
Mohammed Alser
ETH Zurich

ALSERM@inf.ethz.ch

The University of Tokyo, Kashiwa Campus
18 December 2019

Accelerating Genome Analysis 
Using New Algorithms and 

Hardware Designs



SAFARI Research Group

2

31 J = 1 Professor, 2 Lecturers & Senior Researchers, 3 Senior Researchers, 
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Professor Mutlu’s Bio
n Onur Mutlu

q Professor @ ETH Zurich CS, since September’15, started May’16 
q Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-…
q PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach me) 
q Publications: https://people.inf.ethz.ch/omutlu/projects.htm

n Research, Education, Consulting in
q Computer architecture and systems, bioinformatics
q Memory and storage systems, emerging technologies
q Many-core systems, heterogeneous systems, core design
q Interconnects
q Hardware/software interaction and co-design (PL, OS, Architecture)
q Predictable and QoS-aware systems
q Hardware fault tolerance and security
q Algorithms and architectures for genome analysis
q …
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https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm


Research Focus: Computer architecture, HW/SW, security, bioinformatics
• Memory and storage (DRAM, flash, emerging), interconnects, security
• Heterogeneous & parallel systems, GPUs, systems for data analytics
• System/architecture interaction, new execution models, new interfaces
• Energy efficiency, fault tolerance, hardware security, performance 
• Genome sequence analysis & assembly algorithms and architectures
• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas



Openings @ SAFARI
n We are hiring enthusiastic and motivated students and 

researchers at all levels.

n Join us now:
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safari.ethz.ch/apply

https://safari.ethz.ch/apply/


We       Japan
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Agenda for Today

n This lecture is NOT about how to analyze biological data 
using available tools.
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Agenda for Today
n Why Genome Analysis?
n What is Genome Analysis?

n How we Map Reads?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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Why Genome Analysis? Why Bother?

n Personalized medicine.

n Genome-wide association study (GWAS).

n City-scale microbiome profiling.

n Tracing birth parents.

n Disease risk profiling.

n …
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1-Personalized Medicine
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Coined in 1972 by the Japanese Ministry 
of Labor, Health, and Welfare.

Nan-Byo
Difficult + Illness

https://www.nanbyo-research.jp/nanbyo

https://www.nanbyo-research.jp/nanbyo


1-Personalized Medicine
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1 in 17 people 
in the world have a rare 
disease
That’s 350 Million

of sick children 
never reach 
5th birthday

http://www.raredisease.org.uk/what-is-a-rare-disease
https://www.bag.admin.ch/bag/en/home/krankheiten/krankheiten-im-ueberblick/viele-seltene-krankheiten.html

30%

80% of rare diseases are 
genetic in origin

Children

Adults

http://www.raredisease.org.uk/what-is-a-rare-disease
https://www.bag.admin.ch/bag/en/home/krankheiten/krankheiten-im-ueberblick/viele-seltene-krankheiten.html


Rare Diseases in Japan
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“We don’t know exactly how many people in Japan have a rare 
disease, which is why we want to design the rare disease platform to 
be as comprehensive as possible. There are thousands of rare 
diseases. So even though the number of patients with each disease is 
very small, there are many people who have one. Out of 20 of your 
friends, for example, one will have a rare disease,” explains Matsuda.

https://www.nanbyo-research.jp/feature/43/japan%E2%80%99s-rare-disease-database-expedites-more-effective-research

Prof. Fumihiko Matsuda, 
Director of the Center for 
Genomic Medicine, 
Kyoto University

https://www.nanbyo-research.jp/feature/43/japan%E2%80%99s-rare-disease-database-expedites-more-effective-research


Personalized Medicine in Japan
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> 2000
undiagnosed 
patients

> 600 million 
JPY annually

Adachi+ "Japan’s initiative on rare and undiagnosed diseases (IRUD): towards an 
end to the diagnostic odyssey." European Journal of Human Genetics, 2017.

https://www.nature.com/articles/ejhg2017106


Personalized Medicine in UK

16Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 
cost of hospitalization”, NPJ Genom Med. 2018

“From 2019, all seriously ill children 
in UK will be offered whole genome 
sequencing as part of their care”

reduced inpatient 
cost by 
$100,000-
$300,000

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/


2-Genome-Wide Association Study (GWAS)
n Detecting genetic variants associated with phenotypes 

using two groups
of people.
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variant with higher frequency 
in cases than controls

Manhattan	plot



…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…

SNP1                           SNP2             Blood Pressure
180
175
170
165
160
145
140
130
120
120
115
110
110
110
105
100

Finding SNPs Associated with Complex Trait

Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA 

Different  
individuals
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computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies/


Mirror Phenotypes of 593 Kb CNVs
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AUTISM
Weiss, N Eng J Med 2008
Deletion of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

SCHIZOPHRENIA
McCarthy, Nat Genet 2009
Duplication of 593 kb

UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

Deletion in the short arm 
of chromosome 16 (16p11.2)

Duplication in the short arm 
of chromosome 16 (16p11.2)



