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ASIC 

Data Movement Cost 

2 

Challenge: large cost of data movement 

DRAM L2 L1 

CPU 
CPU CPU CPU 

Data Movement 

(1) Large energy and performance cost to bring data 
(2) Limited off-chip bandwidth 

Data movement incurs high penalty:  



ASIC 

Processing-In-Memory (PIM) 
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Recent advancement in 3D-stacked technology 
enabled Processing-In-Memory (PIM) 

CPU 
DRAM 

Potential Solution: move computation close to data  

PIM 

Reduces data movement 

Large in-memory bandwidth 

Shorter access latency to memory 



ASIC 

 

 

4 

2 How to program PIM architectures?  
•  Need efficient interfaces and mechanisms to let programs 

take advantage of PIM    

PIM introduces new system challenges 

3 How to make the software/algorithm aware of PIM? 

PIM Adoption Challenges 

1 What to offload? 
•  Need to identify primitives 
•  Need to consider design constraints (e.g., area, power) 

•  To fully benefit from PIM, we need to redesign 
 both software and hardware to be aware of PIM 

•  Need to provide address translation  
•  Maintain coherence between PIM and the system 



Our Goal 

Our goal is to make PIM effective and practical 
in conventional computing system 
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Overview of Our Approach 

Identifying key primitives by analyzing the  
benefit of PIM for key workloads (work 1) 1

Mitigating key system challenges for 
communication with PIM logic (work 2) 2

Redesigning applications aware of PIM  
using software-hardware co-design (works 3 & 4) 3



Thesis Statement 

Using practical mechanisms which are aware of  
modern workloads and architectural constraints 

Processor-memory data movement  
can be significantly reduced  

7 



Thesis Contributions 
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Mitigating data movement bottlenecks 
 in Google Consumer workloads 1

Efficient Cache Coherence Support for 
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference  
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with  
Specialized HW/SW Co-Design (Polynesia) 4
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Mitigating data movement bottlenecks 
 in Google Consumer workloads 1

Efficient Cache Coherence Support for 
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference  
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with  
Specialized HW/SW Co-Design (Polynesia) 4



Google Workloads for Consumer Devices: 
 Mitigating data movement bottleneck 

  
(ASPLOS’18) 
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Popular Google Consumer Workloads 
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Chrome 
Google’s web browser 

TensorFlow Mobile 
Google’s machine learning 

framework 

Video Playback 
Google’s video codec  

 

Video Capture 
Google’s video codec  
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Energy Cost of Data Movement 
 

Data Movement 

1st key observation:  62.7% of the  
total system energy is spent on data movement 

Potential solution: move computation close to data 

Challenge: limited area and energy budget 

Processing-In-Memory (PIM) 

SoC 

DRAM L2 L1 

CPU 
CPU CPU CPU 

Compute 
Unit  



Using PIM to Reduce Data Movement 
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2nd key observation: a significant fraction of  
 data movement often comes from simple functions 

PIM 
Core 

PIM 
Accelerator 

PIM 
Accelerator 

PIM 
Accelerator 

We can design lightweight logic to  
implement these simple functions in memory 

Small embedded 
 low-power core 

Small fixed-function 
accelerators 

Offloading to PIM logic, on average, reduces energy 
 by 55.4% and improves performance by 54.2% 
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Mitigating data movement bottlenecks 
 in Google Consumer workloads 1

Efficient Cache Coherence Support for 
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference  
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with  
Specialized HW/SW Co-Design (Polynesia) 4



CoNDA: Efficient Cache Coherence Support 
for Near-Data Accelerators 

 
(ISCA’19) 
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Coherence For Near-Data-Accelerators 
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Challenge: Coherence between NDAs and CPUs 

DRAM 
L2 L1 

CPU 
CPU CPU CPU 

NDA 

Compute 
Unit  

(1) Large cost of  
off-chip communication 

It is impractical to use traditional coherence protocols 

(2) NDA applications generate  
a large amount of off-chip data movement 
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Existing Coherence Mechanisms 

17 

We extensively study existing NDA coherence 
mechanisms and make three key observations:  

 These mechanisms eliminate  
a significant portion of NDA’s benefits 1

 The majority of off-chip coherence traffic  
generated by these mechanisms is unnecessary 2

Much of the off-chip traffic can be eliminated  
if the coherence mechanism has insight 

 into the memory accesses 
3
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An Optimistic Approach 
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1 Gain insights before any coherence checks happen 

We find that an optimistic approach to coherence can 
address the challenges related to NDA coherence 

2 Perform only the necessary coherence requests 

We propose CoNDA, a coherence mechanism that lets an 
NDA optimistically execute an NDA kernel 

Optimistic execution enables CoNDA to identify and avoid 
unnecessary coherence requests  

 CoNDA comes within 10.4% and 4.4% of performance  
and energy of an ideal NDA coherence mechanism 



Thesis Contributions 
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Mitigating data movement bottlenecks 
 in Google Consumer workloads 1

Efficient Cache Coherence Support for 
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference  
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with  
Specialized HW/SW Co-Design (Polynesia) 4



Efficiently Accelerating Edge ML Inference by 
Exploiting Layer Heterogeneity  

 
 

 (Submitted to ASPLOS’21) 
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Why ML on Edge Devices? 
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Significant interest in pushing ML inference computation 
directly to the edge devices 

Privacy Latency Connectivity Bandwidth 



Why Specialized ML Accelerator? 
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Edge devices have limited battery and computation budget 

Limited Power Budget Limited Computational Resources 

Specialized accelerator can significantly improve  
inference latency and energy consumption 

Neural Engine (A12) Edge-TPU 



Myriad of Neural Network Models 
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Challenge: edge ML accelerators have to execute inference 
efficiently across a wide variety of NN models 

