

Designing, Modeling, and Optimizing **Data-Intensive Computing Systems**

Gagandeep Singh Ph.D. Defense

Committee:

Henk Corporaal (TU Eindhoven)

Onur Mutlu (ETH, Zurich)

Sander Stuijk (TU Eindhoven)

C.H. Berkel (TU Eindhoven)

Peter Hofstee (IBM Austin/TU Delft)

Francky Catthoor (IMEC/KU Leuven)

Dionysios Diamantapoulos (IBM Research Europe)

Osman Unsal (BSC)

SKA 300PB

System-level energy break down

- Data movement dominates energy consumption
 - Especially off-chip data movement

Data Access and data movement ~70%

System-level energy break down

- Data movement dominates energy consumption
 - Especially off-chip data movement

Data Access and data movement ~70%

System-level energy break down

- Data movement dominates energy consumption
 - Especially off-chip data movement

- Data movement dominates energy consumption
 - Especially off-chip data movement

 Data-intensive workloads are memory-bound

Data-Centric Computing

Data-Centric Computing

Data-Centric Computing

Thesis Statement

Design system architectures to effectively handle data by:

Data-centric approach

Data-driven approach

Thesis Contributions

Key: Stencil computation

Complex memory-access patterns

Key: Stencil computation

Complex memory-access patterns

• ~80 compound stencils

Key: Stencil computation

Complex memory-access patterns

~80 compound stencils

Memory bound with limited performance

Near-HBM FPGA-based accelerator

Compared to IBM POWER9 CPU 4x-8x faster with 22x-29x energy reductions

IBM POWERS

HBM-based FPGA board

Energy efficiency of 1.5-17.3 GFLOPS/Watt

High-precision computation is costly

Requiring higher power, energy, and bandwidth

High-precision number format are costly:

50% fewer bits with only 1% loss of accuracy

30-50x higher energy efficiency

Early-stage simulation:

- Workload suitability analysis
- Design space exploration (DSE)
- Example Simulators: Sinuca[2015], Gem5+HMC[2017], Ramulator-PIM[2019]

Simulation of real workloads can be 10000x slower than native-execution!!!

up to 1039x faster than simulator

Exploration on an FPGA

Exploration on an FPGA

Huge design space with time-consuming FPGA design cycle

Exploration on an FPGA

Exploration on a Different FPGA

Exploration on a Different FPGA

Model trained for a specific environment cannot predict for a new, unknown environment

Exploration on a Different FPGA

Exploration on a Different FPGA

80-90% accuracy with 10x faster exploration

Hybrid Storage Subsystem

Self-adaptable, efficient data-placement is challenging

Performance improvement of 30-50% compared to state-of-the-art data-placement techniques

Thesis Contributions

Designing, Modeling, and Optimizing **Data-Intensive Computing Systems**

Gagandeep Singh Ph.D. Defense

Committee:

Henk Corporaal (TU Eindhoven)

Onur Mutlu (ETH, Zurich)

Sander Stuijk (TU Eindhoven)

C.H. Berkel (TU Eindhoven)

Peter Hofstee (IBM Austin/TU Delft)

Francky Catthoor (IMEC/KU Leuven)

Dionysios Diamantapoulos (IBM Research Europe)

Osman Unsal (BSC)

Backup

NERO:

A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

Executive Summary

- Motivation: Stencil computation is an essential part of weather prediction applications
- **Problem:** Memory bound with limited performance and high energy consumption on multi-core architectures
- Goal: Mitigate the performance bottleneck of compound weather prediction kernels in an energy-efficient way
- Our contribution: NERO
 - First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction application
 - Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system
 - Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
 - Scalability analysis for both DDR4 and HBM-based FPGA boards

Evaluation

- NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels
- NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt

Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis

Summary

Stencil Computations and Applications

Stencil computations update values in a grid using a fixed pattern of grid points

Stencils are used in ~30% of high-performance computing applications

e.g., 7-point Jacobi in 3D plane

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics
Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" IJSSOE, 2010

Stencil Characteristics

High-order stencil computations are cache unfriendly

- Limited arithmetic intensity
- Sparse and complex access pattern

e.g., 7-point Jacobi in 3D plane

Mapping of 7-point Jacobi from 3D plane onto 1D plane

Stencil Characteristics

High-order stencil computations are cache unfriendly

Limited arithmetic intensity

Performance bottleneck

e.g., 7-point Jacobi in 3D plane

Mapping of 7-point Jacobi from 3D plane onto 1D plane

Stencil Computations in Weather Applications

COSMO (Consortium for Small-Scale Modeling) weather prediction application

 The essential part of the weather prediction models is called dynamical core

- Around 80 different stencil compute motifs
- ~30 variables and ~70 temporary arrays (3D grids)
- Horizontal diffusion and vertical advection
- Complex stencil programs

Example Complex Stencil: Horizontal Diffusion

 Compound stencil kernel consists of a collection of elementary stencil kernels

 Iterates over a 3D grid performing Laplacian and flux operations

 Complex memory access behavior and low arithmetic intensity

Outline

Bacl	kground

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency

Summary

IBM POWER9 Roofline Analysis

IBM POWER9 Roofline Analysis

Weather kernels are DRAM bandwidth constrained

Outline

Bacl	kground	

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis

Summary

Silicon Alternatives

FLEXIBILITY

EFFICIENCY

FPGAs are highly configurable!

