compute mapping) and the ability to control and coordinate both the CTA
scheduler and �exibly place data, our approach provides a powerful substrate to leverage NUMA
locality.

3.5 Methodology
We model the entire Locality Descriptor framework in GPGPU-Sim 3.2.2 [32]. To isolate the

e�ects of the cache locality versus NUMA locality, we evaluate them separately: we evaluate
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reuse-based locality using an existing single-chip non-NUMA system con�guration (based on
Fermi GTX 480); and we use a futuristic NUMA system (based on [25]) to evaluate NUMA-based
locality. We use the system parameters in [25], but with all compute and bandwidth parameters
(number of SMs, memory bandwidth, inter-chip interconnect bandwidth, L2 cache) scaled by 4
to ensure that the evaluated workloads have su�cient parallelism to saturate the compute units.
Table 3 summarizes the major system parameters. We use GPUWattch [195] to model GPU power
consumption.

Table 3: Major parameters of the simulated systems.

Shader Core 1.4 GHz; GTO scheduler [277]; 2 schedulers per SM
Round-robin CTA scheduler

SM Resources Registers: 32768; Scratchpad: 48KB, L1: 32KB, 4 ways
Memory Model FR-FCFS scheduling [276, 391], 16 banks/channel
Single Chip System 15 SMs; 6 memory channels; L2: 768KB, 16 ways

Multi-Chip System

4 GPMs (GPU Modules) or NUMA zones;
64 SMs (16 per module); 32 memory channels;
L2: 4MB, 16 ways; Inter-GPM Interconnect: 192 GB/s;
DRAM Bandwidth: 768 GB/s (192 GB/s per module)

We evaluate workloads from the CUDA SDK [247], Rodinia [61], Parboil [316] and Poly-
benchGPU [270] benchmark suites. We run each kernel either to completion or up to 1B instruc-
tions. Our major performance metric is instruction throughput (IPC). From the workloads in
Table 4, we use cache-sensitive workloads (i.e., workloads where increasing the L1 by 4× improves
performance more than 10%), to evaluate reuse-based locality. We use memory bandwidth-sensitive
workloads (workloads that improve performance by more than 40% with 2× memory bandwidth),
to evaluate NUMA locality.

3.6 Evaluation

3.6.1 Reuse-Based (Cache) Locality

We evaluate six con�gurations: (i) Baseline: our baseline system with the default CTA sched-
uler. (ii) BCS: a heuristic-based CTA scheduler based on BCS [192], which schedules two consecutive
CTAs at the same SM. (iii) LDesc-Sched: the Locality Descriptor-guided CTA scheduler, which
uses the Locality Descriptor semantics and algorithm. Compiler techniques such as [63, 197]
can produce the same bene�ts. (iv) LDesc-Pref: the Locality Descriptor-guided prefetcher. So-
phisticated classi�cation-based prefetchers such as [253], can potentially obtain similar bene�ts.
(v) LDesc-Cache: the Locality Descriptor-guided cache prioritization and bypassing scheme. (vi)
LDesc: our proposed scheme, which uses the Locality Descriptor to distinguish between the
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Table 4: Summary of Applications

Name (Abbr.) Locality Descriptor types (§3.3.3)
Syrk (SK) [270] INTER-THREAD (COACCESSED, REGULAR), NO-REUSE
Doitgen (DT) [270] INTER-THREAD (COACCESSED, REGULAR), NO-REUSE
dwt2d (D2D) [61] INTER-THREAD (NEARBY, REGULAR)
Convolution-2D (C2D) [270] INTER-THREAD (NEARBY)
Sparse Matrix Vector
Multiply (SPMV) [316]

INTRA-THREAD,
INTER-THREAD (COACCESSED, IRREGULAR)

LIBOR (LIB) [247] INTRA-THREAD

LavaMD (LMD) [61]
INTRA-THREAD,
INTER-THREAD (COACCESSED, REGULAR)

histogram (HS) [316] INTER-THREAD (COACCESSED, REGULAR)
atax (ATX) [270] NO-REUSE, INTER-THREAD (COACCESSED, REGULAR)
mvt (MVT) [270] NO-REUSE, INTER-THREAD (COACCESSED, REGULAR)
particlefilter (PF) [61] NO-REUSE
streamcluster (SC) [61] NO-REUSE, INTER-THREAD (NEARBY)
transpose (TRA) [247] NO-REUSE
Scalar Product (SP) [247] NO-REUSE
Laplace Solver (LPS) [247] NO-REUSE, INTRA-THREAD
pathfinder (PT) [61] NO-REUSE

di�erent locality types and selectively employs di�erent (scheduling, prefetching, caching, and
data placement) optimizations.

Figure 20a depicts the speedup over Baseline across all con�gurations. LDesc improves
performance by 26.6% on average (up to 46.6%) over Baseline. LDesc always performs either
as well as or better than any of the techniques in isolation. Figure 20b shows the L1 hit rate for
di�erent con�gurations. LDesc’s performance improvement comes from a 41.1% improvement in
average hit rate (up to 57.7%) over Baseline. We make three observations that provide insight
into LDesc’s e�ectiveness.
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Figure 20: Leveraging reuse-based (cache) locality.

First, di�erent applications bene�t from di�erent optimizations. Applications with
INTER-THREAD type of locality (SK, DT, HS, D2D, C2D) bene�t from CTA scheduling and/or
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prefetching. However, LIB, LMD, SPMV do not bene�t from CTA scheduling as there is little
inter-CTA reuse to be exploited. Similarly, prefetching signi�cantly hurts performance in these
workloads (LIB, LMD, SPMV) as the generated prefetch requests exacerbate the memory band-
width bottleneck. As a result, signi�cant performance degradation occurs when the working set
is too large (e.g., when there is no sharing and only INTRA-THREAD reuse, as in LMD and LIB) or
where the access patterns in the major data structures are not su�ciently regular (SPMV). Cache
prioritization and bypassing is very e�ective in workloads with INTRA-THREAD reuse (LIB, LMD),
but is largely ine�ective and can even hurt performance in workloads such as D2D and HS when a
non-critical data structure or too many data structures are prioritized in the cache. Since LDesc is
able to distinguish between locality types, it is able to select the best combination of optimizations
for each application.

Second, a single optimization is very often insu�cient to exploit locality. For the INTER-THREAD
applications (SK, DT, HS, D2D, C2D), LDesc-guided CTA scheduling signi�cantly reduces the L1
working set (by 67.8% on average, not graphed). However, this does not translate into signi�cant
performance improvement when scheduling is applied by itself (only 2.1% on average). This is
because of an 17% average increase in L1 in�ight hit rate as a result of more threads accessing
the same data. These threads wait on the same shared data at the same time, and hence cause
increased stalls at the core. The bene�t of increased locality is thus lost. Prefetching (LDesc-Pref)
is an e�ective technique to alleviate e�ect. However, prefetching by itself signi�cantly increases
the memory tra�c and this hinders its ability to improve performance when applied alone. When
combined with scheduling, however, prefetching e�ectively reduces the long memory latency
stalls. Synergistically, CTA scheduling reduces the overall memory tra�c by minimizing the
working set. For the INTER-THREAD NEARBY workloads (C2D, D2D), CTA scheduling co-schedules
CTAs with overlapping working sets. This allows more e�ective prefetching between the CTAs
for the critical high-reuse data. In the cases described above, prefetching and CTA scheduling
work better synergistically than in isolation, and LDesc is able to e�ectively combine and make
use of multiple techniques depending on the locality type.

Third, LDesc-guided CTA scheduling is signi�cantly more e�ective than the heuristic-based
approach, BCS. This is because LDesc tailors the CTA scheduling policy for each application by
clustering CTAs based on the locality characteristics of each data structure. Similarly, the LDesc

prefetcher and replacement policies are highly e�ective, because they leverage program semantics
from the Locality Descriptor.
Conclusions. We make the following conclusions: (i) The Locality Descriptor is an e�ective

and versatile mechanism to leverage reuse-based locality to improve GPU performance and energy
e�ciency; (ii) Di�erent locality types require di�erent optimizations—a single mechanism or set
of mechanisms do not work for all locality types. We demonstrate that the Locality Descriptor
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can e�ectively connect di�erent locality types with the underlying architectural optimizations.
(iii) The Locality Descriptor enables the hardware architecture to leverage the program’s locality
semantics to provide signi�cant performance bene�ts over heuristic-based approaches such as the
BCS scheduler.

3.6.2 NUMA Locality

To evaluate the bene�ts of the Locality Descriptor in exploiting NUMA locality, Figure 21
compares four di�erent mechanisms: (i) Baseline: The baseline system which uses a static
XOR-based address hashing mechanism [384] to randomize data placement across NUMA
zones. (ii) FirstTouch-Distrib: The state-of-the-art mechanism proposed in [25], where
each page (64KB) is placed at the NUMA zone where it is �rst accessed. This scheme also
employs a heuristic-based distributed scheduling strategy where the compute grid is partitioned
equally across the NUMA zones such that contiguous CTAs are placed in the same NUMA zone.
(iii) LDesc-Placement: The memory placement mechanism based on the semantics of the Locality
Descriptors, but without the accompanying CTA scheduling strategy. (iv) LDesc: The Locality
Descriptor-guided memory placement mechanism with the coordinated CTA scheduling strategy.
We draw two conclusions from the �gure.
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Figure 21: NUMA Locality: Normalized performance.

Conclusion 1. LDesc is an e�ective mechanism in NUMA data placement, outperforming
Baseline by 53.7% on average (up to 2.8×) and FirstTouch_Distrib by 31.2% on average (up
to 2.3×). The performance impact of NUMA placement is primarily determined by two factors:
(i) Access e�ciency (plotted in Figure 22), which is de�ned as the fraction of total memory accesses
that are to the local NUMA zone (higher is better). Access e�ciency determines the amount of
tra�c across the interconnect between NUMA zones as well as the latency of memory accesses.
(ii) Access distribution (plotted in Figure 23) across NUMA zones. Access distribution determines
the e�ective memory bandwidth being utilized by the system—a non-uniform distribution of
accesses across NUMA zones may lead to underutilized bandwidth in one or more zones, which
can create a new performance bottleneck and degrade performance.
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Figure 22: NUMA access e�iciency.
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Figure 23: NUMA zone access distribution.

The static randomized mapping in Baseline aims to balance access distribution across NUMA
zones (with an average distribution of ~25% at each zone), but is not optimized to maximize access
e�ciency (only 22% on average). FirstTouch-Distrib on the other hand, has higher access
e�ciency in some workloads (e.g., SP, PT) by ensuring that a page is placed where the CTA that
accesses it �rst is scheduled (49.7% on average). However, FirstTouch-Distrib is still ine�ective
for many workloads for three reasons: (i) Large page granularity (64KB) often leads to high skews
in access distribution when pages are shared between many CTAs, e.g., ATX, MVT, LIB (Figure 23).
This is because a majority of pages are placed in the NUMA zone where the CTA that is furthest
ahead in execution is scheduled. (ii) FirstTouch-Distrib has low access e�ciency when the
heuristic-based scheduler does not schedule CTAs that access the same pages at the same NUMA
zone (e.g., DT, HS, SK). (iii) FirstTouch-Distrib has low access e�ciency when each CTA
irregularly accesses a large number of pages because data cannot be partitioned between the
NUMA zones at a �ne granularity (e.g., SPMV).
LDesc interleaves data at a �ne granularity depending on how each data structure is partitioned
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between CTAs and schedules those CTAs accordingly. If a data structure is shared among more
CTAs than what can be scheduled at a single zone, the data structure is partitioned across NUMA
zones, as LDesc favors parallelism over locality. Hence, LDesc tries to improve access e�ciency
while reducing skew in access distribution in the presence of a large amount of data sharing.
As a result, LDesc has an average access e�ciency of 76% and access distribution close to 25%
across the NUMA zones (Figure 23). LDesc is less e�ective in access e�ciency in cases where the
data structures are irregularly accessed (SPMV) or when non-power-of-two data tile sizes lead to
imperfect data partitioning (LPS, PT, LMD, HS).
Conclusion 2. From Figure 21, we see that LDesc is largely ine�ective without coordinated

CTA scheduling. LDesc-Placement retains the LDesc bene�t in reducing the skew in access
distribution (not graphed). However, without coordinated CTA scheduling access e�ciency is
very low (32% on average).

We conclude that the Locality Descriptor approach is an e�ective strategy for data placement
in a NUMA environment by (i) leveraging locality semantics in intelligent data placement and
CTA scheduling and (ii) orchestrating the two techniques using a single interface.

3.7 Related Work
To our knowledge, this is the �rst work to propose a cross-layer abstraction that enables the

software/programmer to �exibly express and exploit di�erent forms of data locality in GPUs. This
enables leveraging program semantics to transparently coordinate architectural techniques that
are critical to improving performance and energy e�ciency. We now brie�y discuss closely related
prior work speci�c to the Locality Descriptor. A more general comparison of the approach taken
in this work is discussed in Section 1.5.
Improving Cache Locality in GPUs. There is a large body of research that aims to improve

cache locality in GPUs using a range of hardware/software techniques such as CTA scheduling [63,
115,157,166,186,192,197,348,357], prefetching [147,187,191,208,253,301,340], warp scheduling [193,
277, 382], cache bypassing [194, 198–200, 202, 232, 328, 360, 361, 386], and other cache management
schemes [26,67,70,106,152,157,158,169,170,178,180,183,184,234,253,347,383,387]. Some of these
works orchestrate multiple techniques [147, 157, 158, 178, 184, 197, 253, 387] to leverage synergy
between optimizations. However, these prior approaches are either hardware-only, software-only,
or focus on optimizing a single technique. Hence, they are limited (i) by what is possible with
the information that can be solely inferred in hardware, (ii) by existing software interfaces that
limit what optimizations are possible, or (iii) in terms of the range of optimizations that can
be used. In contrast, the Locality Descriptor provides a new, portable and �exible interface to
the software/programmer. This interface allows easy access to hardware techniques in order to
leverage data locality. Furthermore, all the above prior approaches are largely orthogonal to the
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Locality Descriptor as they can use the Locality Descriptor to enhance their e�cacy with the
knowledge of program semantics.

The closest work to ours is ACPM [184], an architectural cache management technique that
identi�es intra-warp/inter-warp/streaming locality and selectively applies cache pinning or by-
passing based on the detected locality type. This work is limited to the locality types that can be
inferred by hardware, and it does not tackle inter-CTA locality or NUMA locality, both of which
require a priori knowledge of program semantics and hardware-software codesign.
Improving Locality in NUMA GPU Systems. A range of hardware/software techniques

to enhance NUMA locality have been proposed in di�erent contexts in GPUs: multiple GPU
modules [25], multiple memory stacks [134], and multi-GPU systems with uni�ed virtual ad-
dressing [53, 54, 174, 177, 190, 284]. We already qualitatively and quantitatively compared against
FirstTouch-Distrib [25] in our evaluation. Our memory placement technique is similar to the
approach taken in TOM [134]. In TOM, frequent power-of-two strides seen in GPU kernels are
leveraged to use consecutive bits in the address to index a memory stack. TOM, however, (i) is
the state-of-the-art technique targeted at near-data processing and does not require coordination
with CTA scheduling, (ii) relies on a pro�ling run to identify the index bits, and (iii) does not
allow using di�erent index bits for di�erent data structures. Techniques to improve locality in
multi-GPU systems [53, 54, 174, 177, 190, 284] use pro�ling and compiler analysis to partition the
compute grid and data across multiple GPUs. These works are similar to the Locality Descriptor in
terms of the partitioning used for forming data and compute tiles and, hence, can easily leverage
Locality Descriptors to further exploit reuse-based locality and NUMA locality in a single GPU.
Expressive Programming Models/Runtime Systems/Interfaces. In the context of multi-

core CPUs and distributed/heterogeneous systems, there have been numerous software-only
approaches that allow explicit expression of data locality [35, 36, 44, 56, 60, 101, 306, 329, 365], data
independence [35, 36, 306, 329] or even tiles [122, 334], to enable the runtime to perform NUMA-
aware placement or produce code that is optimized to better exploit the cache hierarchy. These
approaches (i) are software-only; hence, they do not have access to many architectural techniques
that are key to exploiting locality and (ii) do not tackle the GPU-speci�c challenges in exploiting
data locality. These works are largely orthogonal to ours and can use Locality Descriptors to
leverage hardware techniques to exploit reuse-based locality and NUMA locality in GPUs.

3.8 Summary
This chapter demonstrates the bene�ts of an explicit abstraction for data locality in GPUs that

is recognized by all layers of the compute stack, from the programming model to the hardware
architecture. We introduce the Locality Descriptor, a rich cross-layer abstraction to explicitly
express and e�ectively leverage data locality in GPUs. The Locality Descriptor (i) provides the
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software/programmer a �exible and portable interface to optimize for data locality without any
knowledge of the underlying architecture and (ii) enables the architecture to leverage program
semantics to optimize and coordinate multiple hardware techniques in a manner that is transparent
to the programmer. The key idea is to design the abstraction around the program’s data structures
and specify locality semantics based on how the program accesses each data structure. We evaluate
and demonstrate the performance bene�ts of Locality Descriptors from e�ectively leveraging
di�erent types of reuse-based locality in the cache hierarchy and NUMA locality in a NUMA
memory system. We conclude that by providing a �exible and powerful cross-cutting interface,
the Locality Descriptor enables leveraging a critical yet challenging factor in harnessing a GPU’s
computational power, data locality.
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Chapter 4

Zorua

Modern GPU programming models directly manage several on-chip hardware resources in GPU
that are critical to performance, e.g., registers, scratchpad memory, and thread slots. This chapter
describes how this tight coupling between the programming model and hardware resources causes
signi�cant challenges in programmability and performance portability, and heavily constrains
the hardware’s ability to aid in resource management. We propose a new framework, Zorua, that
decouples the programming model from the management of hardware resources by e�ectively
virtualizing these resources. We demonstrate how this virtualization signi�cantly addresses the
programmability, portability, and e�ciency challenges in managing these on-chip resources by
enabling the hardware to assist in their allocation and resource management.

4.1 Overview
Modern Graphics Processing Units (GPUs) have evolved into powerful programmable machines

over the last decade, o�ering high performance and energy e�ciency for many classes of applica-
tions by concurrently executing thousands of threads. In order to execute, each thread requires
several major on-chip resources: (i) registers, (ii) scratchpad memory (if used in the program),
and (iii) a thread slot in the thread scheduler that keeps all the bookkeeping information required
for execution.

Today, these hardware resources are statically allocated to threads based on several parame-
ters—the number of threads per thread block, register usage per thread, and scratchpad usage per
block. We refer to these static application parameters as the resource speci�cation of the application.
This resource speci�cation forms a critical component of modern GPU programming models (e.g.,
CUDA [250], OpenCL [7]). The static allocation over a �xed set of hardware resources based on
the software-speci�ed resource speci�cation creates a tight coupling between the program (and
the programming model) and the physical hardware resources. As a result of this tight coupling,
for each application, there are only a few optimized resource speci�cations that maximize resource
utilization. Picking a suboptimal speci�cation leads to underutilization of resources and hence,
very often, performance degradation. This leads to three key di�culties related to obtaining
good performance on modern GPUs: programming ease, portability, and resource ine�ciency
(performance).

Programming Ease. First, the burden falls upon the programmer to optimize the resource
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speci�cation. For a naive programmer, this is a very challenging task [82, 221, 254, 280–282, 317].
This is because, in addition to selecting a speci�cation suited to an algorithm, the programmer
needs to be aware of the details of the GPU architecture to �t the speci�cation to the underlying
hardware resources. This tuning is easy to get wrong because there are many highly suboptimal
performance points in the speci�cation space, and even a minor deviation from an optimized
speci�cation can lead to a drastic drop in performance due to lost parallelism. We refer to such
drops as performance cli�s. We analyze the e�ect of suboptimal speci�cations on real systems for
20 workloads (Section 4.2.1), and experimentally demonstrate that changing resource speci�cations
can produce as much as a 5× di�erence in performance due to the change in parallelism. Even
a minimal change in the speci�cation (and hence, the resulting allocation) of one resource can
result in a signi�cant performance cli�, degrading performance by as much as 50% (Section 4.2.1).
Portability. Second, di�erent GPUs have varying quantities of each of the resources. Hence, an

optimized speci�cation on one GPU may be highly suboptimal on another. In order to determine
the extent of this portability problem, we run 20 applications on three generations of NVIDIA
GPUs: Fermi, Kepler, and Maxwell (Section 4.2.2). An example result demonstrates that highly-
tuned code for Maxwell or Kepler loses as much as 69% of its performance on Fermi. This lack of
portability necessitates that the programmer re-tune the resource speci�cation of the application
for every new GPU generation. This problem is especially signi�cant in virtualized environments,
such as cloud or cluster computing, where the same program may run on a wide range of GPU
architectures, depending on data center composition and hardware availability.
Performance. Third, for the programmer who chooses to employ software optimization

tools (e.g., auto-tuners) or manually tailor the program to �t the hardware, performance is still
constrained by the �xed, static resource speci�cation. It is well known [108, 109, 148, 340, 341, 370,
373] that the on-chip resource requirements of a GPU application vary throughout execution. Since
the program (even after auto-tuning) has to statically specify its worst-case resource requirements,
severe dynamic underutilization of several GPU resources [2, 108, 109, 148, 340, 341] ensues, leading
to suboptimal performance (Section 4.2.3).
Our Goal. To address these three challenges at the same time, we propose to decouple an

application’s resource speci�cation from the available hardware resources by virtualizing all three
major resources in a holistic manner. This virtualization provides the illusion of more resources to
the GPU programmer and software than physically available, and enables the runtime system and
the hardware to dynamically manage multiple physical resources in a manner that is transparent
to the programmer, thereby alleviating dynamic underutilization.

