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Michael Wise,  ASTRON, ”Science data centre challenges”, DOME Symposium, May, 2017
NVIDIA/MeteoSwiss: An example of COSMO simulation with cloud patterns over Switzerland and surrounding areas

C. Schär et al., “Kilometer-scale climate models: Prospects and challenges,” BAMS, 2020
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Current Computing Systems

R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, 2nd Workshop on Near-Data Processing, 2014
A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks”, ASPLOS, 2018

System-level energy            
break down
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Current Computing Systems

•Data movement dominates energy 
consumption
• Especially off-chip data movement

System-level energy
break down

Integer core

Floating 
point

Leakage L1 L1 to L2 bus
L2

DDR I/O
DDR chip

Data Access and data movement 
~70%

R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, 2nd Workshop on Near-Data Processing, 2014
A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks”, ASPLOS, 2018 4



Current Computing Systems

•Data movement dominates energy 
consumption
• Especially off-chip data movement

System-level energy 
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R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, 2nd Workshop on Near-Data Processing, 2014
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Current Computing Systems

Storage

BankBankBankDRAM

•Data movement dominates energy 
consumption
• Especially off-chip data movement

CPU

L3
L2
L1

Cache
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Current Computing Systems

•Data movement dominates energy 
consumption
• Especially off-chip data movement

• Data-intensive workloads are               
memory-bound

Storage

BankBankBankDRAM

CPU

L3
L2
L1

Cache
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Data-Centric Computing

CPU
Cache

Storage

BankBankBankDRAM

Accelerator
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Data-Centric Computing
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Data-Centric Computing
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Thesis Statement

Design system architectures to effectively handle data by: 

Data-centric approach

Data-driven approach
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Thesis Contributions
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(1) NERO: Weather Prediction Accelerator
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(1) NERO: Weather Prediction Accelerator
Key: Stencil computation 

• Complex memory-access patterns

e.g., 7-point Jacobi 
in 3D plane
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(1) NERO: Weather Prediction Accelerator
Key: Stencil computation 

• Complex memory-access patterns

• ~80 compound stencils 

Horizontal diffusion 
stencil composition
(Courtesy CSCS/ETH

and Ronald Luijten)

Laplace

Flux

New value
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Horizontal diffusion 
stencil composition
(Courtesy CSCS/ETH

and Ronald Luijten)

Laplace

Flux

New value

(1) NERO: Weather Prediction Accelerator
Key: Stencil computation 

• Complex memory-access patterns

• ~80 compound stencils 

Memory bound with limited performance
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(1) NERO: Weather Prediction Accelerator

IBM POWER9 CPU HBM-based FPGA board 

CAPI

Source: AlphaData
Source: IBM

Near-HBM FPGA-based accelerator
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(1) NERO: Weather Prediction Accelerator

IBM POWER9 HBM-based FPGA board 

CAPI2

Source: AlphaData
Source: IBM

Compared to IBM POWER9 CPU 
4x-8x faster with 22x-29x energy reductions 

Energy efficiency of 1.5-17.3 GFLOPS/Watt
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(1) NERO: Weather Prediction Accelerator
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(2) Reduced-Precision Stencil Computation
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(2) Reduced-Precision Stencil Computation

High-precision computation is costly

Accuracy/Energy 
Trade-off?

Representation &
Quantization

x

y

z

Requiring higher power, energy, and bandwidth 
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(2) Reduced-Precision Stencil Computation

High-precision number format are costly :

Higher power, energy, and bandwidth requirements

Accuracy/Energy 
trade-off?

