
Practical Mechanisms for Reducing
Processor-Memory Data Movement in

Modern Workloads

Amirali Boroumand

Prof. Onur Mutlu (Co-Chair)

 Dr. Saugata Ghose (Co-chair)

Committee:

 Prof. James Hoe
 Dr. Parthasarathy Ranganathan

ASIC

Data Movement Cost

2

Challenge: large cost of data movement

DRAM L2 L1

CPU
CPU CPU CPU

Data Movement

(1) Large energy and performance cost to bring data
(2) Limited off-chip bandwidth

Data movement incurs high penalty:

ASIC

Processing-In-Memory (PIM)

3

Recent advancement in 3D-stacked technology
enabled Processing-In-Memory (PIM)

CPU
DRAM

Potential Solution: move computation close to data

PIM

Reduces data movement

Large in-memory bandwidth

Shorter access latency to memory

ASIC

4

2 How to program PIM architectures?
•  Need efficient interfaces and mechanisms to let programs

take advantage of PIM

PIM introduces new system challenges

3 How to make the software/algorithm aware of PIM?

PIM Adoption Challenges

1 What to offload?
•  Need to identify primitives
•  Need to consider design constraints (e.g., area, power)

•  To fully benefit from PIM, we need to redesign
 both software and hardware to be aware of PIM

•  Need to provide address translation
•  Maintain coherence between PIM and the system

Our Goal

Our goal is to make PIM effective and practical
in conventional computing system

5

ASIC

6

Overview of Our Approach

Identifying key primitives by analyzing the
benefit of PIM for key workloads (work 1) 1

Mitigating key system challenges for
communication with PIM logic (work 2) 2

Redesigning applications aware of PIM
using software-hardware co-design (works 3 & 4) 3

Thesis Statement

Using practical mechanisms which are aware of
modern workloads and architectural constraints

Processor-memory data movement
can be significantly reduced

7

Thesis Contributions

8

Mitigating data movement bottlenecks
 in Google Consumer workloads 1

Efficient Cache Coherence Support for
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with
Specialized HW/SW Co-Design (Polynesia) 4

Thesis Contributions

9

Mitigating data movement bottlenecks
 in Google Consumer workloads 1

Efficient Cache Coherence Support for
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with
Specialized HW/SW Co-Design (Polynesia) 4

Google Workloads for Consumer Devices:
 Mitigating data movement bottleneck

(ASPLOS’18)

10

Popular Google Consumer Workloads

11

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

12

Energy Cost of Data Movement

Data Movement

1st key observation: 62.7% of the
total system energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAM L2 L1

CPU
CPU CPU CPU

Compute
Unit

Using PIM to Reduce Data Movement

13

2nd key observation: a significant fraction of
 data movement often comes from simple functions

PIM
Core

PIM
Accelerator

PIM
Accelerator

PIM
Accelerator

We can design lightweight logic to
implement these simple functions in memory

Small embedded
 low-power core

Small fixed-function
accelerators

Offloading to PIM logic, on average, reduces energy
 by 55.4% and improves performance by 54.2%

Thesis Contributions

14

Mitigating data movement bottlenecks
 in Google Consumer workloads 1

Efficient Cache Coherence Support for
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with
Specialized HW/SW Co-Design (Polynesia) 4

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

(ISCA’19)

15

ASIC

Coherence For Near-Data-Accelerators

16

Challenge: Coherence between NDAs and CPUs

DRAM
L2 L1

CPU
CPU CPU CPU

NDA

Compute
Unit

(1) Large cost of
off-chip communication

It is impractical to use traditional coherence protocols

(2) NDA applications generate
a large amount of off-chip data movement

ASIC

Existing Coherence Mechanisms

17

We extensively study existing NDA coherence
mechanisms and make three key observations:

 These mechanisms eliminate
a significant portion of NDA’s benefits 1

 The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary 2

Much of the off-chip traffic can be eliminated
if the coherence mechanism has insight

 into the memory accesses
3

ASIC

An Optimistic Approach

18

1 Gain insights before any coherence checks happen

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

2 Perform only the necessary coherence requests

We propose CoNDA, a coherence mechanism that lets an
NDA optimistically execute an NDA kernel

Optimistic execution enables CoNDA to identify and avoid
unnecessary coherence requests

 CoNDA comes within 10.4% and 4.4% of performance
and energy of an ideal NDA coherence mechanism

Thesis Contributions

19

Mitigating data movement bottlenecks
 in Google Consumer workloads 1

Efficient Cache Coherence Support for
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with
Specialized HW/SW Co-Design (Polynesia) 4

Efficiently Accelerating Edge ML Inference by
Exploiting Layer Heterogeneity

 (Submitted to ASPLOS’21)

 20

Why ML on Edge Devices?

21

Significant interest in pushing ML inference computation
directly to the edge devices

Privacy Latency Connectivity Bandwidth

Why Specialized ML Accelerator?

22

Edge devices have limited battery and computation budget

Limited Power Budget Limited Computational Resources

Specialized accelerator can significantly improve
inference latency and energy consumption

Neural Engine (A12) Edge-TPU

Myriad of Neural Network Models

23

Challenge: edge ML accelerators have to execute inference
efficiently across a wide variety of NN models

RNN Transducers

Face Detection

Speech Recognition

Image Captioning

Language Translation

24

Edge Accelerator Challenges
We study inference execution on a commercialized Edge TPU

across 24 state-of-the-art Google edge models

We find that the accelerator suffers from
three major challenges:

1 Operating significantly below peak throughput

2 Operating significantly lower than
peak energy efficiency

3 Inefficient and ineffective memory system

25

Per-layer Analysis of NN Models

1 There is significant variation in terms of layer
characteristics across the models

 We perform a comprehensive per-layer analysis of each model
and make two key observations:

2 Even within each model, there is high variation in
terms of layer characteristics (e.g., types, shapes)

The key components of edge ML accelerators are
completely oblivious to this heterogeneity

26

A Composable Framework For Edge Accelerator

Mensa distributes the layers from an NN model across a
collection of smaller accelerators that are specialized

 for different layer types

We observe that the layers
from our Google models

naturally group into
 a small number of clusters

Based on key characteristics of
clusters, we design three specialized
accelerators to efficiently execute

inference across our Google models

 Mensa improves inference energy and throughput
by 3.0x and 3.1x while reducing hardware cost by 2.8x

We design an implementation of Mensa for our Google edge models

Edge TPU Analysis

27

Edge TPU: Baseline Accelerator

DRAM

ML Model

PE Array

B
uf

fe
r

Dataflow

64x64 array
2TFLOP/s

4MB
on-chip buffer

Output
Activation Parameter Input

Activation

= *

28

Google Edge Models

 2 LSTMs 13 CNNs

3 RCNNs
6 Transducers

(RNN-T)

29

30

Major Edge TPU Challenges

1 Operating significantly below peak throughput

2 Operating significantly lower than
peak energy efficiency

3 Inefficient and ineffective memory system

We find that the accelerator suffers from
three major challenges:

(1) High Resource Underutilization

We find that the accelerator operates significantly lower
(75.6%) than the peak throughput across all models

0.01

0.1

1

10

0 0 1 10 100 1000

T
hr

ou
gh

pu
t

(T
FL

O
P

S)

FLOP/Byte

LSTM1
LSTM2
Transducer1
Transducer2
Transducer3
Transducer4
CNN1
CNN2
CNN3
CNN4
CNN5
CNN6
CNN7
CNN8
CNN9
CNN10
CNN11
CNN12
CNN13
RCNN1
RCNN2
RCNN3