Virtualization is a concept that has been applied to the management of hardware resources
in many contexts (e.g., [21, 40, 79, 85, 121, 143, 252, 345]), providing various bene�ts. We believe
that applying the general principle of virtualization to the management of multiple on-chip
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resources in GPUs o�ers the opportunity to alleviate several important challenges in modern
GPU programming, which are described above. However, at the same time, e�ectively adding a
new level of indirection to the management of multiple latency-critical GPU resources introduces
several new challenges (see Section 4.3.1). This necessitates the design of a new mechanism to
e�ectively address the new challenges and enable the bene�ts of virtualization. In this work, we
introduce a new framework, Zorua,5 to decouple the programmer-speci�ed resource speci�cation
of an application from its physical on-chip hardware resource allocation by e�ectively virtualizing
the multiple on-chip resources in GPUs.
Key Concepts. The virtualization strategy used by Zorua is built upon two key concepts. First,

to mitigate performance cli�s when we do not have enough physical resources, we oversubscribe
resources by a small amount at runtime, by leveraging their dynamic underutilization and main-
taining a swap space (in main memory) for the extra resources required. Second, Zorua improves
utilization by determining the runtime resource requirements of an application. It then allocates
and deallocates resources dynamically, managing them (i) independently of each other to maximize
their utilization; and (ii) in a coordinated manner, to enable e�cient execution of each thread with
all its required resources available.
Challenges in Virtualization. Unfortunately, oversubscription means that latency-critical

resources, such as registers and scratchpad, may be swapped to memory at the time of access,
resulting in high overheads in performance and energy. This leads to two critical challenges in
designing a framework to enable virtualization. The �rst challenge is to e�ectively determine the
extent of virtualization, i.e., by how much each resource appears to be larger than its physical
amount, such that we can minimize oversubscription while still reaping its bene�ts. This is
di�cult as the resource requirements continually vary during runtime. The second challenge is to
minimize accesses to the swap space. This requires coordination in the virtualized management of
multiple resources, so that enough of each resource is available on-chip when needed.
Zorua. In order to address these challenges, Zorua employs a hardware-software codesign that

comprises three components: (i) the compiler annotates the program to specify the resource
needs of each phase of the application; (ii) a runtime system, which we refer to as the coordinator,
uses the compiler annotations to dynamically manage the virtualization of the di�erent on-chip
resources; and (iii) the hardware employs mapping tables to locate a virtual resource in the
physically available resources or in the swap space in main memory. The coordinator plays the
key role of scheduling threads only when the expected gain in thread-level parallelism outweighs
the cost of transferring oversubscribed resources from the swap space in memory, and coordinates
the oversubscription and allocation of multiple on-chip resources.
5Named after a Pokémon [243] with the power of illusion, able to take di�erent shapes to adapt to di�erent circum-
stances (not unlike our proposed framework).
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Key Results. We evaluate Zorua with many resource speci�cations for eight applications
across three GPU architectures (Section 4.5). Our experimental results show that Zorua (i) reduces
the range in performance for di�erent resource speci�cations by 50% on average (up to 69%),
by alleviating performance cli�s, and hence eases the burden on the programmer to provide
optimized resource speci�cations, (ii) improves performance for code with optimized speci�cation
by 13% on average (up to 28%), and (iii) enhances portability by reducing the maximum porting
performance loss by 55% on average (up to 73%) for three di�erent GPU architectures. We
conclude that decoupling the resource speci�cation and resource management via virtualization
signi�cantly eases programmer burden, by alleviating the need to provide optimized speci�cations
and enhancing portability, while still improving or retaining performance for programs that
already have optimized speci�cations.
Other Uses. We believe that Zorua o�ers the opportunity to address several other key chal-

lenges in GPUs today, for example: (i) By providing an new level of indirection, Zorua provides
a natural way to enable dynamic and �ne-grained control over resource partitioning among
multiple GPU kernels and applications. (ii) Zorua can be utilized for low-latency preemption of GPU
applications, by leveraging the ability to swap in/out resources from/to memory in a transparent
manner. (iv) Zorua provides a simple mechanism to provide dynamic resources to support other
programming paradigms such as nested parallelism, helper threads, etc. and even system-level
tasks. (v) The dynamic resource management scheme in Zorua improves the energy e�ciency
and scalability of expensive on-chip resources (Section 4.6).

The main contributions of this work are:
• This is the �rst work that takes a holistic approach to decoupling a GPU application’s resource

speci�cation from its physical on-chip resource allocation via the use of virtualization. We
develop a comprehensive virtualization framework that provides controlled and coordinated
virtualization of multiple on-chip GPU resources to maximize the e�cacy of virtualization.

• We show how to enable e�cient oversubscription of multiple GPU resources with dynamic �ne-
grained allocation of resources and swapping mechanisms into/out of main memory. We provide
a hardware-software cooperative framework that (i) controls the extent of oversubscription to
make an e�ective tradeo� between higher thread-level parallelism due to virtualization versus
the latency and capacity overheads of swap space usage, and (ii) coordinates the virtualization
for multiple on-chip resources, transparently to the programmer.

• We demonstrate that by providing the illusion of having more resources than physically available,
Zorua (i) reduces programmer burden, providing competitive performance for even suboptimal
resource speci�cations, by reducing performance variation across di�erent speci�cations and by
alleviating performance cli�s; (ii) reduces performance loss when the program with its resource
speci�cation tuned for one GPU platform is ported to a di�erent platform; and (iii) retains or

64



enhances performance for highly-tuned code by improving resource utilization, via dynamic
management of resources.

4.2 Motivation: Managing On-Chip Resources and Paral-
lelism in GPUs

The amount of parallelism that the GPU can provide for any application depends on the
utilization of on-chip resources by threads within the application. As a result, suboptimal usage of
these resources may lead to loss in the parallelism that can be achieved during program execution.
This loss in parallelism often leads to signi�cant degradation in performance, as GPUs primarily
use �ne-grained multi-threading [307, 324] to hide the long latencies during execution.

The granularity of synchronization – i.e., the number of threads in a thread block – and the
amount of scratchpad memory used per thread block is determined by the programmer while
adapting any algorithm or application for execution on a GPU. This choice involves a complex
tradeo� between minimizing data movement, by using larger scratchpad memory sizes, and
reducing the ine�ciency of synchronizing a large number of threads, by using smaller scratchpad
memory and thread block sizes. A similar tradeo� exists when determining the number of registers
used by the application. Using fewer registers minimizes hardware register usage and enables
higher parallelism during execution, whereas using more registers avoids expensive accesses to
memory. The resulting application parameters – the number of registers, the amount of scratchpad
memory, and the number of threads per thread block – dictate the on-chip resource requirement
and hence, determine the parallelism that can be obtained for that application on any GPU.

In this section, we study the performance implications of di�erent choices of resource speci�ca-
tions for GPU applications to demonstrate the key issues we aim to alleviate.

4.2.1 Performance Variation and Cli�s

To understand the impact of resource speci�cations and the resulting utilization of physical
resources on GPU performance, we conduct an experiment on a Maxwell GPU system (GTX 745)
with 20 GPGPU workloads from the CUDA SDK [247], Rodinia [61], GPGPU-Sim benchmarks [32],
Lonestar [52], Parboil [316], and US DoE application suites [342]. We use the NVIDIA pro�ling
tool (NVProf) [247] to determine the execution time of each application kernel. We sweep the
three parameters of the speci�cation—number of threads in a thread block, register usage per
thread, and scratchpad memory usage per thread block—for each workload, and measure their
impact on execution time.

Figure 24 shows a summary of variation in performance (higher is better), normalized to
the slowest speci�cation for each application, across all evaluated speci�cation points for each
application in a Tukey box plot [222]. The boxes in the box plot represent the range between the
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�rst quartile (25%) and the third quartile (75%). The whiskers extending from the boxes represent
the maximum and minimum points of the distribution, or 1.5× the length of the box, whichever is
smaller. Any points that lie more than 1.5× the box length beyond the box are considered to be
outliers [222], and are plotted as individual points. The line in the middle of the box represents
the median, while the “X” represents the average.

Figure 24: Performance variation across specifications.

We can see that there is signi�cant variation in performance across di�erent speci�cation points
(as much as 5.51× in SP), proving the importance of optimized resource speci�cations. In some
applications (e.g., BTR, SLA), few points perform well, and these points are signi�cantly better than
others, suggesting that it would be challenging for a programmer to locate these high performing
speci�cations and obtain the best performance. Many workloads (e.g., BH, DCT, MST ) also have
higher concentrations of speci�cations with suboptimal performance in comparison to the best
performing point, implying that, without e�ort, it is likely that the programmer will end up with
a resource speci�cation that leads to low performance.

There are several sources for this performance variation. One important source is the loss in
thread-level parallelism as a result of a suboptimal resource speci�cation. Suboptimal speci�cations
that are not tailored to �t the available physical resources lead to the underutilization of resources.
This causes a drop in the number of threads that can be executed concurrently, as there are
insu�cient resources to support their execution. Hence, better and more balanced utilization of
resources enables higher thread-level parallelism. Often, this loss in parallelism from resource
underutilization manifests itself in what we refer to as a performance cli�, where a small deviation
from an optimized speci�cation can lead to signi�cantly worse performance, i.e., there is very
high variation in performance between two speci�cation points that are nearby. To demonstrate
the existence and analyze the behavior of performance cli�s, we examine two representative
workloads more closely.

Figure 25a shows (i) how the application execution time changes; and (ii) how the corresponding
number of registers, statically used, changes when the number of threads per thread block increases
from 32 to 1024 threads, for Minimum Spanning Tree (MST) [52]. We make two observations.
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Figure 25: Performance cli�s in Minimum Spanning Tree (MST).

First, let us focus on the execution time between 480 and 1024 threads per block. As we go from
480 to 640 threads per block, execution time gradually decreases. Within this window, the GPU
can support two thread blocks running concurrently for MST. The execution time falls because
the increase in the number of threads per block improves the overall throughput (the number of
thread blocks running concurrently remains constant at two, but each thread block does more
work in parallel by having more threads per block). However, the corresponding total number of
registers used by the blocks also increases. At 640 threads per block, we reach the point where
the total number of available registers is not large enough to support two blocks. As a result, the
number of blocks executing in parallel drops from two to one, resulting in a signi�cant increase
(50%) in execution time, i.e., the performance cli�.6 We see many of these cli�s earlier in the graph
as well, albeit not as drastic as the one at 640 threads per block.

Second, Figure 25a shows the existence of performance cli�s when we vary just one system
parameter—the number of threads per block. To make things more di�cult for the programmer,
other parameters (i.e., registers per thread or scratchpad memory per thread block) also need to
be decided at the same time. Figure 25b demonstrates that performance cli�s also exist when the
6Prior work [358] has studied performing resource allocation at the �ner warp granularity, as opposed to the coarser
granularity of a thread block. As we discuss in Section 1.5 and demonstrate in Section 4.5, this does not solve the
problem of performance cli�s.

67



number of registers per thread is varied from 32 to 48.7 As this �gure shows, performance cli�s
now occur at di�erent points for di�erent registers/thread curves, which makes optimizing resource
speci�cation, so as to avoid these cli�s, much harder for the programmer.
Barnes-Hut (BH) is another application that exhibits very signi�cant performance cli�s depend-

ing on the number of threads per block and registers per thread. Figure 26 plots the variation in
performance with the number of threads per block when BH is compiled for a range of register
sizes (between 24 and 48 registers per thread). We make two observations from the �gure. First,
similar to MST, we observe a signi�cant variation in performance that manifests itself in the form
of performance cli�s. Second, we observe that the points at which the performance cli�s occur
change greatly depending on the number of registers assigned to each thread during compilation.
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Figure 26: Performance cli�s in Barnes-Hut (BH).

We conclude that performance cli�s are pervasive across GPU programs, and occur due to
fundamental limitations of existing GPU hardware resource managers, where resource man-
agement is static, coarse-grained, and tightly coupled to the application resource speci�cation.
Avoiding performance cli�s by determining more optimal resource speci�cations is a challenging
task, because the occurrence of these cli�s depends on several factors, including the application
characteristics, input data, and the underlying hardware resources.

4.2.2 Portability

As we show in Section 4.2.1, tuning GPU applications to achieve good performance on a given
GPU is already a challenging task. To make things worse, even after this tuning is done by
the programmer for one particular GPU architecture, it has to be redone for every new GPU
generation (due to changes in the available physical resources across generations) to ensure
that good performance is retained. We demonstrate this portability problem by running sweeps
of the three parameters of the resource speci�cation on various workloads, on three real GPU
generations: Fermi (GTX 480), Kepler (GTX 760), and Maxwell (GTX 745).
7We note that the register usage reported by the compiler may vary from the actual runtime register usage [247],
hence slightly altering the points at which cli�s occur.
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Figure 27: Performance variation across di�erent GPU generations (Fermi, Kepler, and
Maxwell) for MST, DCT, and BH.

Figure 27 shows how the optimized performance points change between di�erent GPU gen-
erations for two representative applications (MST and DCT ). For every generation, results are
normalized to the lowest execution time for that particular generation. As we can see in Fig-
ure 27a, the best performing points for di�erent generations occur at di�erent speci�cations
because the application behavior changes with the variation in hardware resources. For MST,
the Maxwell architecture performs best at 64 threads per block. However, the same speci�cation
point is not e�cient for either of the other generations (Fermi and Kepler), producing 15% and
30% lower performance, respectively, compared to the best speci�cation for each generation. For
DCT (shown in Figure 27b), both Kepler and Maxwell perform best at 128 threads per block, but
using the same speci�cation for Fermi would lead to a 69% performance loss. Similarly, for BH
(Figure 27c), the optimal point for Fermi architecture is at 96 threads per block. However, using
the same con�guration for the two later GPU architectures – Kepler and Maxwell could lead to
very suboptimal performance results. Using the same con�guration results in as much as a 34%
performance loss on Kepler, and a 36% performance loss on Maxwell.

We conclude that the tight coupling between the programming model and the underlying
resource management in hardware imposes a signi�cant challenge in performance portability. To
avoid suboptimal performance, an application has to be retuned by the programmer to �nd an
optimized resource speci�cation for each GPU generation.
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4.2.3 Dynamic Resource Underutilization

Even when a GPU application is perfectly tuned for a particular GPU architecture, the on-chip
resources are typically not fully utilized [29,30,108–110,148,187,254,283,340,370]. For example, it
is well known that while the compiler conservatively allocates registers to hold the maximum
number of live values throughout the execution, the number of live values at any given time
is well below the maximum for large portions of application execution time. To determine the
magnitude of this dynamic underutilization,8 we conduct an experiment where we measure the
dynamic usage (per epoch) of both scratchpad memory and registers for di�erent applications
with optimized speci�cations in our workload pool.
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Figure 28: Dynamic resource utilization for di�erent length epochs.

We vary the length of epochs from 500 to 4000 cycles. Figure 28 shows the results of this
experiment for (i) scratchpad memory (Figure 28a) and (ii) on-chip registers (Figure 28b). We
make two major observations from these �gures.

First, for relatively small epochs (e.g., 500 cycles), the average utilization of resources is very
low (12% for scratchpad memory and 37% for registers). Even for the largest epoch size that we
8 Underutilization of registers occurs in two major forms—static, where registers are unallocated throughout execu-
tion [29,30,107,110,187,283,340,358], and dynamic, where utilization of the registers drops during runtime as a result
of early completion of warps [358], short register lifetimes [108, 109, 148] and long-latency operations [108, 109]. We
do not tackle underutilization from long-latency operations (such as memory accesses) in this work, and leave the
exploration of alleviating this type of underutilization to future work.
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analyze (4000 cycles), the utilization of scratchpad memory is still less than 50%, and the utilization
of registers is less than 70%. This observation clearly suggests that there is an opportunity for a
better dynamic allocation of these resources that could allow higher e�ective GPU parallelism.

Second, there are several noticeable applications, e.g., cutcp, hw, tpacf, where utilization of the
scratchpad memory is always lower than 15%. This dramatic underutilization due to static resource
allocation can lead to signi�cant loss in potential performance bene�ts for these applications.

In summary, we conclude that existing static on-chip resource allocation in GPUs can lead to
signi�cant resource underutilization that can lead to suboptimal performance and energy waste.

4.2.4 Our Goal

As we see above, the tight coupling between the resource speci�cation and hardware resource
allocation, and the resulting heavy dependence of performance on the resource speci�cation,
creates a number of challenges. In this work, our goal is to alleviate these challenges by providing
a mechanism that can (i) ease the burden on the programmer by ensuring reasonable performance,
regardless of the resource speci�cation, by successfully avoiding performance cli�s, while retaining
performance for code with optimized speci�cation; (ii) enhance portability by minimizing the
variation in performance for optimized speci�cations across di�erent GPU generations; and
(iii) maximize dynamic resource utilization even in highly optimized code to further improve
performance. We make two key observations from our studies above to help us achieve this goal.
Observation 1: Bottleneck Resources. We �nd that performance cli�s occur when the amount of

any resource required by an application exceeds the physically available amount of that resource.
This resource becomes a bottleneck, and limits the amount of parallelism that the GPU can
support. If it were possible to provide the application with a small additional amount of the
bottleneck resource, the application can see a signi�cant increase in parallelism and thus avoid
the performance cli�.
Observation 2: Underutilized Resources. As discussed in Section 4.2.3, there is signi�cant

underutilization of resources at runtime. These underutilized resources could be employed to
support more parallelism at runtime, and thereby alleviate the aforementioned challenges.

We use these two observations to drive our resource virtualization solution, which we describe
next.

4.3 Our Approach: Decoupling the Programming Model
from Resource Management

In this work, we design Zorua, a framework that provides the illusion of more GPU resources
than physically available by decoupling the resource speci�cation from its allocation in the
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hardware resources. We introduce a new level of indirection by virtualizing the on-chip resources
to allow the hardware to manage resources transparently to the programmer.

The virtualization provided by Zorua builds upon two key concepts to leverage the aforemen-
tioned observations. First, when there are insu�cient physical resources, we aim to provide
the illusion of the required amount by oversubscribing the required resource. We perform this
oversubscription by leveraging the dynamic underutilization as much as possible, or by spilling to
a swap space in memory. This oversubscription essentially enables the illusion of more resources
than what is available (physically and statically), and supports the concurrent execution of more
threads. Performance cli�s are mitigated by providing enough additional resources to avoid drastic
drops in parallelism. Second, to enable e�cient oversubscription by leveraging underutilization,
we dynamically allocate and deallocate physical resources depending on the requirements of the
application during execution. We manage the virtualization of each resource independently of
other resources to maximize its runtime utilization.

Figure 29 depicts the high-level overview of the virtualization provided by Zorua. The virtual
space refers to the illusion of the quantity of available resources. The physical space refers to the
actual hardware resources (speci�c to the GPU architecture), and the swap space refers to the
resources that do not �t in the physical space and hence are spilled to other physical locations.
For the register �le and scratchpad memory, the swap space is mapped to global memory space in
the memory hierarchy. For threads, only those that are mapped to the physical space are available
for scheduling and execution at any given time. If a thread is mapped to the swap space, its state
(i.e., the PC and the SIMT stack) is saved in memory. Resources in the virtual space can be freely
re-mapped between the physical and swap spaces to maintain the illusion of the virtual space
resources.

Threads Registers Scratchpad

Virtual Space

Swap Space Physical Space

ThreadsThreads
Scheduler

Compute 
Units

Registers

Scratchpad

Registers

Scratchpad

Figure 29: High-level overview of Zorua.

In the baseline architecture, the thread-level parallelism that can be supported, and hence
the throughput obtained from the GPU, depends on the quantity of physical resources. With the
virtualization enabled by Zorua, the parallelism that can be supported now depends on the quantity
of virtual resources (and how their mapping into the physical and swap spaces is managed). Hence,
the size of the virtual space for each resource plays the key role of determining the parallelism

72



that can be exploited. Increasing the virtual space size enables higher parallelism, but leads to
higher swap space usage. It is critical to minimize accesses to the swap space to avoid the latency
overhead and capacity/bandwidth contention associated with accessing the memory hierarchy.

In light of this, there are two key challenges that need to be addressed to e�ectively virtualize
on-chip resources in GPUs. We now discuss these challenges and provide an overview of how we
address them.

4.3.1 Challenges in Virtualization

Challenge 1: Controlling the Extent of Oversubscription. A key challenge is to determine the
extent of oversubscription, or the size of the virtual space for each resource. As discussed above,
increasing the size of the virtual space enables more parallelism. Unfortunately, it could also result
in more spilling of resources to the swap space. Finding the tradeo� between more parallelism
and less overhead is challenging, because the dynamic resource requirements of each thread
tend to signi�cantly �uctuate throughout execution. As a result, the size of the virtual space for
each resource needs to be continuously tuned to allow the virtualization to adapt to the runtime
requirements of the program.
Challenge 2: Control and Coordination of Multiple Resources. Another critical challenge is to

e�ciently map the continuously varying virtual resource space to the physical and swap spaces.
This is important for two reasons. First, it is critical to minimize accesses to the swap space.
Accessing the swap space for the register �le or scratchpad involves expensive accesses to global
memory, due to the added latency and contention. Also, only those threads that are mapped to
the physical space are available to the warp scheduler for selection. Second, each thread requires
multiple resources for execution. It is critical to coordinate the allocation and mapping of these
di�erent resources to ensure that an executing thread has all the required resources allocated to
it, while minimizing accesses to the swap space. Thus, an e�ective virtualization framework must
coordinate the allocation of multiple on-chip resources.

