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Protessor Mutlu’s Bio @
Onur Mutlu ‘/)

Professor @ ETH Zurich CS, since September’l5, started May’16

Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-...
PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach me)

Publications: https://people.inf.ethz.ch/omutlu/projects.htm
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Research, Education, Consulting in

Computer architecture and systems, bioinformatics

Memory and storage systems, emerging technologies

Many-core systems, heterogeneous systems, core design
Interconnects

Hardware/software interaction and co-design (PL, OS, Architecture)
Predictable and QoS-aware systems

Hardware fault tolerance and security

Algorithms and architectures for genome analysis
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Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, security, bioinformatics
« Memory and storage (DRAM, flash, emerging), interconnects, security

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
* Energy efficiency, fault tolerance, hardware security, performance

« Genome sequence analysis & assembly algorithms and architectures

* Biologically inspired systems & system design for bio/medicine

Hterogeneous Persistent Memory/Storage

Processors and

Accelerators Broad research

spanning apps, systems, logic

-

Graphi and Vi‘ Processing



Openings (@ SAFARI

= We are hiring enthusiastic and motivated students and
researchers at all levels.

= Join us now:

safari.ethz.ch/apply

SAFARI
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Agenda for Today

= This lecture is NOT about how to analyze biological data
using available tools.

SAFARI



Agenda for Today

Why Genome Analysis?
What is Genome Analysis?

How we Map Reads?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?
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Why Genome Analysis? Why Bother?

Personalized medicine.

Genome-wide association study (GWAS).
City-scale microbiome profiling.

Tracing birth parents.

Disease risk profiling.

SAFARI
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1-Personalized Medicine

Nan-Byo
Difficult + llIness

Coined in 1972 by the Japanese Ministry
of Labor, Health, and Welfare.

https://www.nanbyo-research.jp/nanbyo

SAFARI
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https://www.nanbyo-research.jp/nanbyo

1-Personalized Medicine

Adults

Children

of sick children
never reach

1in 17 people 5t birthday

in the world have a rare

disease
’ L] [ ]
That’s 350 Million 30% of rare diseases are
0 I genetic in origin
s A FA R ’ http://www.raredisease.org.uk/what-is-a-rare-disease 13
https://www.bag.admin.ch/bag/en/home/krankheiten/krankheiten-im-ueberblick/viele-seltene-krankheiten.html



http://www.raredisease.org.uk/what-is-a-rare-disease
https://www.bag.admin.ch/bag/en/home/krankheiten/krankheiten-im-ueberblick/viele-seltene-krankheiten.html

Rare Diseases in Japan

“We don’t know exactly how many people in Japan have a rare
disease, which is why we want to design the rare disease platform to
be as comprehensive as possible. There are thousands of rare
diseases. So even though the number of patients with each disease is
very small, there are many people who have one. Out of 20 of your
friends, for example, one will have a rare disease,” explains Matsuda.

Prof. Fumihiko Matsuda,
Director of the Center for
Genomic Medicine,

Kyoto University

https://www.nanbyo-research.jp/feature/43/japan%E2%80%99s-rare-disease-database-expedites-more-effective-research

SAFARI 14
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Personalized Medicine in Japan

European Journal of
Human Genetics

Policy | Open Access | Published: 05 July 2017

Japan’s initiative on rare and undiagnosed
diseases (IRUD): towards an end to the
diagnostic odyssey

Takeya Adachi &, Kazuo Kawamura, Yoshihiko Furusawa, Yuiji Nishizaki, Noriaki

Imanishi, Senkei Umehara &4, Kazuo Izumi & & Makoto Suematsu

European Journal of Human Genetics 25,1025-1028(2017) | Cite this article

X > 2000

. undiagnosed
' patients

SAFARI Adachi+ "Japan’s initiative on rare and undiagnosed diseases (IRUD): towards an 15
end to the diagnostic odyssey." European Journal of Human Genetics, 2017.

> 600 million
JPY annually



https://www.nature.com/articles/ejhg2017106

Personalized Medicine in UK

npj ‘ Genomic Medicine www.nature.com/npjgenmed
NPJ Genom Med. 2018; 3: 10. PMCID: PMC5884823
Published online 2018 Apr 4. doi: 10.1038/s41525-018-0049-4 PMID: 29644095

Rapid whole-genome sequencing decreases infant morbidity and cost of
hospitalization

Lauge Farnaes,#1:2 Amber Hildreth,#12 Nathaly M. Sweeney,#1:2 Michelle M. Clark,! Shimul Chowdhury,
Shareef Nahas, ! Julie A. Cakici,! Wendy Benson,! Robert H. Kaplan,3 Richard Kronick,* Matthew N. Bainbridge,
Jennifer Friedman,1:2:5 Jeffrey J. Gold, ! Yan Ding,1 Narayanan Veeraraghavan,1 David Dimmock,! and
Stephen F. Kingsmorem1

National Institute for

reduced inpatient Health Research

ﬁ&y) 000-  “From 2019, all seriously ill children

$300,000 in UK will be offered WhOle genome
' Sequencing as part of their care”

SAFARI Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 14
cost of hospitalization”, NPJ Genom Med. 2018
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/

2-Genome-Wide Association Study (GWAS)

= Detecting genetic variants associated with phenotypes
using two groups . < .

of people. i, c
38% Wi

cases (n=1,000)
people with heart disease

c T

¢ T
! C 49% Ke
controls
51% R

controls (n=1,000)

people without heart disease
Fscn2

variant with higher frequency
in cases than controls

I i;
! N " ] T
.I I. ‘ T T . l. T T .I T Iu. .‘.{

Manhattan plot Chromosome
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Finding SNPs Associated with Complex Trait

Different
individuals

SNP1 SNP2

-..ACATGCCGACATTTCATAGGCC...
..ACATGCCGACATTTCATAAGCC...
-..ACATGCCGACATTTCATAGGCC...
..ACATGCCGACATTTCATAAGCC...
-..ACATGCCGACATTTCATAGGCC...
-..ACATGCCGACATTTCATAGGCC...
..ACATGCCGACATTTCATAAGCC...
-..ACATGCCGACATTTCATAAGCC...
..ACATGTCGACATTTCATAGGCC...
..ACATGTCGACATTTCATAAGCC...
..ACATGTCGACATTTCATAGGCC...
..ACATGTCGACATTTCATAAGCC...
..ACATGTCGACATTTCATAGGCC...
..ACATGTCGACATTTCATAAGCC...
..ACATGTCGACATTTCATAGGCC...
..ACATGTCGACATTTCATAAGCC...

Blood Pressure

180
175
170
165
160
145
140
130
120
120
115
110
110
110
105
100

Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA

SAFARI
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computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies/

Mirror Phenotypes of 593 Kb CNVs

B AUTISM
& Weiss, V Eng J Med 2008
| Deletion of 593 kb

| | UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

I Deletion in the short arm
l l of chromosome 16 (16p11.2)

Duplication in the short arm
of chromosome 16 (16p11.2)

SAFARI 19



3- City-Scale Microbiome Profiling

S A FAR | https://gothamist.com/news/the-subway-is-probably-bubonic-plague-free-after-all 20



https://gothamist.com/news/the-subway-is-probably-bubonic-plague-free-after-all

3- City-Scale Microbiome Profiling (cont’d)

3. GPS-tag/timestamp

g A Rochele

2. Annotate

1. Swab (3 min)

L 4
a wekad L

Lower By

Cc D E

Extract DNA (n:1'457 samples) Viruses Archaea Plasmids

$ Ambiguous__0.032% 0.003% _ 0.001%
. . . 4.184% N —
lllumina and Qiagen Library Prep | Eukaryota

! 0.771%

HiSeq2500 125x125 Sequences ‘

¥

‘ Quality Trim (Q20)

LV

MegaBLAST-LCA alignment

¥

MetaPhlAN classification Afshinnekoo+, "Geospatial Resolution of Human and Bacterial
Diversity with City-Scale Metagenomics”, Cell Systems, 2015

'!'L'- 4 =

Figure 1. The Metagenome of New York City

(A) The five boroughs of NYC include (1) Manhattan (green), (2) Brooklyn (yellow), (3) Queens (orange), (4) Bronx (red), (5) Staten Island (lavender).
(B) The collection from the 466 subway stations of NYC across the 24 subway lines involved three main steps: (1) collection with Copan Elution swabs, (2) data 21
entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com.

(C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhlAn to



https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2

Plague in New York Subway System?

¥ Harvard Health Publishing
HARVARD MEDICAL SCHOOL

Trusted advice for a healthier life

Plague (Yersinia Pestis)

What Is It?

Published: December, 2018

Plague is caused by Yersinia pestis bacteria. It can be a life-threatening infection if not
treated promptly. Plague has caused several major epidemics in Europe and Asia over the
last 2,000 years. Plague has most famously been called "the Black Death" because it can
cause skin sores that form black scabs. A plague epidemic in the 14th century killed more
than one-third of the population of Europe within a few years. In some cities, up to 75% of
the population died within days, with fever and swollen skin sores.