Only 52.2%
of peak throughput

Less than 1%
of peak throughput

Peak = 2 TFLOPS/s

31

(2) Low Energy Efficiency
The accelerator operates far below (62.4% on average) the

upper bound energy efficiency (TFLOP/j)

0.0001

0.001

0.01

0.1

1

10

0.1 1 10 100 1000 10000

TF
LO

PS
/J

FLOP/Byte

LSTM1
LSTM2
Transducer1
Transducer2
Transducer3
Transducer4
CNN1
CNN2
CNN3
CNN4
CNN5
CNN6
CNN7
CNN8
CNN9
CNN10
CNN11
CNN12
CNN13
RCNN1
RCNN2
RCNN3

Peak = 1.42 TFLOPS/J

33.1% of upper bound
energy efficiency

50.7% of upper bound
energy efficiency

32

33

(3) Memory System Issues

1 A significant portion of dynamic and static energy
goes to on-chip memory

2 Despite using large on-chip buffers, they are not
effective in reducing off-chip accesses

3 Parameter traffic takes a large portion of
 the inference energy and performance

We find that the memory system suffers from
three major challenges:

34

Major Accelerator Challenges

1 Operating significantly below peak throughput

2 Operating significantly lower than
peak energy efficiency

3 Inefficient and ineffective memory system

We find that the accelerator suffers from
three major challenges:

Question: Where do these challenges come from?

Model Analysis:
Let’s Take a Deeper Look

 Into the Models

Diversity Across the Models

Insight 1: there is significant variation in terms of
layer characteristics across the models

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

FL
O

P/
B

yt
e

Parameter Footprint (MB)

CNN3
CNN4
CNN11
CNN9
CNN13
LSTM1
Transd.1
Transd.2
LSTM2
Transd.3
Transd.4

Layers from
LSTMs and Transducers

Layers from
CNNs

36

Diversity Within the Models

For example, our analysis of edge CNN models shows: 1

2
1 Layers in edge CNNs exhibit significant

 heterogeneity in terms of type, shape, and size

2 Layers exhibit significant variation in terms of
data reuse patterns for parameters and activations

Insight 2: even within each model, layers exhibit significant
variation in terms of layer characteristics

37

38

0

5

10

15

1 11 21 31 41 51 61 71

M
A

C
s

(M
)

Layers

CNN11

0
50

100
150
200
250
300

1 11 21 31 41 51 61 71 81

M
A

C
s

(M
)

Layers

CNN3

0
5

10
15
20
25

1 11 21 31 41 51 61 71

M
A

C
s

(M
)

Layers

CNN13

We find that MAC intensity varies by 200x across layers

0

50

100

150

200

1 11 21 31 41 51

M
A

C
s

(M
)

Layers

CNN5
Diversity Within the Models

Diversity Within the Models

0
1000
2000
3000
4000
5000

1 11 21 31 41 51 61 71

FL
O

P/
B

yt
e

Layers

CNN13

0
200
400
600
800

1000
1200

1 11 21 31 41 51 61 71

FL
O

P
/ B

yt
e

Layers

CNN11

0
1000
2000
3000
4000
5000
6000
7000
8000

1 11 21 31 41 51 61 71 81

FL
O

P/
B

yt
e

Layers

CNN3

0

1000

2000

3000

4000

1 11 21 31 41 51

FL
O

P/
B

yt
e

Layers

CNN5

We find that FLOP/Byte varies by 244x across layers
39

Now we can understand
the root cause of

accelerator challenges

Root Cause of Accelerator Challenges
The key components of Edge TPU are completely oblivious

 to this layer heterogeneity

While this approach might work for a specific group of layers, it fails
to efficiently execute inference across a wide variety of edge models

DRAM

PE Array

B
uf

fe
r

Dataflow

Off-chip
bandwidth

Edge accelerators typically take a monolithic approach:
 equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

41

Key Takeaways From Analysis

1

2

3

1 Significant variation of layer characteristics
 across and within Google edge models

2 The monolithic design of edge accelerators
is the root cause of their shortcomings

3
All key components (PE array, dataflow, memory

system, off-chip bandwidth/proximity to data) must be
customized based on layers characteristics

42

Proposal:
Mensa Framework

44

Mensa Framework

Goal: design an edge accelerator that can efficiently run
 inference across a wide range of different models and layers

1

2

Instead of running the entire NN model on
a monolithic accelerator:

Mensa distributes the layers from an NN model across
a collection of smaller hardware accelerators that

are specialized for different layer types

B
uf

fe
r

32GB/s

On-chip Accelerator

B
uf

fe
r

256GB/s

Near-Data Accelerator

45

Mensa High-Level Overview

Monolithic Accelerator

Model A

Cluster 2 Cluster 3

Baseline Accelerator Mensa

B
uf

fe
r

N
oC

 PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

Model B Model C

Compiler

Model A Model B Model C

Runtime

B
uf

fe
r

N
oC

 PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE
PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

Cluster 1

Acc. 1
B

uf
fe

r
N

oC
 PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

Acc. 2

B
uf

fe
r

N
oC

 PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE
PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

Acc. 3

Mensa Runtime Scheduler

Accelerator
characteristics

Layer
characteristics

Scheduler

NN model

Layers
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
 during initial setup

of a system

Layers tend to group
together into a small
number of clusters

Which hardware
accelerator is best suited

for each cluster

Each of the accelerators
caters to

a specific cluster of layers 46

Now let’s talk about implementing

an instance of Mensa
for our Google edge models

Identifying Layer Clusters

1

10

100

1000

10000

100000

0.001 0.1 10

Fl
op

/B
yt

e

Parameter Footprint

1	

10	

100	

1000	

10000	

100000	

0.01	 1	 100	

Fl
op

/B
yt
e	

MAC	

CNN3	 CNN4	 CNN11	 CNN9	
CNN13	 LSTM1	 Transd.1	 Transd.2	

We make a key observation that the majority of layers
naturally group into a small number of clusters

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Cluster1

Cluster2

Cluster3 Cluster4

Cluster5

48

Hardware Design Principles

Insight 1: we find that clusters can be categorized into
 (1) compute-centric clusters, and (2) data-centric clusters

Insight 2: reuse patterns of layers are a key distinguishing factor
between different hardware designs

We study the distinguishing characteristics of each cluster
and we make two key observations:

We need to support at least two different accelerator designs:
 (1) one compute-centric, (2) one data-centric

We need separate accelerators to account for
different types of dataflow across the clusters

49

Hardware Design Principles

Off-chip
Bandwidth

 B
uf

fe
r

N
oC

 PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE 32GB/s

Pascal

 B
uf

fe
r

N
oC

 PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE 256GB/s

Off-chip
Bandwidth

Pavlov Jacquard

 B
uf

fe
r

N
oC

 PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE

PE PE

PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE 256GB/s

Off-chip
Bandwidth

Based on key characteristics of clusters, we design three specialized
accelerators to efficiently execute inference across our Google models

We employ a template design approach: each accelerator is designed
based on cluster characteristics, while maintaining the same generic

tiled architecture of the baseline accelerator

Near-Data Accelerator On-chip Accelerator

50

Clusters 1 & 2 Clusters 3, 4 & 5

A Brief Look at Pascal

52

Pascal Dataflow

Pascal caters for Cluster 1&2 layers: majority are pointwise or
standard Conv2D layers with shallow input/output channels

Output Act.