3- City-Scale Microbiome Profiling

20https://gothamist.com/news/the-subway-is-probably-bubonic-plague-free-after-all

https://gothamist.com/news/the-subway-is-probably-bubonic-plague-free-after-all


3- City-Scale Microbiome Profiling (cont’d)
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Afshinnekoo+, "Geospatial Resolution of Human and Bacterial 
Diversity with City-Scale Metagenomics", Cell Systems, 2015

https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2


Plague in New York Subway System?
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Plague in New York Subway System?
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The findings of Yersinia Pestis in the subway received wide coverage in the lay 
press, causing some alarm among New York residents

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-
the-subway-system-dont-worry-about-it.html

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html


Failure of Bioinformatics
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Charles Schmidt, “Living in a microbial world”, Nature Biotechnology, 2017
https://www.nature.com/articles/nbt.3868

https://www.nature.com/articles/nbt.3868
https://www.nature.com/articles/nbt.3868


There is a critical need for fast and 
accurate genome analysis.
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Agenda for Today
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Genome Analysis

27

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTG
TCAAGGACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCT
AAGCTTCTTCATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAA
GGACTTGATACATTGGAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAA
GTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTC
AAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCA
AGAGTTGCAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTC
TTCATGTCAAGGACCTAATGTAGCCAGAATGGTTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGT
AGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTC
TTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACCTAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGG
GAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCATCCGTTTCTCTCCCACA
……

machine can read the 
entire content of a genomeNO



Life Begins with Cell
n A cell is a smallest structural unit of an organism that is 

capable of independent functioning.
q Cells store all information to replicate themselves. 

28The discovery of DNA’s double-helical structure (Watson+, 1953) 



Cells of Different Organs and Tissues
n All the cells in a person's body have the same DNA and the 

same genes.
q Expression of the genes differs between cells. 
q But not all genes are used or expressed by those cells.

29

. . .

. . .
20,000-25,000
human genes

NIH 2009 National DNA Day



Phenotypes Genotypes 

All Life Depends on 3 Critical Molecules

30

DNA RNA Protein

Transcription

Replication Translation

genotypes phenotypes



Chemical Structure of DNA
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https://www.sciencefocus.com/the-human-body/how-long-is-your-dna/
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Chemical Structure of DNA
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n If you stretched the DNA in one 
cell all the way out, it would be 
about 2-3 meters long.

n DNA is supercoiled so that it 
takes up less space within a cell 
(human cell’s diameter 4-100
microns).

https://www.sciencefocus.com/the-human-body/how-long-is-your-dna/
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How Long is DNA?
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Phi X174 virus

5.386 Killo bp

E. coli O157:H7

5.44 Million bp

Homo Sapiens

3.2 Billion bp

Onion, Allium Cepa

16 Billion bp

Paris Japonica

149 Billion bp



The Genetic Similarity Between Species
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99.9%

96%
Human ~ Chimpanzee

Human ~ Human

90%
Human ~ Cat

80%
Human ~ Cow

50-60%
Human ~ Banana
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope



Untangling Yarn Balls & DNA Sequencing
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Cracking the 1st Human Genome Sequence
n 1990-2003: The Human Genome Project (HGP) provides a 

complete and accurate sequence of all DNA base pairs that make 
up the human genome and finds 20,000 to 25,000 human genes.

39

13 years

3.2 x109 

bases

>3x109 $



Vast Improvement in Sequencing
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Read Mapping

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

44 hours

1x1012 bases

* NovaSeq 6000

*

*

GATK

<1000 $



… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore 
SmidgION

High-Throughput Sequencers

41

Pacific 
Biosciences 
Sequel II

Oxford 
Nanopore 
PromethION



How Does HTS Machine Work?
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T
Glass flow 
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How Does HTS Machine Work?
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Glass flow 
cell surface

A

T
C
A
G
T
A
C
AT

Optical 
Sensor

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

DNA fragment = Read



How Does HTS Machine Work?
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TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

Reads lack information about their order and location (which part of 
genome they are originated from) 



Genome 
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery



Building up the Donor’s Genome 
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De Novo Genome Assembly
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computationalgenomics.bioinformatics.ucla.edu/portf
olio/david-koslicki-the-cami-project-assessment-of-
computational-techniques-in-metagenomics/ 

Reference-free



HTS Sequencing Output

52

q 10K-100K bp
q high error rate (~15%)

q 50-300 bp
q low error rate (~0.1%)

Large pieces of a broken vase
long reads

Small pieces of a broken vase
short reads

Which sequencing technology is the best?