SAFARI 22



Plague in New York Subway System?

. &he New York Eimes
P I ague ( Ye rsii Bubonic Plague in the Subway
System? Don’t Worry About It

What s It?

Published: December, 2018

Plague is caused by Yersinia
treated promptly. Plague h:
last 2,000 years. Plague has
cause skin sores that form k&
than one-third of the popul
the population died within

In October, riders were not deterred after reports that an Ebola-infected man had ridden
the subway just before he fell ill. Robert Stolarik for The New York Times

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-

the-subway-system-dont-worry-about-it.html

The findings of Yersinia Pestis in the subway received wide coverage in the lay
press, causing some alarm among New York residents

SAFARI 23
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Failure of Bioinformatics

nature

bloveel'mologpy

CRISPR erdonucieases get on base
Irdoc odup.m-cm:m e

data. Rob Knight, a professor in the department of pediatrics at the
University of California, San Diego, calls this type of error “a failure of
bioinformatics” in that Mason had assumed the gene fragments were

unique to the pathogens, when in fact they can also be detected in other

Charles Schmidt, “Living in a microbial world”, Nature Biotechnology, 2017
https://www.nature.com/articles/nbt.3868

SAFARI 24


https://www.nature.com/articles/nbt.3868
https://www.nature.com/articles/nbt.3868

There is a critical need for fast and

accurate genome analysis.

SAFARI
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Agenda for Today

Why Genome Analysis?
What is Genome Analysis?

How we Map Reads?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?

SAFARI
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Genome Analysis

NO machine can read the
entire content of a genome

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTG
TCAAGGACCTAAACT GAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCT
AAGCTTCTTCATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAA
GGACTTGATACATTGGAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAA
GTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTC
AAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCA
AGAGTTGCAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTC
TTCATGTCAAGGACCTAATGTAGCCAGAATGGTTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGT
AGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTC
TTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACCTAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGG
GAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCATCCGTTTCTCTCCCACA

SAFARI



Life Begins with Cell

= A cell is a smallest structural unit of an organism that is
capable of independent functioning.

o Cells store af//information to replicate themselves.

The chromosome is The genes consist of DNA

made up of genes \

Nucleotide

Base
Chromosome - 23 pairs ]
S /Phospmte

SAFARI The discovery of DNA's double-helical structure (Watson+, 1953) 28




Cells of Different Organs and Tissues

= All the cells in a person's body have the same DNA and the
same genes.

o Expression of the genes differs between cells.
o But not all genes are used or expressed by those cells.

ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

o 20,000-25,000
o human genes

NIH 2009 National DNA Day
gene

SAFARI 29



All Lite Depends on 3 Critical Molecules

SAFARI 3



Chemical Structure of DNA

,\&“’

https://www.sciencefocus.com/the-human-body/how-long-is- your dna/

OEZIID

SAFARI



Chemical Structure of DNA

= If you stretched the DNA in one
cell all the way out, it would be
about 2-3 meters long.

= DNA is supercoiled so that it
takes up less space within a cell
(human cell’s diameter 4-100
microns).

o

—‘%} :

https://www.sciencefocus.com/the-human-body/how-long-is-your-dna/

SAFARI



How Long 1s DNA?

SAFARI 33



The Genetic Similarity Between Species

96%

Human ~ Cat
90%

Human ~ Human
99.9%

Human ~ Cow
80%

Human ~ Banana
50-60%

Human ~ Chimpanzee

SAFARI
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DNA Under Electron Microscope

human chromosome #12
from Hela’s cell

SAFARI
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DNA Under Electron Microscope

from Hela’s cell

SAFARI 36



DNA Under Electron Microscope

SATURDAY ar 8

human chromosome #12
from Hela’s cell

SAFARI



Untangling Yarn Balls & DNA Sequencing

SAFARI 38



Cracking the 15 Human Genome Sequence

= 1990-2003: The Human Genome Project (HGP) provides a
complete and accurate sequence of all DNA base pairs that make
up the human genome and finds 20,000 to 25,000 human genes.

Ntﬂonduuon

= El Hork Cimes ===
1 ?,ze_i\ﬂs;,,gw Bimes == g 2

ttc Code of Human Li eIs Cracked by Scientist G |T| pases

’ The Book of Life

vorerrend & ) srte syt || SHARED SUGCI
‘M*bd' ol ONA "r:.-," ',' chromosemes i our cells,
e AL have been sequenced 1 3
; s ) ears
A adeting y 2 Rivals' Announcem y
et
LG o =g Marks New Medic:
o
& Y| Risksand Al
3 N\ T—— y
o T — By NICHOLAS WADE *
PR il WASHINGTON, June 3 — |
ULl By orcieving the Dase Units. sCentiels Aope 10 ndnrw ment That repeesen
[ bcale the penes and deformng Shew Anclions sacke of hessan seif & nmsnkf
rval of scientists sadd |
S i~

Rps

1uhryh dc:phc«lhrh(
tary script, set nlm rue
that defines N organis

>3x10° $
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Vast Improvement in Sequencing

( )

4

(ﬁEfH “oos| = Read Mapping s [
Sequencing . ) —aAne

GATK

CCCCCCTATATATACGTACTAGTACGT m

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT E

1x10'2bases’

ACGTACGCCCCTACGTA
TATATATACGTACTAGTACGT .
ACGACTTTAGTACGTACGT 44 hours
TATATATACGTACTAAAGTACGT
TATATATACGTACTAGTACGT <

TATATATACGTACTAGTACGT

ACGTTTTTAAAACGTA
e <1000 $
ACGACGGGGAGTACGTACGT

* NovaSeq 6000

SAFARI 40



High- Throughput Sequencers

Oxford
Nanopore
PromethlON

Pacific
Biosciences
Sequel Il

lllumina MiSeq

_

g
| Oxford Nanopore MinION
Oxford
Nanopore
I—

SmidgION
lllumina NovaSeq 6000

Pacific Biosciences RS |I
.. and more! All produce data W|th dlfferent properties.

SAFARI H



How Does HTS Machine Work?

42
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How Does HTS Machine Work?

A AAg

A GA CAy c ¢ ¢

ACp ACCA p6Ct G & 7

T

cGc C G GC CTGTTAA

GTG GTTG GATTACC

(T) TGCTAATGCAACGG

. AC ¢ A -

Optical G C G G G e T &
Sensor GGT cT

(A) T

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT

" TTAGTACGTACGT
TACGTACTAAAGTACGT

ATACGTACTAGTACGT
'TTTAAAACGTA

CGTACTAGTACGT

: GGGAGTACGTACGT‘)
K DNA fragment = Read

SAFARI 43

Glass flow
cell surface




How Does HTS Machine Work?

Reads lack information about their order and location (which part of

genome they are originated from)

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT
TTAGTACGTACGT
TACGTACTAAAGTACGT
[ TACGTACTAGTACGT
TTTAAAACGTA

CGTACTAGTACGT

GGGAGTACGTACGT

SAFARI
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TATAATACG
0f1]2 ‘

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

G TACGTA o |
AGCGTAGT AGTACGT Short Read ) ; Read

TTAGTACGTACGT
TACGTACTAAAGTACGT
[ TACGTACTAGTACGT
TTTAAAACGTA

GTACTAGTACGT

GGGAGTACGTACGT

OOP—B—AB—OD

Reference Genome

!l Sequencing Genome Read Mapping n

Analysis
reference: TTTATCGCTTCCATGACGCAG
readl: ATCGCATCC
read2: TATCGCATC
read3: CATCCATGA
read4: CGCTTCCAT
read5: CCATGACGC
read6: TTCCATGAC

B Variant Calling Scientific Discoveryn



Building up the Donor’s Genome

SAFARI >0



De Novo Genome Assembly

computationalgenomics.bioinformatics.ucla.edu/portf
olio/david-koslicki-the-cami-project-assessment-of-
computational-techniques-in-metagenomics/

SAFARI 1




HTS Sequencing Output

Small pieces of a broken vase Large pieces of a broken vase
short reads long reads

Which sequencing technology is the best?

1 50-300 bp J 10K-100K bp
U low error rate (~0.1%) U high error rate (~15%)

SAFARI >2



Genome Analysis

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Refernteyganame
“chemical format” “text format” “text grgmat”

SAFARI 53



Metagenomics Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

genetic material recovered s (
directly from environmental N
samples Reads Reference
“text format” Database

SAFARI



Genomics vs. Metagenomics

Metagenomics
- ol
Y ol

- o

‘.

SAFARI >



Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate small variances/errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

SAFARI

56



Agenda for Today

Why Genome Analysis?
What is Genome Analysis?

How we Map Reads?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?

SAFARI
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Read Mapping: A Brute Force Algorithm

Reference

[ ]
Read

Very Expensivel
O(nm¥kn)

m: read length
k: no. of reads
. reference genome length

SAFARI >8



Similar to Searching Yellow Pages!