4.3.2 Key Ideas of Our Design

To solve these challenges, Zorua employs two key ideas. First, we leverage the software (the
compiler) to provide annotations with information regarding the resource requirements of each
phase of the application. This information enables the framework to make intelligent dynamic
decisions, with respect to both the size of the virtual space and the allocation/deallocation of
resources (Section 4.3.2).

Second, we use an adaptive runtime system to control the allocation of resources in the virtual
space and their mapping to the physical/swap spaces. This allows us to (i) dynamically alter the size
of the virtual space to change the extent of oversubscription; and (ii) continuously coordinate the
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allocation of multiple on-chip resources and the mapping between their virtual and physical/swap
spaces, depending on the varying runtime requirements of each thread (Section 4.3.2).
Leveraging Software Annotations of Phase Characteristics. We observe that the runtime

variation in resource requirements (Section 4.2.3) typically occurs at the granularity of phases
of a few tens of instructions. This variation occurs because di�erent parts of kernels perform
di�erent operations that require di�erent resources. For example, loops that primarily load/store
data from/to scratchpad memory tend to be less register heavy. Sections of code that perform
speci�c computations (e.g., matrix transformation, graph manipulation), can either be register
heavy or primarily operate out of scratchpad. Often, scratchpad memory is used for only short
intervals [370], e.g., when data exchange between threads is required, such as for a reduction
operation.

Figure 30 depicts a few example phases from the NQU (N-Queens Solver) [269] kernel. NQU
is a scratchpad-heavy application, but it does not use the scratchpad at all during the initial
computation phase. During its second phase, it performs its primary computation out of the
scratchpad, using as much as 4224B. During its last phase, the scratchpad is used only for reducing
results, which requires only 384B. There is also signi�cant variation in the maximum number of
live registers in the di�erent phases.

__global__ void solve_nqueen_cuda_kernel(…){

.phasechange 16,0;----------------------------------------------------

// initialization phase

const int tid = threadIdx.x;

const int bid = blockIdx.x;

... 

.phasechange 24,4224;-------------------------------------------------

if(idx < total_conditions) {

mask[tid][i] = total_masks[idx];

... 

}

__syncthreads();

.phasechange 12,384;--------------------------------------------------

// reduction phase

if(tid < 64 && tid + 64 < BLOCK_SIZE) 

{ sum[tid] += sum[tid + 64]; } 

...

}

Phase #1: 16 Regs, 0B Scratchpad

Phase #2: 24 Regs, 4224B Scratchpad

Phase #3: 12 Regs, 
384B Scratchpad

Figure 30: Example phases from NQU.

Another example of phase variation from the DCT (Discrete Fourier Transform) kernel is depicted
in Figure 31. DCT is both register and scratchpad-intensive. The scratchpad memory usage does
not vary in this kernel. However, the register usage signi�cantly varies – the register usage
increases by 2X in the second and third phase in comparison with the �rst and fourth phase.

In order to capture both the resource requirements as well as their variation over time, we
partition the program into a number of phases. A phase is a sequence of instructions with
su�ciently di�erent resource requirements than adjacent phases. Barrier or fence operations also
indicate a change in requirements for a di�erent reason—threads that are waiting at a barrier do
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__global__ void CUDAkernel2DCT(float *dst, float *src, int I){ 

 .phasechange 16,1152;--------------------------------------------------- 

 int OffsThreadInRow = threadIdx.y * B + threadIdx.x; 

 ... 

 ... 

 for(unsigned int i = 0; i < B; i++) 

          bl_ptr[i * X] = src[i * I]; 

 __syncthreads(); 

  .phasechange 32,1152;--------------------------------------------------- 

 

 CUDAsubroutineInplaceDCTvector(…); 

 __syncthreads(); 

  .phasechange 32,1152;--------------------------------------------------- 

 

 CUDAsubroutineInplaceDCTvector(…); 

 

  .phasechange 16,1152;--------------------------------------------------- 

 for(unsigned int i = 0; i < B; i++) 

          dst[i *I] = bl_ptr[i * X]; 

} 

 

Phase #2: 32 Regs, 1152B Scratchpad 

Phase #1: 16 Regs, 1152B Scratchpad 

Phase #3: 32 Regs, 1152B Scratchpad 

Phase #4: 16 Regs, 1152B Scratchpad 

Figure 31: Example phases from DCT

not immediately require the thread slot that they are holding. We interpret barriers and fences as
phase boundaries since they potentially alter the utilization of their thread slots. The compiler
inserts special instructions called phase speci�ers to mark the start of a new phase. Each phase
speci�er contains information regarding the resource requirements of the next phase. Section 4.4.7
provides more detail on the semantics of phases and phase speci�ers.

A phase forms the basic unit for resource allocation and de-allocation, as well as for making
oversubscription decisions. It o�ers a �ner granularity than an entire thread to make such decisions.
The phase speci�ers provide information on the future resource usage of the thread at a phase
boundary. This enables (i) preemptively controlling the extent of oversubscription at runtime, and
(ii) dynamically allocating and deallocating resources at phase boundaries to maximize utilization
of the physical resources.
Control with an Adaptive Runtime System. Phase speci�ers provide information to make

oversubscription and allocation/deallocation decisions. However, we still need a way to make
decisions on the extent of oversubscription and appropriately allocate resources at runtime. To
this end, we use an adaptive runtime system, which we refer to as the coordinator. Figure 32
presents an overview of the coordinator.

The virtual space enables the illusion of a larger amount of each of the resources than what is
physically available, to adapt to di�erent application requirements. This illusion enables higher
thread-level parallelism than what can be achieved with solely the �xed, physically available
resources, by allowing more threads to execute concurrently. The size of the virtual space at a
given time determines this parallelism, and those threads that are e�ectively executed in parallel
are referred to as active threads. All active threads have thread slots allocated to them in the virtual
space (and hence can be executed), but some of them may not be mapped to the physical space at
a given time. As discussed previously, the resource requirements of each application continuously
change during execution. To adapt to these runtime changes, the coordinator leverages information
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Figure 32: Overview of the coordinator.

from the phase speci�ers to make decisions on oversubscription. The coordinator makes these
decisions at every phase boundary and thereby controls the size of the virtual space for each
resource (see Section 4.4.2).

To enforce the determined extent of oversubscription, the coordinator allocates all the required
resources (in the virtual space) for only a subset of threads from the active threads. Only these
dynamically selected threads, referred to as schedulable threads, are available to the warp scheduler
and compute units for execution. The coordinator, hence, dynamically partitions the active threads
into schedulable threads and the pending threads. Each thread is swapped between schedulable
and pending states, depending on the availability of resources in the virtual space. Selecting only
a subset of threads to execute at any time ensures that the determined size of the virtual space
is not exceeded for any resource, and helps coordinate the allocation and mapping of multiple
on-chip resources to minimize expensive data transfers between the physical and swap spaces
(discussed in Section 4.4).

4.3.3 Overview of Zorua

In summary, to e�ectively address the challenges in virtualization by leveraging the above ideas
in design, Zorua employs a software-hardware codesign that comprises three components: (i) The
compiler annotates the program by adding special instructions (phase speci�ers) to partition it
into phases and to specify the resource needs of each phase of the application. (ii) The coordina-
tor , a hardware-based adaptive runtime system, uses the compiler annotations to dynamically
allocate/deallocate resources for each thread at phase boundaries. The coordinator plays the
key role of continuously controlling the extent of the oversubscription (and hence the size of
the virtual space) at each phase boundary. (iii) Hardware virtualization support includes a
mapping table for each resource to locate each virtual resource in either the physical space or
the swap space in main memory, and the machinery to swap resources between the physical and
swap spaces.
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Figure 33: Overview of Zorua in hardware.

4.4 Zorua: Detailed Mechanism
We now detail the operation and implementation of the various components of the Zorua

framework.

4.4.1 Key Components in Hardware

Zorua has two key hardware components: (i) the coordinator that contains queues to bu�er the
pending threads and control logic to make oversubscription and resource management decisions,
and (ii) resource mapping tables to map each of the resources to their corresponding physical or
swap spaces.

Figure 33 presents an overview of the hardware components that are added to each SM. The
coordinator interfaces with the thread block scheduler (¶) to schedule new blocks onto an SM.
It also interfaces with the warp schedulers by providing a list of schedulable warps (¼).9 The
resource mapping tables are accessible by the coordinator and the compute units. We present a
detailed walkthrough of the operation of Zorua and then discuss its individual components in
more detail.

4.4.2 Detailed Walkthrough

The coordinator is called into action by three events: (i) a new thread block is scheduled at the
SM for execution, (ii) a warp undergoes a phase change, or (iii) a warp or a thread block reaches
the end of execution. Between these events, the coordinator performs no action and execution
proceeds as usual. We now walk through the sequence of actions performed by the coordinator
for each type of event.
Thread Block: Execution Start. When a thread block is scheduled onto an SM for execution

9We use an additional bit in each warp slots to indicate to the scheduler whether the warp is schedulable.
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(¶), the coordinator �rst bu�ers it. The primary decision that the coordinator makes is to determine
whether or not to make each thread available to the scheduler for execution. The granularity at
which the coordinator makes decisions is that of a warp, as threads are scheduled for execution at
the granularity of a warp (hence we use thread slot and warp slot interchangeably). Each warp
requires three resources: a thread slot, registers, and potentially scratchpad. The amount of
resources required is determined by the phase speci�er (Section 4.4.7) at the start of execution,
which is placed by the compiler into the code. The coordinator must supply each warp with all its
required resources in either the physical or swap space before presenting it to the warp scheduler
for execution.

To ensure that each warp is furnished with its resources and to coordinate potential oversub-
scription for each resource, the coordinator has three queues—thread/barrier, scratchpad, and
register queues. The three queues together essentially house the pending threads. Each warp must
traverse each queue (· ¸ ¹), as described next, before becoming eligible to be scheduled for
execution. The coordinator allows a warp to traverse a queue when (a) it has enough of the
corresponding resource available in the physical space, or (b) it has an insu�cient resources in the
physical space, but has decided to oversubscribe and allocate the resource in the swap space. The
total size of the resource allocated in the physical and swap spaces cannot exceed the determined
virtual space size. The coordinator determines the availability of resources in the physical space
using the mapping tables (see Section 4.4.5). If there is an insu�cient amount of a resource
in the physical space, the coordinator needs to decide whether or not to increase the virtual
space size for that particular resource by oversubscribing and using swap space. We describe the
decision algorithm in Section 4.4.4. If the warp cannot traverse all queues, it is left waiting in
the �rst (thread/barrier) queue until the next coordinator event. Once a warp has traversed all
the queues, the coordinator acquires all the resources required for the warp’s execution (º). The
corresponding mapping tables for each resource is updated (») to assign resources to the warp, as
described in Section 4.4.5.
Warp: Phase Change. At each phase change (½), the warp is removed from the list of

schedulable warps and is returned to the coordinator to acquire/release its resources. Based on
the information in its phase speci�er, the coordinator releases the resources that are no longer live
and hence are no longer required (¾). The coordinator updates the mapping tables to free these
resources (¿). The warp is then placed into a speci�c queue, depending on which live resources it
retained from the previous phase and which new resources it requires. The warp then attempts
to traverse the remaining queues (· ¸ ¹), as described above. A warp that undergoes a phase
change as a result of a barrier instruction is queued in the thread/barrier queue (·) until all warps
in the same thread block reach the barrier.
Thread Block/Warp: Execution End. When a warp completes execution, it is returned to
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the coordinator to release any resources it is holding. Scratchpad is released only when the entire
thread block completes execution. When the coordinator has free warp slots for a new thread
block, it requests the thread block scheduler (¶) for a new block.
Every Coordinator Event. At any event, the coordinator attempts to �nd resources for warps

waiting at the queues, to enable them to execute. Each warp in each queue (starting from the
register queue) is checked for the availability of the required resources. If the coordinator is able to
allocate resources in the physical or swap space without exceeding the determined size of virtual
space, the warp is allowed to traverse the queue.

4.4.3 Benefits of Our Design

Decoupling the Warp Scheduler and Mapping Tables from the Coordinator. Decou-
pling the warp scheduler from the coordinator enables Zorua to use any scheduling algorithm
over the schedulable warps to enhance performance. One case when this is useful is when in-
creasing parallelism degrades performance by increasing cache miss rate or causing memory
contention [166, 167, 277]. Our decoupled design allows this challenge to be addressed indepen-
dently from the coordinator using more intelligent scheduling algorithms [26, 167, 241, 277] and
cache management schemes [26, 199, 200, 361]. Furthermore, decoupling the mapping tables from
the coordinator allows easy integration of any implementation of the mapping tables that may
improve e�ciency for each resource.
Coordinating Oversubscription for Multiple Resources. The queues help ensure that a

warp is allocated all resources in the virtual space before execution. They (i) ensure an ordering
in resource allocation to avoid deadlocks, and (ii) enforce priorities between resources. In our
evaluated approach, we use the following order of priorities: threads, scratchpad, and registers.
We prioritize scratchpad over registers, as scratchpad is shared by all warps in a block and hence
has a higher value by enabling more warps to execute. We prioritize threads over scratchpad,
as it is wasteful to allow warps stalled at a barrier to acquire other resources—other warps that
are still progressing towards the barrier may be starved of the resource they need. Furthermore,
managing each resource independently allows di�erent oversubscription policies for each resource
and enables �ne-grained control over the size of the virtual space for that resource.
Flexible Oversubscription. Zorua’s design can �exibly enable/disable swap space usage, as

the dynamic �ne-grained management of resources is independent of the swap space. Hence,
in cases where the application is well-tuned to utilize the available resources, swap space usage
can be disabled or minimized, and Zorua can still improve performance by reducing dynamic
underutilization of resources. Furthermore, di�erent oversubscription algorithms can be �exibly
employed to manage the size of the virtual space for each resource (independently or cooperatively).
These algorithms can be designed for di�erent purposes, e.g., minimizing swap space usage,
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improving fairness in a multikernel setting, reducing energy, etc. In Section 4.4.4, we describe
an example algorithm to improve performance by making a good tradeo� between improving
parallelism and reducing swap space usage.
Avoiding Deadlocks. A resource allocation deadlock could happen if resources are distributed

among too many threads, such that no single thread is able to obtain enough necessary resources
for execution. Allocating resources using multiple ordered queues helps avoid deadlocks in
resource allocation in three ways. First, new resources are allocated to a warp only once the warp
has traversed all of the queues. This ensures that resources are not wastefully allocated to warps
that will be stalled anyway. Second, a warp is allocated resources based on how many resources it
already has, i.e. how many queues it has already traversed. Warps that already hold multiple live
resources are prioritized in allocating new resources over warps that do not hold any resources.
Finally, if there are insu�cient resources to maintain a minimal level of parallelism (e.g., 20% of
SM occupancy in our evaluation), the coordinator handles this rare case by simply oversubscribing
resources to ensure that there is no deadlock in allocation.
Managing More Resources. Our design also allows �exibly adding more resources to be

managed by the virtualization framework, for example, thread block slots. Virtualizing a new
resource with Zorua simply requires adding a new queue to the coordinator and a new mapping
table to manage the virtual to physical mapping.

4.4.4 Oversubscription Decisions

Leveraging Phase Speci�ers. Zorua leverages the information provided by phase speci�ers
(Section 4.4.7) to make oversubscription decisions for each phase. For each resource, the coordi-
nator checks whether allocating the requested quantity according to the phase speci�er would
cause the total swap space to exceed an oversubscription threshold, or o_thresh. This threshold
essentially dynamically sets the size of the virtual space for each resource. The coordinator allows
oversubscription for each resource only within its threshold. o_thresh is dynamically determined
to adapt to the characteristics of the workload, and tp ensure good performance by achieving a
good tradeo� between the overhead of oversubscription and the bene�ts gained from parallelism.
Determining the Oversubscription Threshold. In order to make the above tradeo�, we

use two architectural statistics: (i) idle time at the cores, c_idle, as an indicator for potential
performance bene�ts from parallelism; and (ii) memory idle time (the idle cycles when all threads
are stalled waiting for data from memory or the memory pipeline), c_mem, as an indicator
of a saturated memory subsystem that is unlikely to bene�t from more parallelism.10 We use
Algorithm 3 to determine o_thresh at runtime. Every epoch, the change in c_mem is compared with
10This is similar to the approach taken by prior work [166] to estimate the performance bene�ts of increasing

parallelism.
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the change in c_idle. If the increase in c_mem is greater, this indicates an increase in pressure on
the memory subsystem, suggesting both lesser bene�t from parallelism and higher overhead from
oversubscription. In this case, we reduce o_thresh. On the other hand, if the increase in c_idle is
higher, this is indicative of more idleness in the pipelines, and higher potential performance from
parallelism and oversubscription. We increase o_thresh in this case, to allow more oversubscription
and enable more parallelism. Table 5 describes the variables used in Algorithm 3.

Algorithm 3 Determining the oversubscription threshold
1: o_thresh = o_default . Initialize threshold
2: for each epoch do
3: c_idle_delta = (c_idle − c_idle_prev) . Determine the change in c_idle and c_mem from

the previous epoch
4: c_mem_delta = (c_mem − c_mem_prev)
5: if (c_idle_delta − c_mem_delta) > c_delta_thresh then . Indicates more idleness and

potential for bene�ts from parallelism
6: o_thresh += o_thresh_step
7: end if
8: if (c_mem_delta − c_idle_delta) > c_delta_thresh then . Tra�c in memory is likely to

outweigh any parallelism bene�t
9: o_thresh −= o_thresh_step

10: end if
11: end for

4.4.5 Virtualizing On-chip Resources

A resource can be in either the physical space, in which case it is mapped to the physical
on-chip resource, or the swap space, in which case it can be found in the memory hierarchy.
Thus, a resource is e�ectively virtualized, and we need to track the mapping between the virtual
and physical/swap spaces. We use a mapping table for each resource to determine (i) whether
the resource is in the physical or swap space, and (ii) the location of the resource within the
physical on-chip hardware. The compute units access these mapping tables before accessing the
real resources. An access to a resource that is mapped to the swap space is converted to a global
memory access that is addressed by the logical resource ID and warp/block ID (and a base register
for the swap space of the resource). In addition to the mapping tables, we use two registers per
resource to track the amount of the resource that is (i) free to be used in physical space, and (ii)
mapped in swap space. These two counters enable the coordinator to make oversubscription
decisions (Section 4.4.4). We now go into more detail on virtualized resources in Zorua.11

11Our implementation of a virtualized resource aims to minimize complexity. This implementation is largely orthogonal
to the framework itself, and one can envision other implementations (e.g., [148, 370, 373]) for di�erent resources.
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Variable Description

o_thresh oversubscription threshold (dynamically determined)
o_default initial value for o_thresh , (experimentally determined

to be 10% of total physical resource)
c_idle core cycles when no threads are issued to the core

(but the pipeline is not stalled) [166]
c_mem core cycles when all warps are waiting for data

from memory or stalled at the memory pipeline
*_prev the above statistics for the previous epoch
c_delta_thresh threshold to produce change in o_thresh

(experimentally determined to be 16)
o_thresh_step increment/decrement to o_thresh , experimentally

determined to be 4% of the total physical resource
epoch interval in core cycles to change o_thresh

(experimentally determined to be 2048)

Table 5: Variables for oversubscription

Virtualizing Registers and ScratchpadMemory. In order to minimize the overhead of large
mapping tables, we map registers and scratchpad at the granularity of a set. The size of a set is
con�gurable by the architect—we use 4*warp_size12 for the register mapping table, and 1KB for
scratchpad. Figure 34 depicts the tables for the registers and scratchpad. The register mapping
table is indexed by the warp ID and the logical register set number (logical_register_number / regis-
ter_set_size). The scratchpad mapping table is indexed by the block ID and the logical scratchpad
set number (logical_scratchpad_address / scratchpad_set_size). Each entry in the mapping table
contains the physical address of the register/scratchpad content in the physical register �le or
scratchpad. The valid bit indicates whether the logical entry is mapped to the physical space or
the swap space. With 64 logical warps and 16 logical thread blocks, the register mapping table
takes 1.125 KB (64×16×9 bits, or 0.87% of the register �le) and the scratchpad mapping table
takes 672 B (16×48×7 bits, or 1.3% of the scratchpad).
Virtualizing Thread Slots. Each SM is provisioned with a �xed number of warp slots, which

determine the number of warps that are considered for execution every cycle by the warp scheduler.
In order to oversubscribe warp slots, we need to save the state of each warp in memory before
remapping the physical slot to another warp. This state includes the bookkeeping required for
execution, i.e., the warp’s PC (program counter) and the SIMT stack, which holds divergence
information for each executing warp. The thread slot mapping table records whether each warp is
12We track registers at the granularity of a warp.
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Figure 34: Mapping Tables

mapped to a physical slot or swap space. The table is indexed by the logical warp ID, and stores
the address of the physical warp slot that contains the warp. In our baseline design with 64 logical
warps, this mapping table takes 56 B (64×7 bits).

4.4.6 Handling Resource Spills

If the coordinator has oversubscribed any resource, it is possible that the resource can be found
either (i) on-chip (in the physical space) or (ii) in the swap space in the memory hierarchy. As
described above, the location of any virtual resource is determined by the mapping table for each
resource. If the resource is found on-chip, the mapping table provides the physical location in
the register �le and scratchpad memory. If the resource is in the swap space, the access to that
resource is converted to a global memory load that is addressed either by the (i) thread block ID
and logical register/scratchpad set, in the case of registers or scratchpad memory; or (ii) logical
warp ID, in the case of warp slots. The oversubscribed resource is typically found in the L1/L2
cache but in the worst case, could be in memory. When the coordinator chooses to oversubscribe
any resource beyond what is available on-chip, the least frequently accessed resource set is spilled
to the memory hierarchy using a simple store operation.