Heterogeneous System: CPU+FPGA

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7

Xilinx Virtex Ultrascale+™ XCVU37P-2

Heterogeneous System: CPU+FPGA

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7

Xilinx Virtex Ultrascale+™ XCVU37P-2

2. DDR4-based board AD9V3

Xilinx Virtex Ultrascale+™ XCVU3P-2

FPGAs Have Tremendous Potential

Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis

Summary

NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

 First near-HBM FPGA-based accelerator for representative kernels from a realworld weather prediction application

• Data-centric caching with **precision-optimized tiling** for a heterogeneous memory hierarchy

In-depth scalability analysis for both DDR4 and HBM-based FPGA boards

Weather data in the host DRAM

Cache-line transfer over CAPI2

Data mapping onto HBM

Data mapping onto HBM

Data mapping onto HBM

Main execution pipeline

Main execution pipeline

NERO Design Flow **©**MeteoSwiss 1 POWER9 Cache-line 1024bits = 128B -> 32 x float32 512-bit **FPGA AXI Register** CAPI2 512bits x 2 reads **FPGA Cacheline Buffer** 32 x float32 3D Window **Host DRAM** HBM2 Stack Software-defined FPGA data 16x 256-bit AXI3 input stream (un)packing Stream Converter 256-bit to 512-bit 512-bit to 256-bit Forward Sweep VADVC Intermediate \ Fields Stream Splitter 3D window gridding/degridding **Engine FIFO** 512-bit Single output 512-bit 512-bit **Backward Sweep -**output Atmospheric

Complete design flow

2D partitioned BRAM or URAM

output stream

stream

stream

wcon

stream

upos

stream

components

NERO Application Framework

 NERO communicates to Host over CAPI2 (Coherent Accelerator Processor Interface)

NERO Application Framework

- NERO communicates to Host over CAPI2 (Coherent Accelerator Processor Interface)
- COSMO API handles offloading jobs to NERO

NERO Application Framework

- NERO communicates to Host over
 CAPI2 (Coherent Accelerator
 Processor Interface)
- COSMO API handles offloading jobs to NERO
- SNAP (Storage, Network, and Analytics Programming) allows for seamless integration of the COSMO API

NERO Application Framework

- NERO communicates to Host over
 CAPI2 (Coherent Accelerator
 Processor Interface)
- COSMO API handles offloading jobs to NERO
- SNAP (Storage, Network, and Analytics Programming) allows for seamless integration of the COSMO API

Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis

Summary

- The best window size is critical
- Formulate the search for the best window size as a multiobjective auto-tuning problem
- Taking into account the datatype precision
- We make use of OpenTuner

Single Precision

Single Precision

Half Precision

Single Precision

Half Precision

Pareto-optimal tile size depends on the data precision

Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis

Summary

NERO Performance Analysis

Vertical Advection

NERO Performance Analysis

NERO Performance Analysis

NERO is 4.2x and 8.3x faster than a complete POWER9 socket

Outline

Background	1

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis

Summary

Vertical Advection

Vertical Advection

Enabling many HBM ports might not always be the determining factor

Vertical Advection

Horizontal Diffusion

NERO reduces energy consumption by 22x and 29x compared to a complete POWER9 socket

NERO provides energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt

Number of PEs

Number of PEs

Outline

Background	1
\bigcirc	

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis

Summary

Summary

- Motivation: Stencil computation is an essential part of weather prediction applications
- **Problem:** Memory bound with limited performance and high energy consumption on multi-core architectures
- Goal: Mitigate the performance bottleneck of compound weather prediction kernels in an energy-efficient way
- Our contribution: NERO
 - First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction application
 - Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system
 - Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
 - Scalability analysis for both DDR4 and HBM-based FPGA boards

Evaluation

- NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels
- NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt

Low Precision Processing for High Order Stencil Computation

Executive Summary

- Motivation: Low precision computing is a promising approach to solve data movement bottleneck for emerging big data workloads
- Problem: A key barrier to a widespread adoption of reduced-precision computing is the lack of an architecture exploiting arbitrary precision, supported by a software layer that controls the precision of computations