‘“\\ \X‘

= Step 1: Get the page number from the book’
index using a small portion of the name (e.q., 1st
letter).

H

= Step 2. Retrieve the page(s).

""{\a

’.’
L

\ = Step 3: Look for the full name & get the phone
number.

Faam

SAFARI >

W




Step 1: Indexing the Reference Genome

Seed=k-mer or 12-mer | gcation list—where the k-mer
(string of length k)

AAAAAAAAAAAC

- 13 | 421 |41 M489~

AAAAAAAAAAAT

occurs in reference gnome

112, [ 324 | 577 | 940 Reference genome

N

—> 24 | 459 | 744 | 988 | 989

—> 36 | 535 | 123

We can query the table with substrings from reads
to quickly find a list of possible mapping locations

SAFARI Alkan+, "Personalized copy number and segmental duplication 4
maps using next-generation sequencing”, Nature Genetics 2009.


http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Genome Index Properties

The index is built only once for each reference.

Seeds can be overlapping, non-overlapping, spaced,
adjacent, non-adjacent, minimizers, compressed, ...

Tool Version Index Size Ind_e xing
Time
mrFAST 2.2.5 16.5 GB 20.00 min
minimap2 0.12.7 7.2 GB 3.33 min
BWA-MEM 0.7.17 4.7 GB 49.96 min

SAFARI

*Human genome = 3.2 GB

61



Step 2: Query the Index Using Read Seeds

Read Sequence (100 bp)

4_/‘
S

Mafohig ...

Mismatch

\1— Mismatch

Mismatch

37 140

Index 894 1203

(e.g., Hash Table) 1564

--------------------------------------------------
“““
o e

Reference Genome

SAFARI




Step 3: Read Alignment (Verification)

Edit distance is defined as the minimum number of edits

(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

organization x operation organization x translation
Ref oIIrganization Ref organiz.ation
Read ation Read tr-an-slation
Ref oIIrganization Ref organ.ization
Read oIIr-a----tion Read tr-anII-ation

Edit distance = 7

Ref organization
match )
deletion Read tr-anslation

~ insertion Edit distance = 4

mismatch

SAFARI 63



An Example of Hash Table Based Mappers

= + Guaranteed to find a/ mappings = very sensitive
= + Can tolerate up to eerrors

nature
genCtICS https://github.com/BilkentCompGen/mrfast

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'?, Jeffrey M Kidd!, Tomas Marques-Bonet!?, Gozde Aksay', Francesca Antonaccil,
Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu’, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!»2

A‘ KC , »ray, . 5 . -~ v 2 _
SA i-l using next -generation sequencing”, Nature Genetlcs 2009



https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Bottlenecked in Read Alignment!!

cqq- “6 cqq-
37 Million Million
bases/minute ¢ bases/minute
é .
Read Sequencing E / TT Read Mapping

150x slower

* BWA-MEM
** NovaSeq 6000, MinION

SAFARI 66



Agenda for Today

Why Genome Analysis?
What is Genome Analysis?

How we Map Reads?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?
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What Makes Read Mapper Slow?

Key Observation # 1

93%

of the read mapper’'s

SAM

printing
3%

candidate

alignment
locations (CAL)
4%

execution time is spent

in ] :
read alignment Read Alignment

93%

Alser et al, Bioinformatics (2017)
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What Makes Read Mapper Slow? (cont’d)

Key Observation # 2

CCTATAATACG

OOP—B—AB—AODO

98%

Read s
Alignment .+’ of candidate locations

Short Read
T

have high dissimilarity
with a given read.

Reference Genome

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)
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What Makes Read Mapper Slow? (cont’d)

Key Observation # 3

» Quadratic-time dynamic-
programming algorithm WHY?! NJE[TH[E[R[L][A[N[D]S]

Enumerating all possible prefixes

S
W
NETHERLANDS X SWITZERLAND I
™ NETHERLANDS x S !
NETHERLANDS x SW z
NETHERLANDS x SWI E
NETHERLANDS X SWIT R
NETHERLANDS X SWITZ L
NETHERLANDS x SWITZE A
NETHERLANDS x SWITZER N
NETHERLANDS x SWITZERL 5
NETHERLANDS x SWITZERLA
NETHERLANDS X SWITZERLAN

NETHERLANDS x SWITZERLAND

SAFARI 7



What Makes Read Mapper Slow? (cont’d)

Key Observation # 3
» Quadratic-time dynamic-

programming algorithm N[ E[T[H[E[R[L[A[N]D]S
_ _ _ 0|1/2|3|4|5/6|7|8]|9/10[11
Enumerating all possible prefixes sl 1213121516l 7 18 9 010
W(2|/2/23|4|5|6|7/8|9]|10/11
1/3/3|3|3|4(5/6|7|8/|9/10[11
» Data dependencies limit the Tl4/4/4/3/4/5/6 78 91011
computation parallelism 21515/5/4/4)5]6]7]8]9]10}11
_ E|6|(6|(5/5/5/4|5|/6[7[8|910
Processing row (or column) after another rl 7171 6lelelsi@lslel718lo
L|8|8|7|7|7|6|5|4/5/6|7]|8
Al9|9/8|8|8|7|6|5/4/5|6]|7
» Entire matrix is computed N110/9191919181716]5 4] 5
. D|(11/10/10|10(10|/9 |8 |7 |6 | 5| 4§ 5
even though strings can be
dissimilar.
Number of differences is computed only at the backtraking step.
71
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Agenda for Today

Why Genome Analysis?
What is Genome Analysis?

How we Map Reads?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?
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Our Goal

Our goal is to significantly reduce the time spent on
calculating the optimal alignment in genome analysis from
hours to mere seconds using both new algorithms &
hardware accelerators, given limited computational
resources (i.e., personal computer or small hardware).

1997
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Open Questions

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?

SAFARI 4



Pushing Towards New Architectures

Microprocessor Main Memory Storage (SSD/HDD)

Single memory request consumes
>160x-800x more energy compared to

performing a complex add operation

Sequencing
Machine

SAFARI 7>



Processing Genomic Data Where it Makes Sense

Modern systems

;
= .
: ’l ? ‘t‘

h {H”\VH|‘fl':HF;HFMMM.MHEIMEM!ﬂ;‘"ﬁlll!hlélllllu‘l iﬂl“ﬂlﬂl;’ L] ,'.nl \u-‘uw L\n S e q u e n Ci n g
<" Hybrid Main Memory Machine

Heterogeneous

Processors and
Accelerators

Persistent Memory/Storage
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Most speedup comes from parallelism enabled

by novel architectures and algorithms
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Preferred Networks' MN-Core (2018)

Chip

Die to Die Interconnect
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matrix arithmetic
blocks (MABs)

Die to Die Interconnect

= Deep learning accelerator.
= 2,048 matrix arithmetic units

32.8 (DP) / 131 (SP) / 524 (HP)

0.066 (DP) / 0.26 (SP) / 1.0 (HP)

=
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(Notes) DP: double precision, SP: single precision, HP: half precision.
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Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip
- = 400,000 cores
Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2

https://www.cerebras.net/cerebras-wafer-scale-enqine-why-we-neea'yllanllcﬁ‘-g ﬁ‘Bé’-for-deep-learninq/

SAFARI onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich 79



https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

LPMEM UPMERA LIPIAE M UPMERA UPMEM LIPMENA UPMEM UPMEM
I PN Pin PiM I PIN PN BiM
chip dhip chip chip chip chip ahip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https: upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/ 30

IR Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich
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https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

TESLA Full Selt-Driving Computer (2019)

= ML accelerator: 260 mm?, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.
htt s://youtu.be/UcpO0TTmvgOE?t=4236

AT

Iih..----- _ﬂ
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[llumina + Edico Genome

PRESS RELEASE

llumina Acquires Edico Genome|to
Accelerate Genomic Data Analysis

Edico’s DRAGEN® Bio-IT Platform Delivers Faster, Streamlined Output for Next-Generation Sequencing

SAN DIEGO--(BUSINESS WIRE)--May 15, 2018-- lllumina, Inc. (NASDAQ: ILMN) today announced that it
acquired Edico Genome, the leading provider of data analysis acceleration solutions for next-generation
sequencing (NGS). Edico Genome’s DRAGEN® Bio-IT Platform (DRAGEN) uses field programmable gate
array (FPGA) technology in conjunction with proprietary software algorithms to reduce both data
footprint and time to results.

https://www.illumina.com/company/news-center/press-releases/2018/2349147.html
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[Hlumina + PacBio

PRESS RELEASE

llumina to Acquire Pacific
Biosciences for Approximately $1.2
Billion, Broadening Access to Long-
Read Sequencing and Accelerating
Scientific Discovery

* Brings Together Highly Accurate Short- and Long-Read Sequencing Technologies, Paving the Path
to a More Perfect View of a Genome

* Pacific Biosciences’ Recent Advances with its Sequel SMRT® Technology, Combined with
lllumina’s Infrastructure, will Expand Biological Discovery and Clinical Insight

e [ong-Read Sequencing Market Opportunity Expected to Grow to $2.5B by 2022

SAN DIEGO & MENLO PARK, Calif.--(BUSINESS WIRE)--Nov. 1, 2018-- lllumina, Inc. (NASDAQ: ILMN)

https://www.illumina.com/company/news-center/press-releases/press-release-details.html?newsid=2374913
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Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI 84



An Example of Ongoing Directions
Read Sequence (100 bp)

q_ﬁ
— i
2) Pre-Alignment Filtering... P(e-ﬂl%gé,nt
I Match! it

--------------------------------------------------
“““
o e

*
*

[ 3) Rapid Alignment J
Allghifrg... Reference Genome

1) Seed Filtering ...