Representation &
Quantization

x

y

z

50% fewer bits with only 1% loss of accuracy

30-50x higher energy efficiency 
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(2) Reduced-Precision Stencil Computation
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(3) NAPEL: ML-Based Simulation
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(3) NAPEL: ML-Based Simulation

Early-stage simulation:

•Workload suitability analysis

• Design space exploration (DSE) 

• Example Simulators: Sinuca[2015], Gem5+HMC[2017], Ramulator-PIM[2019]

Simulation of real workloads can be 
10000x slower than native-execution!!! 
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(3) NAPEL: ML-Based Simulation

Performance/
Energy Prediction 

Application ML Model

up to 1039x faster than           
simulator 
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(3) NAPEL: ML-Based Simulation
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(4) LEAPER: ML-Based DSE Framework For FPGAs
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Low-end FPGA

Exploration on an FPGA
(4) LEAPER: ML-Based DSE Framework For FPGAs

Application
Synthesis
Place & Route 
(~ hours)

Configuration

Perf/Energy

Design Space
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Low-end FPGA

Exploration on an FPGA
(4) LEAPER: ML-Based DSE Framework For FPGAs

Application
Synthesis
Place & Route 
(~ hours)

Configuration

Perf/Energy

Design Space

Huge design space with
time-consuming FPGA design cycle
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Configuration

Perf/Energy

Low-end FPGA Design Space

Exploration on an FPGA
(4) LEAPER: ML-Based DSE Framework For FPGAs

Application
Synthesis
Place & Route 
(~ hours)

ML Model
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Configuration

Perf/Energy

Low-end FPGA Design Space

Exploration on a Different FPGA
(4) LEAPER: ML-Based DSE Framework For FPGAs

Application
Synthesis
Place & Route 
(~ hours)

ML Model

Application Cloud FPGA
Configuration

Perf/Energy

Design Space ML Model
Synthesis
Place & Route 
(~ hours)
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Configuration

Perf/Energy

Low-end FPGA Design Space

Exploration on a Different FPGA
(4) LEAPER: ML-Based DSE Framework For FPGAs

Application
Synthesis
Place & Route 
(~ hours)

ML Model

Application Cloud FPGA
Configuration

Perf/Energy

Design Space ML Model
Synthesis
Place & Route 
(~ hours)

Model trained for a specific environment 
cannot predict for a new, unknown environment
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Configuration

Perf/Energy

Low-end FPGA Design Space

Exploration on a Different FPGA
(4) LEAPER: ML-Based DSE Framework For FPGAs

Application
Synthesis
Place & Route 
(~ hours)

Application
Synthesis
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Configuration
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Reuse
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Configuration

Perf/Energy

Low-end FPGA Design Space

Exploration on a Different FPGA
(4) LEAPER: ML-Based DSE Framework For FPGAs

Application
Synthesis
Place & Route 
(~ hours)

Application
Synthesis
Place & Route 
(~ hours)

Cloud FPGA
Configuration

Perf/Energy

Design Space ML Model

Reuse
80-90% accuracy with 10x faster exploration
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(4) LEAPER: ML-Based DSE Framework For FPGAs
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(5) QRator: Efficient Data-Placement Mechanism
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Fast Storage
Small/Expensive Slow Storage

Big/Cheap

Hot data Cold data

Promote/Demote

CPU
Data

Management

Hybrid Storage Subsystem
(5) QRator: Efficient Data-Placement Mechanism

Self-adaptable, efficient data-placement is challenging
38



Hybrid 
Storage

Observation
Request and 
Device status

Reward
Performance

Action
Select device

(5) QRator: Efficient Data-Placement Mechanism

Performance improvement of 30-50% compared to 
state-of-the-art data-placement techniques
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(5) QRator: Efficient Data-Placement Mechanism
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Thesis Contributions
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4-8x faster with 22x-29x 
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� Data placement
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Data-Centric
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Low precision computing

50% fewer bits with 30-50x 
higher energy efficiency 
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10x faster
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NERO: 
A Near High-Bandwidth Memory Stencil Accelerator 

for Weather Prediction Modeling



Executive Summary
• Motivation: Stencil computation is an essential part of weather prediction applications
• Problem: Memory bound with limited performance and high energy consumption on

multi-core architectures
• Goal: Mitigate the performance bottleneck of compound weather prediction kernels in

an energy-efficient way
• Our contribution: NERO

• First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction
application

• Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system
• Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
• Scalability analysis for both DDR4 and HBM-based FPGA boards

• Evaluation
• NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels
• NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3

GFLOPS/Watt
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Stencil Computations and Applications
Stencil computations update values in a                                 
grid using a fixed pattern of grid points