Param. Input Act.

PE Array

B
uf

fe
r

We devise a dataflow that enables temporal reduction of
output activations and spatial multicasting of parameters:

Dataflow

1 Spatially distributing output activation across PEs provide temporal
reduction à reduce buffer size (16x) and on-chip traffic

2 Since parameters have small footprint, we temporally replicate each
parameter across PEs at each time step à spatial multicasting

Large footprint
 & high reuse

Small footprint
& high reuse

Pascal Dataflow - Example

Cycle 2

T
im

e
 (

Te
m

po
ra

l D
im

en
si

on
)

Different PEs (Spatial Dimension)

Cycle 1

I0 I1 I2 I3

PE1
O0

PE2
O1

PE3
O2

PE4
O3

W0

I16 I17 I18 I19

PE1
O0

PE2
O1

PE3
O2

PE4
O3

W1
Temporal Reuse

(reduction)

Spatial Reuse
(multicast)

Parameters Input Activation Output Activation

O0 O1
O4 O5

O2 O3
O6 O7

O8 O9
O12 O13

O10 O11
O14 O15

IF0 IF1
IF4 IF5

IF2 IF3
IF6 IF7

IF8 IF9
IF12 IF13

IF10 IF11
IF14 IF15

IF0 IF1
IF4 IF5

IF2 IF3
IF6 IF7

IF8 IF9
IF12 IF13

IF10 IF11
IF14 IF15

IF0 IF1
IF4 IF5

IF2 IF3
IF6 IF7

IF8 IF9
IF12 IF13

IF10 IF11
IF14 IF15

IF0 IF1
IF4 IF5

IF2 IF3
IF6 IF7

IF8 IF9
IF12 IF13

IF10 IF11
IF14 IF15

IF0 IF1
IF4 IF5

IF2 IF3
IF6 IF7

IF8 IF9
IF12 IF13

IF10 IF11
IF14 IF15

IF0 IF1
IF4 IF5

IF2 IF3
IF6 IF7

IF8 IF9
IF12 IF13

IF10 IF11
IF14 IF15

IF0 IF1
IF4 IF5

IF2 IF3
IF6 IF7

IF8 IF9
IF12 IF13

IF10 IF11
IF14 IF15

I0 I1
I4 I5

I2 I3
I6 I7

I8 I9
I12 I13

I10 I11
I14 I15

W0 W0 W0 W0 W0 W0 W0
W0 * =

K=8

53

Pascal In A Nutshell

DRAM
32GB/s

 B
uf

fe
rs

N
oC

 32x32
PE Array

Co-design the proposed
dataflow with the accelerator’s

memory system

256KB Act. Buffer
(8x Reduction)

128KB Param. Buffer
(32x Reduction)

Clusters 1&2 include
compute-centric layers

 (e.g., early 2D conv)

2 TFLOP/s Data reuse opportunities
exposed by our dataflow enable

us to significantly reduce the
on-chip buffer sizes

Off-chip bandwidth available
to PE array is same as the

baseline accelerator

3.8X Area Reduction

54

A Brief Look at Pavlov

56

Pavlov Dataflow

Pavlov caters to Cluster 3: (1) zero param. reuse & large footprint,
 (2) high act. reuse & small footprint, and (3) major operation is MVM

PE Array

B
uf

fe
r

We devise a dataflow that enables temporal reduction of
output activations and sequential access to parameters:

Dataflow

1 Avoiding spatial reduction of output act.: eliminates partial sum traffic

2 Sequential access pattern à use bandwidth without complex hardware

=

ht-1 Output Wh

Zero reuse
&

very large
footprint

Require high bandwidth to achieve high PE utilization

3 Replicates input act. across all PEs while spatially distributing param.s

Pavlov Dataflow - Example

MVM	opera1on	
for	an	LSTM	gate	

=	

WX	

Xt	

Ot	

H	=	16	

X0	

X1	 O0:3	

Cycle	2	
Ti
m
e	

	(T
em

po
ra
l	D

im
en

si
on

)	

Different	PEs	(Spa1al	Dimension)	

Cycle	1	

Wx0	 Wx1	 Wx2	 Wx3	

PE1	
O0	

PE2	
O1	

PE3	
O2	

PE4	
O3	

X0(t)	

Wx16	 Wx17	 Wx18	 Wx19	

PE1	
O0	

PE2	
O1	

PE3	
O2	

PE4	
O3	

X1(t)	

Sequential
access

Temporal Reuse
(reduction)

57

Pavlov In A Nutshell

Cluster 3 include LSTM-like
 data-centric layers: low MAC intensity

DRAM
256GB/s

 B
uf

fe
rs

N
oC

8x8
PE Array

Designed aware of Cluster 3
characteristics and proposed

dataflow

128 GFLOP/s

Since Pavlov is data-centric and its
sequential access parameters can

exploit high bandwidth memory, we
place it in the logic layer
 of 3D-stacked memory

128KB Activation Buffer
(16x Reduction)

No Parameter Buffer
(4MB in Baseline)

For parameters, we use only
one level of memory hierarchy
and stream parameters directly

from DRAM

58

Let’s Take a Brief Look at our
Evaluation

0

0.25

0.5

0.75

1

B
as

el
in

e
B

as
e+

H
B

M

en
sa

B

as
el

in
e

B
as

e+
H

B

M
en

sa

B
as

el
in

e
B

as
e+

H
B

M

en
sa

B

as
el

in
e

B
as

e+
H

B

M
en

sa

B
as

el
in

e
B

as
e+

H
B

M

en
sa

B

as
el

in
e

B
as

e+
H

B

M
en

sa

B
as

el
in

e
B

as
e+

H
B

M

en
sa

B

as
el

in
e

B
as

e+
H

B

M
en

sa

B
as

el
in

e
B

as
e+

H
B

M

en
sa

B

as
el

in
e

B
as

e+
H

B

M
en

sa

LSTM1 Transd.
1

Transd.
2

CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
or

m
al

iz
ed

 E
ne

rg
y

Total Static PE Param Buffer+NoC
Act Buffer+NoC Off-chip Interconnect DRAM

Energy Analysis

Mensa reduces energy by 66.0% and improves energy efficiency
 by 3.0X compared to Baseline

Simply providing high-bandwidth to
the baseline accelerator provides

only 7.5% reduction

More beneficial for LSTM/
Transducer models (14.2% energy
reduction) than CNNs and RCNNs Base+HB still incurs the high

energy costs of (1) on-chip buffers
and (2) off-chip traffic to DRAM

Mensa lowers on-chip/off-chip parameter traffic energy
by 15.3x by scheduling layers on the accelerator with
the most appropriate dataflow and proximity to data

Mensa reduces the dynamic energy of the on-chip
buffer and NoC by 49.8x over Base+HB, by avoiding

overprovisioning and catering to specialized dataflows

60

Wrap-Up
•  We extensively analyze a state-of the-art edge accelerator using

24 Google edge models
–  Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

•  We find that the accelerator suffers from three challenges
–  Operating significantly below peak throughput
–  Operating significantly below theoretical energy efficiency
–  Inefficiently handling memory accesses

•  We find that these shortcomings arise from the monolithic
design of edge accelerators
–  Their design do not account for layer heterogeneity

•  We propose a new framework called Mensa
–  Consist of heterogeneous accelerators whose dataflow and

hardware are specialized for specific clusters of layers

•  We design an implementation of Mensa for Google models
–  Show that it improves performance and energy by 3.0X and 3.1X
–  Reduce cost and improves area efficiency by 2.8X and 8.9X 61