37 140
Hash Table 894 1203

1564
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Ongoing Directions

Seed Filtering Technique:
o Goal: Reducing the number of seed (k-mer) locations.

Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
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FastHASH

= Goal: Reducing the number of seed (k-mer) locations.

o Heuristic (limits the number of mapping locations for each
seed).

o Supports exact matches only.

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/S1/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari®, Samihan Yedkar', Onur Mutlu'", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists
AAAAAAA\A&A\ACEC_JCC_CC_CCC_JU [TTTTTTTTT | read
Valid mapping Invalid mapping Relerence genome
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Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists

Observation 2 (Cheap k-mers)

o Key insight: Some k-mers are cheaper to verify than others
because they have shorter location lists (they occur less
frequently in the reference genome)

o Key Idea: Read mapper can choose the cheapest k-mers and
verify their locations
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Cheap K-mer Selection

= occurrence threshold = 500 read
326 338 350 376 388
Cafions1 1470
2 loc. 2 loc.
Nﬂmber of Logatijuns——_
Cheapest 3 k-mers 1K loc. 2K loc. 1K loc.
Expensive 3 k-mers
Previous work needs FastHASH verifies only:

to verify:
» 8 locations

3004 locations

SAFARI 20



FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
billions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: To reduce the cost of unnecessary verification
o Select Cheap and Adjacent k-mers.

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings

SAFARI o1



More on FastHASH

= Download source code and try for yourself
a Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513

http://www.biomedcentral.com/1471-2164/14/51/513
BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu"", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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http://mrfast.sourceforge.net/

Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:
o Goal: Reducing the number of /nvalid mappings (>E).

Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI )3



Pre-alignment Filtering Technique

Read Alignment is expensive

Our goal is to reduce the need for dynamic
programming algorithms

SAFARI
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Ideal Filtering Algorithm

Step 3

Read
Alignment

1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

SAFARI 7>



GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser &, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ¥, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

SAFARI
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GateKeeper

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2 £ shifts.

Key idea:
o Compute “Shifted Hamming Distance”: AND of 2£+1 Hamming
vectors of two strings, to identify invalid mappings
Uses bit-parallel operations that nicely map to FPGA architectures

Key result:

o GateKeeper is 90x-130x faster than than SHD (Xin et al.,
2015) and the Adjacency Filter (Xin et al., 2013), with only a
/% false positive rate

o The addition of GateKeeper to the mrFAST mapper (Alkan et
al., 2009) results in 10x end-to-end speedup in read mapping
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Hamming Distance (D€

D)

3 matches

5 mismatches

Edit = 1 Deletion

A

Bl|U|IL

\L/

N

|
\*/
H (' ¥

-
|

‘-- ——

[
NN

XA

T...

B

To cancel the effect of a

2

deletion, we need to shift

in the right direction

%

SAFARI
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Shifted Hamming Distance (Xin+ 2015)

| [|S|IT[A[IN[/B||U|]|L
XOR - ! E i i i E E Edit = 1 Deletion
\ 4 \ 4 [
g :
O(|O}JO[1{J1]/1)1}) = XOR
AND<
1(/1({/1]]0[/0}/0|/0

C°““t{ooo1oooo

7 matches

1 mismatches
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GateKeeper Walkthrough

Generate 2E+1
masks

Amend random zeros: AND all masks,
101 > 111 & 1001 »> 1111 ACCEPT iff number of ‘1" < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000 11011010010101
l1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000

2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001

3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011

11101101001010
10111011101111
11101110111110
11000111101100
11010111001000

-—-- Masks after amendment ---

135 Our goal to track the diagonally consecutive matches in the
2-1: neighborhood map.

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : | ILEEEEIIT LEEEEEREREEE FPEEEEEEE PP EEEEEE P EEE PR PR s PR

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
CTATAATACG CTATAATACG
4
Al A jeas
C |- C 0
T T 0
A A 0
T T 0
A A 04 0
T T 0
A A 0
C C 0
G G :

Our goal to track the diagonally consecutive matches in the
neighborhood map.
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
TATAATACG TATAATACG
4
A A e
‘ 0
T T 0
A A 0
T T 0
A A 04 0

Independent vectors can be processed in parallel using
hardware technologies

SAFARI 103



Our Solution: GateKeeper

st

Alignment WY
Filter ke o - 74 FPGA-based
Alignment Filter.

Low Speed & High Accuracy
Medium Speed, Medium Accurac
High Speed, Low Accuracy

x103

mappings
- oo

x1012

ATATATACG ]
3ACGGGGAGTA A

DOPAPAP-HOD>

E High throughput DNA Read Pre-Alignment Filtering Read Alignment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

| « (2E)*(ReadLength) 2-AND
operations.

* (ReadlLength/4) 5-input LUT.

log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
NERS 101 > 111 & 1001 »> 1111

 E right-shift registers (length=ReadLength)
« E left-shift registers (length=ReadLength)
« (2E+1) * (ReadLength) 2-XOR operations.

~ ™

Hammmg mask

I 5-input

D LI{T LI : i

| l l
IC0111100011.10001111 1111110001&10

Hamming mask after amending

E » (2E+1)*(ReadlLength) 5-input LUT.
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GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU) Alignment Filtering (FPGA) EAIignment Verification

(CPU/FPGA)

ornnrnnrnnnns s , ..................... GateKeeper ,,

Read Controller

read#1 read#N

ACTATAATACG

read pairs

(MIFAST 1q #
output) b

Encoder EI¥ oo1

DOP>AP>PAP>PHA0>0

’ K Input stream :
. : of binary pairs GateKeeper EEEEE GateKeeper
—ll == B Processing Processing
fir b e eyt o fir b e eyt o E Core #1 » n n n Core #N
- E Accepted Alignments

input reads  reference '

(fastq) genome (.fasta) + (correct & false positives)

*Imap#ﬂj [ Tmap #N]|

PCie

GateKeeper
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5%

PCle Controller, RIFFA, and 10

17.6%,

GateKeeper

FPGA Chip Layout
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper
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GateKeeper Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing

SAFARI 1o



More on SHD (SIMD Implementation)

= Download and test for yourself
= https://qgithub.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560
doi: 10.1093/bioinformatics/btu856

Original Paper OXFORD

Advance Access Publication Date: 10 January 2015

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford?, Can Alkan** and Onur Mutlu®*
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More on GateKeeper

= Download and test for yourself
https://qgithub.com/BilkentCompGen/GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser ¢, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu %, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping”, Bioinformatics, 2017.
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Can we do better? Scalability?
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Shouji (& 7-)

Bioinformatics, 2019, 1-9

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu'>*
and Can Alkan3*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, *Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and *Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Shouyt

Key observation:

o Correct alignment always includes long identical subsequences.

o Processing the entire mapping at once is ineffective for hardware
design.

Key idea:

o Use overlapping sliding window approach to quickly and
accurately find all long segments of consecutive zeros.

Key result:
a Shouji on FPGA is at least 160x faster than its CPU implementation.

o Shouji accelerates best-performing CPU read aligner Edlib
(Bioinformatics 2017) by up to 18.8x using 16 filtering units that
work in parallel.

o Shouji is 2.4x to 467x more accurate than GateKeeper
(Bioinformatics 2017) and SHD (Bioinformatics 2015).
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Building the
Neighborhood Map

Finding all common
subsequences
(diagonal segments of
consecutive zeros)
shared between two
given sequences.

© G N & 1 & W N R -

S XN N
N = O

Storing it @ Shouji Bit-vector

J 1 2 3 4 5 6 7 8 9 10 11 12
G | G T |G| C|A |G| A |G C T C

G 0 Jo™ Qy

¢|%. 0

d B8 SRR -

G|v 6{?‘?’\. 0

A N €y 1]0

G A 0/ 1/0

A 110]1] 1

G o100/ 1] 1

T 111,10/

T 11110/ 1

G 1o 1] 1] 1

T 111]0] 1

0

0

0

1

0

0

0

0

1

0

1

ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,

https://doi.org/10.1093/bioinformatics/btz234
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Shouji Walkthrough

j 1 2 3 4 6 7 8 9 10 11 12
Building the i G|G|T |6 AlG A|G|Cc |T|cC
Nelzas 1 /6 |0f0o|1]0
- - 216 |0f0|1]0
|4 —1 3T 1101 1
4 16|loffof1]o0 1]0
5 1A 111 0[1]0
6 | G 10 11010
7 | A 1 of1]0]|1] 1
8 |G 11010 1] 1
9 | T 11111101
10T 1111110/ 1
11 | G 110111
2|7 1110 1
Storing it @SSRS R tor ojfojof[oj1r|O0f[OjO|O|21]|0]1

ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Sliding Window Size

The reason behind the selection of the window size is due
to the minimal possible length of the identical subsequence
that is a single match (e.g., such as 101").