Stencils are used in ~30% of high-performance                                   
computing applications

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics
Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" IJSSOE, 2010

e.g., 7-point Jacobi 
in 3D plane

-,+,* -,+,*x

y
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Stencil Characteristics
High-order stencil computations are cache unfriendly
• Limited arithmetic intensity

• Sparse and complex access pattern

Image source: Xu, Jingheng et al.  “Performance Tuning and Analysis for Stencil-Based Applications on POWER8 Processor” ACM TACO, 2018

e.g., 7-point Jacobi in 3D plane

-,+,* -,+,*x

y

z

Read Array

Write Array

Mapping of  7-point Jacobi from 3D plane onto 1D plane
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Stencil Characteristics
High-order stencil computations are cache unfriendly

• Limited arithmetic intensity

• Sparse and complex access pattern

Image source: Xu, Jingheng et al.  “Performance Tuning and Analysis for Stencil-Based Applications on POWER8 Processor” ACM TACO, 2018

e.g., 7-point Jacobi in 3D plane

-,+,* -,+,*x

y

z

Mapping of  7-point Jacobi from 3D plane onto 1D plane

Read Array

Write Array

Performance bottleneck
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Stencil Computations in Weather Applications
COSMO (Consortium for Small-Scale Modeling)                                     
weather prediction application
• The essential part of the weather prediction models                                                   

is called dynamical core

• Around 80 different stencil compute motifs

• ~30 variables and ~70 temporary arrays (3D grids)

• Horizontal diffusion and vertical advection

• Complex stencil programs
Section of  

COSMO CDAG
(Courtesy CSCS/ETH

and Ronald Luijten)

Stencil VDP
18 arrays

Stencil VDT
14 arrays

VDTuvw
17 arrays

Stencil LH
2 arrays

VDQ
6 arrays

Halo Exchange

Halo Exchange

Bound Bound

Bound

Bound Bound

HAW
10 arrays

C
5 arrays

HAuv
8 arrays

VAuvw
13 arrays

HApptp
10 arrays

FWSCvdh
14 arrays

FWSCuv
14 arrays

VApptp
9 arrays
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Example Complex Stencil: Horizontal Diffusion
• Compound stencil kernel consists of a collection

of elementary stencil kernels

• Iterates over a 3D grid performing Laplacian                                                        
and flux operations

• Complex memory access behavior and                                                                 
low arithmetic intensity

Horizontal diffusion 
composition

(Courtesy CSCS/ETH
and Ronald Luijten)

Laplace

Flux

New value

DFG source: Gysi, Tobias, et al. “MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous Architectures” ICS, 2015 51
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IBM POWER9 Roofline Analysis
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(64 threads)
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IBM POWER9 Roofline Analysis
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POWER9 socket (486.4 Gflops/socket)

29.1 Gflops
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58.5 Gflops
(64 threads)

Weather kernels are 
DRAM bandwidth constrained
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Silicon Alternatives

FPGAs are highly configurable!

CPUs

FLEXIBILITY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU)

GPUs FPGAs ASICs

EFFICIENCY
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Heterogeneous System: CPU+FPGA

POWER9 AC922 HBM-based AD9H7 board 

CAPI2

Source: AlphaData
Source: IBM

We evaluate two POWER9+FPGA systems:
1. HBM-based board AD9H7
Xilinx Virtex Ultrascale+™ XCVU37P-2
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Heterogeneous System: CPU+FPGA

POWER9 AC922 DDR4-based AD9V3 board

CAPI2

Source: AlphaData
Source: IBM

2. DDR4-based board AD9V3
Xilinx Virtex Ultrascale+™ XCVU3P-2

We evaluate two POWER9+FPGA systems:
1. HBM-based board AD9H7
Xilinx Virtex Ultrascale+™ XCVU37P-2
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FPGAs Have Tremendous Potential

AD9H7 FPGA+HBM (3.6 Tflops)

110 GBps DRAM
3.3 TBps L3-cache
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NERO: A Near High-Bandwidth Memory Stencil 
Accelerator for Weather Prediction Modeling