Genome Analysis
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Reference genomeReads
“text format”

DNA Sample
“chemical format”

Subject genome
“text format”

Map reads to a known reference genome with some 
minor differences allowed



Metagenomics Analysis
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Reference 
Database

Reads
“text format”

genetic material recovered 
directly from environmental 

samples

Reads from different unknown donors at sequencing 
time are mapped to many known reference genomes



Genomics vs. Metagenomics

55

Genomics

Metagenomics



Challenges in Read Mapping
n Need to find many mappings of each read

n Need to tolerate small variances/errors in each read

n Need to map each read very fast (i.e., performance is 
important, life critical in some cases)
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Agenda for Today
n Why Genome Analysis?
n What is Genome Analysis?

n How we Map Reads?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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Read Mapping: A Brute Force Algorithm

58

Very Expensive! 
O(m2kn)

Reference

Read

m: read length
k: no. of reads
n: reference genome length



Similar to Searching Yellow Pages!
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n Step 1: Get the page number from the book’s 
index using a small portion of the name (e.g., 1st 
letter).

n Step 2: Retrieve the page(s).

n Step 3: Look for the full name & get the phone 
number.



Step 1: Indexing the Reference Genome
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12 324 577 940AAAAAAAAAAAA

AAAAAAAAAAAC

AAAAAAAAAAAT

13 421 412 765 889

......

CCCCCCCCCCCC

......

24 459 744 988 989

......

......

TTTTTTTTTTTT 36 535 123

Reference genome

Seed=k-mer or 12-mer
(string of length k)

Location list—where the k-mer
occurs in reference gnome

We can query the table with substrings from reads 
to quickly find a list of possible mapping locations

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html


Genome Index Properties
n The index is built only once for each reference.

n Seeds can be overlapping, non-overlapping, spaced, 
adjacent, non-adjacent, minimizers, compressed, …

61

Tool Version Index Size* Indexing 
Time

mrFAST 2.2.5 16.5 GB 20.00 min

minimap2 0.12.7 7.2 GB 3.33 min

BWA-MEM 0.7.17 4.7 GB 49.96 min
*Human genome = 3.2 GB



Step 2: Query the Index Using Read Seeds
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89437

1203
37

Hash Table Based Read Mapping

6

Hash Table

Read Sequence
Read Sequence (100 bp)

Aligning ...Match! Aligning...Mismatch
✘

Index 
(e.g., Hash Table)

140
894
1564

140

15641203

Mismatch
✘

Mismatch
✘

Mismatch
✘ Reference Genome

37 140
894 1203 

1564



Step 3: Read Alignment (Verification)
n Edit distance is defined as the minimum number of edits 

(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment.

o - - r g a n i z a t i o n
o p e r - - - - - a t i o n

o - - r g a n i z a t i o n
o p e r - a - - - - t i o n

o r g a n i z a t i o n
t r - a n s l a t i o n

o r g a n - i z a t i o n
t r - a n s l - a t i o n

o r g a n i z - a t i o n
t r - a n - s l a t i o n

Ref
Read

Ref
Read

Ref
Read

Ref
Read

Ref
Read

organization x operation organization x translation

match
deletion
insertion
mismatch

63

Edit distance = 7

Edit distance = 4



An Example of Hash Table Based Mappers

n + Guaranteed to find all mappings à very sensitive
n + Can tolerate up to e errors

64

https://github.com/BilkentCompGen/mrfast

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html


GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

Bottlenecked in Read Alignment!!

66

Read Sequencing Read Mapping

* BWA-MEM
** NovaSeq 6000, MinION

***

150x slower

Million
bases/minute378 Million

bases/minute2



Agenda for Today
n Why Genome Analysis?
n What is Genome Analysis?

n How we Map Reads?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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candidate 
alignment 

locations (CAL)
4%

Read Alignment
93%

SAM 
printing

3%

What Makes Read Mapper Slow? 

93%
of the read mapper’s 

execution time is spent 
in read alignment.

Key Observation # 1

Alser et al, Bioinformatics (2017)
68



What Makes Read Mapper Slow? (cont’d)
Key Observation # 2

of candidate locations 
have high dissimilarity 

with a given read.

98% 

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

69



N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

What Makes Read Mapper Slow? (cont’d)

n Quadratic-time dynamic-
programming algorithm

etc

Processing row (or column) after another
etc

n Data dependencies limit the 
computation parallelism

etc

WHY?!

NETHERLANDS x SWITZERLAND
NETHERLANDS x S
NETHERLANDS x SW
NETHERLANDS x SWI
NETHERLANDS x SWIT
NETHERLANDS x SWITZ
NETHERLANDS x SWITZE
NETHERLANDS x SWITZER
NETHERLANDS x SWITZERL
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND 

Enumerating all possible prefixes

Key Observation # 3
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N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

What Makes Read Mapper Slow? (cont’d)

n Quadratic-time dynamic-
programming algorithm

n Data dependencies limit the 
computation parallelism

n Entire matrix is computed 
even though strings can be 
dissimilar.

Enumerating all possible prefixes

Processing row (or column) after another

Number of differences is computed only at the backtraking step.

Key Observation # 3

71



Agenda for Today
n Why Genome Analysis?
n What is Genome Analysis?

n How we Map Reads?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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Our Goal
n Our goal is to significantly reduce the time spent on 

calculating the optimal alignment in genome analysis from 
hours to mere seconds using both new algorithms & 
hardware accelerators, given limited computational 
resources (i.e., personal computer or small hardware).