Contributions

Mitigating data movement bottlenecks
 in Google Consumer workloads 1

Efficient Cache Coherence Support for
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with
Specialized HW/SW Co-Design (Polynesia) 4

62

Enabling Effective HTAP Databases with
Specialized HW/SW Co-Design (Polynesia)

(Submitted to ASPLOS’21)

 63

Real-time Analysis

64

An explosive interest in many applications domains to perform
analytics on the most recent version of data (real-time analysis)

Use transactions to record
each periodic sample of data

from all sensors

Run analytics across sensor
data to make real-time

steering decisions

For these applications, it’s critical to analyze the transactions in
real-time as the data’s value significantly diminishes over time

Self-driving Cars

Supporting Real-Time Analysis: HTAP Systems

65

Traditionally, new transactions (updates) are propagated to the
analytics database using a periodic and costly process

To support real-time analysis: a single hybrid DBMS is
needed to execute both transactions and analytics

Transactions

Hybrid DBMS
(HTAP system)

Analytics

Data
Migration

Analytics

 Transactional
DBMS

Transactions

 Analytical
DBMS

hours/days

Ideal HTAP System Properties

66

2 Data Freshness and consistency guarantee
•  Guarantee access to the most recent version of data for

analytics while ensuring that both workloads have a consistent
view of data

1 Workload-specific optimizations
•  Each workload must benefit from its own specific optimizations

3 Performance Isolation
•  Latency and throughput of both workloads are the same as if

they were run in isolation

An ideal HTAP system should have three properties:

Meeting all three properties at the same time
 is very challenging

Limitations of State-of-the-Art

67

We extensively study state-of-the-art HTAP
systems and observe two key problems:

Data freshness and consistency mechanisms generate
 a large amount of data movement which causes

 a drastic reduction in transactional/analytical throughput
1

They fail to provide performance isolation
because of the high resource contention

 between transactional and analytical workloads
2

Polynesia

68

We propose Polynesia, a hardware/software cooperative design
for in-memory HTAP databases

Transactions

Transactional Island

Exec. Engine

CPU Cores

Replica

Analytical Island

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Fresh.
Mechanism

Workload-specific
optimization

Avoid high
resource

contention Processing
In-Memory

Custom algorithm
and hardware

Partitioning the computing
resources into two isolated island

Polynesia improves transactional/analytical throughput and
 energy by 1.7X/3.7X and 48% compared to prior HTAP systems

Consistency
Mechanism

Date Fresh.
Mechanism

Exec. Engine

Analysis of
State-of-the-art HTAP Systems

69

Analysis of State-of-the-art HTAP Systems

70

1

1
2

Main Replica

Transactions Analytics

Single-Instance

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance

We study two major types of HTAP systems

We observe two key problems:

Data freshness and consistency mechanisms
 are costly and cause a drastic reduction in throughput 1

These systems fail to provide performance isolation
because of the high resource contention 2

Single-Instance Design

71

Single-Instance: High Cost of Consistency

72

Since both analytics and transactions work on the same data
concurrently, we need to ensure that the data is consistent

There are two major mechanisms to ensure consistency:

1 Snapshotting (Snapshot Isolation)

2 Multi-Version Concurrency Control (MVCC)

73

Several HTAP systems (e.g., HyPer) use snapshotting
 to provide consistency via Snapshot Isolation (SI)

Snapshotting

These systems explicitly create snapshots from
the most recent version of data and let the analytics run on the

snapshot while transactions continue updating data

Main Replica

Transactions

Transactional
Data

Snapshot

Analytical
Snapshot

Analytics

74

We find that this approach requires frequent snapshot creation to
sustain data freshness under high transactional update rate

Snapshotting

0
0.2
0.4
0.6
0.8

1

128 256 512 N
or

m
al

iz
ed

 T
xn

T

hr
ou

gh
pu

t

Number of Analytical Queries

Zero-Cost-Snapshot Snapshot

74.6%

The overhead comes from Memcpy operation which generates a large
amount of data movement and introduces significant interference

43.4%

Two Txn threads
Each 1M Txn queries

Write/read 50%

75

MVCC avoids making full copies of data by keeping
several versions of the data (used in HyPer v2)

Multi-Version Concurrency Control (MVCC)

When updates happen, MVCC creates a new time-stamped
version of data and keeps the old version in a version chain

alongside the data

1

4

1

0

3

2

3

0

2

3

4

5

Column

13

54

12

10 7

84

Main Replica

Transactions Analytics

76

Multi-Version Concurrency Control (MVCC)

We find that long version chains are the root cause of the issue

0	
0.2	
0.4	
0.6	
0.8	
1	

2M	 4M	 8M	

N
or
m
al
iz
ed

	
An

al
y1

ca
l	

Th
ro
ug
hp

ut
	

	

Number	of	Transac1ons	

Zero-Cost-MVCC	 MVCC	

We observe that MVCC overhead leads to 42.4% performance loss
over zero-cost MVCC

Frequent transactional updates create lengthy version chains 1
Scan-heavy analytics traverses a lengthy version chain upon
accessing a data tuple

2
•  Expensive time-stamp comparison + a very large number of

random memory accesses

Wrap up: Single-Instance Systems

77

While single-instance design enables high data freshness,
we find that it suffers from two major challenges:

1 High Cost of Consistency and Synchronization

3 Limited Workload-Specific Optimization

2 Limited Performance Isolation

Multiple-Instance Design

78

Maintaining Data Freshness

79

One of the major challenges in multiple-instance systems is
to keep analytic replicas up-to-date

To maintain data freshness:

1 Update Shipping: gather updates from transactional threads and
ship them to analytic replica

2 Update application: perform the necessary format conversation
and apply those updates to analytic replicas

Replica

Analytic
Replica

Analytic
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness

80

We find that the transactional throughput reduces by
up to 21.2% and 64.2% during update shipping process and

update application process

0	
0.0004	
0.0008	
0.0012	
0.0016	
0.002	

8M	 16M	 32M	 8M	 16M	 32M	 8M	 16M	 32M	

Write/Read:	50%	 Write/Read:	80%	 100%	Write	

Tx
n	
Th

ro
ug
hp

ut
	

(T
xn
/n
s)
	

Zero-Cost-Update-Propaga1on	 Update-Shipping	 Update-Propaga1on	

The overhead becomes significantly higher when the
transactional queries are more update-intensive

Data Freshness: Shipping Updates

81

Update Logs Scan and Merge

Find the target
columns for updates

Ship the updates

CPU Memory

Data Movement

Timeline

Updates from different
transactional threads

Analytic Replica

Throughput reduction is because update shipping generates
a large amount of data movement and takes several cycles

High update
rate

High frequency
update shipping

Higher data movement
overhead

Data Freshness: Update Application

82

Analytical Replica
C1 C2 C3

Compressed
Column

Dictionary
Id Value

1

3

0

2
car
ann

cat
ear

1

3

2

0

C1 C2 C3
Row 1
Row 2
Row 3

Transactional Replica

Update: Row 2, Column 1 and 3

1 A simple tuple update in row-wise layout leads to
multiple random accesses in column-wise layout

2 Updates change encoded value in the dictionary à (1) Need to
reconstruct the dictionary, and (2) recompress the column

Analytics engines are optimized for long-running
read-only queries and they are not update-friendly

These operations generate a large amount of data movement
and take many CPU cycles

More insights on Data Freshness Challenges

83

We need to take advantage of PIM logic
to reduce data movement and resource contention