• First near-HBM FPGA-based accelerator for representative kernels from a real-
world weather prediction application

• Data-centric caching with precision-optimized tiling for a heterogeneous memory
hierarchy

• In-depth scalability analysis for both DDR4 and HBM-based FPGA boards
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NERO Design Flow
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Weather data in the host DRAM

NERO Design Flow

input stream
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Cache-line transfer over CAPI2

NERO Design Flow

output stream

input stream
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Data mapping onto HBM

NERO Design Flow

output stream

input stream
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Data mapping onto HBM

NERO Design Flow

input stream
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Data mapping onto HBM

NERO Design Flow

output stream

input stream
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Main execution pipeline

NERO Design Flow
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Main execution pipeline

NERO Design Flow
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Complete design flow

NERO Design Flow
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NERO Application Framework
•NERO communicates to 

Host over CAPI2 
(Coherent Accelerator 
Processor Interface)
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NERO Application Framework
•NERO communicates to 

Host over CAPI2
(Coherent Accelerator 
Processor Interface)

•COSMO API handles 
offloading jobs to NERO
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NERO Application Framework
• NERO communicates to Host over 

CAPI2 (Coherent Accelerator 
Processor Interface)

• COSMO API handles offloading 
jobs to NERO

• SNAP (Storage, Network, and 
Analytics Programming) allows for 
seamless integration of the 
COSMO API

https://github.com/open-power/snap 73

https://github.com/open-power/snap


NERO Application Framework
• NERO communicates to Host over 

CAPI2 (Coherent Accelerator 
Processor Interface)

• COSMO API handles offloading 
jobs to NERO

• SNAP (Storage, Network, and 
Analytics Programming) allows for 
seamless integration of the 
COSMO API

https://github.com/open-power/snap 74
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Precision-optimized Tiling
• The best window size is 

critical

• Formulate the search for the 
best window size as a multi-
objective auto-tuning problem 

• Taking into account the 
datatype precision

• We make use of OpenTuner

https://github.com/jansel/opentuner 76
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Precision-optimized Tiling
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Precision-optimized Tiling

Single Precision
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Precision-optimized Tiling

Half  PrecisionSingle Precision
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Half  PrecisionSingle Precision

Precision-optimized Tiling

Pareto-optimal tile size depends on 
the data precision

80



Outline
Background

•
Setup

Results

CPU Roofline Analysis
FPGA-based Platform
NERO:

•
Precision-optimized Tiling
SetupEvaluation

SetupSummary

SetupPerformance Analysis

SetupEnergy Efficiency Analysis

81



NERO Performance Analysis

Vertical Advection
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NERO Performance Analysis

Horizontal DiffusionVertical Advection
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Horizontal DiffusionVertical Advection

NERO Performance Analysis

NERO is 4.2x and 8.3x faster than 
a complete POWER9 socket
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How Energy Efficient is NERO?

Vertical Advection
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How Energy Efficient is NERO?

Vertical Advection

Enabling many HBM ports might not always be 
the determining factor
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Vertical Advection

How Energy Efficient is NERO?

0

Horizontal Diffusion
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Horizontal DiffusionVertical Advection

How Energy Efficient is NERO?

NERO reduces energy consumption
by 22x and 29x compared to
a complete POWER9 socket

NERO provides energy efficiency of 
1.5 GFLOPS/Watt and 

17.3 GFLOPS/Watt
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Summary
• Motivation: Stencil computation is an essential part of weather prediction

applications
• Problem: Memory bound with limited performance and high energy

consumption on multi-core architectures
• Goal: Mitigate the performance bottleneck of compound weather prediction

kernels in an energy-efficient way
• Our contribution: NERO

• First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction
application

• Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system
• Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
• Scalability analysis for both DDR4 and HBM-based FPGA boards

• Evaluation
• NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels
• NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt
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Low Precision Processing for High 
Order Stencil Computation