73

1997                                                                                  2015     



Open Questions

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?

74



Pushing Towards New Architectures

75

Microprocessor Main Memory Storage (SSD/HDD)

Sequencing 
Machine

Single memory request consumes

>160x-800x more energy compared to 
performing a complex add operation  



Processing Genomic Data Where it Makes Sense

76
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Most speedup comes from parallelism enabled 
by novel architectures and algorithms
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Preferred Networks' MN-Core (2018)

78

matrix arithmetic 
blocks (MABs)

n Deep learning accelerator.

n 2,048 matrix arithmetic units

https://projects.preferred.jp/mn-core/en/

https://projects.preferred.jp/mn-core/en/


Cerebras’s Wafer Scale Engine (2019)

79

Cerebras WSE               
1.2 Trillion transistors

46,225 mm2

Largest GPU               
21.1 Billion transistors

815 mm2

n The largest ML 
accelerator chip

n 400,000 cores 

NVIDIA TITAN Vhttps://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


UPMEM Processing-in-DRAM Engine (2019)

80

n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


TESLA Full Self-Driving Computer (2019)

81

n ML accelerator: 260 mm2, 6 billion transistors, 
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

n Two redundant chips for better safety.
https://youtu.be/Ucp0TTmvqOE?t=4236

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://youtu.be/Ucp0TTmvqOE?t=4236
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


Illumina + Edico Genome
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https://www.illumina.com/company/news-center/press-releases/2018/2349147.html

https://www.illumina.com/company/news-center/press-releases/2018/2349147.html


Illumina + PacBio

83

https://www.illumina.com/company/news-center/press-releases/press-release-details.html?newsid=2374913

https://www.illumina.com/company/news-center/press-releases/press-release-details.html?newsid=2374913


Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
84



3) Rapid Alignment

An Example of Ongoing Directions

85

1) Seed Filtering

8943715641401203

1564
894 1203
37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence
Read Sequence (100 bp)

Reference Genome

37 140
894 1203 

1564

2) Pre-Alignment Filtering...
Match!

Pre-Alignment 
Filtering ...Mismatch

✘✘✘

✘

Aligning...Match!

Hash Table

.. .



Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
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FastHASH
n Goal: Reducing the number of seed (k-mer) locations.

q Heuristic (limits the number of mapping locations for each 
seed).

q Supports exact matches only.

87



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

88

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT read

Reference genomeValid mapping Invalid mapping



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

n Observation 2 (Cheap k-mers)
q Key insight: Some k-mers are cheaper to verify than others 

because they have shorter location lists (they occur less 
frequently in the reference genome)

q Key Idea: Read mapper can choose the cheapest k-mers and 
verify their locations

89



Cheap K-mer Selection
n occurrence threshold = 500

90

AAGCTCAATTTC CCTCCTTAATTT TCCTCTTAAGAA GGGTATGGCTAG AAGGTTGAGAGC CTTAGGCTTACC

read

314

1231

4414

9219

4 loc.

338

…

…

…

…

1K loc.

376

…

…

…

…

2K loc.

326

1451

2 loc.

350

1470

2 loc.

388

…

…

…

…

1K loc.

Previous work needs 
to verify:

3004 locations

FastHASH verifies only:

8 locations

Locations

Number of Locations

Cheapest 3 k-mers
Expensive 3 k-mers



FastHASH Conclusion
n Problem: Existing read mappers perform poorly in mapping 

billions of short reads to the reference genome, in the 
presence of errors

n Observation: Most of the verification calculations are 
unnecessary à filter them out

n Key Idea: To reduce the cost of unnecessary verification
q Select Cheap and Adjacent k-mers.

n Key Result: FastHASH obtains up to 19x speedup over the 
state-of-the-art mapper without losing valid mappings
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More on FastHASH

n Download source code and try for yourself
q Download link to FastHASH

92

http://mrfast.sourceforge.net/


Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
93



Pre-alignment Filtering Technique

Read Alignment is expensive

Our goal is to reduce the need for dynamic 
programming algorithms

94



1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

Ideal Filtering Algorithm 

95

Step 2

Query 
the 

Index

Step 3

Read 
Alignment



GateKeeper
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Alser+, "GateKeeper: A New Hardware Architecture for Accelerating 
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


GateKeeper
n Key observation:

q If two strings differ by E edits, then every bp match can be 

aligned in at most 2E shifts. 

n Key idea:
q Compute “Shifted Hamming Distance”: AND of 2E+1 Hamming 

vectors of two strings, to identify invalid mappings 

n Uses bit-parallel operations that nicely map to FPGA architectures

n Key result:
q GateKeeper is 90x-130x faster than than SHD (Xin et al., 

2015) and the Adjacency Filter (Xin et al., 2013), with only a 

7% false positive rate

q The addition of GateKeeper to the mrFAST mapper (Alkan et 

al., 2009) results in 10x end-to-end speedup in read mapping
98



Hamming Distance (∑⊕)
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I S T A N B U L

I S T A N B U L

8 matches 0 mismatches3 matches 5 mismatches

To cancel the effect of a 
deletion, we need to shift 
in the right direction

Edit = 1 Deletion



I S T N B U L

Shifted Hamming Distance (Xin+ 2015) 

100

7 matches 1 mismatches

XOR

XOR
AND

Edit = 1 Deletion

I S T N B U L0 0 0 1

1 1 1 0 0 0 0

1 1 1

0   0   0   1   0   0   0   0Count 
1’s

I S T A N B U L



GateKeeper Walkthrough
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Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

--- Masks after amendment ---

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000AND Mask :

 Alignment :
Needleman-Wunsch

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.