RNN Transducers 

Face Detection 

Speech Recognition 

Image Captioning 

Language Translation 
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Edge Accelerator Challenges 
We study inference execution on a commercialized Edge TPU 

across 24 state-of-the-art Google edge models 

We find that the accelerator suffers from  
three major challenges: 

1 Operating significantly below peak throughput 

2  Operating significantly lower than  
peak energy efficiency 

3 Inefficient and ineffective memory system 
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Per-layer Analysis of NN Models 

1 There is significant variation in terms of layer 
characteristics across the models 

 We perform a comprehensive per-layer analysis of each model 
and make two key observations: 

2 Even within each model, there is high variation in 
terms of layer characteristics (e.g., types, shapes) 

The key components of edge ML accelerators are 
completely oblivious to this heterogeneity 
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A Composable Framework For Edge Accelerator 

Mensa distributes the layers from an NN model across a 
collection of smaller accelerators that are specialized 

 for different layer types 

We observe that the layers 
from our Google models 

naturally group into 
 a small number of clusters 

Based on key characteristics of 
clusters, we design three specialized 
accelerators to efficiently execute 

inference across our Google models 

 Mensa improves inference energy and throughput  
by 3.0x and 3.1x while reducing hardware cost by 2.8x 

We design an implementation of Mensa for our Google edge models 



Edge TPU Analysis 
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Edge TPU: Baseline Accelerator 
 

 

DRAM 

ML Model 

PE Array 

B
uf
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r 

Dataflow 

64x64 array 
2TFLOP/s 

4MB  
on-chip buffer 

Output 
Activation Parameter Input 

Activation 

= * 
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Google Edge Models 
 

 

 2 LSTMs 13 CNNs 

3 RCNNs 
6 Transducers 

(RNN-T) 
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Major Edge TPU Challenges 

1 Operating significantly below peak throughput 

2  Operating significantly lower than  
peak energy efficiency 

3 Inefficient and ineffective memory system 

We find that the accelerator suffers from  
three major challenges: 



(1) High Resource Underutilization 
 

 

We find that the accelerator operates significantly lower 
(75.6%) than the peak throughput across all models 
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Only 52.2%  
of peak throughput 

Less than 1%  
of peak throughput 

Peak = 2 TFLOPS/s 
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(2) Low Energy Efficiency 
The accelerator operates far below (62.4% on average) the 

upper bound energy efficiency (TFLOP/j) 
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Peak = 1.42 TFLOPS/J 

33.1% of upper bound 
energy efficiency 

50.7% of upper bound 
energy efficiency 
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(3) Memory System Issues 

1 A significant portion of dynamic and static energy  
goes to on-chip memory 

2 Despite using large on-chip buffers, they are not 
effective in reducing off-chip accesses 

3 Parameter traffic takes a large portion of 
 the inference energy and performance 

We find that the memory system suffers from  
three major challenges: 
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Major Accelerator Challenges 

1 Operating significantly below peak throughput 

2  Operating significantly lower than  
peak energy efficiency 

3 Inefficient and ineffective memory system 

We find that the accelerator suffers from  
three major challenges: 

Question: Where do these challenges come from? 



Model Analysis: 
Let’s Take a Deeper Look 

 Into the Models 



Diversity Across the Models 
 

 

Insight 1: there is significant variation in terms of  
layer characteristics across the models 
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LSTMs and Transducers 

Layers from  
CNNs  
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Diversity Within the Models 

For example, our analysis of edge CNN models shows:  1

2
1 Layers in edge CNNs exhibit significant 

 heterogeneity in terms of type, shape, and size 

2 Layers exhibit significant variation in terms of  
data reuse patterns for parameters and activations 

Insight 2: even within each model, layers exhibit significant 
variation in terms of layer characteristics 
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Diversity Within the Models 
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We find that FLOP/Byte varies by 244x across layers 
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Now we can understand  
the root cause of  

accelerator challenges 



Root Cause of Accelerator Challenges 
The key components of Edge TPU are completely oblivious 

 to this layer heterogeneity 

While this approach might work for a specific group of layers, it fails 
to efficiently execute inference across a wide variety of edge models 

DRAM 

PE Array 

B
uf
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Dataflow 

Off-chip  
bandwidth 

Edge accelerators typically take a monolithic approach: 
 equip the accelerator with an over-provisioned PE array and  
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth 

41 



Key Takeaways From Analysis 

1

2

3

1 Significant variation of layer characteristics 
 across and within Google edge models 

2 The monolithic design of edge accelerators  
is the root cause of their shortcomings 

3
All key components (PE array, dataflow, memory 

system, off-chip bandwidth/proximity to data) must be 
customized based on layers characteristics 
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Proposal: 
Mensa Framework 
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Mensa Framework 
 

 

Goal:  design an edge accelerator that can efficiently run 
 inference across a wide range of different models and layers 

1

2

Instead of running the entire NN model on  
a monolithic accelerator:  

Mensa distributes the layers from an NN model across  
a collection of smaller hardware accelerators that  

are specialized for different layer types 

B
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32GB/s 

On-chip Accelerator 
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256GB/s 

Near-Data Accelerator 
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Mensa High-Level Overview 

Monolithic Accelerator 

Model A 

Cluster 2 Cluster 3 

Baseline Accelerator Mensa 
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Mensa Runtime Scheduler 
 

 

Accelerator 
characteristics 

Layer  
characteristics 

Scheduler 

NN model 

Layers 
Mapping 

The goal of Mensa’s software runtime scheduler is to identify 
which accelerator each layer in an NN model should run on 

Generated once 
 during initial setup  

of a system 

Layers tend to group  
together into a small 
number of clusters   

Which hardware  
accelerator is best suited  

for each cluster 

Each of the accelerators  
caters to  

a specific cluster of layers 46 



 

 
Now let’s talk about implementing 

an instance of Mensa  
for our Google edge models  



Identifying Layer Clusters 
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Hardware Design Principles 