0.6
52.86%

0.45
i)
&
a
g 03
<
3 17.30%
L

0.15

3.680/0 1100/0
0 »
1 2 3 4

Window Size (bits)
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Hardware Implementation

-®
.
.
.
-
-
_e

[~ SLIDER loaic slices | | |

« Counting is performed concurrently for a// bit-vectors and all
sliding windows in a single clock cycle using multiple 4-input
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Motre on Shoujt

Download and test for yourself
https://qgithub.com/CMU-SAFARI/ShOUJi ,uiemeties 216

doi: 10.1093/bioinformatics/btz234
Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu'>*
and Can Alkan®*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, “Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and 3Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey
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Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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SneakySnake

SneakySnake: A Fast and Accurate Universal Genome
Pre-Alignment Filter for CPUs, GPUs, and FPGAs

Mohammed Alser®?, Taha Shahroodi®, Juan Gémez-Luna®, Can Alkan?’, and
Onur Mutlu®?3

! Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland
“Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
% Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).
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SneakySnake

Key observation:

a Correct alignment is a sequence of non-overlapping long matches.

Key idea:

o Approximate edit distance calculation is similar to Single Net
Routing problem in VLSI chip.

Vs

VLSI chip layout
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SneakySnake

Key observation:

a Correct alignment is a sequence of non-overlapping long matches.

Key idea:

o Approximate edit distance calculation is similar to Single Net
Routing problem in VLSI chip.

Key result:

o SneakySnake is up to four orders of magnitude more accurate
than Shouji (Bioinformatics’'19) and GateKeeper (Bioinformatics’17).

o SneakySnake accelerates the state-of-the-art CPU-based sequence
aligners, Edlib (Bioinformatics’17) and Parasail (BMC
Bioinformatics'16), by up to 37.6x and 43.9x (>12x on average),
respectively, without requiring hardware acceleration, and by up
to 413x and 689x (>400x on average), respectively, using
hardware acceleration.
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path

I*" Upper Diagc

Main Diagon

ENTERANCE

I’ Lower Diagq
2" Lower Diag
3" Lower Diage
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SneakySnake Walkthrough

Building Neighborhood Map

Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival
This is what you actually need to build - 3
and it can be done on-the-fly!

checkpoint 1 checkpoint 2 checkpoint 3

LLl
O
=
&
Ll
—
=
Ll
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FPGA Resource Analysis

FPGA resource usage for a single filtering unit of GateKeeper,
Shouji, and Snake-on-Chip for a sequence length of 100 and
under different edit distance thresholds (E).

E (bp) Slice LUT Slice Register | No. of Filtering Units

GateKeeoer 2 0.39% 0.01% 16
P 5 0.71% 0.01% 16

Shouii 2 0.69% 0.08% 16
) 5 1.72% 0.16% 16

. 2 0.68% 0.16% 16
Snake-on-Chip 5 1.42% 0.34% 16

SAFARI 133



SneakySnake

SneakySnake: A Fast and Accurate Universal Genome
Pre-Alignment Filter for CPUs, GPUs, and FPGAs

Mohammed Alser®?, Taha Shahroodi®, Juan Gémez-Luna®, Can Alkan?, and
Onur Mutlu 13

IDepartment of Computer Science, ETH Zurich, Zurich 8006, Switzerland
“Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
Y Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

Download and test for CPU, GPU, and FPGA:
https://qgithub.com/CMU-SAFARI/SneakySnake

Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).
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Read Mapping & Filtering

Problem: Heavily bottlenecked by Data Movement

Shouji performance limited by DRAM bandwidth [Alser+,
Bioinformatics 2019]

GateKeeper performance limited by DRAM bandwidth
[Alser+, Bioinformatics 2017]

Ditto for SHD [Xin+, Bioinformatics 2015]

Solution: Processing-in-memory can alleviate the bottleneck
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Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim1®", Damla Senol Cali!, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,

Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan** and Onur Mutlu*®:!
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GRIM-Filter

Key observation: FPGA and GPU accelerators are Heavily
bottlenecked by Data Movement.

Key idea: exploiting the high memory bandwidth and the logic layer of
3D-stacked memory to perform highly-parallel filtering in the DRAM
chip itself.

Key results:
o We propose an algorithm called GRIM-Filter

o GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on
average) faster than FastHASH filter (BMC Genomics’13) across real
data sets.

o GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted
pairs than FastHASH filter (BMC Genomics'13) across real data sets.
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GRIM-Filter: Bitvectors

Reference
Genome

C AAAAA
AAAAC
AAAAG
AAAAT

CCCCT
tokens < '

GCATG

TTGCA

TTTTT

bin1
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA eee

by

OO -

— AAAAC
exists in
bin 1

bin3

o Represent each bin with a bitvector
that holds the occurrence of all
permutations of a small string (token)
in the bin

a To account for matches that straddle
bins, we employ overlapping bins

= A read will now always completely fall
within a single bin

SAFARI
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GRIM-Filter: Bitvectors

bin bin
Reference : 3
Genome "AAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA -
bin,
bl b2
CAAAAA | 1 AAAAA | O
AAAAC 1 AAAAC 1
AAAAG 0 AAAAG 0
AAAAT 0 ) .
. . AGAAA 1
CCCCT | 1 ) .
. . GAAAA 1
tokens < _ _ _ _ e o o
GACAG 1
GCATG | 1 GCATG 1
TTGCA 1
WTTTTT 0 TTTTT 0

Storing all bitvectors
requires 4™ x t bits
in memory,

where

t = number of bins
&

n = token length.

For bin size ~200,
and n =5,
memory footprint
~3.8 GB

SAFARI
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA ... CGAG g Read bitvector forbin_num(x)

o Get tokens ¢

TN Tt > 1
e Rl > 0
~~__ ~~. 1 Sum Compare
e TN 5%
e S.o S~<_ Mo -+ = Threshold?
" ~ e 1
tokens\ * TN 1 Nf/ NES
N .
T 1 Discard Send to
0 Read Mapper
o Match tokens to bitvector for Sequence
0 Alignment
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Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence +++( 020128 )..u( 020131 )i 414415 )aue
GAACTTGCGAG =+« GTATT »
3 (9 GRIM-Filter: .
- Seed Location Checker
(1) L KEEP 1~ KEEP
GRIM_FiIter: 9 lll(.)0010 Olll01 O10lll )
Filter Bitmask Generator DfSCARDl
. s y X v v
++10001010 4420110104 eReference Segment Storage
Seed Location Filter Bitmask reference reference
segment segment
@ 020131 @ 4] 4415
@ Read Mapper: Edit-Distance Calculation
Sequence Alignment

SAFARI OUTPUT: Correct Mappings



Key Properties ot GRIM-Filter

1. Simple Operations:

o To check a given bin, find the sum of all bits corresponding
to each token in the read

o Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM
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GRIM-Filter in 3D-Stacked DRAM

Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

Row R—1: TTTTT

o)
Q
>
~

Bitvector for bin 2
Bitvector for bin t—1

Bitvector for bin 0
Bitvector for bin 1

-] —

s Vault
) i
Logic Layer N

= Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

= The layout of bitvectors in a bank enables filtering many

bins in parallel

SAFARI
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GRIM-Filter in 3D-Stacked DRAM

Per-Vault
Custom GRIM-Filter Logic

Seed Location Filter Bitmask
Bank - DRAM Layers ( B_—gﬂ
Q| |EH®
/L/ e |2hzE
s G g‘g g_ -
/ v 7{/ P TSVs - S 5HS
: [ 8:) % OH <+E
T wVault S 2
pd i ST
Loéc Layer ~a—_. Row Data Register

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

o For HBM2, we use 4096 incrementer LUTS, 7-bit counters,
and comparators in logic layer

SAFARI  Details are in [Kim+, BMC Genomics 2018] 145



More on GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim1®", Damla Senol Cali!, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,

Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan** and Onur Mutlu*®:!
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GenCache

GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment

Anirban Nag C. N. Ramachandra Rajeev Balasubramonian
anirban@cs.utah.edu ramgowda@cs.utah.edu rajeev@cs.utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah
Ryan Stutsman Edouard Giacomin Hari Kambalasubramanyam
stutsman@cs.utah.edu edouard.giacomin@utah.edu hari.kambalasubramanyam@utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah

Pierre-Emmanuel Gaillardon
pierre-
emmanuel.gaillardon@utah.edu
University of Utah
Salt Lake City, Utah

Nag, Anirban, et al. "GenCache: Leveraqging In-Cache Operators for Efficient
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.
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GenCache

Key observation: State-of-the-art alignment accelerators are still
bottlenecked by memory.