Executive Summary
•Motivation: Low precision computing is a promising approach to solve

data movement bottleneck for emerging big data workloads
• Problem: A key barrier to a widespread adoption of reduced-precision 

computing is the lack of an architecture exploiting arbitrary precision, 
supported by a software layer that controls the precision of 
computations
• Our contribution:
• Systematic precision exploration for various 3D stencils for a wide range of number

systems-fixed, float, posit
• Using a state-of-the-art multi-core CPU with FPGA to show the capability of reduced

precision

• Evaluation
• 50% lower bits with only 1% loss of accuracy for all the number systems
• Lower precision leads to ~FPGA peak performance of 468-659 GOP/s with
30-50x higher energy efficiency 93



Stencil Computations and Applications
• Stencils are widely used in many applications:
• fluid dynamics, image processing, atmospheric modelling

94



Application Structure

• Stencil is computed using some elementary operations (e.g. weighted 
difference)
• Stencil operates on high-order (multi-dimensional) field/array
• Often consists of multiple update steps

-,+,* -,+,*x

y

z
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Workload characteristics
•High-order stencil computations are cache unfriendly
• Limited arithmetic intensity: only reuse potential in neighboring 

pixels
• Sparse and complex access pattern:

Image source: Performance Tuning and Analysis for Stencil-Based Applications on POWER8 Processor – Xu et al. (2018) 96



DDR I/O

DDR chip

* R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”,  IBM J. Research Develop., vol. 59, no. 2/3, 2015

System-level power break down*

Data Movement

Data Access

ProcessorConventional Computation

•Data access consumes a major part
• Applications are increasingly data hungry

•Data movement energy dominates compute
• Especially true for off-chip movement

Integer core

link
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DDR I/O

DDR chip

* R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”,  IBM J. Research Develop., vol. 59, no. 2/3, 2015

System-level power break down*

Data Movement

Data Access

ProcessorConventional Computation

•Data access consumes a major part
• Applications are increasingly data hungry

•Data movement energy dominates compute
• Especially true for off-chip movement

Integer core

link

Data movement bottleneck
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Reduced-Precision Computations
• Stencil computations generally use a high-precision number 

format
•Many emerging applications use reduced-precision data 

types
• Examples: 16-bit floats, 8 or 16-bit integers.

Accuracy/Energy
trade-off?

Quantization
x

y

z
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Alternative platforms

FPGAs ideal for adapting to rapidly evolving workloads!

Processing Units 
ASICs for 
emerging 
workloads, e.g.
Google TPU

CPUs

FLEXIBILITY Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU)

GPUs FPGAs ASICs

EFFICIENCY
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Problem statement
• Stencils have many applications, but difficult to map to traditional 

platforms
• Low precision computing is a promising approach to solve data 

movement bottleneck for emerging big data workloads
• FPGAs might enable energy-efficient mapping of various stencil 

applications

Main contributions:
• Systematic exploration of reduced-precision number formats for 

stencils 
• A case study on a state-of-the-art IBM MPSoC + FPGA platform
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Outline
• Introduction
•Precision exploration
• Evaluation on MPSoC + FPGA platform
•Conclusions
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Precision Exploration Methodology
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Step 1: Code Instrumentation
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High-order stencil benchmarks

• Elementary stencil: 7 and 25 points
• Compound stencil: horizontal diffusion
• Sweep over a 3D grid with 1280 x 1080 x 960 output pixels
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Step 2: Precision Tuning
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Arbitrary Number Formats
• Fixed-point- Xilinx fixed-point library from the Vivado 2018.2 
•Dynamic Floating-point –Floatx library 1

•Posit- Universal number system 2

1https://github.com/oprecomp/FloatX
2https://github.com/stillwater-sc/universal 107

https://github.com/oprecomp/FloatX
https://github.com/stillwater-sc/universal


Step 3: Error Tracking
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Results – Emulated Precision Tuning
• Float and Posit obtain full accuracy with less bits
• Significant bit width reduction with accuracy loss of 1%
• Compound stencils require higher dynamic range than 7 and 25 kernel

7-point 25-point HDIFF 109



Outline
• Introduction
•Precision exploration
• Evaluation on MPSoC + FPGA platform
•Conclusions
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Case Study: CPU+FPGA

•Host System
• IBM POWER9

• FPGA board
• Xilinx Virtex® 

Ultrascale+™
XCVU3P-2

•Power: IBM 
AMESTER3

3https://github.com/open-power/amester 111
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CAPI Technology Overview

Dionysios Diamantopoulos, IBM Research – Zurich, COOL Chips 2018 112



The Accelerator Architecture
• Accelerators are acting as peers to CPU, by accessing the main 

memory through a high-performance cache-coherent link, enabled 
by PSL. 