 

 

Insight 1: we find that clusters can be categorized into 
 (1) compute-centric clusters, and (2) data-centric clusters 

Insight 2: reuse patterns of layers are a key distinguishing factor 
between different hardware designs 

We study the distinguishing characteristics of each cluster  
and we make two key observations: 

We need to support at least two different accelerator designs: 
 (1) one compute-centric,  (2) one data-centric  

We need separate accelerators to account for  
different types of dataflow across the clusters 

49 



Hardware Design Principles 
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Based on key characteristics of clusters, we design three specialized 
accelerators to efficiently execute inference across our Google models 

We employ a template design approach: each accelerator is designed 
based on cluster characteristics, while maintaining the same generic 

tiled architecture of the baseline accelerator 

Near-Data Accelerator On-chip Accelerator 
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Clusters 1 & 2 Clusters 3, 4 & 5  



 

 
A Brief Look at Pascal 
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Pascal Dataflow 
 

 

Pascal caters for Cluster 1&2 layers: majority are pointwise or  
standard Conv2D layers with shallow input/output channels  

Output Act. 

Param. Input Act. 

PE Array 
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We devise a dataflow that enables temporal reduction of 
output activations and spatial multicasting of parameters: 

Dataflow 

1 Spatially distributing output activation across PEs provide temporal 
reduction à reduce buffer size (16x) and on-chip traffic 

2 Since parameters have small footprint, we temporally replicate each 
parameter across PEs at each time step à spatial multicasting 
 

Large footprint 
 & high reuse  

Small footprint 
& high reuse  



Pascal Dataflow - Example 
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Pascal In A Nutshell 
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Co-design the proposed 
dataflow with the accelerator’s 

memory system 

256KB Act. Buffer  
(8x Reduction) 

128KB Param. Buffer 
(32x Reduction) 

Clusters 1&2 include 
compute-centric layers 

 (e.g., early 2D conv) 

2 TFLOP/s Data reuse opportunities 
exposed by our dataflow enable 

us to significantly reduce the 
on-chip buffer sizes 

Off-chip bandwidth available  
to PE array is same as the 

baseline accelerator 

3.8X Area Reduction 
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A Brief Look at Pavlov 
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Pavlov Dataflow 

 

 

Pavlov caters to Cluster 3: (1) zero param. reuse & large footprint, 
 (2) high act. reuse & small footprint, and (3) major operation is MVM 

PE Array 
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We devise a dataflow that enables temporal reduction of 
output activations and sequential access to parameters: 

Dataflow 

1 Avoiding spatial reduction of output act.: eliminates partial sum traffic 

2 Sequential access pattern à use bandwidth without complex hardware 

= 

ht-1 Output Wh 

Zero reuse 
&  

very large 
footprint 

Require high bandwidth to achieve high PE utilization 

3 Replicates input act. across all PEs while spatially distributing param.s 



Pavlov Dataflow - Example 
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Pavlov In A Nutshell 
 

 

Cluster 3 include LSTM-like 
 data-centric layers: low MAC intensity 
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8x8 
PE Array 

Designed aware of Cluster 3 
characteristics and proposed 

dataflow 

128 GFLOP/s 

Since Pavlov is data-centric and its 
sequential access parameters can 

exploit high bandwidth memory, we 
place it in the logic layer 
 of 3D-stacked memory 

128KB Activation Buffer  
(16x Reduction) 

No Parameter Buffer  
(4MB in Baseline) 

For parameters, we use only  
one level of memory hierarchy 
and stream parameters directly 

from DRAM 
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Let’s Take a Brief Look at our 
Evaluation 
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Mensa reduces energy by 66.0% and improves energy efficiency 
 by 3.0X compared to Baseline 

Simply providing high-bandwidth to 
the baseline accelerator provides  

only 7.5% reduction  

More beneficial for LSTM/
Transducer models (14.2% energy 
reduction) than CNNs and RCNNs Base+HB still incurs the high 

energy costs of (1) on-chip buffers 
and (2) off-chip traffic to DRAM 

Mensa lowers on-chip/off-chip parameter traffic energy 
by 15.3x by scheduling layers on the accelerator with 
the most appropriate dataflow and proximity to data 

Mensa reduces the dynamic energy of the on-chip 
buffer and NoC by 49.8x over Base+HB, by avoiding 

overprovisioning and catering to specialized dataflows 
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Wrap-Up 
•  We extensively analyze a state-of the-art edge accelerator using 

24 Google edge models 
–   Wide range of models (CNNs, LSTMs, Transducers, RCNNs) 

•  We find that the accelerator suffers from three challenges 
–  Operating significantly below peak throughput 
–  Operating significantly below theoretical energy efficiency 
–  Inefficiently handling memory accesses 

•  We find that these shortcomings arise from the monolithic 
design of edge accelerators  
–  Their design do not account for layer heterogeneity  

•  We propose a new framework called Mensa 
–  Consist of heterogeneous accelerators whose dataflow and 

hardware are specialized for specific clusters of layers 

•  We design an implementation of Mensa for Google models 
–  Show that it improves performance and energy by 3.0X and 3.1X 
–  Reduce cost and improves area efficiency by 2.8X and 8.9X  61 
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Real-time Analysis 
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An explosive interest in many applications domains to perform 
analytics on the most recent version of data (real-time analysis)  

Use transactions to record 
each periodic sample of data 

from all sensors 

Run analytics across sensor 
data to make real-time 

steering decisions 

For these applications, it’s critical to analyze the transactions in 
real-time as the data’s value significantly diminishes over time 

Self-driving Cars 



Supporting Real-Time Analysis: HTAP Systems  
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Traditionally, new transactions (updates) are propagated to the 
analytics database using a periodic and costly process 