4.4.7 Supporting Phases and Phase Specifiers

Identifying phases. The compiler partitions each application into phases based on the liveness
of registers and scratchpad memory. To avoid changing phases too often, the compiler uses
thresholds to determine phase boundaries. In our evaluation, we de�ne a new phase boundary
when there is (i) a 25% change in the number of live registers or live scratchpad content, and (ii)
a minimum of 10 instructions since the last phase boundary. To simplify hardware design, the
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compiler draws phase boundaries only where there is no control divergence.13

Once the compiler partitions the application into phases, it inserts instructions—phase speci-
�ers—to specify the beginning of each new phase and convey information to the framework on the
number of registers and scratchpad memory required for each phase. As described in Section 4.3.2,
a barrier or a fence instruction also implies a phase change, but the compiler does not insert a
phase speci�er for it as the resource requirement does not change.
Phase Speci�ers. The phase speci�er instruction contains �elds to specify (i) the number

of live registers and (ii) the amount of scratchpad memory in bytes, both for the next phase.
Figure 35 describes the �elds in the phase speci�er instruction. The instruction decoder sends this
information to the coordinator along with the phase change event. The coordinator keeps this
information in the corresponding warp slot.

Opcode # Live Regs # Live Scratchpad  

10 bits 6 bits 10 bits 

Figure 35: Phase Specifier

4.4.8 Role of the Compiler and Programmer

The compiler plays an important role, annotating the code with phase speci�ers to convey
information to the coordinator regarding the resource requirements of each phase. The compiler,
however, does not alter the size of each thread block or the scratchpad memory usage of the
program. The resource speci�cation provided by the programmer (either manually or via auto-
tuners) is retained to guarantee correctness. For registers, the compiler follows the default policy
or uses directives as speci�ed by the user. One could envision more powerful, e�cient resource
allocation with a programming model that does not require any resource speci�cation and/or
compiler policies/auto-tuners that are cognizant of the virtualized resources.

4.4.9 Implications to the Programming Model and So�ware Optimiza-
tion

Zorua o�ers several new opportunities and implications in enhancing the programming model
and software optimizations (via libraries, autotuners, optimizing compilers, etc.) which we brie�y
describe below. We leave these ideas for exploration in future work.
Flexible programming models for GPUs and heterogeneous systems. State-of-the-art

high-level programming languages and models still assume a �xed amount of on-chip resources
and hence, with the help of the compiler or the runtime system, are required to �nd static resource
13The phase boundaries for the applications in our pool easily �t this restriction, but the framework can be extended

to support control divergence if needed.
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speci�cations to �t the application to the desired GPU. Zorua, by itself, also still requires the
programmer to specify resource speci�cations to ensure correctness—albeit they are not required
to be highly optimized for a given architecture. However, by providing a �exible but dynamically-
controlled view of the on-chip hardware resources, Zorua changes the abstraction of the on-chip
resources that is o�ered to the programmer and software. This o�ers the opportunity to rethink
resource management in GPUs from the ground up. One could envision more powerful resource
allocation and better programmability with programming models that do not require static resource
speci�cation, leaving the compiler/runtime system and the underlying virtualized framework to
completely handle all forms of on-chip resource allocation, unconstrained by the �xed physical
resources in a speci�c GPU, entirely at runtime. This is especially signi�cant in future systems that
are likely to support a wide range of compute engines and accelerators, making it important to be
able to write high-level code that can be partitioned easily, e�ciently, and at a �ne granularity
across any accelerator, without statically tuning any code segment to run e�ciently on the GPU.
Virtualization-aware compilation and autotuning. Zorua changes the contract between

the hardware and software to provide a more powerful resource abstraction (in the software) that is
�exible and dynamic, by pushing some more functionality into the hardware, which can more easily
react to the runtime resource requirements of the running program. We can re-imagine compilers
and autotuners to be more intelligent, leveraging this new abstraction and, hence the virtualization,
to deliver more e�cient and high-performing code optimizations that are not possible with the
�xed and static abstractions of today. They could, for example, leverage the oversubscription and
dynamic management that Zorua provides to tune the code to more aggressively use resources
that are underutilized at runtime. As we demonstrate in this work, static optimizations are limited
by the �xed view of the resources that is available to the program today. Compilation frameworks
that are cognizant of the dynamic allocation/deallocation of resources provided by Zorua could
make more e�cient use of the available resources.
Reduced optimization space. Programs written for applications in machine learning, com-

puter graphics, computer vision, etc., typically follow the stream programming paradigm, where
the code is decomposed into many stages in an execution pipeline. Each stage processes only a part
of the input data in a pipelined fashion to make better use of the caches. A key challenge in writing
complex pipelined code is �nding execution schedules (i.e., how the work should be partitioned
across stages) and optimizations that perform best for each pipeline stage from a prohibitively
large space of potential solutions. This requires complex tuning algorithms or pro�ling runs that
are both computationally intensive and time-consuming. The search for optimized speci�cations
has to be done when there is a change in input data or in the underlying architecture. By pushing
some of the resource management functionality to the hardware, Zorua reduces this search space
for optimized speci�cations by making it less sensitive to the wide space of resource speci�cations.
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4.5 Evaluation
We evaluate the e�ectiveness of Zorua by studying three di�erent mechanisms: (i) Baseline, the

baseline GPU that schedules kernels and manages resources at the thread block level; (ii) WLM
(Warp Level Management), a state-of-the-art mechanism for GPUs to schedule kernels and manage
registers at the warp level [358]; and (iii) Zorua. For our evaluations, we run each application on
8–65 (36 on average) di�erent resource speci�cations (the ranges are in Table 4).

4.5.1 E�ect on Performance Variation and Cli�s

We �rst examine how Zorua alleviates the high variation in performance by reducing the impact
of resource speci�cations on resource utilization. Figure 36 presents a Tukey box plot [222] (see
Section 4.2 for a description of the presented box plot), illustrating the performance distribution
(higher is better) for each application (for all di�erent application resource speci�cations we
evaluated), normalized to the slowest Baseline operating point for that application. We make two
major observations.

Figure 36: Normalized performance distribution.

First, we �nd that Zorua signi�cantly reduces the performance range across all evaluated resource
speci�cations. Averaged across all of our applications, the worst resource speci�cation for Baseline
achieves 96.6% lower performance than the best performing resource speci�cation. For WLM [358],
this performance range reduces only slightly, to 88.3%. With Zorua, the performance range drops
signi�cantly, to 48.2%. We see drops in the performance range for all applications except SSSP.
With SSSP, the range is already small to begin with (23.8% in Baseline), and Zorua exploits the
dynamic underutilization, which improves performance but also adds a small amount of variation.

Second, while Zorua reduces the performance range, it also preserves or improves performance
of the best performing points. As we examine in more detail in Section 4.5.2, the reduction in
performance range occurs as a result of improved performance mainly at the lower end of the
distribution.
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To gain insight into how Zorua reduces the performance range and improves performance
for the worst performing points, we analyze how it reduces performance cli�s. With Zorua, we
ideally want to eliminate the cli�s we observed in Section 4.2.1. We study the tradeo� between
resource speci�cation and execution time for three representative applications: DCT (Figure 37a),
MST (Figure 37b), and NQU (Figure 37c). For all three �gures, we normalize execution time to the
best execution time under Baseline. Two observations are in order.
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Figure 37: E�ect on performance cli�s.

First, Zorua successfully mitigates the performance cli�s that occur in Baseline. For example,
DCT and MST are both sensitive to the thread block size, as shown in Figures 37a and 37b,
respectively. We have circled the locations at which cli�s exist in Baseline. Unlike Baseline,
Zorua maintains more steady execution times across the number of threads per block, employing
oversubscription to overcome the loss in parallelism due to insu�cient on-chip resources. We see
similar results across all of our applications.

Second, we observe that while WLM [358] can reduce some of the cli�s by mitigating the impact
of large block sizes, many cli�s still exist under WLM (e.g., NQU in Figure 37c). This cli� in NQU
occurs as a result of insu�cient scratchpad memory, which cannot be handled by warp-level
management. Similarly, the cli�s for MST (Figure 37b) also persist with WLM because MST has a
lot of barrier operations, and the additional warps scheduled by WLM ultimately stall, waiting
for other warps within the same block to acquire resources. We �nd that, with oversubscription,
Zorua is able to smooth out those cli�s that WLM is unable to eliminate.

Overall, we conclude that Zorua (i) reduces the performance variation across resource speci�-
cation points, so that performance depends less on the speci�cation provided by the programmer;
and (ii) can alleviate the performance cli�s experienced by GPU applications.

4.5.2 E�ect on Performance

As Figure 36 shows, Zorua either retains or improves the best performing point for each appli-
cation, compared to the Baseline. Zorua improves the best performing point for each application
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by 12.8% on average, and by as much as 27.8% (for DCT ). This improvement comes from the
improved parallelism obtained by exploiting the dynamic underutilization of resources, which
exists even for optimized speci�cations. Applications such as SP and SLA have little dynamic un-
derutilization, and hence do not show any performance improvement. NQU does have signi�cant
dynamic underutilization, but Zorua does not improve the best performing point as the overhead
of oversubscription outweighs the bene�t, and Zorua dynamically chooses not to oversubscribe.
We conclude that even for many speci�cations that are optimized to �t the hardware resources,
Zorua is able to further improve performance.

We also note that, in addition to reducing performance variation and improving performance for
optimized points, Zorua improves performance by 25.2% on average for all resource speci�cations
across all evaluated applications.

4.5.3 E�ect on Portability

As we describe in Section 4.2.2, performance cli�s often behave di�erently across di�erent GPU
architectures, and can signi�cantly shift the best performing resource speci�cation point. We
study how Zorua can ease the burden of performance tuning if an application has been already
tuned for one GPU model, and is later ported to another GPU. To understand this, we de�ne a new
metric, porting performance loss, that quanti�es the performance impact of porting an application
without re-tuning it. To calculate this, we �rst normalize the execution time of each speci�cation
point to the execution time of the best performing speci�cation point. We then pick a source GPU
architecture (i.e., the architecture that the GPU was tuned for) and a target GPU architecture (i.e.,
the architecture that the code will run on), and �nd the point-to-point drop in performance for all
points whose performance on the source GPU comes within 5% of the performance at the best
performing speci�cation point.14

Figure 38 shows the maximum porting performance loss for each application, across any two
pairings of our three simulated GPU architectures (Fermi, Kepler, and Maxwell). We �nd that
Zorua greatly reduces the maximum porting performance loss that occurs under both Baseline
and WLM for all but one of our applications. On average, the maximum porting performance loss
is 52.7% for Baseline, 51.0% for WLM, and only 23.9% for Zorua.

Notably, Zorua delivers signi�cant improvements in portability for applications that previously
su�ered greatly when ported to another GPU, such as DCT and MST. For both of these applications,
the performance variation di�ers so much between GPU architectures that, despite tuning the
application on the source GPU to be within 5% of the best achievable performance, their perfor-
mance on the target GPU is often more than twice as slow as the best achievable performance
14We include any point within 5% of the best performance as there are often multiple points close to the best point,

and the programmer may choose any of them.
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Figure 38: Maximum porting performance loss.

on the target platform. Zorua signi�cantly lowers this porting performance loss down to 28.1%
for DCT and 36.1% for MST. We also observe that for BH, Zorua actually increases the porting
performance loss slightly with respect to the Baseline. This is because for Baseline, there are only
two points that perform within the 5% margin for our metric, whereas with Zorua, we have �ve
points that fall in that range. Despite this, the increase in porting performance loss for BH is low,
deviating only 7.0% from the best performance.

To take a closer look into the portability bene�ts of Zorua, we run experiments to obtain the
performance sensitivity curves for each application using di�erent GPU architectures. Figures 39
and 40 depict the execution time curves while sweeping a single resource speci�cation for NQU
and DCT for the three evaluated GPU architectures – Fermi, Kepler, and Maxwell. We make two
major observations from the �gures.
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Figure 39: Impact on portability (NQU).
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First, Zorua signi�cantly alleviates the presence of performance cli�s and reduces the perfor-
mance variation across all three evaluated architectures, thereby reducing the impact of both
resource speci�cation and underlying architecture on the resulting performance curve. In com-
parison, WLM is unable to make a signi�cant impact on the performance variations and the cli�s
remain for all the evaluated architectures.

Second, by reducing the performance variation across all three GPU generations, Zorua signi�-
cantly reduces the porting performance loss, i.e., the loss in performance when code optimized for
one GPU generation is run on another (as highlighted within the �gures).

We conclude that Zorua enhances portability of applications by reducing the impact of a change
in the hardware resources for a given resource speci�cation. For applications that have already
been tuned on one platform, Zorua signi�cantly lowers the penalty of not re-tuning for another
platform, allowing programmers to save development time.

4.5.4 A Deeper Look: Benefits & Overheads

To take a deeper look into how Zorua is able to provide the above bene�ts, in Figure 41, we show
the number of schedulable warps (i.e., warps that are available to be scheduled by the warp scheduler
at any given time excluding warps waiting at a barrier), averaged across all of speci�cation points.
On average, Zorua increases the number of schedulable warps by 32.8%, signi�cantly more than
WLM (8.1%), which is constrained by the �xed amount of available resources. We conclude that
by oversubscribing and dynamically managing resources, Zorua is able to improve thread-level
parallelism, and hence performance.
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Figure 41: E�ect on schedulable warps.

We also �nd that the overheads due to resource swapping and contention do not signi�cantly
impact the performance of Zorua. Figure 42 depicts resource hit rates for each application, i.e.,
the fraction of all resource accesses that were found on-chip as opposed to making a potentially
expensive o�-chip access. The oversubscription mechanism (directed by the coordinator) is able
to keep resource hit rates very high, with an average hit rate of 98.9% for the register �le and
99.6% for scratchpad memory.

Figure 43 shows the average reduction in total system energy consumption of WLM and Zorua
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Figure 42: Virtual resource hit rate in Zorua

over Baseline for each application (averaged across the individual energy consumption over
Baseline for each evaluated speci�cation point). We observe that Zorua reduces the total energy
consumption across all of our applications, except for NQU (which has a small increase of 3%).
Overall, Zorua provides a mean energy reduction of 7.6%, up to 20.5% for DCT.15 We conclude
that Zorua is an energy-e�cient virtualization framework for GPUs.
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Figure 43: E�ect on energy consumption.

We estimate the die area overhead of Zorua with CACTI 6.5 [355], using the same 40nm process
node as the GTX 480 , which our system closely models. We include all the overheads from the
coordinator and the resource mapping tables (Section 4.4). The total area overhead is 0.735 mm2

for all 15 SMs, which is only 0.134% of the die area of the GTX 480.

4.6 Other Applications
By providing the illusion of more resources than physically available, Zorua provides the

opportunity to help address other important challenges in GPU computing today. We discuss
several such opportunities in this section.

4.6.1 Resource Sharing in Multi-Kernel or Multi-Programmed Environ-
ments

Executing multiple kernels or applications within the same SM can improve resource utilization
and e�ciency [27, 29, 30, 119, 156, 254, 351, 388]. Hence, providing support to enable �ne-grained
15We note that the energy consumption can be reduced further by appropriately optimizing the oversubscription

algorithm. We leave this exploration to future work.
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sharing and partitioning of resources is critical for future GPU systems. This is especially true in
environments where multiple di�erent applications may be consolidated on the same GPU, e.g. in
clouds or clusters. By providing a �exible view of each of the resources, Zorua provides a natural
way to enable dynamic and �ne-grained control over resource partitioning and allocation among
multiple kernels. Speci�cally, Zorua provides several key bene�ts for enabling better performance
and e�ciency in multi-kernel/multi-program environments. First, selecting the optimal resource
speci�cation for an application is challenging in virtualized environments (e.g., clouds), as it is
unclear which other applications may be running alongside it. Zorua can improve e�ciency in
resource utilization irrespective of the application speci�cations and of other kernels that may
be executing on the same SM. Second, Zorua manages the di�erent resources independently
and at a �ne granularity, using a dynamic runtime system (the coordinator). This enables the
maximization of resource utilization, while providing the ability to control the partitioning of
resources at runtime to provide QoS, fairness, etc., by leveraging the coordinator. Third, Zorua
enables oversubscription of the di�erent resources. This obviates the need to alter the application
speci�cations [254, 388] in order to ensure there are su�cient resources to co-schedule kernels on
the same SM, and hence enables concurrent kernel execution transparently to the programmer.

4.6.2 Preemptive Multitasking

A key challenge in enabling true multiprogramming in GPUs is enabling rapid preemption of
kernels [259, 322, 351]. Context switching on GPUs incurs a very high latency and overhead, as a
result of the large amount of register �le and scratchpad state that needs to be saved before a new
kernel can be executed. Saving state at a very coarse granularity (e.g., the entire SM state) leads to
very high preemption latencies. Prior work proposes context minimization [225, 259] or context
switching at the granularity of a thread block [351] to improve response time during preemption.
Zorua enables �ne-grained management and oversubscription of on-chip resources. It can be
naturally extended to enable quick preemption of a task via intelligent management of the swap
space and the mapping tables (complementary to approaches taken by prior work [225, 259]).

4.6.3 Support for Other Parallel Programming Paradigms

The �xed static resource allocation for each thread in modern GPU architectures requires
statically dictating the resource usage for the program throughout its execution. Other forms of
parallel execution that are dynamic (e.g., Cilk [45], staged execution [154, 155, 320]) require more
�exible allocation of resources at runtime, and are hence more challenging to enable. Examples
of this include nested parallelism [189], where a kernel can dynamically spawn new kernels or
thread blocks, and helper threads [340] to utilize idle resource at runtime to perform di�erent
optimizations or background tasks in parallel. Zorua makes it easy to enable these paradigms
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by providing on-demand dynamic allocation of resources. Irrespective of whether threads in
the programming model are created statically or dynamically, Zorua allows allocation of the
required resources on the �y to support the execution of these threads. The resources are simply
deallocated when they are no longer required. Zorua also enables heterogeneous allocation of
resources – i.e., allocating di�erent amounts of resources to di�erent threads. The current resource
allocation model, in line with a GPU’s SIMT architecture, treats all threads the same and allocates
the same amount of resources. Zorua makes it easier to support execution paradigms where each
concurrently-running thread executes di�erent code at the same time, hence requiring di�erent
resources. This includes helper threads, multiprogrammed execution, nested parallelism, etc.
Hence, with Zorua, applications are no longer limited by a GPU’s �xed SIMT model which only
supports a �xed, statically-determined number of homogeneous threads as a result of the resource
management mechanisms that exist today.

4.6.4 Energy E�iciency and Scalability

To support massive parallelism, on-chip resources are a precious and critical resource. However,
these resources cannot grow arbitrarily large as GPUs continue to be area-limited and on-chip
memory tends to be extremely power hungry and area intensive [6, 107, 109, 148, 283, 373]. Fur-
thermore, complex thread schedulers that can select a thread for execution from an increasingly
large thread pool are required in order to support an arbitrarily large number of warp slots.
Zorua enables using smaller register �les, scratchpad memory and less complex or fewer thread
schedulers to save power and area while still retaining or improving parallelism.

4.6.5 Error Tolerance and Reliability

The indirection o�ered by Zorua, along with the dynamic management of resources, could also
enable better reliability and simpler solutions towards error tolerance in the on-chip resources.
The virtualization framework trivially allows remapping resources with hard or soft faults such
that no virtual resource is mapped to a faulty physical resource. Unlike in the baseline case,
faulty resources would not impact the number of the resources seen by the thread scheduler
while scheduling threads for execution. A few unavailable faulty registers, warp slots, etc., could
signi�cantly reduce the number of the threads that are scheduled concurrently (i.e., the runtime
parallelism).

4.6.6 Support for System-Level Tasks on GPUs

As GPUs become increasingly general purpose, a key requirement is better integration with the
CPU operating system, and with complex distributed software systems such as those employed
for large-scale distributed machine learning [4, 135] or graph processing [10, 213]. If GPUs
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are architected to be �rst-class compute engines, rather than the slave devices they are today,
they can be programmed and utilized in the same manner as a modern CPU. This integration
requires the GPU execution model to support system-level tasks like interrupts, exceptions, etc.
and more generally provide support for access to distributed �le systems, disk I/O, or network
communication. Support for these tasks and execution models require dynamic provisioning of
resources for execution of system-level code. Zorua provides a building block to enable this.

4.6.7 Applicability to General Resource Management in Accelerators

Zorua uses a program phase as the granularity for managing resources. This allows handling
resources across phases dynamically, while leveraging static information regarding resource
requirements from the software by inserting annotations at phase boundaries. Future work could
potentially investigate the applicability of the same approach to manage resources and parallelism
in other accelerators (e.g., processing-in-memory accelerators [10–12, 48, 112, 123, 134, 136, 175,
176, 181, 212, 260–262, 296, 298, 300, 304, 315] or direct-memory access engines [57, 188, 299]) that
require e�cient dynamic management of large amounts of particular critical resources.

4.7 Related Work
To our knowledge, this is the �rst work to propose a holistic framework to decouple a GPU

application’s resource speci�cation from its physical on-chip resource allocation by virtualizing
multiple on-chip resources. This enables the illusion of more resources than what physically exists
to the programmer, while the hardware resources are managed at runtime by employing a swap
space (in main memory), transparently to the programmer.

We brie�y discuss prior work related to aspects speci�c to Zorua (a more general discussion is
in Section 1.5): (i) virtualization of resources, (ii) more e�cient management of on-chip resources.
Virtualization of Resources. Virtualization [79, 85, 121, 143] is a concept designed to provide

the illusion, to the software and programmer, of more resources than what truly exists in physical
hardware. It has been applied to the management of hardware resources in many di�erent
contexts [21, 40, 79, 85, 121, 143, 252, 345], with virtual memory [85, 143] being one of the oldest
forms of virtualization that is commonly used in high-performance processors today. Abstraction
of hardware resources and use of a level of indirection in their management leads to many bene�ts,
including improved utilization, programmability, portability, isolation, protection, sharing, and
oversubscription.