Our analysis shows that simply providing higher bandwidth
(8x) to CPU cores does not address the challenges

We find that simply offloading them to general purpose PIM
cores does not address the challenges

We need to design custom algorithm and hardware to
efficiently execute update shipping/application process

Major Takeaways from Analysis

84

111
State-of-the-art HTAP systems do not meet all of the

desired HTAP properties

2 Data freshness and consistency mechanisms are
data-intensive and cause a drastic reduction in throughput

3 These systems fail to provide performance isolation
because of the high resource contention

4 We need to take advantage of custom algorithm and
PIM logic to address these challenges

Polynesia

85

Polynesia

86

The key idea is to partition the computing resources into
two types of isolated, specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island 1
Avoid high resource contention 2
Design efficient data freshness and consistency
mechanisms where we can maintain data freshness and
consistency without incurring high data movement costs

3

Polynesia is the first work to achieve
 all three desired properties of an HTAP system

Polynesia High-level Overview

87

Transactions

Transactional Island

Exec. Engine

CPU Cores

Replica

Analytical Island

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

Designed to sustain
 the bursts of writes

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources

Designed to provide high read throughput

CPU Cores PIM Logic

Take advantage of a customized
version of PIM to mitigate data

movement bottleneck

Conventional multicore CPUs
with multi-level caches

Analytical Islands Key Components

88

Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

We co-design new algorithms and efficient hardware support for the
three key components of an analytical island

Design two algorithms:
 (1) update shipping and (2) update application

Design custom PIM logic
 for both algorithms

Data Freshness
Mechanism

Analytical Islands Key Components

89

Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

We co-design new algorithms and efficient hardware support for the
three key components of an analytical island

Develop an algorithm relies on a combination of
versioning and snapshotting to maintain data

consistency

Design an in-memory copy unit that
enables highly efficient snapshot creation

Consistency
Mechanism

Analytical Islands Key Components

90

Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

We co-design new algorithms and efficient hardware support for the
three key components of an analytical island

A custom data placement and task
scheduler aware of 3D-stacked memory

Simple PIM cores to
 execute execution engine

Exec. Engine

A Polynesia HW Implementation

91

We implement an instance of Polynesia that supports
relational transactional and analytical workloads

CPU CPU
CPU CPU LL

C

Processor
DRAM Layer

Logic Layer

DRAM Layer

Update
 App. Unit

Copy
Unit

PIM
Cores

M
em

ory
C

trl

Update
 Ship. Unit

Transactional Island
 HW Resources

Analytical Island
 HW Resources

Data Freshness Mechanism

92

Data Freshness Mechanism

93

1 Update Shipping: gather updates from transactional islands,
 find the target location in analytical island, and ship them

2 Update Application: performs format conversion and
applies the update to the analytical replica

Data Freshness Mechanism:

Transactions Analytics

Replica

Transaction Island

Data Freshness
Mechanism

Updates

Analytical Island

Replica

HW HW

Exec. Engine Exec. Engine

Update Shipping Algorithm

94

1

Merge / Sort

Update
Log1

…

Update
Log2

Update
LogN

Scan and Merge

2

Hash

Target
Column Updatek

Hash Unit

Find Target Column

3

Copy

Columni
Buffer Updatek

Copy Unit

Transfer Updates

Our update shipping algorithm has three major stages:

Two major bottlenecks that keep us from meeting
data freshness and performance isolation

These primitives generate a large amount of data movement and
account for 87.2% of our algorithm’s execution time

Update Shipping Hardware

95

FIFOs

C

C

C

C

C

C

C

Comparators

Merge Unit

FE

RB

P

P

P

P

Probe Units

FE Engine

Hash Unit Copy Unit

F F F F W W W W

Mem Ctrl Mem Ctrl

Index

Tracking Buffer

To avoid these bottlenecks, we design
a new hardware accelerator, called update shipping unit

A 3-level comparator
tree to merge

updates
Decoupled hash computation from

the bucket traversal to allow for
concurrent lookups

Multiple fetch and write-back units to
issue multiple memory accesses

concurrently

Now let’s talk about
 Update Application

96

Update Application

97

Like other relational analytical DBMSs, our analytical engine
uses the column-wise data layout and dictionary encoding

Analytical Replica

C1 C2 C3 C4 C5

Compressed
Column Dictionary

Id Value

1

3

0

2

4

car
ann

cat
ear
man 0

1

3

4

0

2

3

Update Application: Algorithm

98

1

Build Update Dict.

Sort
Updates

Update Dict.

2

Build New Dict. and Index

Update Dict. Dict.

New Dict. Index

3

New Compressed Col.

Location in
 New Dict.

Old Col.
Value

Index

New Dict.

Encoded
Value

We design our update application algorithm to be aware of
PIM logic characteristics and constraints

Since the number of updates are
fixed (unlike a column), this

allows us to keep power/area
overhead of hardware sorter

within logic layer’s budget

Avoids the need to decompress
the column and add updates,

eliminating data movement and
random accesses to 3D DRAM

We maintain a hash index that
links the old encoded value in a

column to the new encoded value

Update Application: Hardware Design

99

We design a hardware implementation of our algorithm, and
add it to each in-memory analytical island

FIFOs

C

C

C

C

C

C

C

Comparators

Merge Unit

FE

P

P

P

P

Probe Units
FE Engine

Hash Unit

FIFOs

N = 1024

Sorting
Network

. .

.

Sort Unit

A 1024-value bitonic sorter,
whose basic building block is a

network of comparators

Similar design from our
 update shipping unit

100

Analytical Islands

Replica

Analytics

PIM Logic

Execution Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

Other Key Components of Analytical Islands

Brief Look at Evaluation

101

End-to-End System Analysis

102

0	

0.2	

0.4	

0.6	

0.8	

1	

8M	 16M	 32M	

N
or
m
al
iz
ed

	T
ra
ns
ac
1o

na
l	

Th
ro
ug
hp

ut
	

Number	of	Transac1ons	

SI-MVCC	 MI+SW	 MI+SW+HB	

Polynesia	 Ideal-Txn	

0	

0.5	

1	

1.5	

2	

8M	 16M	 32M	N
or
m
al
iz
ed

	A
na

ly
1c
al
		

Th
ro
ug
hp

ut
	

Number	of	Transac1ons	

SI-MVCC	 MI+SW	
MI+SW+HB	 Polynesia	

While SI-MVCC is the best baseline for transactional
throughput, it degrades analytical throughput by 63.2%, due to

its lack of workload-specific optimizations and poor
consistency mechanism

 Both MI+SW and MI+SW+HB fall
significantly short of Ideal-Txn because of

lack of performance isolation and overhead
of update propagation

MI+SW+HB is the best software-only HTAP
for analytics, because it provides workload-

specific optimizations, but it still loses 35.3%
of the analytical throughput

due to high resource contention

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7X/3.74X)

over prior HTAP systems

Polynesia comes within 8.4% of ideal Txn
because it uses custom PIM logic for

data freshness/consistency mechanisms
which significantly reduce resource

contention and data movement.