To support real-time analysis: a single hybrid DBMS is 
needed to execute both transactions and analytics 

Transactions 

Hybrid DBMS  
(HTAP system) 

Analytics 

Data 
Migration 

Analytics 

 Transactional 
DBMS 

Transactions 

 Analytical 
DBMS 

hours/days 



Ideal HTAP System Properties 
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2 Data Freshness and consistency guarantee 
•  Guarantee access to the most recent version of data for 

analytics while ensuring that both workloads have a consistent 
view of data 

1 Workload-specific optimizations 
•  Each workload must benefit from its own specific optimizations 

3 Performance Isolation 
•  Latency and throughput of both workloads are the same as if 

they were run in isolation 

An ideal HTAP system should have three properties: 

Meeting all three properties at the same time 
 is very challenging 



Limitations of State-of-the-Art 
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We extensively study state-of-the-art HTAP 
systems and observe two key problems: 

Data freshness and consistency mechanisms generate 
 a large amount of data movement which causes 

 a drastic reduction in transactional/analytical throughput 
1

They fail to provide performance isolation  
because of the high resource contention 

 between transactional and analytical workloads  
2



Polynesia 
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We propose Polynesia, a hardware/software cooperative design 
for in-memory HTAP databases 

Transactions 

Transactional Island 

Exec. Engine 

CPU Cores 

Replica 

Analytical Island 

Replica 

Analytics 

PIM Logic 

Exec. Engine 

Updates 

Consistency 
Mechanism 

Data Fresh. 
Mechanism 

Workload-specific 
optimization 

Avoid high 
resource 

contention Processing  
In-Memory 

Custom algorithm 
and hardware 

Partitioning the computing 
resources into two isolated island 

Polynesia improves transactional/analytical throughput and 
 energy by 1.7X/3.7X and 48% compared to prior HTAP systems 

Consistency 
Mechanism 

Date Fresh. 
Mechanism 

Exec. Engine 



Analysis of  
State-of-the-art HTAP Systems 
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Analysis of State-of-the-art HTAP Systems 
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1

1
2

 

Main Replica 

Transactions Analytics 

Single-Instance 

Replica Replica Replica 

Transactions Analytics Analytics 

Multiple-Instance 

We study two major types of HTAP systems 

We observe two key problems: 

Data freshness and consistency mechanisms 
 are costly and cause a drastic reduction in throughput 1

These systems fail to provide performance isolation  
because of the high resource contention 2



Single-Instance Design 
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Single-Instance: High Cost of Consistency 
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Since both analytics and transactions work on the same data 
concurrently, we need to ensure that the data is consistent  

There are two major mechanisms to ensure consistency: 

1 Snapshotting (Snapshot Isolation) 

2 Multi-Version Concurrency Control (MVCC) 
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Several HTAP systems (e.g., HyPer) use snapshotting 
 to provide consistency via Snapshot Isolation (SI) 

Snapshotting 

These systems explicitly create snapshots from  
the most recent version of data and let the analytics run on the 

snapshot while transactions continue updating data 

Main Replica 

Transactions 

Transactional  
Data 

Snapshot 

Analytical 
Snapshot 

Analytics 
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We find that this approach requires frequent snapshot creation to 
sustain data freshness under high transactional update rate  

Snapshotting 
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MVCC avoids making full copies of data by keeping  
several versions of the data (used in HyPer v2) 

Multi-Version Concurrency Control (MVCC) 

When updates happen, MVCC creates a new time-stamped 
version of data and keeps the old version in a version chain 

alongside the data 

1 
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Multi-Version Concurrency Control (MVCC) 

We find that long version chains are the root cause of the issue 
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We observe that MVCC overhead leads to 42.4% performance loss 
over zero-cost MVCC 

Frequent transactional updates create lengthy version chains 1 
Scan-heavy analytics traverses a lengthy version chain upon 
accessing a data tuple  

2 
•  Expensive time-stamp comparison + a very large number of 

random memory accesses 



Wrap up: Single-Instance Systems 
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While single-instance design enables high data freshness, 
we find that it suffers from two major challenges: 

1 High Cost of Consistency and Synchronization 

3 Limited Workload-Specific Optimization 

2 Limited Performance Isolation 



Multiple-Instance Design 
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Maintaining Data Freshness 

79 

One of the major challenges in multiple-instance systems is  
to keep analytic replicas up-to-date 

To maintain data freshness: 

1 Update Shipping: gather updates from transactional threads and 
ship them to analytic replica 

2 Update application: perform the necessary format conversation 
and apply those updates to analytic replicas 

Replica 

Analytic 
Replica 

Analytic 
Replica 

Transactional queries 

Updates 

Updates 

Multiple-Instance HTAP System 



Maintaining Data Freshness 
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We find that the transactional throughput reduces by  
up to 21.2% and 64.2% during update shipping process and 

update application process 
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The overhead becomes significantly higher when the 
transactional queries are more update-intensive 



Data Freshness: Shipping Updates 
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Update Logs Scan and Merge 

Find the target 
columns for updates 

Ship the updates 

CPU Memory 

Data Movement 

Timeline 

Updates from different  
transactional threads 

Analytic Replica 

Throughput reduction is because update shipping generates 
a large amount of data movement and takes several cycles 

High update 
rate 

High frequency 
update shipping 

Higher data movement  
overhead 



Data Freshness: Update Application 

82 

Analytical Replica 
C1 C2 C3 

Compressed 
Column 

Dictionary 
Id Value 

1 
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2 
car 
ann 

cat 
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1 

3 

2 

0 

C1 C2 C3 
Row 1 
Row 2 
Row 3 

Transactional Replica 

Update:  Row 2, Column 1 and 3 

1 A simple tuple update in row-wise layout leads to  
multiple random accesses in column-wise layout 

2  Updates change encoded value in the dictionary à (1) Need to 
reconstruct the dictionary, and (2) recompress the column 