• Offloading jobs (“actions”) to accelerators 
is handled by a software-defined API, with 
an interrupt-based queuing mechanism, 
allowing minimal CPU usage (thus power) 
during FPGA use.
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FPGA-aware Roofline

• Performance gap on multi-core bridged by exploiting data locality
• FPGA improves throughput by 2.5x – 4.1x compared to multi-core
• Using reduced-precision formats improves throughput by additional ~2x
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FPGA energy-efficiency
• MPSoC to FPGA: 10x – 30x energy-efficiency
• Single-precision to half-precision float: reduced #DSPs and #BRAMs per FLOP
• Float to Fixed-point: significant reduction in #DSPs per FLOP
• Reducing bit-width further only reduces #BRAMs (#DSPs remain the same)
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Conclusion and Summary
•Motivation: Low precision computing is a promising approach to solve

data movement bottleneck for emerging big data workloads
• Problem: A key barrier to a widespread adoption of reduced-precision 

computing is the lack of an architecture exploiting arbitrary precision, 
supported by a software layer that controls the precision of 
computations. 
• Our contribution:

• Systematic precision exploration for various 3D stencils for a wide range of number systems-fixed, float,
posit

• Using state-of-the-art MPSoC with FPGA to show the capability of reduced precision

• Evaluation
• 50% lower bits with only 1% loss of accuracy for all the number systems
• Lower precision leads to ~FPGA peak performance of 468-659 GOP/s with
30-50x higher energy efficiency
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NAPEL: Near-Memory Computing 
Application Performance Prediction             

via Ensemble Learning



Executive Summary
•Motivation: A promising paradigm to alleviate data movement

bottleneck is near-memory computing (NMC), which consists of
placing compute units close to the memory subsystem
• Problem: Simulation times are extremely slow, imposing long run-

time especially in the early-stage design space exploration
• Goal: A quick high-level performance and energy estimation

framework for NMC architectures
•Our contribution: NAPEL

• Fast and accurate performance and energy prediction for previously-unseen applications using ensemble
learning

• Use intelligent statistical techniques and micro-architecture-independent application features to
minimize experimental runs

• Evaluation
• NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
• Error rates (average) of 8.5% and 11.5% for performance and energy estimation

We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/ 118
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Michael Wise,  ASTRON, ”Science data Centre challenges”, DOME Symposium, 18 May, 2017 119



searches on

98PB

uploads on

180PB

15PB 15PB

3PB

SKA
300PB

Michael Wise,  ASTRON, ”Science data Centre challenges”, DOME Symposium, 18 May, 2017 

Massive amounts of  data
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Interconnect
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External Interface

TSVs to memory

Core Core Core....

DRAM layerLogic layer

Vault

TSV

Partition

Paradigm Shift - NMC

•Compute-centric to a data-
centric approach
•Biggest enabler – stacking 

technology
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NMC Simulators
• Simulation for:
• Design space exploration (DSE) 
•Workload suitability analysis

•NMC Simulators:
• Sinuca, 2015
• HMC-SIM, 2016
• CasHMC, 2016
• Smart Memory Cube (SMC), 2016
• CLAPPS, 2017
• Gem5+HMC, 2017
• Ramulator-PIM1, 2019

1Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/ 122



NMC Simulators
• Simulation for:
• Design space exploration (DSE) 
•Workload suitability analysis

•NMC Simulators:
• Sinuca, 2015
• HMC-SIM, 2016
• CasHMC, 2016
• Smart Memory Cube (SMC), 2016
• CLAPPS, 2017
• Gem5+HMC, 2017
• Ramulator-PIM1, 2019

Simulation of  real workloads can be 10000x slower 
than native-execution!!! 

1Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/ 123



NMC Simulators
• Simulation for:
• Design space exploration (DSE) 
•Workload suitability analysis

•NMC Simulators:
• Sinuca, 2015
• HMC-SIM, 2016
• CasHMC, 2016
• Smart Memory Cube (SMC), 2016
• CLAPPS, 2017
• Gem5+HMC, 2017
• Ramulator-PIM1, 2019

Idea: Leverage ML with statistical techniques for 
quick NMC performance/energy prediction

1Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/ 124



NAPEL: 

NAPEL Model Training

125



Phase 1: LLVM Analyzer
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Phase 2: Microarchitecture Simulation 

Central composite design of experiments technique to minimize the number of 
experiments while data collection
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Phase 3: Ensemble ML Training

Application Features

Instruction Mix

ILP

Reuse distance

Memory traffic

Register traffic

Memory footprint

Architecture Features

Core type

#PEs

Core frequency

Cache line size

DRAM layers

Cache access fraction

DRAM access fraction
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NAPEL Framework
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NAPEL Prediction
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Experimental Setup
• Host System
• IBM POWER9
• Power: AMESTER

• NMC Subsystem
• Ramulator-PIM1

•Workloads
• PolyBench and Rodinia
• Heterogeneous workloads such as image processing, machine 

learning, graph processing etc.
• Accuracy in terms of mean relative error (MRE)

1https://github.com/CMU-SAFARI/ramulator-pim/ 131
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NAPEL Accuracy: Performance and Energy Estimates
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NAPEL Accuracy: Performance and Energy Estimates
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MRE of 8.5% and 11.6% for performance and energy 
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220x (up to 1039x) faster than NMC simulator 

135



0
1
2
3
4
5
6

atax bfs bp
ch

ol
ge

mv
ge

su
gra

m
km

e lu mvt syr
k

trm
m

ED
P 

Re
du

ct
io

n Actual
NAPEL

Use Case: NMC Suitability Analysis

• Assess the potential of 
offloading a workload to NMC

• NAPEL provides accurate 
prediction of NMC suitability

• MRE between 1.3% to 26.3% 
(average 14.1%)
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Conclusion and Summary
• Motivation: A promising paradigm to alleviate data movement bottleneck is near-memory
computing (NMC), which consists of placing compute units close to the memory subsystem
• Problem: Simulation times are extremely slow, imposing long run-time especially in the

early-stage design space exploration
• Goal: A quick high-level performance and energy estimation framework for NMC

architectures
• Our contribution: NAPEL
• Fast and accurate performance and energy prediction for previously-unseen

applications using ensemble learning
• Use intelligent statistical techniques and micro-architecture-independent application

features to minimize experimental runs
• Evaluation
• NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
• Error rates (average) of 8.5% and 11.5% for performance and energy estimation

We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/ 137



LEAPER:                              
Modeling Cloud FPGA-based 
systems via transfer learning



Executive Summary
Motivation: Machine-learning-based models have gained traction to overcome the slow downstream 
implementation process of FPGAs. 

Problem: (1) A model trained for a specific environment cannot predict for a new, unknown environment (2) 
Training requires large amounts of data, which is cost-inefficient because of the time-consuming FPGA design 
cycle.

Goal: Leverage and transfer our ML-based performance models trained on a low-end local system to a new, 
unknown, high-end FPGA-based system, thereby avoiding the aforementioned two main limitations of traditional 
ML-based approaches.

Our contribution:
• First transfer learning-based approach for FPGA-based systems that allows us to leverage a model trained on a
low-end edge FPGA and adapt it to high-end FPGA-based systems via few-shot learning.

Evaluation
• Demonstrate our approach across five state-of-the-art, high-end FPGA-based platforms with three different

interconnect technologies on six real-world applications.
• Transferred models from a low-end edge board to high-end FPGA-based systems achieve high accuracy of 80-

90% for resource prediction.
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Traditional Approach
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Our Approach
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Results: Resource Model Transfer

Transferred models achieve high accuracy           
of 80-90% for resource prediction
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