Polynesia improves over MI+SW+HB by 63.8%,
by eliminating data movement, and using
custom logic for update propagation and

consistency

Wrap Up
•  Many application domains have a critical need to perform

real-time data analysis, and make use of HTAP systems
–  An ideal HTAP system should have three properties: (1) data

freshness and consistency, (2) workload-specific optimization, (3)
performance isolation

•  We extensively study state-of-the-art HTAP systems
–  We find that neither of them can meet all HTAP properties

•  We propose Polynesia, a novel hardware/software cooperative
design for in-memory HTAP databases
–  Divides the system into transactional and analytical processing islands
–  Implements custom algorithms and hardware to reduce the costs of

update propagation and consistency
–  Exploits PIM for the analytical islands to alleviate data movement

•  Polynesia outperforms three state-of-the-art HTAP systems, with
average transactional/analytical throughput improvements of 1.7X/
3.7X, educes energy consumption by 48%

103

Conclusion

104

•  Problem: data movement cost is a critical challenge
•  PIM is a potential solution to address this problem

–  Challenge: there are many practical system-level challenges that
need to be solved to enable the widespread adoption of PIM

•  Goal: make PIM effective and practical in computing systems
•  Toward this end, we propose a series of practical mechanisms

to reduce processor-memory data movement
–  (1) Examine the suitability of PIM across key Google workloads
–  (2) Address a major system challenge (coherence) for

adopting PIM in computing systems
–  (3) Propose a HW/SW co-design approach aware of PIM for

designing an accelerator for Google edge models
–  (4) Propose a HW/SW co-design approach aware of PIM for

in-memory hybrid databases
•  We conclude that the proposed mechanisms provide

promising solutions to make PIM effective and practical

Conclusion

105

Thesis Contributions

106

Mitigating data movement bottlenecks
 in Google Consumer workloads 1

Efficient Cache Coherence Support for
 Near-Data Accelerators (CoNDA) 2

Efficiently Accelerating Edge ML Inference
by Exploiting Layer Heterogeneity (Mensa) 3

Enabling Effective HTAP Databases with
Specialized HW/SW Co-Design (Polynesia) 4

Publication

107

- (1) Amirali Boroumand, Saugata Ghose, Minesh Patel, Rachata Ausavarungnirun,
Hasan Hassan, Kevin Hsieh, Brandon Lucia, Nastaran Hajinazar, Krishna Melladi,
Hongzhong Zheng, Onur Mutlu, “CoNDA: Enabling Effcient Near-Data
Accelerator-CPU Communication by Optimizing Data Movement” (ISCA’19)
- (2) Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, Onur Mutlu, “Google Workloads for Consumer Devices: Mitigating
Data Movement Bottlenecks”. (ASPLOS 2018)
- (3) Amirali Boroumand, Saugata Ghose, Hasan Hassan, Minesh Patel, Kevin
Hsieh, Brandon Lucia, Krishna Melladi, Hongzhong Zheng, Onur Mutlu,”LazyPIM:
Ecient Coherence Mechanism For Processing In Memory” (CAL 2017)

- (4) Amirali Boroumand, Berkin Akin, Saugata Ghose, Ravi Narayanaswami,
Geraldo Francisco, Xiaoyu Ma, Eric Shiu, Onur Mutlu "Efficiently Accelerating
Edge ML Inference by Exploiting Layer Heterogeneity: An Empirical Study
with Google Edge Models" Submitted (ASPLOS 2021).

- (5) Amirali Boroumand, Saugata Ghose, Geraldo Francisco, Onur Mutlu
"Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases
with Specialized Hardware/Software Co-Design" Submitted (ASPLOS) 2021.

Publication

108

- (6) Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Amirali Boroumand, Jeremie
Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C. Mowry,"Ambit: In-
Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology “ (MICRO 2017)

- (7) Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin Chang,
Amirali Boroumand, Saugata Ghose, Onur Mutlu,” Accelerating Pointer Chasing
in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation” (ICCD 2016)

- (8) Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Michael A. Kozuch, Onur
Mutlu, Phillip B. Gibbons and Todd Mowry. "Gather-Scatter DRAM: In-DRAM
Address Translation to Improve the Spatial Locality of Non-unit Strided
Accesses” (MICRO 2015)

- (9) Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A.
Kozuch, Onur Mutlu, Phillip B. Gibbons and Todd Mowry. "Fast Bulk Bitwise AND
and OR in DRAM” (CAL 2015)

Publication

109

 - (10) Damla Senol Cali, Gurpreet S. Kalsi, Zlal Bingl, Lavanya Subramanian, Can
Firtina, Jeremie Kim, Rachata Ausavarungnirun, Mohammed Alser, Anant Nori, Juan
Gomez-Luna, Amirali Boroumand , Allison Scibisz, Sreenivas Subramoney, Can
Alkan, Saugata Ghose, Onur Mutlu, "GenASM: A Low-Power, Memory- Ecient,
Approximate String Matching Acceleration Framework for Genome
Sequence Analysis” (MICRO) 2020.

- (11) Saugata Ghose, Amirali Boroumand, Jeremie Kim, Juan Gómez-Luna, Onur
Mutlu, “Processing-in-Memory: A Workload-Driven Perspective” (IBM Journal 2019)

- (12) Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun,
 and Onur Mutlu, “The Processing-in-Memory Paradigm: Mechanisms to Enable
Adoption” (Beyond-CMOS Technologies for Next Generation Computer 2019)

Practical Mechanisms for Reducing
Processor-Memory Data Movement in

Modern Workloads

Amirali Boroumand

Prof. Onur Mutlu (Co-Chair)

 Dr. Saugata Ghose (Co-chair)

Committee:

 Prof. James Hoe
 Dr. Parthasarathy Ranganathan

Backup

17

•  Applying our workload analysis methodology to Other Key
Consumer Workloads
–  In our analysis, we focus on applications that run on CPU cores in

consumer devices
–  There are other important consumer applications that relay on GPU

cores or Camera systems: maps, 3D games, VR applications
•  Automating the Cluster Identification in Mensa

–  Mensa’s scheduler relies on two pieces of information to generate a
mapping between layers and accelerators: (1) Characteristics of each
cluster (2) Which hardware accelerator is best suited for each cluster

–  However, generating cluster identification info could be challenging as it
involves a comprehensive analysis across all layers from all models

–  One future research direction is how we can automate the process of
identifying clusters across a wide range of models

–  One potential solution to address this challenge is to employ
automated Neural Architecture Search (NAS) methods to identify
clusters

Future Directions

112

•  Extending CoNDA to Non-NDA Systems
–  Coherence for specialized accelerators is still an open problem
–  We believe that the core idea of CoNDA can be extended to address

coherence challenge between CPUs and on-chip accelerators

•  Extending Polynesia to Support Non-Relational Analytical
Execution Engine
–  We focus on designing an instance of Polynesia that supports

relational (SQL) transactional and analytical workloads
–  However, the term analytics is no longer limited to SQL analytics à

ML, graph processing, NoSQL
–  A modern HTAP system needs to support both high update rates as

well as the ability to run diverse analytics on the data
–  One potential future research direction is to examine how we can use

Polynesia framework to support various types of analytics workloads

Future Directions

113

Comparison with EyerissV2 (1)
•  We compare Mensa with EyerissV2 for 7 representative models:

–  1 LSTM, 1 Transducers, 4 CNNs, 1 RCNN

•  We find that compared to EyerissV2, Mensa reduces total
inference energy by 53.2%, and improves throughput by
3.3X

•  Similar to the Edge TPU accelerator, EyerissV2 suffers from
high energy inefficiency for the LSTM and Transducer
models

•  Mensa, on the other hand, lowers the energy spent on on-

chip and off-chip parameter traffic, by scheduling layers on
the accelerators with the most appropriate dataflow for
LSTM and Transducer layers