Independent vectors can be processed in parallel using 
hardware technologies
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A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

High throughput DNA 
sequencing (HTS) technologies 

Read Pre-Alignment Filtering 
Fast & Low False Positive Rate1 2

Read Alignment
Slow & Zero False Positives3

Billions of Short Reads

Hardware Acceleratorx1012
mappings

x103
mappings

Low Speed & High Accuracy
Medium Speed, Medium Accuracy

High Speed, Low Accuracy

Our Solution: GateKeeper

Alignment 
Filter

st1
FPGA-based 

Alignment Filter.



AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

GateKeeper Walkthrough (cont’d)
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Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

• (2E+1)*(ReadLength) 5-input LUT. 

0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 10 101 10 0 11 1 1 000 1 0 0 1 0
Hamming mask

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 11 111 11 1 1 11 00 0 11 1 1 0
Hamming mask after amending

. . . . . . . . . .

5-input
LUT

• E right-shift registers (length=ReadLength)
• E left-shift registers (length=ReadLength)
• (2E+1) * (ReadLength) 2-XOR operations.

• (2E)*(ReadLength) 2-AND 
operations.

• (ReadLength/4) 5-input LUT.
• !"#$ReadLength-bit counter.

1001X

X1001



GateKeeper Accelerator Architecture
n Maximum data throughput =~13.3 billion bases/sec
n Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

n Occupies 50% (100 bp) to 91% (300 bp) of the FPGA slice LUTs and registers

106

Preprocessing Host (CPU)

input reads 
(.fastq)

reference 
genome (.fasta)

Read 
Encoder

read pairs 
(mrFAST 
output)

GateKeeper 
Processing 

Core #1

GateKeeper 
Processing 

Core #N. . .  .
. . .  .

Read Controller

Mapping ControllerFIFO

FIFO FIFO

FIFO

read#1 read#N

map.#Nmap.#1

map.#Nmap.#1 …

Accepted Alignments
(correct & false positives)

10...001

Alignment Filtering (FPGA) Alignment Verification 
(CPU/FPGA)GateKeeper

PCIe

PCIe

Input stream 
of binary pairs 

GateKeeper

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

A



FPGA Chip Layout
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42
.5

m
m

42.5mm

GateKeeper: 17.6%, PCIe Controller, RIFFA, and IO: 5%

GateKeeper 
Logic Cells

PCIe 
Controller, 

RIFFA, and IO

300 bp

E=15



GateKeeper: Speed & Accuracy Results

109

90x-130x faster filter 
than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate
than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping
with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online 
github.com/BilkentCompGen/GateKeeper

https://github.com/BilkentCompGen/GateKeeper


GateKeeper Conclusions

n FPGA-based pre-alignment greatly speeds up read mapping
q 10x speedup of a state-of-the-art mapper (mrFAST)

n FPGA-based pre-alignment can be integrated with the 
sequencer
q It can help to hide the complexity and details of the FPGA
q Enables real-time filtering while sequencing

110



More on SHD (SIMD Implementation)
n Download and test for yourself 
n https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

111

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance


More on GateKeeper
n Download and test for yourself 

https://github.com/BilkentCompGen/GateKeeper

112

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA 
Short Read Mapping”, Bioinformatics, 2017.

https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


Can we do better? Scalability?

119



Shouji (障子)

120

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Shouji

121

n Key observation:
q Correct alignment always includes long identical subsequences. 
q Processing the entire mapping at once is ineffective for hardware 

design.
n Key idea:

q Use overlapping sliding window approach to quickly and 
accurately find all long segments of consecutive zeros.

n Key result:
q Shouji on FPGA is at least 160x faster than its CPU implementation.
q Shouji accelerates best-performing CPU read aligner Edlib 

(Bioinformatics 2017) by up to 18.8x using 16 filtering units that 
work in parallel.

q Shouji is 2.4x to 467x more accurate than GateKeeper
(Bioinformatics 2017) and SHD (Bioinformatics 2015).
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

1
1
1
4
1
2
1

search window # 1 search window # 5

0
0

0
0

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector

1
1

3
1

0
2

0
0

0
1

0

0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

search window # 1 search window # 5

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector 0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Sliding Window Size
n The reason behind the selection of the window size is due 

to the minimal possible length of the identical subsequence 
that is a single match (e.g., such as `101').
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Hardware Implementation
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• Counting is performed concurrently for all bit-vectors and all 
sliding windows in a single clock cycle using multiple 4-input 
LUTs.