Key ideas:

o Performing in-cache alignment + pre-alignment filtering by enabling
processing-in-cache using previous proposal, ComputeCache
(HPCA'17).

o Using different Pre-alignment filters depending on the selected edit
distance threshold.

Results:

o GenCache on CPU is 1.36x faster than GenAx (ISCA 2018).
GenCache in cache is 5.26x faster than GenAx.

o GenCache chip has 16.4% higher area, 34.7% higher peak power,
and 15% higher average power than GenAx.
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GenCache’s Four Phases

Phase 1 Phase 2 Phase 3 Phase 4
0 ERRORS 1 ERROR 2-5 ERRORS 6+ ERRORS
Seed Solver: Seed Solver: Seed Solver: Seed Solver:
MIN SEARCH MIN SEARCH HOBBES SMEM
Operations: ) Operations: _). Operations: __) Operations:
HD SHD SHD C MYERS B
MYERS B SWA
48 MB REF 48 MB REF SWA
20 MB BLOOM 20 MB BLOOM 40 MB REF 24 MB REF
4 MB INDEX 8 MB INDEX 32 MB INDEX 48 MB INDEX

Figure 7: Four phases in the new alignment algorithm that

exploits in-cache operators.

SAFARI
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Throughput Results

Throughput (KReads/s)

5000

0000 I
5000

'm m B B

GenM e MB)GC (326‘:'?2\* U’“asmgclc lP“aég\ ?%\Oom filter)

Figure 9: Throughput improvement of GenCache (Hardware
& Software).
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Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
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Darwin

Session 3A: Programmable Devices and Co-processors ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Darwin: A Genomics Co-processor Provides up to

15,000x acceleration on long read assembly

Yatish Turakhia Gill Bejerano William J. Dally
Stanford University Stanford University Stanford University

yatisht@stanford.edu bejerano@stanford.edu NVIDIA Research
dally@stanford.edu

» Seed filter: D-Soft
» Read alignment accelerator: GACT <« We will cover this

Yatish+ "Darwin: A genomics co-processor provides up to 15,000 x
acceleration on long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf
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Darwin: GACT Hardware Acceleration

Key observation:

o Data Dependencies limit accelerating the dynamic programming table
calculation.

Key idea:

o Divide the dynamic programming table into overlapping fi/es.

o Calculate each tile independently and in a systolic array fashion.
o Calculate many alignments concurrently.

Key result:

a It is simulated for TSMC 40nm CMOS process.
o It provides a speedup of up to 380x compared to GACT software.

o Itis three orders of magnitude faster than Edlib (best-performing CPU
read aligner).

Weaknesses:
o It is not clear if tiling maintains the same accuracy as the original
dynamic programming algorithm.
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Specialized Accelerator for Read Aligner

= Accelerating the read alignment algorithm as-is using specialized
hardware (40 nm CMOS) provides a limited speedup (37x).

Reference
*TG[G[CIGJAJC]T[T[T]
:; e L L s I(lvj) — max{H(i,j—l)—o, I(l,]—l)—E}
Ol 2l 2 | 1| 2¢4=1 | 0| 0| 0| 0 . ) ) ) )
Z. G| o 2 M4 | 3l af2ut—1a] 0 | 0] © D(la.]) - max{H(l_la.’)_Oa D(l_lvj)—e}
O | T o 1| 3 3 2 [Fon] 13 ]2 [2 (
8 C | ox] ox] 2 [Pselteet—2 Mo [Y3 | 262 * ?(l )
(1;- 0 % % [ PN P —\-4 il o H(l,j) — max< D(’l]])
o [ 1] 1] 3| 6x 6xf 5u] 7] 645 )
o [ o] o] 2| dlt sl s 7] ogfe H(i—1,j—1)+W(ri,q;
T|o|[o]o % %K s M4 9 [M1 : ( / ) ( l qj)

Dynamic programming for gene sequence alignment (Smith-Waterman)

CPU-based read aligner VS. Hardware accelerated read aligner
On 14nm CPU On 40nm Special Unit

35 ALU ops, 15 load/store 1 cycle (37x speedup)

37 cycles 3.1pJ (26,000x efficiency)

81nJ 300fJ for logic (remainder is memory)

SAFAR]/ Dally, "Hardware Enabled Biology", AACBB 2019, https://aacbb-workshop.github.io 150
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GACT Alignment

= Solution: Divide the table into overlapping tiles and compute them all
independently using systolic arrays.

= Store the trace of each cell in an SRAM for traceback.

Reference
A|G|G|T|C|G|G|T|A
A
|A
\ f Block 1
. -
e
) X
S5 (A
N IZ= 1 O s
T
A v
\ T $Block 3
FIFO
HEERER
T C

PE 2 HAPEs
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Implementation Details
It is simulated for TSMC 40 nm CMOS process.

64 systolic arrays are working concurrently.
64 PEs (processing elements) in each systolic array.

Each entry of the dynamic programming table
accommodates 16-bit value.

Each systolic array requires 128 KB SRAM (each PE =2 KB
SRAM bank) for traceback purposes.
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GACT Hardware vs. Software Speedup

W Filtration ™ Alignment

Graphmap (software)
Time/read (ms) Replace by D-SOFT and GACT

0.1 | 10 100 1000 10000 100000 (software)

| | | | | ‘ 3. GACT hardware-acceleration

N —

2.1X slowdown

I

380X speedup

FIFO
LR

Traceback Logic
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GACT Hardware vs. Edlib

" GACT (software) =Edlib GACT (Darwin)

1.0E+07 4297K e
m 1.0E+06 5555] 401K
1 OE+05 3148X
T 1.0E+04

10E+03 57X B
1.0E+02 B
— 15X
e
1.0E+00 - - - . . . .
6 7 8 9 10

Sequence Length (Kbp)

5177X

gnments/s

Figure 10: Throughput (alignments/second) comparison for
different sequence lengths between a software implementa-
tion of GACT, Edlib library and the hardware-acceleration
of GACT in Darwin.
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More on Darwin

https://github.com/gsneha26/Darwin-WGA

Session 3A: Programmable Devices and Co-processors ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Darwin: A Genomics Co-processor Provides up to

15,000 acceleration on long read assembly

Yatish Turakhia Gill Bejerano William J. Dally
Stanford University Stanford University Stanford University

yatisht@stanford.edu bejerano@stanford.edu NVIDIA Research
dally@stanford.edu

Yatish+ "Darwin: A genomics co-processor provides up to 15,000 x
acceleration on long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf
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Disclaimer on Darwin

Darwin is NOT developed in SAFARI group, but we
developed BitMAC that is now unger review.

BitMAC = new read alignment algorithm + PIM specialized
accelerator.

BitMAC provides 2.1x better throughput per unit area and

59.2x better throughput per unit power when compared
with GACT of Darwin.
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Conclusion on Ongoing Directions

Read alignment can be substantially accelerated using
computationally inexpensive and accurate pre-alignment
filtering algorithms designed for specialized hardware.

All the three directions are used by mappers today, but
filtering has replaced alignment as the bottleneck.

Pre-alignment filtering does not sacrifice any of the aligner
capabilities, as it does not modify or replace the alignment

step.
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Agenda for Today

Why Genome Analysis?
What is Genome Analysis?

How we Map Reads?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?

SAFARI 1o4



Where is Read Mapping Going Next?

Will 100% accurate genome-long
reads alleviate/eliminate the need for
read mapping?

Think about metagenomics, pan-genomics, ...
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Where is Read Mapping Going Next?

nature genetics

Letter | Open Access | Published: 19 November 2018

Assembly of a pan-genome from deep
sequencing of 910 humans of African
descent

Rachel M. Sherman &, Juliet Forman, [...] Steven L. Salzberg

Nature Genetics 51, 30-35(2019) | Cite this article
39k Accesses | 29 Citations | 875 Altmetric | Metrics

African pan-genome contains ~10% more DNA
than the current human reference genome.

SAFARI Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humansgqaf
African descent” Nature genetics, 2019.



https://www.nature.com/articles/s41588-018-0273-y

Did we Achieve Our Goal?

Our goal is to significantly reduce the time spent on
calculating the optimal alignment in genome analysis from
hours to mere seconds using both new algorithms &
hardware accelerators, given limited computational
resources (i.e., personal computer or small hardware).