Analytics engines are optimized for long-running  
read-only queries and they are not update-friendly 

These operations generate a large amount of data movement 
and take many CPU cycles 



More insights on Data Freshness Challenges 
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We need to take advantage of PIM logic 
to reduce data movement and resource contention 

Our analysis shows that simply providing higher bandwidth 
(8x) to CPU cores does not address the challenges 

We find that simply offloading them to general purpose PIM 
cores does not address the challenges 

We need to design custom algorithm and hardware to 
efficiently execute update shipping/application process 



Major Takeaways from Analysis 
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111
State-of-the-art HTAP systems do not meet all of the 

desired HTAP properties 

2 Data freshness and consistency mechanisms are  
data-intensive and cause a drastic reduction in throughput 

3 These systems fail to provide performance isolation  
because of the high resource contention 

4 We need to take advantage of custom algorithm and  
PIM logic to address these challenges 



Polynesia 
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Polynesia 
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The key idea is to partition the computing resources into  
two types of isolated, specialized processing islands 

Isolating transactional islands from analytical islands allows us to: 

Apply workload-specific optimizations to each island 1 
Avoid high resource contention 2 
Design efficient data freshness and consistency 
mechanisms where we can maintain data freshness and 
consistency without incurring high data movement costs  

3 

Polynesia is the first work to achieve 
 all three desired properties of an HTAP system 



Polynesia High-level Overview 
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Transactions 

Transactional Island 

Exec. Engine 

CPU Cores 

Replica 

Analytical Island 

Replica 

Analytics 

PIM Logic 

Exec. Engine 

Updates 

Consistency 
Mechanism 

Data Freshness 
Mechanism 

Designed to sustain 
 the bursts of writes   

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources 

Designed to provide high read throughput 

CPU Cores PIM Logic 

Take advantage of a customized 
version of PIM to mitigate data 

movement bottleneck  

Conventional multicore CPUs 
with multi-level caches 



Analytical Islands Key Components 
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Analytical Islands 

Replica 

Analytics 

PIM Logic 

Exec. Engine 

Updates 

Consistency 
Mechanism 

Data Freshness 
Mechanism 

We co-design new algorithms and efficient hardware support for the 
three key components of an analytical island 

Design two algorithms: 
 (1) update shipping and (2) update application 

Design custom PIM logic 
 for both algorithms 

Data Freshness 
Mechanism 



Analytical Islands Key Components 
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Analytical Islands 

Replica 

Analytics 

PIM Logic 

Exec. Engine 

Updates 

Consistency 
Mechanism 

Data Freshness 
Mechanism 

We co-design new algorithms and efficient hardware support for the 
three key components of an analytical island 

Develop an algorithm relies on a combination of 
versioning and snapshotting to maintain data 

consistency 

Design an in-memory copy unit that 
enables highly efficient snapshot creation 

Consistency 
Mechanism 



Analytical Islands Key Components 
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Analytical Islands 

Replica 

Analytics 

PIM Logic 

Exec. Engine 

Updates 

Consistency 
Mechanism 

Data Freshness 
Mechanism 

We co-design new algorithms and efficient hardware support for the 
three key components of an analytical island 

A custom data placement and task 
scheduler aware of 3D-stacked memory 

Simple PIM cores to 
 execute execution engine 

Exec. Engine 



A Polynesia HW Implementation 
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We implement an instance of Polynesia that supports  
relational transactional and analytical workloads 

CPU CPU 
CPU CPU LL

C
 

Processor 
DRAM Layer 

Logic Layer 

DRAM Layer 

Update 
 App. Unit 

Copy 
Unit 

PIM 
Cores 

M
em

ory 
C
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Update 
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Transactional Island 
 HW Resources 
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Data Freshness Mechanism 
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Data Freshness Mechanism 
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1 Update Shipping: gather updates from transactional islands, 
 find the target location in analytical island, and ship them 

2 Update Application: performs format conversion and  
applies the update to the analytical replica 

Data Freshness Mechanism: 

Transactions Analytics 

Replica 

Transaction Island 

Data Freshness 
Mechanism 

Updates 

Analytical Island 

Replica 

HW HW 

Exec. Engine Exec. Engine 



Update Shipping Algorithm 
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1 

Merge / Sort 

Update  
Log1 

… 

Update  
Log2 

Update  
LogN 

Scan and Merge 

2 

Hash 

Target 
Column Updatek 

Hash Unit 

Find Target Column 

3 

Copy 

Columni  
Buffer Updatek 

Copy Unit 

Transfer Updates 

Our update shipping algorithm has three major stages: 

Two major bottlenecks that keep us from meeting 
data freshness and performance isolation 

These primitives generate a large amount of data movement and 
account for 87.2% of our algorithm’s execution time 



Update Shipping Hardware 
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FIFOs 
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Index 
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To avoid these bottlenecks, we design  
a new hardware accelerator, called update shipping unit 

A 3-level comparator 
tree to merge  

updates 
Decoupled hash computation from 

the bucket traversal to allow for 
concurrent lookups 

Multiple fetch and write-back units to 
issue multiple memory accesses 

concurrently 



Now let’s talk about 
 Update Application 
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Update Application 
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Like other relational analytical DBMSs, our analytical engine 
uses the column-wise data layout and dictionary encoding  

Analytical Replica 
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Column Dictionary 
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Update Application: Algorithm 
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1 

Build Update Dict. 

Sort 
Updates 

Update Dict. 

2 

Build New Dict. and Index  

Update Dict. Dict. 

New Dict. Index 

3 

New Compressed Col. 

Location in 
 New Dict. 

Old Col. 
Value 

Index 

New Dict. 