More on Shouji

126

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

Download and test for yourself 
https://github.com/CMU-SAFARI/Shouji

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
https://github.com/CMU-SAFARI/Shouji


SneakySnake
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Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter 
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).

https://arxiv.org/pdf/1910.09020.pdf


SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches. 

n Key idea:
q Approximate edit distance calculation is similar to Single Net 

Routing problem in VLSI chip.

VLSI chip layout



SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches. 

n Key idea:
q Approximate edit distance calculation is similar to Single Net 

Routing problem in VLSI chip.

n Key result:
q SneakySnake is up to four orders of magnitude more accurate 

than Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17).

q SneakySnake accelerates the state-of-the-art CPU-based sequence 

aligners, Edlib (Bioinformatics’17) and Parasail (BMC 

Bioinformatics’16), by up to 37.6× and 43.9× (>12× on average), 

respectively, without requiring hardware acceleration, and by up 

to 413× and 689× (>400× on average), respectively, using 

hardware acceleration. 



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3

EN
TE

RA
NC

E

EX
IT



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival
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SneakySnake Walkthrough
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Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival

This is what you actually need to build
and it can be done on-the-fly!
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FPGA Resource Analysis

n FPGA resource usage for a single filtering unit of GateKeeper, 
Shouji, and Snake-on-Chip for a sequence length of 100 and 
under different edit distance thresholds (E).
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SneakySnake
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Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter 
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).

Download and test for CPU, GPU, and FPGA: 

https://github.com/CMU-SAFARI/SneakySnake

https://arxiv.org/pdf/1910.09020.pdf
https://github.com/CMU-SAFARI/SneakySnake


Read Mapping & Filtering
n Problem: Heavily bottlenecked by Data Movement

n Shouji performance limited by DRAM bandwidth [Alser+, 
Bioinformatics 2019]

n GateKeeper performance limited by DRAM bandwidth 
[Alser+, Bioinformatics 2017]

n Ditto for SHD [Xin+, Bioinformatics 2015]

n Solution: Processing-in-memory can alleviate the bottleneck
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Read Mapping & Filtering in Memory

We need to design 
mapping & filtering algorithms 
that fit processing-in-memory
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GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GRIM-Filter
n Key observation: FPGA and GPU accelerators are Heavily 

bottlenecked by Data Movement.

n Key idea: exploiting the high memory bandwidth and the logic layer of 
3D-stacked memory to perform highly-parallel filtering in the DRAM 
chip itself.

n Key results: 
q We propose an algorithm called GRIM-Filter
q GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on 

average) faster than FastHASH filter (BMC Genomics’13) across real 
data sets.

q GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted 
pairs than FastHASH filter (BMC Genomics’13) across real data sets.
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GRIM-Filter: Bitvectors

Reference
Genome

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

� � � �

b1 b2

b2:	bitvector
for	bin2

1
0
0
0
1
1
1
.
.
.
.
1
1
1
0

0
0
1
0
1
0
1
.
.
.
.
0
1
1
0

1
0
1
1
1
1
1
.
.
.
.
1
0
0
0

AAAAA
AAAAC
AAAAG
AAAAT
AAACA
AAACC
AAACG

.

.

.

.
TTTTA
TTTTC
TTTTG
TTTTT

*	t	=	number	of	bins

bt-2 bt-1	bt *

Le
ng
th
	=
	4
5

GACAG
exists	in	
2nd bin

TTTTT	
doesn’t	
exist	in	
2nd bin

bin2

bin3
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1

tokens

(a)

(b)

���

bin4

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

b1

tokens

139

AAAAC
exists in 
bin 1

CCCCT
doesn’t 
exist in 
bin 1

q Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) 
in the bin

q To account for matches that straddle 
bins, we employ overlapping bins
n A read will now always completely fall 

within a single bin



GRIM-Filter: Bitvectors

Storing all bitvectors
requires !" ∗ $ bits
in memory, 
where 
t = number of bins 
&
n = token length.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter: Checking a Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1 

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare
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Integrating GRIM-Filter into a Read Mapper

GRIM-Filter:
Seed Location Checker

0001010     011010... ......

GAACTTGCGAG GTATT ...INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask
0001010     011010... ......

020128 020131 414415... ... ... ...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference 
segment

@ 020131
reference 
segment

@ 414415. . .

OUTPUT: Correct Mappings

1

2

4

3

142



Key Properties of GRIM-Filter
1. Simple Operations:

q To check a given bin, find the sum of all bits corresponding 
to each token in the read

q Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter                 
a good algorithm to be run in 3D-Stacked DRAM
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GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many 
bins in parallel
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GRIM-Filter in 3D-Stacked DRAM

n Customized logic for accumulation and comparison 
per genome segment
q Low area overhead, simple implementation
q For HBM2, we use 4096 incrementer LUTs, 7-bit counters, 

and comparators in logic layer
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Details are in [Kim+, BMC Genomics 2018]



More on GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GenCache
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Nag, Anirban, et al. "GenCache: Leveraging In-Cache Operators for Efficient 
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.

https://www.cs.utah.edu/~rajeev/pubs/micro19a.pdf


GenCache
n Key observation: State-of-the-art alignment accelerators are still 

bottlenecked by memory.

n Key ideas: 
q Performing in-cache alignment + pre-alignment filtering by enabling 

processing-in-cache using previous proposal, ComputeCache
(HPCA’17).

q Using different Pre-alignment filters depending on the selected edit 
distance threshold.

n Results: 
q GenCache on CPU is 1.36x faster than GenAx (ISCA 2018). 