1997
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Open Questions

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?
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Processing Genomic Data Where it Makes Sense

Modern systems

;
= .
: ’l ? ‘t‘

h {H”\VH|‘fl':HF;HFMMM.MHEIMEM!ﬂ;‘"ﬁlll!hlélllllu‘l iﬂl“ﬂlﬂl;’ L] ,'.nl \u-‘uw L\n S e q u e n Ci n g
<" Hybrid Main Memory Machine

Heterogeneous

Processors and
Accelerators

Persistent Memory/Storage
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Lecture Conclusion

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This lecture is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We cover various recent ideas to accelerate read mapping
a A journey since September 2006
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Apollo

Firtina, Can, et al. "Apollo: A Sequencing-Technology-Independent,
Scalable, and Accurate Assembly Polishing Algorithm." arXiv preprint
arXiv:1902.04341 (2019).

https://arxiv.org/abs/1902.04341

Apollo: A Sequencing-Technology-Independent,
Scalable, and Accurate Assembly Polishing
Algorithm

Can Firtina 1, Jeremie S. Kim 2, Mohammed Alser!, Damla Senol CaliZ,
A. Ercument Cicek?3, Can Alkan®*, and Onur Mutlu 12:3:*

! Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
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3Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
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Constructing an assembly of reads

Alignment-based

DNA Molecule

Sequencing with
NGS

Produced fragments (reads)

Align reads with or without
a reference

Reference genome (Ground truth)

\\ \\\‘ ) *\\N\ —
\\ \\ ~—.
N . —
NN

ATGCG:Z\CGGCR\ |CATCEEJCAGCA\
CGGCATACGCCATC

ATGCGACGGCATACGCCATCGCCAGCA

Assemble into one large
fragment

Graph-based: De Bruijn Graphs

ATGGAAGTCGCG

GAGGAAGTCCTT

[ ATceaaG || TGGrAGT GGAAGTC GAAGTCG || AAGTCGC || AGTCGCG

GAGGAAG || AGGAAGT GAAGTCC || AAGTCCT || AGTCCTT
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Apollo

Key observations:

o It may not be possible to construct the entire genome using short reads due
to the complexity to find overlaps between short reads

o Re-assembling the long reads produce erroneous genome, which may cause
incorrect findings in the further steps of the genome analysis

o Existing polishing tools cannot polish large genomes
Key idea:

o Polishing the errors in each contig of an assembly individually using all the
available read sets (long + short reads) within a single run.

Key insights:
o Errors are not random and can be represented in a graph by assigning
certain probabilities to resolve each error type at certain positions

o A profile hidden Markov model (pHMM) is a good fit to represent the actual
contig as well as the possible errors that can take place after each basepair

o Aligning reads to a contig gives a clue about the differences between a
contig and a read

Contribution

a—First-algoerithm-that-can-scale-well-to-peolish-large-genemes-and-that-can
SAFAR$e multiple read sets from any sequencing technology within a single



Assembly polishing pipeline

Input Preparation (External to Apollo)

Assembly Polishing (Internal to Apollo)

Step 3: Create a pHMM-graph per contig for
correcting the errors in the contig

SAFARI
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A Profile hidden Markov model
Represent the contig "AGCACC...GCCT"” in a pHMM-graph

start A G C A C

Original: A G C A C

Each state emits (i.e., consumes or outputs) a single base when visited
Correction:
o Visiting insertion states to insert more bases between two bases in a contig

o Skipping certain states to delete some bases

o Emitting a different a different base than a base that is actually present at certain location
(e.g., changing G to T at position 2)
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Resolving substitution errors or no error

Match states for bases “"GA” at positions t and t+1, respectively

If no error: emit “G” at position t with the probability of having no error

For substitution error, emit either A, T, or C at position t with substitution error probability
All type of emission and transition probabilities are a parameter to Apollo

A:0 A:[3
T:0 T:0
G:[3 G:0
C:0 C:d

SAFARI 179



Resolving deletion errors

Insertion states to insert at
most /many bases between
two bases in a contig

To insert “"GC"” between “CT”
o Visit match state at position t

I}

o603y
coooo
wwow
wwow

oy

and emit C

a Visit first /nsertion state after s
position t and emit G with 1:0.00 (a0
deletion error probability cr0.33

o Visit second insertion state s
and emit C with deletion error
probability

o From second insertion state
visit match state at position
t+1and emit T @

o Resulting sequence “"CGCT”
Maximum number of

insertions is a parameter to
Apollo

o w

o3y
oo oo
wwow

OOy
N O O
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Resolving insertion errots

Deletion transitions to delete
one or many bases in a row

To delete the first A in "GAA”

o Visit match state at position t
and emit G

o Visit match state at position
t+2 and emit A with single
insertion error probability

o Resulting sequence: “"GA”

Having single or more deletions
in @ row may not be necessarily
equally likely

Maximum number of deletions
In @ row is a parameter to
Apollo
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Assembly polishing pipeline

Input Preparation (External to Apollo)

Assembly Polishing (Internal to Apollo)

Step 4: The Forward-Backward algorithm updates the
transition and emission probabilities of a pHMM-graph
for each alignment to a contig

SAFARI
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Training

Training data:
o Read aligned to the location t of a contig

Assume we have the read “"CGT" aligned to location t

After training the corresponding region of the graph we would expect change in the
probabilities so that it will be likely to emit "CGT” somehow

0.33 A:0.20
A:0. T:0.00
T:0.00 crooeo (T
G:0.33  Lt2 ; '2
€:0.33 €:0.20
o
=3 o
o o
N purg
A:0.33 A:0.005
T:0.00 T:0.00
G:0.33 L1 G:0.99 | Le1
C:0.33 C:0.005

200

A:0.01 A:0.01

A:0.01 A:0.00

T:0.01 T:0.97 T:0.01 IR,

G:0.01 G:0.01 G:0.01 G:0.00
C:0.97 €:0.01 :0. :0.

30,97 C:0.01
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The Forward-Backward algorithm

Calculating the likelihood of visiting a state to emit a certain
character of a given sequence (i.e., aligned read)

Forward calculation (F)
‘Fl (/) — (}'()'}‘('.j‘('l'[l].) s.1. } - “. lf()_}‘ — 1‘;,,.

Fi(7) = Z Fi (i) aei(rlt]) jeVs, 1<t<m
eV
Backward calculation (B)

B,” (I) = Qi(m+1) NS ‘: L"J(,m 1) S E,-e

Bi(i) = Y aijej(rft+ 1)) Bia(j) je Vi, 1<t <m

JEV,

Backward calculation needs a starting point
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Training: The Baum-Welch algorithm

= Expectation maximization step using the Baum-Welch
algorithm

e

>, Fi(i)Be(i)(r[t] == X)
e (X) = =

VX € X, Vi e Vi

e

3 F(i) By

m—1

Z ajje;(r(t + 1)) Fy(i) By (J)
”T' - VE{_}' S Es

] -1

> izl ([t + 1)) Fi (i) By (x)
reV,

= If there are multiple reads aligning to same region, we have multiple F(i)
for a position t
o Take the average and use it as F(i) for position t
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Assembly polishing pipeline

Input Preparation (External to Apollo)

Assembly Polishing (Internal to Apollo)

Step 5: Viterbi algorithm (»)
decodes the corrected contig
() O

O-0-0Q O GO Q O 0 Q
C ...

Polished: A GA T C
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Inference: The Viterbi algorithm

= Our original contig before polishing was: “"AGCACC...GCCT”

= After updating the probabilities, the most likely path from start to end reveals the
corrected contig: "AGATCC...GTAC”

Original: A

(®)
c——) O O O—©
Polished: A GA T C
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Inference: The Viterbi1 algorithm

= Decode the entire graph after training to have the
corrected version of a contig

1. Initialization
!

U1 (/) - dsturt—jéj(‘xr ) VI eV

bi(j) = start VjeV

2. Recursion

vi(j) = maxv,-1(i)aie;(X') VieVil<t<T

bi(j) = argmax v, (i)a;é;(X") VjeV,1<t<T
icV

3. Termination

vr(end) = max v ()& end
i€V

br(end) = argmax vy (i) &y — end
3%
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Data Sets

Data Set Accession Number Details

E.coli K-12 - ONT Loman Lab* 164,472 reads (avg. 9,010bps, 319X coverage) via Metrichor
E.coli K-12 - Ground Truth GenBank NC_000913 Strain MG1655 (4,64 1Kbps)

E.coli O157 - PacBio SRA SRR5413248 177,458 reads (avg. 4,724bps, 151X coverage)

E.coli O157 - Illumina SRA SRR5413247 11,856,506 paired-end reads (150bps each, 643X coverage)
E.coli O157 - Ground Truth GenBank NJEX02000001 Strain FDAARGOS_292 (5,566Kbps)

E.coli O157:H7 - PacBio SRA SRR1509640 76,279 reads (avg. 8,270bps, 112X coverage)

E.coli O157:H7 - lllumina SRA SRR1509643 2,978,835 paired-end reads (250bps each, 265X coverage)
E.coli O157:H7 - Ground Truth | GCA_000732965 Strain EDL933 (5,639Kbps)

Yeast S288C - PacBio SRA ERR165511(8-9), ERR1655125 296,485 reads (avg. 5,735bps, 140X coverage)

Yeast S288C - Illumina SRA ERR1938683 3,318,467 paired-end reads (150bps each, 82X coverage)
Yeast S288C - Ground Truth GCA_000146055.2 Strain S288C (12,157Kbps)

Human CHM1 - PacBio SRA SRR130433(1-5) 912,421 reads (avg. 8,646bps, 2.6X coverage)