114

Comparison with EyerissV2 (2)
•  For CNN models, EyerissV2 performs better than the baseline

accelerator as it has a smaller on-chip buffer, which enables
EyerissV2 to reduce dynamic energy

•  However, EyerissV2 still falls short of Mensa’s energy efficiency

for CNNs:
–  It’s fixed dataflow cannot efficiently expose reuse opportunities

across different layers
–  Some CNN layers have a large parameter footprint and very low

data reuse, which generates a large amount of off-chip parameter
traffic

–  Increases static energy because it uses a much smaller PE array,
which significantly increases inference latency for many compute-
intensive CNN layers in Clusters 1 and 2

115

0
0.25

0.5
0.75

1

LS
TM

1
LS

TM
2

Tr
an

sd
.1

Tr

an
sd

.2

Tr
an

sd
.3

Tr

an
sd

.4

Tr
an

sd
.5

Tr

an
sd

.6

C
N

N
1

C
N

N
2

C
N

N
3

C
N

N
4

C
N

N
5

C
N

N
6

C
N

N
7

C
N

N
8

C
N

N
9

C
N

N
10

C

N
N

11

C
N

N
12

C

N
N

13

R
C

N
N

1
R

C
N

N
2

R
C

N
N

3

N
or

m
al

iz
ed

 E
ne

rg
y

Total Static PE Param. Buffer & NoC
Act. Buffer & NoC Off-chip Interconnect DRAM

(3.3) High Cost of Moving Parameters

32

50.3% and 30.9% of total energy goes to parameters off-
chip traffic and distributing parameters across PE array

Parameter traffic (Off-chip and on-chip) takes a large portion
of the inference energy and performance

0

2

4

6

8

10

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PE
s

U
til

iz
at

io
n

Base-Utilization Base+HB-Utillization Mensa-Utilization
Base-Throughput Base+HB-Throughput Mensa-Throughput

Performance Analysis

62

Overall, Mensa improves utilization on average by 28.8X and 7.5X over
Baseline and Baseline+HB, and significantly improves computational

throughput (on average by 3.1X) across all models

Baseline utilization is
consistency low across all

models (on average 27.3%)

The higher bandwidth in Base+HB
pushes average utilization up to 34.0%,

and improves throughput by 2.5x

The largest improvements are for LSTMs
and Transducers (4.5x), thanks to their
low FLOP/B ratio and large footprints

(1) Properly provisioned PE array, (2)
customized dataflow that efficiently exploit

reuse, and (3) near-data acclerators Utilization is still very low. The major reasons are (1) lack of
customized dataflow to properly expose reuse opportunities
across layers, (2) over-provisioned PE array for many layers

End-to-End System Analysis

118

0	

0.2	

0.4	

0.6	

0.8	

1	

8M	 16M	 32M	

N
or
m
al
iz
ed

	T
ra
ns
ac
1o

na
l	

Th
ro
ug
hp

ut
	

Number	of	Transac1ons	

SI-SS	 SI-MVCC	 MI+SW	
MI+SW+HB	 PIM-Only	 Polynesia	
Ideal-Txn	

0	

0.5	

1	

1.5	

2	

8M	 16M	 32M	N
or
m
al
iz
ed

	A
na

ly
1c
al
		

Th
ro
ug
hp

ut
	

Number	of	Transac1ons	

SI-SS	 SI-MVCC	 MI+SW	
MI+SW+HB	 PIM-Only	 Polynesia	

While SI-MVCC is the best software-only DBMS for
transactional throughput, it degrades analytical throughput by
63.2%, due to its lack of workload-specific optimizations and

poor consistency mechanism

 MI+SW+HB, even with its higher
bandwidth, fall significantly short of Ideal-

Txn because of lack of performance isolation
and overhead of update propagation

MI+SW+HB is the best software-
only HTAP for analytics, because it

provides workload-specific
optimizations, but it still loses

35.3% of the analytical throughput
of the baseline

Overall, Polynesia has a higher transactional throughput (1.7X), and a
higher analytical throughput (3.74X)

Multiple-Stack result for
Polynesia

119	

0	
1	
2	
3	
4	
5	
6	

1	Stack	 2	Stack	 4	Stack	N
or
m
al
iz
ed

	A
na

ly
1c
al
		

Th
ro
ug
hp

ut
	

Mul1ple-Instance	 HoCI	

Energy result for Polynesia

120	

0	
1E+13	
2E+13	
3E+13	
4E+13	
5E+13	
6E+13	

SI-SS	 SI-MVCC	 MI+SW	 HOCI	

En
er
gy
	(P

j)	

CPU	 Caches	 Interconnect	 DRAM	

Hardware Design Principles

55

Insight 2: while there are different types of accelerators for
compute- and data-centric layers, the reuse patterns of layers are

a key distinguishing factor between different hardware designs

Different dataflows can expose different data reuse opportunities:

Spatial Multicast

PE1

O0

PE2

O1

PE3

O2

W

Spatial Reduction

PE1

O0

PE2

O0

PE3

O0

W

We need separate accelerators to account for different
 types of dataflow across the clusters

Temporal
 Multicast & Recuction

T
im

e

PE1
O0

PE2
O1

PE3
O2

PE1
O0

PE2
O1

PE3
O2

W

W

Cycle 1

Cycle 2

38

Diversity Across the Models

1	

10	

100	

1000	

10000	

100000	

0.01	 1	 100	

FL
O
P/
By

te
	

Number	of	MACs	(M)	

CNN3	 CNN4	 CNN11	 CNN9	
CNN13	 LSTM1	 Transd.1	 Transd.2	

1

10

100

1000

10000

100000

0.001 0.1 10

FL
O

P
/B

yt
e

Parameter Footprint (MB)

Insight1: there is a significant variation in terms of
layer characteristics across the models

Data Freshness: Update Application

123

We find that 23.8% of the CPU cycles (and 30.8% of cache
misses) go to the update application process

0.00E+00	
5.00E+10	
1.00E+11	
1.50E+11	
2.00E+11	

8M 16M 8M 16M 8M 16M

Write/Read: 50% Write/Read: 80% 100% Write

E
xe

cu
ti

on
 T

im
e

(n
s)

Transactional Analytical Update Shipping Update Application

Even providing higher bandwidth (8x) does not address the challenges
as it cannot reduce data movement and resource contention

Supporting Real-Time Analysis: HTAP Systems

124

To enable real-time analysis, we need to support both high
data ingest rate and the ability to perform analytics on data

A hybrid DBMS (HTAP system) is needed that can execute
both transactional and analytical queries over all data

Data
Migration

Analytics

 Traditional approach

Transactions Transactions

Hybrid DBMS
(HTAP system)

Analytics

Polynesia High-level Overview

125

Transactions

Transactional Island

Exec. Engine

HW Resources

Replica

Analytical Islands

Replica

Analytics

HW Resources

Exec. Engine

Updates

Consistency
Mechanism

Data Fresh.
Mechanism

Designed to sustain
 the bursts of writes

We take advantage of a customized
version of PIM to mitigate data

movement bottleneck

Conventional multicore CPUs
with multi-level caches

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Consistency Mechanism

Consistency Mechanism: Requirements

127

Consistency mechanism must not compromise either the
throughput of analytical queries or the update propagation rate

1 Updates must be applied all the time and should not be
blocked by analytic queries à Data freshness property

2 Analytics must be able to run all the time should not be
blocked by update propagation process à performance
isolation property

Consistency mechanism has to satisfy two requirements:

Consistency Mechanism: Algorithm

128

Our mechanism relies on a combination of snapshotting and
versioning to provide snapshot isolation for analytics

Our consistency mechanism is based on
 two key observations:

Updates are applied at a column granularity 1
Snapshotting a column is cost effective using PIM logic 2

Consistency Mechanism: Algorithm

129

For each column, there is a chain of snapshots where each
 chain entry corresponds to a version of this column

Unlike chains in
MVCC, each version
is associated with a
column, not a tuple

 Compressed Column

Snapshot
V3

Snapshot
V1

Snapshot
V2

Updates

Polynesia does not create a
snapshot every time a column is

updated. Instead, Polynesia marks
the column as dirty

Polynesia creates a new snapshot only if (1) any of the columns are
dirty, and (2) no current snapshot exists for the same column

Consistency Mechanism: Hardware

130

Copy Unit

F F F F W W W W

Mem Ctrl Mem Ctrl

Index

Tracking Buffer

Our algorithm success at satisfying performance isolation relies
on how fast we can do MemCpy to minimize snapshotting latency

Multiple Fetch and Write-back units to
issue multiple accesses concurrently

Track outstanding reads, as they may
come back from memory out of order.

Allows to immediately initiate the write
after a read is complete

We find that the buffer lookup limits
the performance, as each lookup
results in a full scan, and multiple

fetch units perform lookups
concurrently à To alleviate this, we

design a hash index

Analytical Engine

Analytical Engine: Query Execution

132

Select A.id, B.id
From A JOIN B
ON A.id = B.id

Where A.value > 55

σ

π

A B

Parser Volcano
execution

model

High degree of inter- and
 intra-operator parallelism

Algebraic Query Plan Query

A1

σ

A2

σ
Operator 1

Task

Operator 2

Analytical Engine: Query Execution

133

Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

We find that the execution of physical operators of analytical
queries significantly benefit from PIM

Without a HTAP and PIM-aware data placement/task scheduler, PIM
logic for operators alone cannot provide throughput improvements

Analytical Engine:
Data Placement

Analytical Engine: Data Placement

135

DSM Data Layout

C1 C2 C3 C4 C5

Compressed
Column Dictionary

Id Value

1

3

0

2

4

car
ann

cat
ear
man 0

1

3

4

0

2

3

DRAM Layer

Logic Layer

DRAM Layer Data
Placement

Limited power and area budget

Vaults

Data Placement Strategy

136

We propose a hybrid strategy where we create small vault
 groups, and partition a column across the vaults in a vault group

C3 C4

C7 C8

C3 C4

C7 C8

C3 C4

C7 C8

C3 C4

C7 C8

V3 V4

V7 V8

Vault Group 2

C1 C2

C5 C6

C1 C2

C5 C6

C1 C2

C5 C6

C1 C2

C5 C6

Vault Group 1

V1 V2

V5 V6

Allows us to increase the aggregate
bandwidth for servicing each query by
4 times, and provides up to 4 times the

power and area for PIM logic

The number of vaults per group is
critical for efficiency: too many

vaults can complicate the update
application process, while not

enough vaults can degrade
throughput

Analytical Engine:
Task Scheduler

Analytical Engine: Task Scheduler

138

For each query, the scheduler makes three key decisions:

1 Decides how many tasks to create

2 Finds how to map these tasks to the available resources
 (PIM threads)

3 Guarantees that dependent tasks are executed in order

Task Scheduler: Initial Hueristic

139

Select A.id, B.id
From A JOIN B
ON A.id = B.id

Where A.value > 55
Where B.value < 70

Query

Query Plan

σ

π

A B

σ

A3

σ

A4

σ

A2

σ

A1

σ

B2

σ

B1

σ

Task1 Task2 Task3

Global Work Queue

Scheduler

Our scheduler heuristic that generates tasks by disassembling
the operators of the query plan into operator instances

(1) which vault groups the input tuples
reside in, (2) the number of available PIM

threads in each vault group

Task Scheduler: Initial Hueristic

140

We find that this heuristic is not optimized for PIM and
leads to sub-optimal performance due to three reasons:

1 The heuristic requires a dedicated runtime component
to monitor and assign tasks

2 The heuristic’s static mapping is limited to using only
the resources available within a single vault group

3 This heuristic is vulnerable to load imbalance

•  The runtime component must be executed on a general-purpose
PIM core

•  Can lead to performance issues for queries that operate on very
large columns

•  Some PIM threads might finish their tasks sooner and wait idly
 for straggling threads

Task Scheduler: Optimized Hueristic

141

We optimize our heuristic to address these challenges:

1 We design a pull-based task assignment strategy, where PIM
threads cooperatively pull tasks from the task queue at runtime

•  We introduce a local task queue for each vault group
•  This eliminates the need for a runtime component (first challenge)

and allows PIM thread to dynamically load balance (third challenge)

2 We optimize the heuristic to allow for finer-grained tasks
•  Partition input tuples into fixed-size segments (i.e., 1000 tuples)

and create an operator instance for each partition

3 We optimize the heuristic to allow a PIM thread to steal tasks
from a remote vault if its local queue is empty
•  This enables us to potentially use all available PIM threads to

execute tasks

Analytical Engine:
Hardware Design

Analytical Engine: Hardware Design

143

Given area and power constraints, it can be difficult to add enough
PIM logic to each vault to saturate the available vault bandwidth

Our new data placement strategy and scheduler enables us to
 expose greater intra-query parallelism

DRAM Layer
Logic Layer

DRAM Layer

Analytical Island
 HW Resources

Update
 App. Unit

Copy Unit PIM
Cores

Update
 Ship. Unit

Simple programmable in-order
PIM cores to exploit the
available vault bandwidth

Evaluation

Evaluation Methodology
•  We heavily extend state-of-the-art transactional and

analytical engines to implement HTAP baselines
–  We use DBx1000 as the starting point for our transactional engine
–  We implement an in-house analytical engine similar to C-store

•  We model both single- and multiple-instance
–  The system consists of 16 tables, 256K tuples per table

•  Performance
–  We simulate Polynesia using gem5, integrated with DRAMSim2 to

model an HMC-like 3D-stacked DRAM

•  Area and Energy
–  We use Calypto Catapult to determine the area of the accelerators

for a 22nm process
–  We model energy as sum of the energy consumption within the

CPU, on-chip buffers, off-chip/on-chip interconnects, and DRAM
 145

146

Other Results in the Paper
•  Results for real workload analysis

–  1.76X/3.48X higher transactional/Analytical throughput

•  Study of each component in isolation
–  Update propagation
–  Consistency mechanism
–  Analytical engine

•  Multiple memory stacks
–  Polynesia significantly outperforms MI (up to 3.0X) and scales

well as we increase the stack count

•  Energy analysis
–  48% energy reduction over MI+SW

Update Propagation

147

0
0.2
0.4
0.6
0.8

1

8M 16M 32M 8M 16M 32M 8M 16M 32M

Write/Read: 50% Write/Read: 80% 100% Write

N
or

m
al

iz
ed

Tr

an
sa

ct
io

na
l

T
hr

ou
gh

pu
t

 Ideal

27.7% of the degradation comes from the update
shipping latencies (data movement and merging

updates from transactional threads), the remaining
is from the update application process (column

compression and dictionary reconstruction)

Multiple-Instance degrades transactional throughput on
average by 49.5% as it severely suffers from resource

contention and data movement cost

Our update propagation mechanism improves throughput by 1.8X
compared to Multiple-Instance, and comes within 9.2% of Ideal