GenCache in cache is 5.26x faster than GenAx.
q GenCache chip has 16.4% higher area, 34.7% higher peak power, 

and 15% higher average power than GenAx.
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GenCache’s Four Phases
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Throughput Results
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Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
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Darwin
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Yatish+ "Darwin: A genomics co-processor provides up to 15,000 x 
acceleration on long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf

• Seed filter: D-Soft
• Read alignment accelerator: GACT ß We will cover this

http://bejerano.stanford.edu/papers/p199-turakhia.pdf


Darwin: GACT Hardware Acceleration
n Key observation:

q Data Dependencies limit accelerating the dynamic programming table 
calculation. 

n Key idea:
q Divide the dynamic programming table into overlapping tiles.
q Calculate each tile independently and in a systolic array fashion.
q Calculate many alignments concurrently.

n Key result:
q It is simulated for TSMC 40nm CMOS process.
q It provides a speedup of up to 380x compared to GACT software.
q It is three orders of magnitude faster than Edlib (best-performing CPU 

read aligner).
n Weaknesses: 

q It is not clear if tiling maintains the same accuracy as the original 
dynamic programming algorithm.
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Specialized Accelerator for Read Aligner
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n Accelerating the read alignment algorithm as-is using specialized 
hardware (40 nm CMOS) provides a limited speedup (37x). 

CPU-based read aligner         vs.        Hardware accelerated read aligner

Dally, "Hardware Enabled Biology", AACBB 2019, https://aacbb-workshop.github.io

https://aacbb-workshop.github.io/


GACT Alignment 
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n Solution: Divide the table into overlapping tiles and compute them all 
independently using systolic arrays.

n Store the trace of each cell in an SRAM for traceback.



Implementation Details
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n It is simulated for TSMC 40 nm CMOS process.

n 64 systolic arrays are working concurrently.

n 64 PEs (processing elements) in each systolic array.

n Each entry of the dynamic programming table 
accommodates 16-bit value.

n Each systolic array requires 128 KB SRAM (each PE =2 KB 
SRAM bank) for traceback purposes. 



GACT Hardware vs. Software Speedup
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GACT Hardware vs. Edlib
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More on Darwin
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Yatish+ "Darwin: A genomics co-processor provides up to 15,000 x 
acceleration on long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf

https://github.com/gsneha26/Darwin-WGA

http://bejerano.stanford.edu/papers/p199-turakhia.pdf
https://github.com/gsneha26/Darwin-WGA


Disclaimer on Darwin

n Darwin is NOT developed in SAFARI group, but we 
developed BitMAC that is now under review.

n BitMAC = new read alignment algorithm + PIM specialized 
accelerator.

n BitMAC provides 2.1x better throughput per unit area and 
59.2x better throughput per unit power when compared 
with GACT of Darwin.
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Conclusion on Ongoing Directions

n Read alignment can be substantially accelerated using 
computationally inexpensive and accurate pre-alignment 
filtering algorithms designed for specialized hardware.

n All the three directions are used by mappers today, but 
filtering has replaced alignment as the bottleneck.

n Pre-alignment filtering does not sacrifice any of the aligner 
capabilities, as it does not modify or replace the alignment 
step.
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Agenda for Today
n Why Genome Analysis?
n What is Genome Analysis?

n How we Map Reads?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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Where is Read Mapping Going Next?

Will 100% accurate genome-long 
reads alleviate/eliminate the need for 

read mapping?

165

Think about metagenomics, pan-genomics, ...



Where is Read Mapping Going Next?

166Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humans of 
African descent” Nature genetics, 2019.

African pan-genome contains ~10% more DNA 
than the current human reference genome.

https://www.nature.com/articles/s41588-018-0273-y


Did we Achieve Our Goal?
n Our goal is to significantly reduce the time spent on 

calculating the optimal alignment in genome analysis from 
hours to mere seconds using both new algorithms & 
hardware accelerators, given limited computational 
resources (i.e., personal computer or small hardware).
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Open Questions

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?
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Processing Genomic Data Where it Makes Sense

169
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Lecture Conclusion
n System design for bioinformatics is a critical problem

q It has large scientific, medical, societal, personal implications

n This lecture is about accelerating a key step in bioinformatics: 
genome sequence analysis
q In particular, read mapping

n Many bottlenecks exist in accessing and manipulating huge 
amounts of genomic data during analysis

n We cover various recent ideas to accelerate read mapping
q A journey since September 2006
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Recommended Readings
n Jones, Neil C., Pavel A. Pevzner, and Pavel Pevzner. “An 

introduction to bioinformatics algorithms,” MIT press, 2004.
n Mäkinen, Veli, Djamal Belazzougui, Fabio Cunial, and 