Encoded 
Value 

We design our update application algorithm to be aware of  
PIM logic characteristics and constraints 

Since the number of updates are 
fixed (unlike a column), this 

allows us to keep power/area 
overhead of hardware sorter 

within logic layer’s budget 

Avoids the need to decompress 
the column and add updates, 

eliminating data movement and 
random accesses to 3D DRAM 

We maintain a hash index that 
links the old encoded value in a 

column to the new encoded value 



Update Application: Hardware Design 
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We design a hardware implementation of our algorithm, and 
add it to each in-memory analytical island 
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A 1024-value bitonic sorter, 
whose basic building block is a 

network of comparators 

Similar design from our 
 update shipping unit 
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Analytical Islands 

Replica 

Analytics 

PIM Logic 

Execution Engine 

Updates 

Consistency 
Mechanism 

Data Freshness 
Mechanism 

Other Key Components of Analytical Islands 



Brief Look at Evaluation 
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End-to-End System Analysis 
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While SI-MVCC is the best baseline for transactional 
throughput, it degrades analytical throughput by 63.2%, due to 

its lack of workload-specific optimizations and poor 
consistency mechanism 

 Both MI+SW and MI+SW+HB fall 
significantly short of Ideal-Txn because of 

lack of performance isolation and overhead 
of update propagation 

MI+SW+HB is the best software-only HTAP 
for analytics, because it provides workload-

specific optimizations, but it still loses 35.3% 
of the analytical throughput 

due to high resource contention 
  

Overall, Polynesia achieves all three properties of HTAP system  
and has a higher transactional/analytical throughput (1.7X/3.74X)  

over prior HTAP systems 

Polynesia comes within 8.4% of ideal Txn 
because it uses custom PIM logic for  

data freshness/consistency mechanisms 
which significantly reduce resource 

contention and data movement. 
  

Polynesia improves over MI+SW+HB by 63.8%, 
by eliminating data movement, and using 
custom logic for update propagation and 

consistency 



Wrap Up 
•  Many application domains have a critical need to perform  

real-time data analysis, and make use of HTAP systems  
–  An ideal HTAP system should have three properties: (1) data  

freshness and consistency, (2) workload-specific optimization, (3) 
performance isolation 

•  We extensively study state-of-the-art HTAP systems 
–  We find that neither of them can meet all HTAP properties 

•  We propose Polynesia, a novel hardware/software cooperative 
design for in-memory HTAP databases 
–  Divides the system into transactional and analytical processing islands 
–  Implements custom algorithms and hardware to reduce the costs of 

update propagation and consistency 
–  Exploits PIM for the analytical islands to alleviate data movement 

•  Polynesia outperforms three state-of-the-art HTAP systems, with 
average transactional/analytical throughput improvements of 1.7X/
3.7X, educes energy consumption by 48% 
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Conclusion 
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•   Problem: data movement cost is a critical challenge 
•   PIM is a potential solution to address this problem 

–  Challenge:  there are many practical system-level challenges that 
need to be solved to enable the widespread adoption of PIM 

•   Goal: make PIM effective and practical in computing systems 
•  Toward this end, we propose a series of practical mechanisms 

to reduce processor-memory data movement 
–  (1) Examine the suitability of PIM across key Google workloads 
–  (2) Address a major system challenge (coherence) for  

adopting PIM in computing systems 
–  (3) Propose a HW/SW co-design approach aware of PIM for 

designing an accelerator for Google edge models 
–  (4) Propose a HW/SW co-design approach aware of PIM for  

in-memory hybrid databases 
•  We conclude that the proposed mechanisms provide 

promising solutions to make PIM effective and practical  

Conclusion 
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•  Applying our workload analysis methodology to Other Key 
Consumer Workloads 
–  In our analysis, we focus on applications that run on CPU cores in 

consumer devices 
–  There are other important consumer applications that relay on GPU 

cores or Camera systems: maps, 3D games, VR applications 
•  Automating the Cluster Identification in Mensa 

–  Mensa’s scheduler relies on two pieces of information to generate a 
mapping between layers and accelerators: (1) Characteristics of each 
cluster (2) Which hardware accelerator is best suited for each cluster 

–  However, generating cluster identification info could be challenging as it 
involves a comprehensive analysis across all layers from all models 

–  One future research direction is how we can automate the process of 
identifying clusters across a wide range of models 

–  One potential solution to address this challenge is to employ 
automated Neural Architecture Search (NAS) methods to identify 
clusters 
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•  Extending CoNDA to Non-NDA Systems 
–  Coherence for specialized accelerators is still an open problem 
–  We believe that the core idea of CoNDA can be extended to address 

coherence challenge between CPUs and on-chip accelerators 
 

•  Extending Polynesia to Support Non-Relational Analytical 
Execution Engine  
–   We focus on designing an instance of Polynesia that supports 

relational (SQL) transactional and analytical workloads  
–  However, the term analytics is no longer limited to SQL analytics à 

ML, graph processing, NoSQL 
–  A modern HTAP system needs to support both high update rates as 

well as the ability to run diverse analytics on the data 
–  One potential future research direction is to examine how we can use 

Polynesia framework to support various types of analytics workloads  

Future Directions 
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Comparison with EyerissV2 (1) 
•  We compare Mensa with EyerissV2 for 7 representative models: 

–   1 LSTM, 1 Transducers, 4 CNNs, 1 RCNN 

•  We find that compared to EyerissV2, Mensa reduces total 
inference energy by 53.2%, and improves throughput by 
3.3X  
 

•  Similar to the Edge TPU accelerator, EyerissV2 suffers from 
high energy inefficiency for the LSTM and Transducer 
models 

 
•  Mensa, on the other hand, lowers the energy spent on on-

chip and off-chip parameter traffic, by scheduling layers on 
the accelerators with the most appropriate dataflow for 
LSTM and Transducer layers 
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Comparison with EyerissV2 (2) 
•  For CNN models, EyerissV2 performs better than the baseline 

accelerator as it has a smaller on-chip buffer, which enables 
EyerissV2 to reduce dynamic energy 