Human CHM1 - Ground Truth | GCA_000306695.2 3.04Gbps

Human HGO002 - PacBio SRA SRR2036(394-471), SRR203665(4-9) | 15,892,517 reads (avg. 6,550bps, 35X coverage)

Human HGO002 - [llumina SRA SRR17664(42-59) 222,925,733 paired-end reads (148bps each, 22X coverage)
Human HGO0O02 - Ground Truth | GCA_001542345.1 Ashkenazim trio - Son (2.99Gbps)
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Applicability of the Polishing Algorithms to Large Genomes

Aligner Sequencing Tech. | Polishing Runtime Memory

of the Reads Algorithm (GB)
Minimap2 | PacBio (35X) Apollo 227h 12m 15s 62.91
BWA-MEM | PacBio (35X) Apollo 198h 41m 15s 58.60
Minimap2 | PacBio (35X) Racon N/A N/A
BWA-MEM | PacBio (35X) Racon N/A N/A
pbalign PacBio (35X) Quiver N/A N/A
Minimap2 | PacBio (8.9X) Apollo 55h 38m 44s 44.99
BWA-MEM | PacBio (8.9X) Apollo 41h 38m 27s 45.00
Minimap2 | PacBio (8.9X) Racon 2h 48m 25s 54.13
BWA-MEM | PacBio (8.9X) Racon 1h 36m 39s 51.55
pbalign PacBio (8.9X) Quiver N/A N/A
Minimap2 | [llumina (22X) Apollo 96h 22m 16s 101.12
BWA-MEM | Illumina (22X) Apollo 102h OIm 57s 107.06
Minimap2 | [llumina (22X) Racon N/A N/A
BWA-MEM | Illumina (22X) Racon N/A N/A
Minimap2 | [llumina (22X) Pilon N/A N/A
BWA-MEM | Illumina (22X) Pilon N/A N/A
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Benefits of using a hybrid set of reads

Data Set First Run Second Run Aligned Accuracy Polishing Runtime Memory

Bases (%) Score (GB)
E.Coli O157 99.94 0.9998 0.9992 43m 53s 3.79
E.Coli O157 Apollo (Hybrid) 99.94 0.9999 0.9993 | 8h 16m 08s 13.85
E.Coli O157 Racon (PacBio) | Racon (Illumina) 99.94 0.9994 0.9988 21m 44s 22.65
E.Coli O157 Racon (PacBio) | Racon (PacBio) 99.94 0.9984 0.9978 4m 58s 2.43
E.Coli O157 Racon (PacBio) | Pilon (Illumina) 99.40 0.9989 0.9829 12m 14s 8.51
E.Coli O157 Pilon (Illumina) | Pilon (Illumina) 99.94 0.9999 0.9993 4m 10s 11.40
E.Coli O157 Pilon (Illumina) | Racon (PacBio) 99.94 0.9986 0.9980 4m 58s 11.40
E.Coli O157 Quiver (PacBio) | Pilon (Illumina) 99.94 0.9998 0.9992 Sm Ols 7.50
E.Coli O157 Quiver (PacBio) | Racon (PacBio) 99.94 0.9986 0.9980 Sm 13s 2.48
E.Coli O157:H7 100.00 0.9998 0.9998 43m 19s 3.39
E.Coli O157:H7 | Apollo (Hybrid) 100.00 0.9999 0.9999 | 5h 58m 05s 8.86
E.Coli O157:H7 | Racon (PacBio) | Racon (Illumina) 100.00 0.9995 0.9995 9m 43s 6.56
E.Coli O157:H7 | Racon (PacBio) | Racon (PacBio) 100.00 0.9970 0.9970 S5m 36s 2.24
E.Coli O157:H7 | Racon (PacBio) | Pilon (Illumina) 100.00 0.9996 0.9996 10m 23s 6.41
E.Coli O157:H7 | Pilon (Illumina) | Pilon (Illumina) 100.00 0.9998 0.9998 35m 12s 10.79
E.Coli O157:H7 | Pilon (Illumina) | Racon (PacBio) 100.00 0.9996 0.9996 6m 04s 10.75
Yeast S288C 99.89 0.9998 0.9987 | 1h 20m 39s 6.24
Yeast S288C Apollo (Hybrid) 99.89 0.9998 0.9987 | 11h O8m 41s 6.38
Yeast S288C Racon (PacBio) | Racon (Illumina) 99.89 0.9994 0.9983 38m 21s 6.93
Yeast S288C Racon (PacBio) | Racon (PacBio) 99.89 0.9949 0.9938 49m 52s 6.93
Yeast S288C Racon (PacBio) | Pilon (Illumina) 99.89 0.9992 0.9981 26m 25s 14.25
Yeast S288C Pilon (Illumina) | Pilon (Illumina) 99.89 0.9998 0.9987 1m 10s 11.85
Yeast S288C Pilon (Illumina) | Racon (PacBio) 99.89 0.9960 0.9949 21m 42s 11.85
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Using a set of reads from a single sequencing technology

= Still comparable performance for smaller genomes even
when a single set of reads used

Sequencing Tech. | Assembler | Aligner Sequencing Tech. | Polishing Aligned Accuracy Polishing| Runtime Memory
of the Assembly of the Reads Algorithm || Bases (%) Score (GB)
PacBio Miniasm - - - 94.93 0.9000 0.8544 1m 48s 10.03
PacBio Miniasm Minimap2 | PacBio Apollo 98.49 0.9798 0.9650 | 2h 27m 49s 7.07
PacBio Miniasm Minimap2 | PacBio Pilon 96.43 0.9528 0.9188 | 1h 31m 32s 17.68
PacBio Miniasm Minimap2 | PacBio Racon 99.35 0.9951 0.9886 2m 13s 2.44
PacBio Miniasm pbalign PacBio Quiver 99.80 0.9993 0.9973 Tm 31s 0.51
PacBio Miniasm Minimap2 | Illumina Apollo 97.61 0.9816 0.9581 | 4h 25m 17s 9.22
PacBio Miniasm Minimap2 | Illumina Pilon 96.52 0.9775 0.9435 32m 48s 18.60
PacBio Miniasm Minimap2 | [llumina Racon 96.45 0.9876 0.9525| 14m 09s 21.57
PacBio Miniasm BWA-MEM | Illumina Apollo 96.62 0.9738 0.9409 | 3h 32m 45s 9.21
PacBio Miniasm BWA-MEM | Illumina Pilon 96.13 0.9693 0.9318 31m 21s 18.45
PacBio Miniasm BWA-MEM | lllumina Racon 96.90 0.9813 0.9509 | 12m 05s 20.85
PacBio Canu - - - 99.94 0.9998 0.9992 43m 53s 3.79
PacBio Canu Minimap2 | PacBio Apollo 99.94 0.9997 0.9991 | 3h 42m 03s 8.82
PacBio Canu Minimap2 | PacBio Racon 99.94 0.9986 0.9980 2m 17s 2.34
PacBio Canu pbalign PacBio Quiver 99.94 0.9998 0.9992 7Tm 06s 0.20
PacBio Canu BWA-MEM | Illumina Apollo 99.94 0.9999 0.9993 | 4h 49m 15s 11.05
PacBio Canu BWA-MEM | lllumina Pilon 99.94 0.9998 0.9992 2m 05s 11.40
PacBio Canu BWA-MEM | [llumina Racon 99.94 0.9999 0.9993 14m 58s 21.04
PacBio (30X) Miniasm* |- - - - - - - -
PacBio (30X) Canu - - - 99.98 0.9981 0.9979 21m 03s 3.70
PacBio (30X) Canu Minimap2 | PacBio (30X) Apollo 99.98 0.9982 0.9980 43m 32s 8.00
PacBio (30X) Canu Minimap2 | PacBio (30X) Racon 99.98 0.9980 0.9978 15s 0.59
PacBio (30X) Canu Minimap2 | PacBio (30X, Corr.) | Apollo 99.97 0.9976 0.9973 46m 10s 7.99
PacBio (30X) Canu Minimap2 | PacBio (30X, Corr.) | Racon 99.98 0.9983 0.9981 7s 0.37
PacBio (30X) Canu BWA-MEM | Illumina Apollo 99.98 0.9997 0.9995 | 4h 48m 31s 10.35
PacBio (30X) Canu BWA-MEM | Illumina Pilon 99.98 0.9998 0.9996 3m 03s 8.52
PacBio (30X) Canu BWA-MEM | Illumina Racon 99.98 0.9997 0.9995 14m 42s 21.04
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Takeaways

For large genomes, Apollo is the only algorithm that can
scale well to use available data set

Polish Canu-generated assemblies with a hybrid set of
reads if the intention is to produce most reliable assembly
The pHMM-graph proposed in Apollo is very flexible

o Change the parameters according to the error profile of a
sequencing machine

o Decide whether to chunk a pHMM-graph or not during
decoding

Not good in terms of the run time

Viterbi and Forward-Backward calculations per state very
simple but yet serial in the current implementation
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