In this work, we apply the general principle of virtualization to the management of multiple
on-chip resources in modern GPUs. Virtualization of on-chip resources o�ers the opportunity to
alleviate many di�erent challenges in modern GPUs. However, in this context, e�ectively adding
a level of indirection introduces new challenges, necessitating the design of a new virtualization
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strategy. There are two key challenges. First, we need to dynamically determine the extent of the
virtualization to reach an e�ective tradeo� between improved parallelism due to oversubscription
and the latency/capacity overheads of swap space usage. Second, we need to coordinate the
virtualization of multiple latency-critical on-chip resources. To our knowledge, this is the �rst
work to propose a holistic software-hardware cooperative approach to virtualizing multiple on-
chip resources in a controlled and coordinated manner that addresses these challenges, enabling
the di�erent bene�ts provided by virtualization in modern GPUs.

Prior works propose to virtualize a speci�c on-chip resource for speci�c bene�ts, mostly in the
CPU context. For example, in CPUs, the concept of virtualized registers was �rst used in the IBM
360 [21] and DEC PDP-10 [40] architectures to allow logical registers to be mapped to either fast
yet expensive physical registers, or slow and cheap memory. More recent works [252, 363, 364],
propose to virtualize registers to increase the e�ective register �le size to much larger register
counts. This increases the number of thread contexts that can be supported in a multi-threaded
processor [252], or reduces register spills and �lls [363,364]. Other works propose to virtualize on-
chip resources in CPUs (e.g., [49, 77, 98, 116, 379]). In GPUs, Jeon et al. [148] propose to virtualize
the register �le by dynamically allocating and deallocating physical registers to enable more
parallelism with smaller, more power-e�cient physical register �les. Concurrent to this work,
Yoon et al. [373] propose an approach to virtualize thread slots to increase thread-level parallelism.
These works propose speci�c virtualization mechanisms for a single resource for speci�c bene�ts.
None of these works provide a cohesive virtualization mechanism for multiple on-chip GPU
resources in a controlled and coordinated manner, which forms a key contribution of this work.
E�cient Resource Management. Prior works aim to improve parallelism by increasing

resource utilization using hardware-based [27, 28, 110, 148, 157, 158, 192, 358, 370] and software-
based [119, 129, 182, 254, 370] approaches. Among these works, the closest to ours are [148, 373]
(discussed earlier), [370] and [358]. These approaches propose e�cient techniques to dynamically
manage a single resource, and can be used along with Zorua to improve resource e�ciency further.
Yang et al. [370] aim to maximize utilization of the scratchpad with software techniques, and by
dynamically allocating/deallocating scratchpad. Xiang et al. [358] propose to improve resource
utilization by scheduling threads at the �ner granularity of a warp rather than a thread block.
This approach can help alleviate performance cli�s, but not in the presence of synchronization
or scratchpad memory, nor does it address the dynamic underutilization within a thread during
runtime. We quantitatively compare to this approach in the evaluation and demonstrate Zorua’s
bene�ts over it.

Other works leverage resource underutilization to improve energy e�ciency [6,107,109,148,289]
or perform other useful work [187, 340]. These works are complementary to Zorua.
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4.8 Summary
We propose Zorua, a new framework that decouples the application resource speci�cation

from the allocation in the physical hardware resources (i.e., registers, scratchpad memory, and
thread slots) in GPUs. Zorua encompasses a holistic virtualization strategy to e�ectively virtualize
multiple latency-critical on-chip resources in a controlled and coordinated manner. We demon-
strate that by providing the illusion of more resources than physically available, via dynamic
management of resources and the judicious use of a swap space in main memory, Zorua enhances
(i) programming ease (by reducing the performance penalty of suboptimal resource speci�cation),
(ii) portability (by reducing the impact of di�erent hardware con�gurations), and (iii) performance
for code with an optimized resource speci�cation (by leveraging dynamic underutilization of
resources). We conclude that Zorua is an e�ective, holistic virtualization framework for GPUs.

We believe that the indirection provided by Zorua’s virtualization mechanism makes it a generic
framework that can address other challenges in modern GPUs. For example, Zorua can enable
�ne-grained resource sharing and partitioning among multiple kernels/applications, as well as
low-latency preemption of GPU programs. Section 4.6 details many other applications of the
Zorua framework. We hope that future work explores these promising directions, building on the
insights and the framework developed in this work.
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Chapter 5

Assist Warps

In this chapter, we propose a helper thread abstraction in GPUs to automatically leverage
idle compute and memory bandwidth. We demonstrate signi�cant idleness in GPU resources,
even when code is highly optimized for any given architecture. We then demonstrate how a rich
hardware-software abstraction can enable programmers to leverage idle compute and memory
bandwidth to perform light-weight tasks, such as prefetching, data compression, etc.

5.1 Overview
GPUs employ �ne-grained multi-threading to hide the high memory access latencies with

thousands of concurrently running threads [168]. GPUs are well provisioned with di�erent
resources (e.g., SIMD-like computational units, large register �les) to support the execution of
a large number of these hardware contexts. Ideally, if the demand for all types of resources is
properly balanced, all these resources should be fully utilized by the application. Unfortunately,
this balance is very di�cult to achieve in practice.

As a result, bottlenecks in program execution, e.g., limitations in memory or computational
bandwidth, lead to long stalls and idle periods in the shader pipelines of modern GPUs [157, 158,
241, 302]. Alleviating these bottlenecks with optimizations implemented in dedicated hardware
requires signi�cant engineering cost and e�ort. Fortunately, the resulting under-utilization of
on-chip computational and memory resources from these imbalances in application requirements,
o�ers some new opportunities. For example, we can use these resources for e�cient integration
of hardware-generated threads that perform useful work to accelerate the execution of the primary
threads. Similar helper threading ideas have been proposed in the context of general-purpose
processors [58, 59, 73, 90, 91, 279, 390] to either extend the pipeline with more contexts or use spare
hardware contexts to pre-compute useful information that aids main code execution (e.g., to aid
branch prediction, prefetching, etc.).

We believe that the general idea of helper threading can lead to even more powerful optimizations
and new opportunities in the context of modern GPUs than in CPUs because (1) the abundance of
on-chip resources in a GPU obviates the need for idle hardware contexts [73,74] or the addition of
more storage (registers, rename tables, etc.) and compute units [58, 233] required to handle more
contexts and (2) the relative simplicity of the GPU pipeline avoids the complexities of handling
register renaming, speculative execution, precise interrupts, etc. [59]. However, GPUs that execute
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and manage thousands of thread contexts at the same time pose new challenges for employing
helper threading, which must be addressed carefully. First, the numerous regular program threads
executing in parallel could require an equal or larger number of helper threads that need to be
managed at low cost. Second, the compute and memory resources are dynamically partitioned
between threads in GPUs, and resource allocation for helper threads should be cognizant of
resource interference and overheads. Third, lock-step execution and complex scheduling—which
are characteristic of GPU architectures—exacerbate the complexity of �ne-grained management
of helper threads.

In this work, we describe a new, �exible framework for bottleneck acceleration in GPUs via
helper threading (called Core-Assisted Bottleneck Acceleration or CABA), which exploits the afore-
mentioned new opportunities while e�ectively handling the new challenges. CABA performs
acceleration by generating special warps—assist warps—that can execute code to speed up appli-
cation execution and system tasks. To simplify the support of the numerous assist threads with
CABA, we manage their execution at the granularity of a warp and use a centralized mechanism
to track the progress of each assist warp throughout its execution. To reduce the overhead of
providing and managing new contexts for each generated thread, as well as to simplify scheduling
and data communication, an assist warp shares the same context as the regular warp it assists.
Hence, the regular warps are overprovisioned with available registers to enable each of them to
host its own assist warp.
Use of CABA for compression. We illustrate an important use case for the CABA framework:

alleviating the memory bandwidth bottleneck by enabling �exible data compression in the memory
hierarchy. The basic idea is to have assist warps that (1) compress cache blocks before they are
written to memory, and (2) decompress cache blocks before they are placed into the cache.

CABA-based compression/decompression provides several bene�ts over a purely hardware-
based implementation of data compression for memory. First, CABA primarily employs hardware
that is already available on-chip but is otherwise underutilized. In contrast, hardware-only
compression implementations require dedicated logic for speci�c algorithms. Each new algorithm
(or a modi�cation of an existing one) requires engineering e�ort and incurs hardware cost. Second,
di�erent applications tend to have distinct data patterns [267] that are more e�ciently compressed
with di�erent compression algorithms. CABA o�ers versatility in algorithm choice as we �nd
that many existing hardware-based compression algorithms (e.g., Base-Delta-Immediate (BDI)
compression [267], Frequent Pattern Compression (FPC) [13], and C-Pack [66]) can be implemented
using di�erent assist warps with the CABA framework. Third, not all applications bene�t from
data compression. Some applications are constrained by other bottlenecks (e.g., oversubscription
of computational resources), or may operate on data that is not easily compressible. As a result,
the bene�ts of compression may not outweigh the cost in terms of additional latency and energy
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spent on compressing and decompressing data. In these cases, compression can be easily disabled
by CABA, and the CABA framework can be used in other ways to alleviate the current bottleneck.
Other uses of CABA. The generality of CABA enables its use in alleviating other bottlenecks

with di�erent optimizations. We discuss two examples: (1) using assist warps to perform memo-
ization to eliminate redundant computations that have the same or similar inputs [24, 76, 308], by
storing the results of frequently-performed computations in the main memory hierarchy (i.e., by
converting the computational problem into a storage problem) and, (2) using the idle memory
pipeline to perform opportunistic prefetching to better overlap computation with memory access.
Assist warps o�er a hardware/software interface to implement hybrid prefetching algorithms [96]
with varying degrees of complexity. We also brie�y discuss other uses of CABA for (1) redundant
multithreading, (2) speculative precomputation, (3) handling interrupts, and (4) pro�ling and
instrumentation.
Contributions. In this work, we make the following contributions:

• We introduce the Core-Assisted Bottleneck Acceleration (CABA) Framework, which can mitigate
di�erent bottlenecks in modern GPUs by using underutilized system resources for assist warp
execution.

• We provide a detailed description of how our framework can be used to enable e�ective and
�exible data compression in GPU memory hierarchies.

• We comprehensively evaluate the use of CABA for data compression to alleviate the memory
bandwidth bottleneck. Our evaluations across a wide variety applications from Mars [130],
CUDA [247], Lonestar [52], and Rodinia [61] benchmark suites show that CABA-based compres-
sion on average (1) reduces memory bandwidth by 2.1X, (2) improves performance by 41.7%,
and (3) reduces overall system energy by 22.2%.

• We discuss at least six other use cases of CABA that can improve application performance and
system management, showing that CABA is a primary general framework for taking advantage
of underutilized resources in modern GPU engines.

5.2 Motivation: Bo�lenecks in Resource Utilization
We observe that di�erent bottlenecks and imbalances during program execution leave re-

sources unutilized within the GPU cores. We motivate our proposal, CABA, by examining these
ine�ciencies. CABA leverages these ine�ciencies as an opportunity to perform useful work.
Unutilized Compute Resources. A GPU core employs �ne-grained multithreading [307,324]

of warps, i.e., groups of threads executing the same instruction, to hide long memory and ALU
operation latencies. If the number of available warps is insu�cient to cover these long latencies,
the core stalls or becomes idle. To understand the key sources of ine�ciency in GPU cores, we
conduct an experiment where we show the breakdown of the applications’ execution time spent
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on either useful work (Active Cycles) or stalling due to one of four reasons: Compute, Memory,
Data Dependence Stalls and Idle Cycles. We also vary the amount of available o�-chip memory
bandwidth: (i) half (1/2xBW), (ii) equal to (1xBW), and (iii) double (2xBW) the peak memory
bandwidth of our baseline GPU architecture. Section 5.6 details our baseline architecture and
methodology.

Figure 44 shows the percentage of total issue cycles, divided into �ve components (as described
above). The �rst two components—Memory and Compute Stalls—are attributed to the main
memory and ALU-pipeline structural stalls. These stalls are because of backed-up pipelines due to
oversubscribed resources that prevent warps from being issued to the respective pipelines. The
third component (Data Dependence Stalls) is due to data dependence stalls. These stalls prevent
warps from issuing new instruction(s) when the previous instruction(s) from the same warp
are stalled on long-latency operations (usually memory load operations). In some applications
(e.g., dmr), special-function-unit (SFU) ALU operations that may take tens of cycles to �nish
are also the source of data dependence stalls. The fourth component, Idle Cycles, refers to idle
cycles when either all the available warps are issued to the pipelines and not ready to execute
their next instruction or the instruction bu�ers are �ushed due to a mispredicted branch. All
these components are sources of ine�ciency that cause the cores to be underutilized. The last
component, Active Cycles, indicates the fraction of cycles during which at least one warp was
successfully issued to the pipelines.
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Figure 44: Breakdown of total issue cycles for 27 representative CUDA applications. See Sec-
tion 5.6 for methodology.

We make two observations from Figure 44. First, Compute, Memory, and Data Dependence Stalls
are the major sources of underutilization in many GPU applications. We distinguish applications
based on their primary bottleneck as either Memory or Compute Bound. We observe that a majority
of the applications in our workload pool (17 out of 27 studied) are Memory Bound, and bottlenecked
by the o�-chip memory bandwidth.

Second, for the Memory Bound applications, we observe that the Memory and Data Dependence
stalls constitute a signi�cant fraction (61%) of the total issue cycles on our baseline GPU architecture
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(1xBW). This fraction goes down to 51% when the peak memory bandwidth is doubled (2xBW),
and increases signi�cantly when the peak bandwidth is halved (1/2xBW), indicating that limited
o�-chip memory bandwidth is a critical performance bottleneck for Memory Bound applications.
Some applications, e.g., BFS, are limited by the interconnect bandwidth. In contrast, the Compute
Bound applications are primarily bottlenecked by stalls in the ALU pipelines. An increase or
decrease in the o�-chip bandwidth has little e�ect on the performance of these applications.
Unutilized On-chip Memory. The occupancy of any GPU Streaming Multiprocessor (SM),

i.e., the number of threads running concurrently, is limited by a number of factors: (1) the available
registers and shared memory, (2) the hard limit on the number of threads and thread blocks per core,
(3) the number of thread blocks in the application kernel. The limiting resource from the above,
leaves the other resources underutilized. This is because it is challenging, in practice, to achieve
a perfect balance in utilization of all of the above factors for di�erent workloads with varying
characteristics. Very often, the factor determining the occupancy is the thread or thread block
limit imposed by the architecture. In this case, there are many registers that are left unallocated to
any thread block. Also, the number of available registers may not be a multiple of those required
by each thread block. The remaining registers are not enough to schedule an entire extra thread
block, which leaves a signi�cant fraction of the register �le and shared memory unallocated and
unutilized by the thread blocks. Figure 45 shows the fraction of statically unallocated registers in
a 128KB register �le (per SM) with a 1536 thread, 8 thread block occupancy limit, for di�erent
applications. We observe that on average 24% of the register �le remains unallocated. This
phenomenon has previously been observed and analyzed in detail in [6, 107, 109, 110, 187]. We
observe a similar trend with the usage of shared memory (not graphed).
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Figure 45: Fraction of statically unallocated registers.

Our Goal. We aim to exploit the underutilization of compute resources, registers and on-
chip shared memory as an opportunity to enable di�erent optimizations to accelerate various
bottlenecks in GPU program execution. To achieve this goal, we would like to enable e�cient
helper threading for GPUs to dynamically generate threads in hardware that use the available
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on-chip resources for various purposes. In the next section, we present the detailed design of our
CABA framework that enables the generation and management of these threads.

5.3 The CABA Framework
In order to understand the major design choices behind the CABA framework, we �rst present

our major design goals and describe the key challenges in applying helper threading to GPUs.
We then show the detailed design, hardware changes, and operation of CABA. Finally, we brie�y
describe potential applications of our proposed framework. Section 5.4 goes into a detailed design
of one application of the framework.

5.3.1 Goals and Challenges

The purpose of CABA is to leverage underutilized GPU resources for useful computation. To
this end, we need to e�ciently execute subroutines that perform optimizations to accelerate
bottlenecks in application execution. The key di�erence between CABA’s assisted execution and
regular execution is that CABA must be low overhead and, therefore, helper threads need to be
treated di�erently from regular threads. The low overhead goal imposes several key requirements
in designing a framework to enable helper threading. First, we should be able to easily manage
helper threads—to enable, trigger, and kill threads when required. Second, helper threads need
to be �exible enough to adapt to the runtime behavior of the regular program. Third, a helper
thread needs to be able to communicate with the original thread. Finally, we need a �exible
interface to specify new subroutines, with the framework being generic enough to handle various
optimizations.

With the above goals in mind, enabling helper threading in GPU architectures introduces several
new challenges. First, execution on GPUs involves context switching between hundreds of threads.
These threads are handled at di�erent granularities in hardware and software. The programmer
reasons about these threads at the granularity of a thread block. However, at any point in time,
the hardware executes only a small subset of the thread block, i.e., a set of warps. Therefore, we
need to de�ne the abstraction levels for reasoning about and managing helper threads from the
point of view of the programmer, the hardware as well as the compiler/runtime. In addition, each
of the thousands of executing threads could simultaneously invoke an associated helper thread
subroutine. To keep the management overhead low, we need an e�cient mechanism to handle
helper threads at this magnitude.

Second, GPUs use �ne-grained multithreading [307, 324] to time multiplex the �xed number of
compute units among the hundreds of threads. Similarly, the on-chip memory resources (i.e., the
register �le and shared memory) are statically partitioned between the di�erent threads at compile
time. Helper threads require their own registers and compute cycles to execute. A straightforward

102



approach would be to dedicate few registers and compute units just for helper thread execution,
but this option is both expensive and wasteful. In fact, our primary motivation is to utilize existing
idle resources for helper thread execution. In order to do this, we aim to enable sharing of the
existing resources between primary threads and helper threads at low cost, while minimizing the
interference to primary thread execution. In the remainder of this section, we describe the design
of our low-overhead CABA framework.

5.3.2 Design of the CABA Framework

We choose to implement CABA using a hardware/software co-design, as pure hardware or pure
software approaches pose certain challenges that we describe below. There are two alternatives for
a fully software-based approach to helper threads. The �rst alternative, treating each helper thread
as independent kernel code, has high overhead, since we are now treating the helper threads as,
essentially, regular threads. This would reduce the primary thread occupancy in each SM (there is
a hard limit on the number of threads and blocks that an SM can support). It would also complicate
the data communication between the primary and helper threads, since no simple interface exists
for inter-kernel communication. The second alternative, embedding the helper thread code within
the primary thread kernel itself, o�ers little �exibility in adapting to runtime requirements, since
such helper threads cannot be triggered or squashed independently of the primary thread.

On the other hand, a pure hardware solution would make register allocation for the assist
warps and the data communication between the helper threads and primary threads more di�cult.
Registers are allocated to each thread block by the compiler and are then mapped to the sections
of the hardware register �le at runtime. Mapping registers for helper threads and enabling data
communication between those registers and the primary thread registers would be non-trivial.
Furthermore, a fully hardware approach would make o�ering the programmer a �exible interface
more challenging.

Hardware support enables simpler �ne-grained management of helper threads, aware of micro-
architectural events and runtime program behavior. Compiler/runtime support enables simpler
context management for helper threads and more �exible programmer interfaces. Thus, to get the
best of both worlds, we propose a hardware/software cooperative approach, where the hardware
manages the scheduling and execution of helper thread subroutines, while the compiler performs
the allocation of shared resources (e.g., register �le and shared memory) for the helper threads
and the programmer or the microarchitect provides the helper threads themselves.
Hardware-based management of threads. To use the available on-chip resources the same

way that thread blocks do during program execution, we dynamically insert sequences of instruc-
tions into the execution stream. We track and manage these instructions at the granularity of a
warp, and refer to them as Assist Warps. An assist warp is a set of instructions issued into the
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core pipelines. Each instruction is executed in lock-step across all the SIMT lanes, just like any
regular instruction, with an active mask to disable lanes as necessary. The assist warp does not
own a separate context (e.g., registers, local memory), and instead shares both a context and a
warp ID with the regular warp that invoked it. In other words, each assist warp is coupled with
a parent warp. In this sense, it is di�erent from a regular warp and does not reduce the number
of threads that can be scheduled on a single SM. Data sharing between the two warps becomes
simpler, since the assist warps share the register �le with the parent warp. Ideally, an assist warp
consumes resources and issue cycles that would otherwise be idle. We describe the structures
required to support hardware-based management of assist warps in Section 5.3.3.
Register �le/shared memory allocation. Each helper thread subroutine requires a di�erent

number of registers depending on the actions it performs. These registers have a short lifetime,
with no values being preserved between di�erent invocations of an assist warp. To limit the
register requirements for assist warps, we impose the restriction that only one instance of each
helper thread routine can be active for each thread. All instances of the same helper thread for
each parent thread use the same registers, and the registers are allocated to the helper threads
statically by the compiler. One of the factors that determines the runtime SM occupancy is the
number of registers required by a thread block (i.e, per-block register requirement). For each
helper thread subroutine that is enabled, we add its register requirement to the per-block register
requirement, to ensure the availability of registers for both the parent threads as well as every
assist warp. The registers that remain unallocated after allocation among the parent thread blocks
should su�ce to support the assist warps. If not, register-heavy assist warps may limit the parent
thread block occupancy in SMs or increase the number of register spills in the parent warps.
Shared memory resources are partitioned in a similar manner and allocated to each assist warp as
and if needed.
Programmer/developer interface. The assist warp subroutine can be written in two ways.