Alexandru I. Tomescu. “Genome-scale algorithm design,”
Cambridge University Press, 2015.
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Apollo
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Firtina, Can, et al. "Apollo: A Sequencing-Technology-Independent, 
Scalable, and Accurate Assembly Polishing Algorithm." arXiv preprint 
arXiv:1902.04341 (2019).

https://arxiv.org/abs/1902.04341

https://arxiv.org/abs/1902.04341
https://arxiv.org/abs/1902.04341


Constructing an assembly of reads
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Alignment-based Graph-based: De Bruijn Graphs



Apollo
n Key observations:

q It may not be possible to construct the entire genome using short reads due 
to the complexity to find overlaps between short reads

q Re-assembling the long reads produce erroneous genome, which may cause 
incorrect findings in the further steps of the genome analysis

q Existing polishing tools cannot polish large genomes
n Key idea:

q Polishing the errors in each contig of an assembly individually using all the 
available read sets (long + short reads) within a single run.

n Key insights:
q Errors are not random and can be represented in a graph by assigning 

certain probabilities to resolve each error type at certain positions
q A profile hidden Markov model (pHMM) is a good fit to represent the actual 

contig as well as the possible errors that can take place after each basepair
q Aligning reads to a contig gives a clue about the differences between a 

contig and a read
n Contribution

q First algorithm that can scale well to polish large genomes and that can 
use multiple read sets from any sequencing technology within a single 
polishing run
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Assembly polishing pipeline
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A Profile hidden Markov model
n Represent the contig “AGCACC…GCCT” in a pHMM-graph 
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n Each state emits (i.e., consumes or outputs) a single base when visited
n Correction:

q Visiting insertion states to insert more bases between two bases in a contig
q Skipping certain states to delete some bases
q Emitting a different a different base than a base that is actually present at certain location 

(e.g., changing G to T at position 2)



Resolving substitution errors or no error
n Match states for bases “GA” at positions t and t+1, respectively
n If no error: emit “G” at position t with the probability of having no error
n For substitution error, emit either A, T, or C at position t with substitution error probability
n All type of emission and transition probabilities are a parameter to Apollo
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Resolving deletion errors
n Insertion states to insert at 

most l many bases between 
two bases in a contig

n To insert “GC” between ”CT”
q Visit match state at position t 

and emit C
q Visit first insertion state after 

position t and emit G with 
deletion error probability

q Visit second insertion state 
and emit C with deletion error 
probability

q From second insertion state 
visit match state at position 
t+1 and emit T

q Resulting sequence “CGCT”
n Maximum number of 

insertions is a parameter to 
Apollo
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Resolving insertion errors
n Deletion transitions to delete 

one or many bases in a row
n To delete the first A in “GAA”

q Visit match state at position t 
and emit G

q Visit match state at position 
t+2 and emit A with single
insertion error probability

q Resulting sequence: “GA”
n Having single or more deletions 

in a row may not be necessarily 
equally likely

n Maximum number of deletions 
in a row is a parameter to 
Apollo
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Assembly polishing pipeline
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Training
n Training data:

q Read aligned to the location t of a contig
n Assume we have the read “CGT” aligned to location t
n After training the corresponding region of the graph we would expect change in the 

probabilities so that it will be likely to emit “CGT” somehow
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CGT



The Forward-Backward algorithm
n Calculating the likelihood of visiting a state to emit a certain 

character of a given sequence (i.e., aligned read)
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n Forward calculation (F)

n Backward calculation (B)

n Backward calculation needs a starting point



Training: The Baum-Welch algorithm
n Expectation maximization step using the Baum-Welch 

algorithm
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n If there are multiple reads aligning to same region, we have multiple F(i) 
for a position t
q Take the average and use it as F(i) for position t



Assembly polishing pipeline
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Inference: The Viterbi algorithm
n Our original contig before polishing was: “AGCACC…GCCT”
n After updating the probabilities, the most likely path from start to end reveals the 

corrected contig: “AGATCC…GTAC”
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Inference: The Viterbi algorithm
n Decode the entire graph after training to have the 

corrected version of a contig
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Results
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Data Sets
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Applicability of the Polishing Algorithms to Large Genomes 
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Benefits of using a hybrid set of reads
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Using a set of reads from a single sequencing technology

n Still comparable performance for smaller genomes even 
when a single set of reads used
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Takeaways

n For large genomes, Apollo is the only algorithm that can 
scale well to use available data set

n Polish Canu-generated assemblies with a hybrid set of 
reads if the intention is to produce most reliable assembly

n The pHMM-graph proposed in Apollo is very flexible
q Change the parameters according to the error profile of a 

sequencing machine
q Decide whether to chunk a pHMM-graph or not during 

decoding
n Not good in terms of the run time
n Viterbi and Forward-Backward calculations per state very 

simple but yet serial in the current implementation
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