 
•  However, EyerissV2 still falls short of Mensa’s energy efficiency 

for CNNs: 
–   It’s fixed dataflow cannot efficiently expose reuse opportunities 

across different layers 
–  Some CNN layers have a large parameter footprint and very low 

data reuse, which generates a large amount of off-chip parameter 
traffic 

–  Increases static energy because it uses a much smaller PE array, 
which significantly increases inference latency for many compute-
intensive CNN layers in Clusters 1 and 2 
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50.3% and 30.9% of total energy goes to parameters off-
chip traffic and distributing parameters across PE array 

Parameter traffic (Off-chip and on-chip) takes a large portion 
of the inference energy and performance 



0 

2 

4 

6 

8 

10 

0% 

20% 

40% 

60% 

80% 

100% 

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t  

PE
s 

U
til

iz
at

io
n 

Base-Utilization Base+HB-Utillization Mensa-Utilization 
Base-Throughput Base+HB-Throughput Mensa-Throughput 

Performance Analysis 
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Overall, Mensa improves utilization on average by 28.8X and 7.5X over 
Baseline and Baseline+HB, and significantly improves computational 

throughput (on average by 3.1X) across all models 

Baseline utilization is 
consistency low across all 

models (on average 27.3%) 

The higher bandwidth in Base+HB 
pushes average utilization up to 34.0%, 

and improves throughput by 2.5x 

The largest improvements are for LSTMs 
and Transducers (4.5x), thanks to their 
low FLOP/B ratio and large footprints 

(1) Properly provisioned PE array, (2) 
customized dataflow that efficiently exploit 

reuse, and (3) near-data acclerators  Utilization is still very low. The major reasons are (1) lack of 
customized dataflow to properly expose reuse opportunities 
across layers, (2) over-provisioned PE array for many layers 



End-to-End System Analysis 
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While SI-MVCC is the best software-only DBMS for 
transactional throughput, it degrades analytical throughput by 
63.2%, due to its lack of workload-specific optimizations and 

poor consistency mechanism 

 MI+SW+HB, even with its higher 
bandwidth, fall significantly short of Ideal-

Txn because of lack of performance isolation 
and overhead of update propagation 

MI+SW+HB is the best software-
only HTAP for analytics, because it 

provides workload-specific 
optimizations, but it still loses 

35.3% of the analytical throughput 
of the baseline 

Overall, Polynesia has a higher transactional throughput (1.7X), and a 
higher analytical throughput (3.74X) 



Multiple-Stack result for 
Polynesia 
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Energy result for Polynesia 
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Hardware Design Principles 
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Insight 2: while there are different types of accelerators for  
compute- and data-centric layers, the reuse patterns of layers are  

a key distinguishing factor between different hardware designs 

Different dataflows can expose different data reuse opportunities: 
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Diversity Across the Models 
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Data Freshness: Update Application 
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We find that 23.8% of the CPU cycles (and 30.8% of cache 
misses) go to the update application process 
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Transactional   Analytical Update Shipping Update Application 

Even providing higher bandwidth (8x) does not address the challenges  
as it cannot reduce data movement and resource contention 



Supporting Real-Time Analysis: HTAP Systems  
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To enable real-time analysis, we need to support both high 
data ingest rate and the ability to perform analytics on data 

A hybrid DBMS (HTAP system) is needed that can execute 
both transactional and analytical queries over all data 

Data 
Migration 

Analytics 

 Traditional approach 

Transactions Transactions 

Hybrid DBMS  
(HTAP system) 

Analytics 



Polynesia High-level Overview 
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Transactions 

Transactional Island 

Exec. Engine 

HW Resources 

Replica 

Analytical Islands 

Replica 

Analytics 

HW Resources 

Exec. Engine 

Updates 

Consistency 
Mechanism 

Data Fresh. 
Mechanism 

Designed to sustain 
 the bursts of writes   

We take advantage of a customized 
version of PIM to mitigate data 

movement bottleneck  

Conventional multicore CPUs 
with multi-level caches 

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources 

Designed to provide high read throughput 



Consistency Mechanism 



Consistency Mechanism: Requirements 
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Consistency mechanism must not compromise either the 
throughput of analytical queries or the update propagation rate 

1 Updates must be applied all the time and should not be  
blocked by analytic queries à Data freshness property 

2 Analytics must be able to run all the time should not be 
blocked by update propagation process à performance 
isolation property 

Consistency mechanism has to satisfy two requirements:   



Consistency Mechanism: Algorithm 
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Our mechanism relies on a combination of snapshotting and 
versioning to provide snapshot isolation for analytics 

Our consistency mechanism is based on 
 two key observations: 

Updates are applied at a column granularity 1
Snapshotting a column is cost effective using PIM logic 2



Consistency Mechanism: Algorithm 
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For each column, there is a chain of snapshots where each 
 chain entry corresponds to a version of this column 

Unlike chains in 
MVCC, each version 
is associated with a 
column, not a tuple 

 Compressed Column 

Snapshot 
V3 

Snapshot 
V1 

Snapshot 
V2 

Updates 

Polynesia does not create a 
snapshot every time a column is 

updated. Instead, Polynesia marks 
the column as dirty 

Polynesia creates a new snapshot only if (1) any of the columns are 
dirty, and (2) no current snapshot exists for the same column  



Consistency Mechanism: Hardware 
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Copy Unit 

F F F F W W W W 

Mem Ctrl Mem Ctrl 

Index 

Tracking Buffer 

Our algorithm success at satisfying performance isolation relies  
on how fast we can do MemCpy to minimize snapshotting latency 

Multiple Fetch and Write-back units to 
issue multiple accesses concurrently 

Track outstanding reads, as they may 
come back from memory out of order. 