First, it can be supplied and annotated by the programmer/developer using CUDA extensions
with PTX instructions and then compiled with regular program code. Second, the assist warp
subroutines can be written by the microarchitect in the internal GPU instruction format. These
helper thread subroutines can then be enabled or disabled by the application programmer. This
approach is similar to that proposed in prior work (e.g., [58]). It o�ers the advantage of potentially
being highly optimized for energy and performance while having �exibility in implementing
optimizations that are not trivial to map using existing GPU PTX instructions. The instructions
for the helper thread subroutine are stored in an on-chip bu�er (described in Section 5.3.3).

Along with the helper thread subroutines, the programmer also provides: (1) the priority of the
assist warps to enable the warp scheduler to make informed decisions, (2) the trigger conditions
for each assist warp, and (3) the live-in and live-out variables for data communication with the
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parent warps.
Assist warps can be scheduled with di�erent priority levels in relation to parent warps by the

warp scheduler. Some assist warps may perform a function that is required for correct execution
of the program and are blocking. At this end of the spectrum, the high priority assist warps are
treated by the scheduler as always taking higher precedence over the parent warp execution.
Assist warps should be given a high priority only when they are required for correctness. Low
priority assist warps, on the other hand, are scheduled for execution only when computational
resources are available, i.e., during idle cycles. There is no guarantee that these assist warps will
execute or complete.

The programmer also provides the conditions or events that need to be satis�ed for the deploy-
ment of the assist warp. This includes a speci�c point within the original program and/or a set of
other microarchitectural events that could serve as a trigger for starting the execution of an assist
warp.

5.3.3 Main Hardware Additions

Figure 46 shows a high-level block diagram of the GPU pipeline [118]. To support assist warp
execution, we add three new components: (1) an Assist Warp Store to hold the assist warp code, (2)
an Assist Warp Controller to perform the deployment, tracking, and management of assist warps,
and (3) an Assist Warp Bu�er to stage instructions from triggered assist warps for execution.
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Figure 46: CABA framework flow within a typical GPU pipeline [118]. The shaded
blocks are the components introduced for the framework.

Assist Warp Store (AWS). Di�erent assist warp subroutines are possible based on the purpose
of the optimization. These code sequences for di�erent types of assist warps need to be stored
on-chip. An on-chip storage structure called the Assist Warp Store (Í) is preloaded with these
instructions before application execution. It is indexed using the subroutine index (SR.ID) along
with the instruction ID (Inst.ID).
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Figure 47: Fetch Logic: Assist Warp Table (contained in the AWC) and the Assist Warp
Store (AWS).

Assist Warp Controller (AWC). The AWC (Ë) is responsible for the triggering, tracking, and
management of assist warp execution. It stores a mapping between trigger events and a subroutine
index in the AWS, as speci�ed by the programmer. The AWC monitors for such events, and when
they take place, triggers the fetch, decode and execution of instructions from the AWS for the
respective assist warp.

Deploying all the instructions within an assist warp, back-to-back, at the trigger point may
require increased fetch/decode bandwidth and bu�er space after decoding [59]. To avoid this, at
each cycle, only a few instructions from an assist warp, at most equal to the available decode/issue
bandwidth, are decoded and staged for execution. Within the AWC, we simply track the next
instruction that needs to be executed for each assist warp and this is stored in the Assist Warp
Table (AWT), as depicted in Figure 47. The AWT also tracks additional metadata required for
assist warp management, which is described in more detail in Section 5.3.4.
Assist Warp Bu�er (AWB). Fetched and decoded instructions (Ë) belonging to the assist

warps that have been triggered need to be bu�ered until the assist warp can be selected for issue
by the scheduler. These instructions are then staged in the Assist Warp Bu�er (Ï) along with
their warp IDs. The AWB is contained within the instruction bu�er (IB), which holds decoded
instructions for the parent warps. The AWB makes use of the existing IB structures. The IB
is typically partitioned among di�erent warps executing in the SM. Since each assist warp is
associated with a parent warp, the assist warp instructions are directly inserted into the same
partition within the IB as that of the parent warp. This simpli�es warp scheduling, as the assist
warp instructions can now be issued as if they were parent warp instructions with the same warp
ID. In addition, using the existing partitions avoids the cost of separate dedicated instruction
bu�ering for assist warps. We do, however, provision a small additional partition with two entries
within the IB, to hold non-blocking low priority assist warps that are scheduled only during
idle cycles. This additional partition allows the scheduler to distinguish low priority assist warp
instructions from the parent warp and high priority assist warp instructions, which are given
precedence during scheduling, allowing them to make progress.
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5.3.4 The Mechanism

Trigger and Deployment. An assist warp is triggered (Ê) by the AWC (Ë) based on a speci�c
set of architectural events and/or a triggering instruction (e.g., a load instruction). When an assist
warp is triggered, its speci�c instance is placed into the Assist Warp Table (AWT) within the AWC
(Figure 47). Every cycle, the AWC selects an assist warp to deploy in a round-robin fashion. The
AWS is indexed (Ì) based on the subroutine ID (SR.ID)—which selects the instruction sequence to
be executed by the assist warp, and the instruction ID (Inst.ID)—which is a pointer to the next
instruction to be executed within the subroutine (Figure 47). The selected instruction is entered
(Î) into the AWB (Ï) and, at this point, the instruction enters the active pool with other active
warps for scheduling. The Inst.ID for the assist warp is updated in the AWT to point to the next
instruction in the subroutine. When the end of the subroutine is reached, the entry within the
AWT is freed.

Execution. Assist warp instructions, when selected for issue by the scheduler, are executed in
much the same way as any other instructions. The scoreboard tracks the dependencies between
instructions within an assist warp in the same way as any warp, and instructions from di�erent
assist warps are interleaved in execution in order to hide latencies. We also provide an active
mask (stored as a part of the AWT), which allows for statically disabling/enabling di�erent lanes
within a warp. This is useful to provide �exibility in lock-step instruction execution when we do
not need all threads within a warp to execute a speci�c assist warp subroutine.
Dynamic Feedback and Throttling. Assist warps, if not properly controlled, may stall

application execution. This can happen due to several reasons. First, assist warps take up issue
cycles, and only a limited number of instructions may be issued per clock cycle. Second, assist
warps require structural resources: the ALU units and resources in the load-store pipelines (if the
assist warps consist of computational and memory instructions, respectively). We may, hence,
need to throttle assist warps to ensure that their performance bene�ts outweigh the overhead.
This requires mechanisms to appropriately balance and manage the aggressiveness of assist warps
at runtime.

The overheads associated with assist warps can be controlled in di�erent ways. First, the
programmer can statically specify the priority of the assist warp. Depending on the criticality of
the assist warps in making forward progress, the assist warps can be issued either in idle cycles or
with varying levels of priority in relation to the parent warps. For example, warps performing
decompression are given a high priority whereas warps performing compression are given a low
priority. Low priority assist warps are inserted into the dedicated partition in the IB, and are
scheduled only during idle cycles. This priority is statically de�ned by the programmer. Second,
the AWC can control the number of times the assist warps are deployed into the AWB. The AWC
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monitors the utilization of the functional units (Ð) and idleness of the cores to decide when to
throttle assist warp deployment.
Communication and Control. An assist warp may need to communicate data and status with

its parent warp. For example, memory addresses from the parent warp need to be communicated
to assist warps performing decompression or prefetching. The IDs of the registers containing the
live-in data for each assist warp are saved in the AWT when an assist warp is triggered. Similarly,
if an assist warp needs to report results to its parent warp (e.g., in the case of memoization), the
register IDs are also stored in the AWT. When the assist warps execute, MOVE instructions are
�rst executed to copy the live-in data from the parent warp registers to the assist warp registers.
Live-out data is communicated to the parent warp in a similar fashion, at the end of assist warp
execution.

Assist warps may need to be killed when they are not required (e.g., if the data does not require
decompression) or when they are no longer bene�cial. In this case, the entries in the AWT and
AWB are simply �ushed for the assist warp.

5.3.5 Applications of the CABA Framework

We envision multiple applications for the CABA framework, e.g., data compression [13, 66, 267,
367], memoization [24,76,308], data prefetching [31,104,159,255,313]. In Section 5.4, we provide a
detailed case study of enabling data compression with the framework, discussing various tradeo�s.
We believe CABA can be useful for many other optimizations, and we discuss some of them brie�y
in Section 5.5.

5.4 A Case for CABA: Data Compression
Data compression is a technique that exploits the redundancy in the applications’ data to reduce

capacity and bandwidth requirements for many modern systems by saving and transmitting
data in a more compact form. Hardware-based data compression has been explored in the
context of on-chip caches [13, 22, 66, 93, 141, 265, 267, 290, 367], interconnect [80], and main
memory [5,97,264,266,303,326] as a means to save storage capacity as well as memory bandwidth.
In modern GPUs, memory bandwidth is a key limiter to system performance in many workloads
(Section 5.2). As such, data compression is a promising technique to help alleviate this bottleneck.
Compressing data enables less data to be transferred from/to DRAM and the interconnect.

In bandwidth-constrained workloads, idle compute pipelines o�er an opportunity to employ
CABA to enable data compression in GPUs. We can use assist warps to (1) decompress data,
before loading it into the caches and registers, and (2) compress data, before writing it back to
memory. Since assist warps execute instructions, CABA o�ers some �exibility in the compression
algorithms that can be employed. Compression algorithms that can be mapped to the general
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GPU execution model can be �exibly implemented with the CABA framework.

5.4.1 Mapping Compression Algorithms into Assist Warps

In order to employ CABA to enable data compression, we need to map compression algorithms
into instructions that can be executed within the GPU cores. For a compression algorithm to be
amenable for implementation with CABA, it ideally needs to be (1) reasonably parallelizable and (2)
simple (for low latency). Decompressing data involves reading the encoding associated with each
cache line that de�nes how to decompress it, and then triggering the corresponding decompression
subroutine in CABA. Compressing data, on the other hand, involves testing di�erent encodings
and saving data in the compressed format.

We perform compression at the granularity of a cache line. The data needs to be decompressed
before it is used by any program thread. In order to utilize the full SIMD width of the GPU pipeline,
we would like to decompress/compress all the words in the cache line in parallel. With CABA,
helper thread routines are managed at the warp granularity, enabling �ne-grained triggering of
assist warps to perform compression/decompression when required. However, the SIMT execution
model in a GPU imposes some challenges: (1) threads within a warp operate in lock-step, and (2)
threads operate as independent entities, i.e., they do not easily communicate with each other.

In this section, we discuss the architectural changes and algorithm adaptations required to
address these challenges and provide a detailed implementation and evaluation of Data Compres-
sion within the CABA framework using the Base-Delta-Immediate compression algorithm [267].
Section 5.4.2 discusses implementing other compression algorithms.
Algorithm Overview. Base-Delta-Immediate compression (BDI) is a simple compression

algorithm that was originally proposed in the context of caches [267]. It is based on the observation
that many cache lines contain data with low dynamic range. BDI exploits this observation to
represent a cache line with low dynamic range using a common base (or multiple bases) and an
array of deltas (where a delta is the di�erence of each value within the cache line and the common
base). Since the deltas require fewer bytes than the values themselves, the combined size after
compression can be much smaller. Figure 48 shows the compression of an example 64-byte cache
line from the PageViewCount (PVC) application using BDI. As Figure 48 indicates, in this case, the
cache line can be represented using two bases (an 8-byte base value, 0x8001D000, and an implicit
zero value base) and an array of eight 1-byte di�erences from these bases. As a result, the entire
cache line data can be represented using 17 bytes instead of 64 bytes (1-byte metadata, 8-byte base,
and eight 1-byte deltas), saving 47 bytes of the originally used space.

Our example implementation of the BDI compression algorithm [267] views a cache line as a
set of �xed-size values i.e., 8 8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line. For
the size of the deltas, it considers three options: 1, 2 and 4 bytes. The key characteristic of BDI,
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Figure 48: Cache line from PVC compressed with BDI.

which makes it a desirable compression algorithm to use with the CABA framework, is its fast
parallel decompression that can be e�ciently mapped into instructions that can be executed on
GPU hardware. Decompression is simply a masked vector addition of the deltas to the appropriate
bases [267].
Mapping BDI to CABA. In order to implement BDI with the CABA framework, we need to

map the BDI compression/decompression algorithms into GPU instruction subroutines (stored in
the AWS and deployed as assist warps).
Decompression. To decompress the data compressed with BDI, we need a simple addition of

deltas to the appropriate bases. The CABA decompression subroutine �rst loads the words within
the compressed cache line into assist warp registers, and then performs the base-delta additions in
parallel, employing the wide ALU pipeline.16 The subroutine then writes back the uncompressed
cache line to the cache. It skips the addition for the lanes with an implicit base of zero by updating
the active lane mask based on the cache line encoding. We store a separate subroutine for each
possible BDI encoding that loads the appropriate bytes in the cache line as the base and the deltas.
The high-level algorithm for decompression is presented in Algorithm 1.

Algorithm 4 BDI: Decompression
1: load base, deltas
2: uncompressed_data = base + deltas
3: store uncompressed_data

Compression. To compress data, the CABA compression subroutine tests several possible
encodings (each representing a di�erent size of base and deltas) in order to achieve a high
compression ratio. The �rst few bytes (2–8 depending on the encoding tested) of the cache line
are always used as the base. Each possible encoding is tested to check whether the cache line can
be successfully encoded with it. In order to perform compression at a warp granularity, we need
to check whether all of the words at every SIMD lane were successfully compressed. In other
16Multiple instructions are required if the number of deltas exceeds the width of the ALU pipeline. We use a 32-wide

pipeline.
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words, if any one word cannot be compressed, that encoding cannot be used across the warp. We
can perform this check by adding a global predicate register, which stores the logical AND of
the per-lane predicate registers. We observe that applications with homogeneous data structures
can typically use the same encoding for most of their cache lines [267]. We use this observation
to reduce the number of encodings we test to just one in many cases. All necessary operations
are done in parallel using the full width of the GPU SIMD pipeline. The high-level algorithm for
compression is presented in Algorithm 2.

Algorithm 5 BDI: Compression
1: for each base_size do
2: load base, values
3: for each delta_size do
4: deltas = abs(values - base)
5: if size(deltas) <= delta_size then
6: store base, deltas
7: exit
8: end if
9: end for

10: end for

5.4.2 Implementing Other Algorithms.

The BDI compression algorithm is naturally amenable towards implementation using assist
warps because of its data-parallel nature and simplicity. The CABA framework can also be used to
realize other algorithms. The challenge in implementing algorithms like FPC [14] and C-Pack [66],
which have variable-length compressed words, is primarily in the placement of compressed words
within the compressed cache lines. In BDI, the compressed words are in �xed locations within the
cache line and, for each encoding, all the compressed words are of the same size and can, therefore,
be processed in parallel. In contrast, C-Pack may employ multiple dictionary values as opposed
to just one base in BDI. In order to realize algorithms with variable length words and dictionary
values with assist warps, we leverage the coalescing/address generation logic [244, 251] already
available in the GPU cores. We make two minor modi�cations to these algorithms [14,66] to adapt
them for use with CABA. First, similar to prior works [14, 66, 97], we observe that few encodings
are su�cient to capture almost all the data redundancy. In addition, the impact of any loss in
compressibility due to fewer encodings is minimal as the bene�ts of bandwidth compression are
only at multiples of a single DRAM burst (e.g., 32B for GDDR5 [138]). We exploit this to reduce the
number of supported encodings. Second, we place all the metadata containing the compression
encoding at the head of the cache line to be able to determine how to decompress the entire line
upfront. In the case of C-Pack, we place the dictionary entries after the metadata.
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We note that it can be challenging to implement complex algorithms e�ciently with the simple
computational logic available in GPU cores. Fortunately, there are already Special Function Units
(SFUs) [83, 203] present in the GPU SMs, used to perform e�cient computations of elementary
mathematical functions. SFUs could potentially be extended to implement primitives that enable
the fast iterative comparisons performed frequently in some compression algorithms. This would
enable more e�cient execution of the described algorithms, as well as implementation of more
complex compression algorithms, using CABA. We leave the exploration of an SFU-based approach
to future work.

We now present a detailed overview of mapping the FPC and C-PACK algorithms into assist
warps.

Implementing the FPC (Frequent Pattern Compression) Algorithm. For FPC, the cache
line is treated as set of �xed-size words and each word within the cache line is compressed into
a simple pre�x or encoding and a compressed word if it matches a set of frequent patterns, e.g.
narrow values, zeros or repeated bytes. The word is left uncompressed if it does not �t any
pattern. We refer the reader to the original work [14] for a more detailed description of the original
algorithm.

The challenge in mapping assist warps to the FPC decompression algorithm is in the serial
sequence in which each word within a cache line is decompressed. This is because in the original
proposed version, each compressed word can have a di�erent size. To determine the location of a
speci�c compressed word, it is necessary to have decompressed the previous word. We make some
modi�cations to the algorithm in order to parallelize the decompression across di�erent lanes in
the GPU cores. First, we move the word pre�xes (metadata) for each word to the front of the cache
line, so we know upfront how to decompress the rest of the cache line. Unlike with BDI, each
word within the cache line has a di�erent encoding and hence a di�erent compressed word length
and encoding pattern. This is problematic as statically storing the sequence of decompression
instructions for every combination of patterns for all the words in a cache line would require very
large instruction storage. In order to mitigate this, we break each cache line into a number of
segments. Each segment is compressed independently and all the words within each segment are
compressed using the same encoding whereas di�erent segments may have di�erent encodings.
This creates a trade-o� between simplicity/parallelizability versus compressibility. Consistent
with previous works [14], we �nd that this doesn’t signi�cantly impact compressibility.

Decompression. The high-level algorithm we use for decompression is presented in Algorithm
3. Each segment within the compressed cache line is loaded in series. Each of the segments is
decompressed in parallel—this is possible because all the compressed words within the segment
have the same encoding. The decompressed segment is then stored before moving onto the next
segment. The location of the next compressed segment is computed based on the size of the
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previous segment.

Algorithm 6 FPC: Decompression
1: for each segment do
2: load compressed words
3: pattern speci�c decompression (sign extension/zero value)
4: store decompressed words
5: segment-base-address = segment-base-address + segment-size
6: end for

Compression. Similar to the BDI implementation, we loop through and test di�erent encodings
for each segment. We also compute the address o�set for each segment at each iteration to store
the compressed words in the appropriate location in the compressed cache line. Algorithm 4
presents the high-level FPC compression algorithm we use.

Algorithm 7 FPC: Compression
1: load words
2: for each segment do
3: for each encoding do
4: test encoding
5: if compressible then
6: segment-base-address = segment-base-address + segment-size
7: store compressed words
8: break
9: end if

10: end for
11: end for

Implementing the C-Pack Algorithm. C-Pack [66] is a dictionary based compression algo-
rithm where frequent "dictionary" values are saved at the beginning of the cache line. The rest of
the cache line contains encodings for each word which may indicate zero values, narrow values,
full or partial matches into the dictionary or simply that the word is uncompressible.

In our implementation, we reduce the number of possible encodings to partial matches (only
last byte mismatch), full word match, zero value and zero extend (only last byte) and we limit
the number of dictionary values to 4. This enables �xed compressed word size within the cache
line. A �xed compressed word size enables compression and decompression of di�erent words
within the cache line in parallel. If the number of required dictionary values or uncompressed
words exceeds 4, the line is left decompressed. This is, as in BDI and FPC, a trade-o� between
simplicity and compressibility. In our experiments, we �nd that it does not signi�cantly impact
the compression ratio—primarily due the 32B minimum data size and granularity of compression.
Decompression. As described, to enable parallel decompression, we place the encodings and

dictionary values at the head of the line. We also limit the number of encodings to enable quick

113



decompression. We implement C-Pack decompression as a series of instructions (one per encoding
used) to load all the registers with the appropriate dictionary values. We de�ne the active lane
mask based on the encoding (similar to the mechanism used in BDI) for each load instruction to
ensure the correct word is loaded into each lane’s register. Algorithm 5 provides the high-level
algorithm for C-Pack decompression.

Algorithm 8 C-PACK: Decompression
1: add base-address + index-into-dictionary
2: load compressed words
3: for each encoding do
4: pattern speci�c decompression . Mismatch byte load for zero extend or partial match
5: end for
6: Store uncompressed words

Compression. Compressing data with C-Pack involves determining the dictionary values that
will be used to compress the rest of the line. In our implementation, we serially add each word
from the beginning of the cache line to be a dictionary value if it was not already covered by a
previous dictionary value. For each dictionary value, we test whether the rest of the words within
the cache line is compressible. The next dictionary value is determined using the predicate register
to determine the next uncompressed word, as in BDI. After four iterations (dictionary values), if
all the words within the line are not compressible, the cache line is left uncompressed. Similar to
BDI, the global predicate register is used to determine the compressibility of all of the lanes after
four or fewer iterations. Algorithm 6 provides the high-level algorithm for C-Pack compression.

Algorithm 9 C-PACK: Compression
1: load words
2: for each dictionary value (including zero) do . To a maximum of four
3: test match/partial match
4: if compressible then
5: Store encoding and mismatching byte
6: break
7: end if
8: end for
9: if all lanes are compressible then

10: Store compressed cache line
11: end if

5.4.3 Walkthrough of CABA-based Compression

We show the detailed operation of CABA-based compression and decompression mechanisms in
Figure 49. We assume a baseline GPU architecture with three levels in the memory hierarchy – two
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levels of caches (private L1s and a shared L2) and main memory. Di�erent levels can potentially
store compressed data. In this section and in our evaluations, we assume that only the L2 cache
and main memory contain compressed data. Note that there is no capacity bene�t in the baseline
mechanism as compressed cache lines still occupy the full uncompressed slot, i.e., we only evaluate
the bandwidth-saving bene�ts of compression in GPUs.
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Figure 49: Walkthrough of CABA-based Compression.

The Decompression Mechanism. Load instructions that access global memory data in the
compressed form trigger the appropriate assist warp to decompress the data before it is used. The
subroutines to decompress data are stored in the Assist Warp Store (AWS). The AWS is indexed
by the compression encoding at the head of the cache line and by a bit indicating whether the
instruction is a load (decompression is required) or a store (compression is required). Each
decompression assist warp is given high priority and, hence, stalls the progress of its parent warp
until it completes its execution. This ensures that the parent warp correctly gets the decompressed
value.

L1 Access. We store data in L1 in the uncompressed form. An L1 hit does not require an assist
warp for decompression.

L2/MemoryAccess. Global memory data cached in L2/DRAM could potentially be compressed.
A bit indicating whether the cache line is compressed is returned to the core along with the cache
line (Ê). If the data is uncompressed, the line is inserted into the L1 cache and the writeback phase
resumes normally. If the data is compressed, the compressed cache line is inserted into the L1
cache. The encoding of the compressed cache line and the warp ID are relayed to the Assist Warp
Controller (AWC), which then triggers the AWS (Ë) to deploy the appropriate assist warp (Ì) to
decompress the line. During regular execution, the load information for each thread is bu�ered in
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the coalescing/load-store unit [244, 251] until all the data is fetched. We continue to bu�er this
load information (Í) until the line is decompressed.

After the CABA decompression subroutine ends execution, the original load that triggered
decompression is resumed (Í).
The Compression Mechanism. The assist warps to perform compression are triggered by

store instructions. When data is written to a cache line (i.e., by a store), the cache line can be
written back to main memory either in the compressed or uncompressed form. Compression is
o� the critical path and the warps to perform compression can be scheduled when the required
resources are available.

Pending stores are bu�ered in a few dedicated sets within the L1 cache or in available shared
memory (Î). In the case of an over�ow in this bu�er space (Î), the stores are released to the
lower levels of the memory system in the uncompressed form (Ï). Upon detecting the availability
of resources to perform the data compression, the AWC triggers the deployment of the assist warp
that performs compression (Ë) into the AWB (Ì), with low priority. The scheduler is then free
to schedule the instructions from the compression subroutine. Since compression is not on the
critical path of execution, keeping such instructions as low priority ensures that the main program
is not unnecessarily delayed.
L1 Access. On a hit in the L1 cache, the cache line is already available in the uncompressed

form. Depending on the availability of resources, the cache line can be scheduled for compression
or simply written to the L2 and main memory uncompressed, when evicted.
L2/Memory Access. Data in memory is compressed at the granularity of a full cache line, but

stores can be at granularities smaller than the size of the cache line. This poses some additional
di�culty if the destination cache line for a store is already compressed in main memory. Partial
writes into a compressed cache line would require the cache line to be decompressed �rst, then
updated with the new data, and written back to main memory. The common case—where the
cache line that is being written to is uncompressed initially—can be easily handled. However,
in the worst case, the cache line being partially written to is already in the compressed form in
memory. We now describe the mechanism to handle both these cases.

Initially, to reduce the store latency, we assume that the cache line is uncompressed, and issue a
store to the lower levels of the memory hierarchy, while bu�ering a copy in L1. If the cache line is
found in L2/memory in the uncompressed form (Ê), the assumption was correct. The store then
proceeds normally and the bu�ered stores are evicted from L1. If the assumption is incorrect, the
cache line is retrieved (Ð) and decompressed before the store is retransmitted to the lower levels
of the memory hierarchy.
Realizing Data Compression. Supporting data compression requires additional support from

the main memory controller and the runtime system, as we describe below.
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Initial Setup and Pro�ling. Data compression with CABA requires a one-time data setup
before the data is transferred to the GPU. We assume initial software-based data preparation where
the input data is stored in CPU memory in the compressed form with an appropriate compression
algorithm before transferring the data to GPU memory. Transferring data in the compressed form
can also reduce PCIe bandwidth usage.17

Memory-bandwidth-limited GPU applications are the best candidates for employing data com-
pression using CABA. The compiler (or the runtime pro�ler) is required to identify those ap-
plications that are most likely to bene�t from this framework. For applications where memory
bandwidth is not a bottleneck, data compression is simply disabled.
Memory Controller Changes. Data compression reduces o�-chip bandwidth requirements

by transferring the same data in fewer DRAM bursts. The memory controller (MC) needs to know
whether the cache line data is compressed and how many bursts (1–4 bursts in GDDR5 [138])
are needed to transfer the data from DRAM to the MC. Similar to prior work [266, 293], we
require metadata information for every cache line that keeps track of how many bursts are
needed to transfer the data. Similar to prior work [293], we simply reserve 8MB of GPU DRAM
space for the metadata (~0.2% of all available memory). Unfortunately, this simple design would
require an additional access for the metadata for every access to DRAM e�ectively doubling
the required bandwidth. To avoid this, a simple metadata (MD) cache that keeps frequently-
accessed metadata on chip (near the MC) is required. Note that this metadata cache is similar
to other metadata storage and caches proposed for various purposes in the memory controller,
e.g., [113, 204, 227, 266, 272, 297]. Our experiments show that a small 8 KB 4-way associative MD
cache is su�cient to provide a hit rate of 85% on average (more than 99% for many applications)
across all applications in our workload pool.18 Hence, in the common case, a second access to
DRAM to fetch compression-related metadata can be avoided.

5.5 Use Cases

5.5.1 Memoization

Hardware memoization is a technique used to avoid redundant computations by reusing the
results of previous computations that have the same or similar inputs. Prior work [17, 24, 285]
observed redundancy in inputs to data in GPU workloads. In applications limited by available
compute resources, memoization o�ers an opportunity to trade o� computation for storage, thereby
enabling potentially higher energy e�ciency and performance. In order to realize memoization in
17This requires changes to the DMA engine to recognize compressed lines.
18For applications where MD cache miss rate is low, we observe that MD cache misses are usually also TLB misses.

Hence, most of the overhead of MD cache misses in these applications is outweighed by the cost of page table
lookups.
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hardware, a look-up table (LUT) is required to dynamically cache the results of computations as
well as the corresponding inputs. The granularity of computational reuse can be at the level of
fragments [24], basic blocks, functions [16, 18, 76, 137, 308], or long-latency instructions [71]. The
CABA framework is a natural way to implement such an optimization. The availability of on-chip
memory lends itself for use as the LUT. In order to cache previous results in on-chip memory,
look-up tags (similar to those proposed in [110]) are required to index correct results. With
applications tolerant of approximate results (e.g., image processing, machine learning, fragment
rendering kernels), the computational inputs can be hashed to reduce the size of the LUT. Register
values, texture/constant memory or global memory sections that are not subject to change are
potential inputs. An assist warp can be employed to perform memoization in the following way: (1)
compute the hashed value for look-up at prede�ned trigger points, (2) use the load/store pipeline
to save these inputs in available shared memory, and (3) eliminate redundant computations by
loading the previously computed results in the case of a hit in the LUT.

5.5.2 Prefetching

Prefetching has been explored in the context of GPUs [23,157,158,187,191,224,301] with the goal
of reducing e�ective memory latency. With memory-latency-bound applications, the load/store
pipelines can be employed by the CABA framework to perform opportunistic prefetching into
GPU caches. The CABA framework can potentially enable the e�ective use of prefetching in
GPUs due to several reasons: (1) Even simple prefetchers such as the stream [159, 255, 313] or
stride [31, 104] prefetchers are non-trivial to implement in GPUs since access patterns need to
be tracked and trained at the granularity of warps [191, 301]. CABA could enable �ne-grained
book-keeping by using spare registers and assist warps to save metadata for each warp. The
computational units could then be used to continuously compute strides in access patterns both
within and across warps. (2) It has been demonstrated that software prefetching and helper
threads [3, 51, 74, 139, 139, 187, 215, 321] are very e�ective in performing prefetching for irregular
access patterns. Assist warps o�er the hardware/software interface to implement application-
speci�c prefetching algorithms with varying degrees of complexity without the additional cost of
hardware implementation. (3) In bandwidth-constrained GPU systems, uncontrolled prefetching
could potentially �ood the o�-chip buses, delaying demand requests. CABA can enable �exible
prefetch throttling (e.g., [94, 95, 313]) by scheduling assist warps that perform prefetching, only
when the memory pipelines are idle. (4) Prefetching with CABA entails using load or prefetch
instructions, which not only enables prefetching to the hardware-managed caches, but also
simpli�es usage of unutilized shared memory or register �le as prefetch bu�ers.
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5.5.3 Redundant Multithreading

Reliability of GPUs is a key concern, especially today when they are popularly employed in
many supercomputing systems. Ensuring hardware protection with dedicated resources can be
expensive [217]. Redundant multithreading [235,273,344] is an approach where redundant threads
are used to replicate program execution. The results are compared at di�erent points in execution
to detect and potentially correct errors. The CABA framework can be extended to redundantly
execute portions of the original program via the use of such approaches to increase the reliability
of GPU architectures.

5.5.4 Speculative Precomputation

In CPUs, speculative multithreading ( [103, 220, 271]) has been proposed to speculatively par-
allelize serial code and verify the correctness later. Assist warps can be employed in GPU ar-
chitectures to speculatively pre-execute sections of code during idle cycles to further improve
parallelism in the program execution. Applications tolerant to approximate results could particu-
larly be amenable towards this optimization [371].

5.5.5 Handling Interrupts and Exceptions.

Current GPUs do not implement support for interrupt handling except for some support for timer
interrupts used for application time-slicing [248]. CABA o�ers a natural mechanism for associating
architectural events with subroutines to be executed in throughput-oriented architectures where
thousands of threads could be active at any given time. Interrupts and exceptions can be handled
by special assist warps, without requiring complex context switching or heavy-weight kernel
support.

5.5.6 Profiling and Instrumentation

Pro�ling and binary instrumentation tools like Pin [216] and Valgrind [242] proved to be very
useful for development, performance analysis and debugging on modern CPU systems. At the same
time, there is a lack 19 of tools with same/similar capabilities for modern GPUs. This signi�cantly
limits software development and debugging for modern GPU systems. The CABA framework can
potentially enable easy and e�cient development of such tools, as it is �exible enough to invoke
user-de�ned code on speci�c architectural events (e.g., cache misses, control divergence).
19With the exception of one recent work [314].
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5.6 Methodology
We model the CABA framework in GPGPU-Sim 3.2.1 [32]. Table 6 provides the major parameters

of the simulated system. We use GPUWattch [195] to model GPU power and CACTI [325]
to evaluate the power/energy overhead associated with the MD cache (Section 5.4.3) and the
additional components (AWS and AWC) of the CABA framework. We implement BDI [267]
using the Synopsys Design Compiler with 65nm library (to evaluate the energy overhead of
compression/decompression for the dedicated hardware design for comparison to CABA), and
then use ITRS projections [142] to scale our results to the 32nm technology node.

System Overview 15 SMs, 32 threads/warp, 6 memory channels
Shader Core Con�g 1.4GHz, GTO scheduler [277], 2 schedulers/SM
Resources / SM 48 warps/SM, 32768 registers, 32KB Shared Memory
L1 Cache 16KB, 4-way associative, LRU replacement policy
L2 Cache 768KB, 16-way associative, LRU replacement policy
Interconnect 1 crossbar/direction (15 SMs, 6 MCs), 1.4GHz
Memory Model 177.4GB/s BW, 6 GDDR5 Memory Controllers (MCs),

FR-FCFS scheduling, 16 banks/MC
GDDR5 Timing [138] tCL = 12, : tRP = 12, : tRC = 40, : tRAS = 28,

tRCD = 12, : tRRD = 6 : tCLDR = 5 : tWR = 12

Table 6: Major parameters of the simulated systems.

Evaluated Applications. We use a number of CUDA applications derived from CUDA
SDK [247] (BFS, CONS, JPEG, LPS, MUM, RAY, SLA, TRA), Rodinia [61] (hs, nw), Mars [130]
(KM, MM, PVC, PVR, SS) and lonestar [52] (bfs, bh, mst, sp, sssp) suites. We run all applications to
completion or for 1 billion instructions (whichever comes �rst). CABA-based data compression is
bene�cial mainly for memory-bandwidth-limited applications. In computation-resource limited
applications, data compression is not only unrewarding, but it can also cause signi�cant perfor-
mance degradation due to the computational overheads associated with assist warps. We rely
on static pro�ling to identify memory-bandwidth-limited applications and disable CABA-based
compression for the others. In our evaluation (Section 5.7), we demonstrate detailed results for
applications that exhibit some compressibility in memory bandwidth (at least 10%). Applications
without compressible data (e.g., sc, SCP) do not gain any performance from the CABA framework,
and we veri�ed that these applications do not incur any performance degradation (because the
assist warps are not triggered for them).
Evaluated Metrics. We present Instruction per Cycle (IPC) as the primary performance metric.
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We also use average bandwidth utilization, de�ned as the fraction of total DRAM cycles that the
DRAM data bus is busy, and compression ratio, de�ned as the ratio of the number of DRAM bursts
required to transfer data in the compressed vs. uncompressed form. As reported in prior work [267],
we use decompression/compression latencies of 1/5 cycles for the hardware implementation of
BDI.

5.7 Results
To evaluate the e�ectiveness of using CABA to employ data compression, we compare �ve

di�erent designs: (i) Base - the baseline system with no compression, (ii) HW-BDI-Mem - hardware-
based memory bandwidth compression with dedicated logic (data is stored compressed in main
memory but uncompressed in the last-level cache, similar to prior works [266,293]), (iii) HW-BDI -
hardware-based interconnect and memory bandwidth compression (data is stored uncompressed
only in the L1 cache) (iv) CABA-BDI - Core-Assisted Bottleneck Acceleration (CABA) framework
(Section 5.3) with all associated overheads of performing compression (for both interconnect and
memory bandwidth), (v) Ideal-BDI - compression (for both interconnect and memory) with no
latency/power overheads for compression or decompression. This section provides our major
results and analyses.

5.7.1 E�ect on Performance and Bandwidth Utilization

Figures 50 and 51 show, respectively, the normalized performance (vs. Base) and the memory
bandwidth utilization of the �ve designs. We make three major observations.
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Figure 50: Normalized performance.

First, all compressed designs are e�ective in providing high performance improvement over the
baseline. Our approach (CABA-BDI) provides a 41.7% average improvement, which is only 2.8%
less than the ideal case (Ideal-BDI) with none of the overheads associated with CABA. CABA-
BDI’s performance is 9.9% better than the previous [293] hardware-based memory bandwidth
compression design (HW-BDI-Mem), and only 1.6% worse than the purely hardware-based design
(HW-BDI) that performs both interconnect and memory bandwidth compression. We conclude that
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Figure 51: Memory bandwidth utilization.

our framework is e�ective at enabling the bene�ts of compression without requiring specialized
hardware compression and decompression logic.

Second, performance bene�ts, in many workloads, correlate with the reduction in memory
bandwidth utilization. For a �xed amount of data, compression reduces the bandwidth utilization,
and, thus, increases the e�ective available bandwidth. Figure 51 shows that CABA-based compres-
sion 1) reduces the average memory bandwidth utilization from 53.6% to 35.6% and 2) is e�ective
at alleviating the memory bandwidth bottleneck in most workloads. In some applications (e.g.,
bfs and mst), designs that compress both the on-chip interconnect and the memory bandwidth,
i.e. CABA-BDI and HW-BDI, perform better than the design that compresses only the memory
bandwidth (HW-BDI-Mem). Hence, CABA seamlessly enables the mitigation of the interconnect
bandwidth bottleneck as well, since data compression/decompression is �exibly performed at the
cores.

Third, for some applications, CABA-BDI performs slightly (within 3%) better than Ideal-BDI and
HW-BDI. The reason for this counter-intuitive result is the e�ect of warp oversubscription [26,
166, 167, 277]. In these cases, too many warps execute in parallel, polluting the last level cache.
CABA-BDI sometimes reduces pollution as a side e�ect of performing more computation in assist
warps, which slows down the progress of the parent warps.

We conclude that the CABA framework can e�ectively enable data compression to reduce
both on-chip interconnect and o�-chip memory bandwidth utilization, thereby improving the
performance of modern GPGPU applications.

5.7.2 E�ect on Energy

Compression decreases energy consumption in two ways: 1) by reducing bus energy consump-
tion, 2) by reducing execution time. Figure 52 shows the normalized energy consumption of the
�ve systems. We model the static and dynamic energy of the cores, caches, DRAM, and all buses
(both on-chip and o�-chip), as well as the energy overheads related to compression: metadata
(MD) cache and compression/decompression logic. We make two major observations.

First, CABA-BDI reduces energy consumption by as much as 22.2% over the baseline. This
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Figure 52: Normalized energy consumption.

is especially noticeable for memory-bandwidth-limited applications, e.g., PVC, mst. This is a
result of two factors: (i) the reduction in the amount of data transferred between the LLC and
DRAM (as a result of which we observe a 29.5% average reduction in DRAM power) and (ii) the
reduction in total execution time. This observation agrees with several prior works on bandwidth
compression [266, 303]. We conclude that the CABA framework is capable of reducing the overall
system energy, primarily by decreasing the o�-chip memory tra�c.

Second, CABA-BDI’s energy consumption is only 3.6% more than that of the HW-BDI design,
which uses dedicated logic for memory bandwidth compression. It is also only 4.0% more than that
of the Ideal-BDI design, which has no compression-related overheads. CABA-BDI consumes more
energy because it schedules and executes assist warps, utilizing on-chip register �les, memory
and computation units, which is less energy-e�cient than using dedicated logic for compression.
However, as results indicate, this additional energy cost is small compared to the performance
gains of CABA (recall, 41.7% over Base), and may be amortized by using CABA for other purposes
as well (see Section 5.5).
Power Consumption. CABA-BDI increases the system power consumption by 2.9% over

the baseline (not graphed), mainly due to the additional hardware and higher utilization of the
compute pipelines. However, the power overhead enables energy savings by reducing bandwidth
use and can be amortized across other uses of CABA (Section 5.5).

Energy-Delay product. Figure 53 shows the product of the normalized energy consumption
and normalized execution time for the evaluated GPU workloads. This metric simultaneously
captures two metrics of interest—energy dissipation and execution delay (inverse of performance).
An optimal feature would simultaneously incur low energy overhead while also reducing the
execution delay. This metric is useful in capturing the e�ciencies of di�erent architectural
designs and features which may expend di�ering amounts of energy while producing the same
performance speedup or vice-versa. Hence, a lower Energy-Delay product is more desirable.
We observe that CABA-BDI has a 45% lower Energy-Delay product than the baseline. This
reduction comes from energy savings from reduced data transfers as well as lower execution
time. On average, CABA-BDI is within only 4% of Ideal-BDI which incurs none of the energy and
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performance overheads of the CABA framework.
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Figure 53: Energy-Delay product.

5.7.3 E�ect of Enabling Di�erent Compression Algorithms

The CABA framework is not limited to a single compression algorithm, and can be e�ectively
used to employ other hardware-based compression algorithms (e.g., FPC [13] and C-Pack [66]).
The e�ectiveness of other algorithms depends on two key factors: (i) how e�ciently the algorithm
maps to GPU instructions, (ii) how compressible the data is with the algorithm. We map the FPC
and C-Pack algorithms to the CABA framework and evaluate the framework’s e�cacy.

Figure 54 shows the normalized speedup with four versions of our design: CABA-FPC, CABA-
BDI, CABA-C-Pack, and CABA-BestOfAll with the FPC, BDI, C-Pack compression algorithms.
CABA-BestOfAll is an idealized design that selects and uses the best of all three algorithms in
terms of compression ratio for each cache line, assuming no selection overhead. We make three
major observations.
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Figure 54: Speedup with di�erent compression algorithms.

First, CABA signi�cantly improves performance with any compression algorithm (20.7% with
FPC, 35.2% with C-Pack). Similar to CABA-BDI, the applications that bene�t the most are those
that are both memory-bandwidth-sensitive (Figure 51) and compressible (Figure 55). We conclude
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that our proposed framework, CABA, is general and �exible enough to successfully enable di�erent
compression algorithms.
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Figure 55: Compression ratio of algorithms with CABA.

Second, applications bene�t di�erently from each algorithm. For example, LPS, JPEG, MUM, nw
have higher compression ratios with FPC or C-Pack, whereas MM, PVC, PVR compress better with
BDI. This motivates the necessity of having �exible data compression with di�erent algorithms
within the same system. Implementing multiple compression algorithms completely in hardware
is expensive as it adds signi�cant area overhead, whereas CABA can �exibly enable the use of
di�erent algorithms via its general assist warp framework.

Third, the design with the best of three compression algorithms, CABA-BestOfAll, can some-
times improve performance more than each individual design with just one compression algorithm
(e.g., for MUM and KM). This happens because even within an application, di�erent cache lines
compress better with di�erent algorithms. At the same time, di�erent compression related over-
heads of di�erent algorithms can cause one to have higher performance than another even though
the latter may have a higher compression ratio. For example, CABA-BDI provides higher per-
formance on LPS than CABA-FPC, even though BDI has a lower compression ratio than FPC for
LPS, because BDI’s compression/decompression latencies are much lower than FPC’s. Hence, a
mechanism that selects the best compression algorithm based on both compression ratio and the
relative cost of compression/decompression is desirable to get the best of multiple compression
algorithms. The CABA framework can �exibly enable the implementation of such a mechanism,
whose design we leave for future work.