Allows to immediately initiate the write  
after a read is complete 

We find that the buffer lookup limits 
the performance, as each lookup 
results in a full scan, and multiple 

fetch units perform lookups 
concurrently à To alleviate this, we 

design a hash index  



Analytical Engine 



Analytical Engine: Query Execution 
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Select A.id, B.id 
From A JOIN B  
ON A.id = B.id 

Where A.value > 55 
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Operator 1 
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Operator 2 



Analytical Engine: Query Execution 
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Efficient analytical query execution strongly depends on: 

1 Data layout and data placement 

2 Task scheduling policy 

3 How each physical operator is executed 

We find that the execution of physical operators of analytical 
queries significantly benefit from PIM 

Without a HTAP and PIM-aware data placement/task scheduler, PIM 
logic for operators alone cannot provide throughput improvements 



Analytical Engine: 
Data Placement 



Analytical Engine: Data Placement 
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Data Placement Strategy  
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We propose a hybrid strategy where we create small vault 
 groups, and partition a column across the vaults in a vault group 

C3 C4 

C7 C8 

C3 C4 
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C1 C2 

C5 C6 

Vault Group 1 

V1 V2 

V5 V6 

Allows us to increase the aggregate 
bandwidth for servicing each query by 
4 times, and provides up to 4 times the 

power and area for PIM logic 

The number of vaults per group is 
critical for efficiency: too many 

vaults can complicate the update 
application process, while not 

enough vaults can degrade 
throughput 



Analytical Engine: 
Task Scheduler 



Analytical Engine:  Task Scheduler 

 
 
 

138 

For each query, the scheduler makes three key decisions: 

1 Decides how many tasks to create 

2 Finds how to map these tasks to the available resources 
 (PIM threads) 

3 Guarantees that dependent tasks are executed in order 



Task Scheduler: Initial Hueristic 
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Select A.id, B.id 
From A JOIN B  
ON A.id = B.id 

Where A.value > 55 
Where B.value < 70  

Query 

Query Plan 
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Task1 Task2 Task3 

Global Work Queue 

Scheduler 

Our scheduler heuristic that generates tasks by disassembling  
the operators of the query plan into operator instances 

(1) which vault groups the input tuples 
reside in, (2) the number of available PIM 

threads in each vault group 



Task Scheduler: Initial Hueristic 
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We find that this heuristic is not optimized for PIM and  
leads to sub-optimal performance due to three reasons: 

1 The heuristic requires a dedicated runtime component  
to monitor and assign tasks 

2 The heuristic’s static mapping is limited to using only 
the resources available within a single vault group 

3 This heuristic is vulnerable to load imbalance 

•  The runtime component must be executed on a general-purpose 
PIM core 

•  Can lead to performance issues for queries that operate on very 
large columns 

•  Some PIM threads might finish their tasks sooner and wait idly 
 for straggling threads 



Task Scheduler: Optimized Hueristic 
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We optimize our heuristic to address these challenges: 

1 We design a pull-based task assignment strategy, where PIM 
threads cooperatively pull tasks from the task queue at runtime 

•  We introduce a local task queue for each vault group 
•  This eliminates the need for a runtime component (first challenge) 

and allows PIM thread to dynamically load balance (third challenge) 

2 We optimize the heuristic to allow for finer-grained tasks 
•  Partition input tuples into fixed-size segments (i.e., 1000 tuples) 

and create an operator instance for each partition 

3 We optimize the heuristic to allow a PIM thread to steal tasks 
from a remote vault if its local queue is empty 
•  This enables us to potentially use all available PIM threads to 

execute tasks 



Analytical Engine: 
Hardware Design  



Analytical Engine: Hardware Design 
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Given area and power constraints, it can be difficult to add enough  
PIM logic to each vault to saturate the available vault bandwidth 

Our new data placement strategy and scheduler enables us to 
 expose greater intra-query parallelism 

DRAM Layer 
Logic Layer 

DRAM Layer 

Analytical Island 
 HW Resources 

Update 
 App. Unit 

Copy Unit PIM 
Cores 

Update 
 Ship. Unit 

Simple programmable in-order 
PIM cores to exploit the 
available vault bandwidth 



Evaluation 



Evaluation Methodology 
•  We heavily extend state-of-the-art transactional and 

analytical engines to implement HTAP baselines 
–  We use DBx1000 as the starting point for our transactional engine 
–  We implement an in-house analytical engine similar to C-store 

•  We model both single- and multiple-instance  
–  The system consists of 16 tables, 256K tuples per table 

 

•  Performance 
–  We simulate Polynesia using gem5, integrated with DRAMSim2 to 

model an HMC-like 3D-stacked DRAM  
 

•  Area and Energy 
–  We use Calypto Catapult to determine the area of the accelerators 

for a 22nm process 
–  We model energy as sum of the energy consumption within the 

CPU, on-chip buffers, off-chip/on-chip interconnects, and DRAM 
 145 
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Other Results in the Paper 
•  Results for real workload analysis 

–  1.76X/3.48X higher transactional/Analytical throughput  
 

•  Study of each component in isolation 
–  Update propagation 
–  Consistency mechanism 
–  Analytical engine 

•  Multiple memory stacks 
–  Polynesia significantly outperforms MI (up to 3.0X) and scales 

well as we increase the stack count 
 

•  Energy analysis 
–  48% energy reduction over MI+SW 



Update Propagation 
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27.7% of the degradation comes from the update 
shipping latencies (data movement and merging 

updates from transactional threads), the remaining  
is from the update application process (column 

compression and dictionary reconstruction) 

Multiple-Instance degrades transactional throughput on 
average by 49.5% as it severely suffers from resource 

contention and data movement cost 

Our update propagation mechanism improves throughput by 1.8X 
compared to Multiple-Instance, and comes within 9.2% of Ideal 