5.7.4 Sensitivity to Peak Main Memory Bandwidth

As described in Section 5.2, main memory (o�-chip) bandwidth is a major bottleneck in GPU
applications. In order to con�rm that CABA works for di�erent designs with varying amounts
of available memory bandwidth, we conduct an experiment where CABA-BDI is used in three
systems with 0.5X, 1X and 2X amount of bandwidth of the baseline.

Figure 56 shows the results of this experiment. We observe that, as expected, each CABA design
(*-CABA) signi�cantly outperforms the corresponding baseline designs with the same amount
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of bandwidth. The performance improvement of CABA is often equivalent to the doubling the
o�-chip memory bandwidth. We conclude that CABA-based bandwidth compression, on average,
o�ers almost all the performance bene�t of doubling the available o�-chip bandwidth with only
modest complexity to support assist warps.
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Figure 56: Sensitivity of CABA to memory bandwidth.

5.7.5 Selective Cache Compression with CABA

In addition to reducing bandwidth consumption, data compression can also increase the e�ective
capacity of on-chip caches. While compressed caches can be bene�cial—as higher e�ective cache
capacity leads to lower miss rates—supporting cache compression requires several changes in the
cache design [13, 66, 265, 267, 290].

Figure 57 shows the e�ect of four cache compression designs using CABA-BDI (applied to
both L1 and L2 caches with 2x or 4x the number of tags of the baseline20) on performance. We
make two major observations. First, several applications from our workload pool are not only
bandwidth sensitive, but also cache capacity sensitive. For example, bfs and sssp signi�cantly
bene�t from L1 cache compression, while TRA and KM bene�t from L2 compression. Second,
L1 cache compression can severely degrade the performance of some applications, e.g., hw and
LPS. The reason for this is the overhead of decompression, which can be especially high for L1
caches as they are accessed very frequently. This overhead can be easily avoided by disabling
compression at any level of the memory hierarchy.

5.7.6 Other Optimizations

We also consider several other optimizations of the CABA framework for data compression: (i)
avoiding the overhead of decompression in L2 by storing data in the uncompressed form and (ii)
optimized load of only useful data.
Uncompressed L2. The CABA framework allows us to store compressed data selectively

at di�erent levels of the memory hierarchy. We consider an optimization where we avoid the
20The number of tags limits the e�ective compressed cache size [13, 267].
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Figure 57: Speedup of cache compression with CABA.
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Figure 58: E�ect of di�erent optimizations (Uncompressed data in L2 and Direct Load)
on applications’ performance.

overhead of decompressing data in L2 by storing data in uncompressed form. This provides
another tradeo� between the savings in on-chip tra�c (when data in L2 is compressed – default
option), and savings in decompression latency (when data in L2 is uncompressed). Figure 58
depicts the performance bene�ts from this optimization. Several applications in our workload
pool (e.g., RAY ) bene�t from storing data uncompressed as these applications have high hit rates
in the L2 cache. We conclude that o�ering the choice of enabling or disabling compression at
di�erent levels of the memory hierarchy can provide higher levels of the software stack (e.g.,
applications, compilers, runtime system, system software) with an additional performance knob.
Uncoalesced requests. Accesses by scalar threads from the same warp are coalesced into

fewer memory transactions [245]. If the requests from di�erent threads within a warp span two
or more cache lines, multiple lines have to be retrieved and decompressed before the warp can
proceed its execution. Uncoalesced requests can signi�cantly increase the number of assist warps
that need to be executed. An alternative to decompressing each cache line (when only a few bytes
from each line may be required), is to enhance the coalescing unit to supply only the correct deltas
from within each compressed cache line. The logic that maps bytes within a cache line to the
appropriate registers will need to be enhanced to take into account the encoding of the compressed
line to determine the size of the base and the deltas. As a result, we do not decompress the entire
cache lines and only extract the data that is needed. In this case, the cache line is not inserted into
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the L1D cache in the uncompressed form, and hence every line needs to be decompressed even if
it is found in the L1D cache.21 Direct-Load in Figure 58 depicts the performance impact from this
optimization. The overall performance improvement is 2.5% on average across all applications (as
high as 4.6% for MM).

5.8 Related Work
To our knowledge, this work is the �rst to (1) propose a �exible and general cross-layer

abstraction and framework for employing idle GPU resources for useful computation that can aid
regular program execution, and (2) use the general concept of helper threading to perform memory
and interconnect bandwidth compression. We demonstrate the bene�ts of our new framework by
using it to implement multiple compression algorithms on a throughput-oriented GPU architecture.
We brie�y discuss related works in helper threading and bandwidth compression.

Helper Threading. Previous works [3,51,58,59,73,74,90,91,139,161,173,214,215,321,381,390]
demonstrated the use of helper threads in the context of Simultaneous Multithreading (SMT) and
multi-core processors, primarily to speed up single-thread execution by using idle SMT contexts
or idle cores in CPUs. These works typically use helper threads (generated by the software,
the hardware, or cooperatively) to pre-compute useful information that aids the execution of
the primary thread (e.g., by prefetching, branch outcome pre-computation, and cache manage-
ment). No previous work discussed the use of helper threads for memory/interconnect bandwidth
compression or cache compression.

While our work was inspired by these prior studies of helper threading in latency-oriented
architectures (CPUs), developing a framework for helper threading (or assist warps) in throughput-
oriented architectures (GPUs) enables new opportunities and poses new challenges, both due
to the massive parallelism and resources present in a throughput-oriented architecture. Our
CABA framework exploits these new opportunities and addresses these new challenges, including
(1) low-cost management of dozens of assist warps that could be running concurrently with
regular program warps, (2) means of state/context management and scheduling for assist warps
to maximize e�ectiveness and minimize interference, and (3) di�erent possible applications of the
concept of assist warps in a throughput-oriented architecture.

In the GPU domain, CudaDMA [34] is a recent proposal that aims to ease programmability by
decoupling execution and memory transfers with specialized DMA warps. This work does not
provide a general and �exible hardware-based framework for using GPU cores to run warps that
aid the main program.
Compression. Several prior works [15, 22, 265, 266, 293, 303, 326] study memory and cache

21This optimization also bene�ts cache lines that might not have many uncoalesced accesses, but have poor data
reuse in the L1D.
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compression with several di�erent compression algorithms [13,22,66,141,267,367], in the context of
CPUs or GPUs. Our work is the �rst to demonstrate how one can adapt some of these algorithms for
use in a general helper threading framework for GPUs. As such, compression/decompression using
our new framework is more �exible since it does not require a specialized hardware implementation
for any algorithm and instead utilizes the existing GPU core resources to perform compression
and decompression. Finally, assist warps are applicable beyond compression and can be used for
other purposes.

5.9 Summary
This work makes a case for the Core-Assisted Bottleneck Acceleration (CABA) framework,

which employs assist warps to alleviate di�erent bottlenecks in GPU execution. CABA is based
on the key observation that various imbalances and bottlenecks in GPU execution leave on-chip
resources, i.e., computational units, register �les and on-chip memory, underutilized. CABA takes
advantage of these idle resources and employs them to perform useful work that can aid the
execution of the main program and the system.

We provide a detailed design and analysis of how CABA can be used to perform �exible data
compression in GPUs to mitigate the memory bandwidth bottleneck. Our extensive evaluations
across a variety of workloads and system con�gurations show that the use of CABA for mem-
ory compression signi�cantly improves system performance (by 41.7% on average on a set of
bandwidth-sensitive GPU applications) by reducing the memory bandwidth requirements of both
the on-chip and o�-chip buses.

We conclude that CABA is a general substrate that can alleviate the memory bandwidth
bottleneck in modern GPU systems by enabling �exible implementations of data compression
algorithms. We believe CABA is a general framework that can have a wide set of use cases to
mitigate many di�erent system bottlenecks in throughput-oriented architectures, and we hope
that future work explores both new uses of CABA and more e�cient implementations of it.
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Chapter 6

Conclusions and Future Work

6.1 Future Work
This dissertation opens new avenues for research. In this section, we describe several such

research directions in which the ideas and approaches in this thesis can be extended to address
other challenges in programmability, portability, and e�ciency in various systems.

6.1.1 Enabling rapid and fine-grain code adaptation at runtime, driven
by hardware

As we increasingly rely on clouds and other virtualized environments, co-running applications,
unexpected contention, and lack of visibility into available hardware resources make software
optimization and dynamic recompilation limited in e�ectiveness. The hardware today cannot
easily help address this challenge since the existing hardware-software contract requires that
hardware rigidly execute the application as de�ned by software.

With the abstractions proposed in this dissertation, we cannot adapt the code itself, but only the
underlying system and hardware based on the program properties. Future work would involve
enabling the system/hardware to dynamically change computation depending on availability of
resources and runtime program behavior. The idea is to have the application only convey higher-
level functionality, and then enable a codesigned hardware-software system to dynamically change
the implementation as the program executes. The bene�t of enabling such capability in hardware is
greater e�ciency in adapting software and more �ne-grain visibility into dynamic hardware state
and application behavior. For example, the program describes a potentially sparse computation
(e.g., sparse matrix-vector multiply). The hardware then dynamically elides computation when it
detects zero inputs. Other examples include changing graph traversal algorithms to maximize
data locality at runtime or altering the implementation of a forward pass in each neural network
layer, based on resource availability and contention. The challenge is in designing a general
hardware-software system that enables many such runtime optimizations and integrates �exibly
with frameworks such as Halide [274], TensorFlow [4], and Spark [378].

The approach would be to design a clearly de�ned hardware-software abstraction that expresses
what computation can be changed based on runtime information (resource availability/bottleneck).
This abstraction should integrate well into common building-block operations of important
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applications to obtain generality. Another approach is to determine how to e�ectively abstract
and communicate �ne-grained dynamic hardware state, bottlenecks, and contention, to enable
software frameworks, databases, and other software systems to dynamically adapt applications
accordingly.

6.1.2 Widening the scope of cross-layer and full stack optimizations

This dissertation has demonstrated the signi�cant performance, portability, and productivity
bene�ts of cross-layer abstractions that are carefully architected to enable full-system coordination
and communication to achieve these goals, from the programming model, compiler and OS, to
each hardware component (cache, memory, storage, and so on).

Future work would investigate enabling full-system coordination and communication to achieve
other challenges such as security, quality-of-service (QoS), meeting service-level objectives (SLOs),
and reliability. The challenge is in designing cross-layer abstractions and interfaces that enable very
disparate components (e.g., cache, storage, OS thread scheduler) to communicate and coordinate,
both horizontally and vertically in the computing stack, to meet the same goal

The �rst steps would involve looking into enhancing the existing compute stack to enable
these holistic designs and cross-layer optimizations. This will involve determining how to express
application-level requirements for these goals, how to design low-overhead interfaces to commu-
nicate these requirements to the system and each hardware component, and then enhance the
system accordingly to achieve the desired goal. Insights from this thesis may be directly applicable
to solutions here.

The long-term research goal is to research clean-slate approaches to building systems with
modularized components that are designed to provide full-system guarantees for performance
isolation, predictability, reliability, and security. The idea is to compose the overall system from
smaller modules where each module or smallest unit is designed to provide some guarantee of (for
example) strict performance isolation. Similarly the interfaces between module should preserve
the guarantees for the overall system. Initial research questions: What are the semantics that
de�ne a module? What are the semantics that de�ne interactions between modules?

6.1.3 Integrating new technologies, compute paradigms, and specialized
systems

Future systems will incorporate a diverse set of technologies and specialized chips, that will
rapidly evolve. This poses many new challenges across the computing stack in the integration of
new technologies, such as memristors, persistant memory, and optical devices, and new paradigms,
such as quantum computing, recon�gurable fabrics, application-speci�c hardware, and processing-
in-memory substrates. Below are extensions to this thesis, relating to di�erent aspects of this
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problem.
Enabling applications to automatically leverage new systems and architectures (a so�-

ware approach). Automatically generating high-performance code for any new hardware accel-
erator/specialization today, without fully rewriting applications, is a challenging task. Software
libraries have been demonstrated to be very ine�cient and are not general. Automatic code
generating frameworks and optimizing compilers (e.g., [65, 185, 319]) are promising approaches to
target a changing set of architectures, without rewriting application code. However, such tool
chains use a common intermediate representation (IR) to summarize the application and then use
specialized backends that optimize the IR according to the characteristics of the new architecture
and produce target code. Integration of new architectures or even new instructions/functionality
in CPUs/GPUs (e.g., to add instructions to leverage a processing-in-memory accelerator) into
these systems takes signi�cant time, e�ort, and cross-layer expertise.

The goal is to develop frameworks to enable automatic generation of high performance code for
specialized/new hardware, without rewriting existing applications. This would signi�cant reduce
the e�ort required to evaluate and deploy new hardware innovations including new architectures,
substrates, or �ner granularity hardware primitives (e.g., a faster in-memory operation).

The �rst steps would be to design an abstraction that enables easy and �exible description of
the performance characteristics, constraints, and the semantics of the interface to hardware, i.e.,
the functionality implemented by the instruction-set architecture (ISA) or new primitive. Next,
develop tools that enable automatic integration into existing compiler IRs to generate backends
based on the description. Existing IRs should also be enhanced to capture more semantic content
if required.

A longer-term goal is to develop hardware-software frameworks that enable �exible evaluation
and design space exploration of how to abstract new hardware technologies and substrates in terms
of the overall programmability (how many applications can leverage the technology), portability
(how easily we can enhance the architecture without changing the interface), and performance
(e�ciency of the new architecture).

Enabling software-transparent hardware specialization and recon�guration (a hard-
ware approach). Today, even within general-purpose cores, architects are turning to di�erent
forms of hardware customization and recon�gurability for important computation as a means to
drive improvements in performance and energy e�ciency. Examples include Tensor Cores within
GPUs to speed up tensor operations in machine learning, accelerating data intensive computation
using processing-in-memory technologies, or recon�gurable fabrics (e.g., CGRAs) to accelerate
important computations.

The goal is to enable seamless integration of specialization and recon�gurability into general-
purposes architectures, transparently to the software stack. This would enable specialized designs
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to continuously evolve without creating new primitives/instructions each time (and hence no
recompilation/rewriting is required). This addresses the critical portability and compatibility
challenges associated with these approaches. For example, this would enable seamless addition
of specialized/recon�gurable hardware support within general-purpose cores for: sparse and
irregular computations (e.g, graph processing), managed languages (e.g., support for object-based
programming, garbage collection), critical computations (e.g, numerical loops in machine learning)
and frequent operations (e.g, queries in databases), among very many possibilities. Abstractions
proposed in this dissertation, such as Expressive Memory, are not su�ciently rich to include
specialized computation as opposed to just memory access.

The �rst steps would be to enhance general-purpose architectures to (1) allow �exible customiza-
tion and recon�guration of di�erent components such as the compute units, memory hierarchy,
and coherence protocols; and (2) enable seamless transition between general-purpose and special-
ized computation, and enable safe recon�guration of hardware components at runtime. The next
steps would be to design a rich (and future-proof) programming abstraction that captures su�cient
application information to enable this �exible customization and runtime recon�guration.

6.2 Conclusions
In this dissertation, we observed that the interfaces and abstractions between the layers of the

computing stack—speci�cally, the hardware-software interface—signi�cantly constrain the ability
of the hardware architecture to intelligently and e�ciently manage key resources in CPUs and
GPUs. This leads to challenges in programmability and portability, as the application software
is forced to do much of the heavy lifting in optimizing the code for performance. It also leaves
signi�cant performance on the table, as the application has little access to key resources and
architectural mechanisms in hardware, and little visibility into available resources in the presence
of virtualization or co-running applications.

We proposed rich low-overhead cross-layer abstractions that communicate higher-level program
information from the application to the underlying system software and hardware architecture.
These abstractions enable a wide range of hardware-software cooperative mechanisms to optimize
for performance by managing critical resources more e�ciently and intelligently. More e�cient
resource management at the hardware and system-level makes performance less sensitive to how
well an application is optimized for the underlying architecture. This reduces the burden on the
application developer and makes performance more portable across architecture generations. We
demonstrated how such cross-layer abstractions can be designed to be general, enabling a wide
range of hardware-software mechanisms, and practical, requiring only low overhead additions
to existing systems and interfaces. Using 4 di�erent contexts in CPUs and GPUs, we validate
the thesis: a rich low-overhead cross-layer interface that communicates higher-level application
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information to hardware enables many hardware-software cooperative mechanisms that signi�cantly
improve performance, portability, and programmability.

First, we proposed Expressive Memory, a rich cross-layer interface in CPUs to communicate
higher-level semantics of data structures and their access semantics to the operating system and
hardware. We demonstrated its e�ectiveness in improving the portability of memory system
optimizations and in enabling a wide range of cross-layer optimizations to improve memory system
performance. Second, we introduced the Locality Descriptor, a cross-layer abstraction in GPUs
that enables expressing and exploiting data locality in GPU programs. We demonstrated signi�cant
performance bene�ts by enabling the hardware to leverage knowledge of data locality properties,
while reducing programming e�ort when optimizing for data locality. Third, we proposed Zorua,
a framework that decouples GPU programming models from hardware resource management. We
demonstrated how Zorua enhances programmability, portability, and performance, by enabling
hardware to dynamically manage resources based on the program requirements. Finally, we
introduced the Assist Warp abstraction in GPUs to e�ectively leverage idle memory and compute
bandwidth to perform useful work. We hope that the ideas, analyses, and techniques presented in
this dissertation can be extended to address challenges in hardware-software codesign and the
design of cross-layer interfaces in future computer systems.

134



Appendix A

Other Works of the Author

In addition to the works presented in this thesis, I have also contributed to several other research
works done in collaboration with students and professors at CMU and ETH. In this section, I
brie�y overview these works.

Toggle-aware compression [263] tackles the additional bit �ips in wires when data is commu-
nicated in a compressed form. Data compression, on the one hand, signi�cantly decreases the
amount of data transmitted and hence improves performance and reduces memory bandwidth
consumption. On the other hand, however, compression increases the overall entropy in data, and
hence causes more bit �ips in the wires when data is transmitted across the processor interconnect
in the form of �its. This increase in bit �ips leads to increased power consumption. This work is
the �rst to identify this challenge in GPUs and quantify its e�ects. We propose simple techniques
to alleviate this phenomenon and reduce energy consumption.

ChargeCache [127] tackles the long access latencies in modern DRAM chips. In this work, we
leverage the key observation that a recently-accessed DRAM row has more charge, and hence
can be accessed with reduced timing parameters. ChargeCache tracks recently-accessed rows
in each bank, and any subsequent access to a recently-accessed row is handled by the memory
controller with reduced DRAM parameters. Due to the temporal locality in row accesses seen in
most workloads, ChargeCache is able to signi�cantly reduce DRAM access latency.

Copy-Row DRAM (CROW) [126] is a �exible in-DRAM substrate that can be used to improve
the latency, energy e�ciency, and reliability of DRAM chips. This substrate allows duplicating
select rows in DRAM that contain frequently-accessed data or are most sensitive to refresh or
reliability issues. The rows that contain duplicate data can be activated simultaneously, which
reduces the latency of access. The rows reserved for duplicate data can also be used to map weak
cells in DRAM to reduce refresh overheads and improve reliability.

SoftMC [128] is the �rst FPGA-based testing platform that can be used to control and test memory
modules designed for the commonly-used DDR (Double Data Rate) interface. SoftMC provides
an intuitive high-level programming interface to the user, while also providing the �exibility
to control and issue low-level memory commands and implement a range of mechanisms and
tests. We demonstrate its capability with two example use cases: characterizing retention time
of DRAM cells and validating recently-proposed mechanisms that access recently-refreshed or
recently-accessed rows faster than other DRAM rows.

135



TOM [134] is a programmer-transparent mechanism in GPUs to address two critical challenges
in enabling processing-in-memory (PIM) via the logic layer in 3D-stacked memory architectures:
First, its unclear which code should be o�oaded to the PIM cores and, second, it’s challenging to
map data to the same memory stack as the PIM core that will operate on it. TOM uses a compiler-
based technique to automatically o�oad GPU code to the PIM logic with simple cost-bene�t
analysis. TOM further uses a software-hardware cooperative mechanism to predict which memory
page will be accessed by the o�oaded code and ensure that the page is placed in the same memory
stack.

IMPICA [136] is an in-memory pointer-chasing accelerator that leverages the logic layer in
3D-stacked memories. IMPICA enables parallelism in serial pointer-chasing with address-access
decoupling. It also addresses the signi�cant challenges of virtual-to-physical address translation
by using a region-based page table near the PIM core. In this work, we identify the key challenges
in enabling processing in memory for irregular pointer-chasing applications and design IMPICA
to e�ectively address these challenges and signi�cantly accelerate pointer-chasing.

Gaia [135] is a geo-distributed machine learning system that employs an e�cient communication
mechanism over wide-area networks (WANs). Gaia decouples the communication within a data
center from the communication between data centers, enabling di�erent communication and
consistency models for each. In this work, we present a new machine learning synchronization
model, Approximate Synchronous Parallel (ASP) for WAN communication that dynamically
eliminates insigni�cant communication between data centers. At the same time, Gaia is generic
and �exible enough to run a wide range of machine learning algorithms.

SMASH [162] is a hardware-software cooperative mechanism that enables highly-e�cient
indexing and storage of sparse matrices. The key idea of SMASH is to explicitly enable the
hardware to recognize and exploit sparsity in data. To this end, we devised a novel software
encoding based on a hierarchy of bitmaps that can be used to e�ciently compress any sparse
matrix and, at the same time, can be directly interpreted by the hardware to enable highly-e�cient
indexing. SMASH enables signi�cant speedups for sparse matrix computation by eliminating
the expensive pointer-chasing operations required in state-of-the-art sparse matrix compression
schemes.
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