Our contribution:

- Systematic precision exploration for various 3D stencils for a wide range of number systems-fixed, float, posit
- Using a state-of-the-art multi-core CPU with FPGA to show the capability of reduced precision

Evaluation

- 50% lower bits with only 1% loss of accuracy for all the number systems
- Lower precision leads to ~FPGA peak performance of 468-659 GOP/s with 30-50x higher energy efficiency

Stencil Computations and Applications

- Stencils are widely used in many applications:
 - fluid dynamics, image processing, atmospheric modelling

Application Structure

- Stencil is computed using some elementary operations (e.g. weighted difference)
- Stencil operates on high-order (multi-dimensional) field/array
- Often consists of multiple update step

Workload characteristics

- High-order stencil computations are cache unfriendly
 - Limited arithmetic intensity: only reuse potential in neighboring pixels
 - Sparse and complex access pattern:

System-level power break down*

Conventional Computation Processor Processor Data access consumes a major part Applications are increasingly data hungry Data Movement

Data movement bottleneck

network logic
link

System-level power break down*

Reduced-Precision Computations

- Stencil computations generally use a high-precision number format
- Many emerging applications use reduced-precision data types

• Examples: 16-bit floats, 8 or 16-bit integers.

Quantization

Accuracy/Energy trade-off?

Alternative platforms

FPGAs ideal for adapting to rapidly evolving workloads!

Problem statement

- Stencils have many applications, but difficult to map to traditional platforms
- Low precision computing is a promising approach to solve data movement bottleneck for emerging big data workloads
- FPGAs might enable energy-efficient mapping of various stencil applications

Main contributions:

- Systematic exploration of reduced-precision number formats for stencils
- A case study on a state-of-the-art IBM MPSoC + FPGA platform

Outline

- Introduction
- Precision exploration
- Evaluation on MPSoC + FPGA platform
- Conclusions

Precision Exploration Methodology

Step 1: Code Instrumentation

High-order stencil benchmarks

- Elementary stencil: 7 and 25 points
- Compound stencil: horizontal diffusion
- Sweep over a 3D grid with 1280 x 1080 x 960 output pixels

Step 2: Precision Tuning

Arbitrary Number Formats

- Fixed-point- Xilinx fixed-point library from the Vivado 2018.2
- Dynamic Floating-point –Floatx library ¹
- Posit- *Universal number system* ²

¹https://github.com/oprecomp/FloatX

²https://github.com/stillwater-sc/universal

Step 3: Error Tracking

Results – Emulated Precision Tuning

- Float and Posit obtain full accuracy with less bits
- Significant bit width reduction with accuracy loss of 1%
- Compound stencils require higher dynamic range than 7 and 25 kernel

Outline

- Introduction
- Precision exploration
- Evaluation on MPSoC + FPGA platform
- Conclusions

Case Study: CPU+FPGA

- Host System
 - IBM POWER9

- FPGA board
 - Xilinx Virtex[®]
 Ultrascale+[™]
 XCVU3P-2

 Power: IBM AMESTER³

³https://github.com/open-power/amester

CAPI Technology Overview

The Accelerator Architecture

 Accelerators are acting as peers to CPU, by accessing the main memory through a high-performance cache-coherent link, enabled by PSL.

 Offloading jobs ("actions") to accelerators is handled by a software-defined API, with an interrupt-based queuing mechanism, allowing minimal CPU usage (thus power) during FPGA use.

FPGA-aware Roofline

- Performance gap on multi-core bridged by exploiting data locality
- FPGA improves throughput by 2.5x 4.1x compared to multi-core
- Using reduced-precision formats improves throughput by additional ~2x

FPGA energy-efficiency

- MPSoC to FPGA: 10x 30x energy-efficiency
- Single-precision to half-precision float: reduced #DSPs and #BRAMs per FLOP
- Float to Fixed-point: significant reduction in #DSPs per FLOP
- Reducing bit-width further only reduces #BRAMs (#DSPs remain the same)

Conclusion and Summary

- Motivation: Low precision computing is a promising approach to solve data movement bottleneck for emerging big data workloads
- **Problem:** A key barrier to a widespread adoption of reduced-precision computing is the lack of an architecture exploiting arbitrary precision, supported by a software layer that controls the precision of computations.

Our contribution:

- Systematic precision exploration for various 3D stencils for a wide range of number systems-fixed, float, posit
- Using state-of-the-art MPSoC with FPGA to show the capability of reduced precision

Evaluation

- 50% lower bits with only 1% loss of accuracy for all the number systems
- Lower precision leads to ~FPGA peak performance of 468-659 GOP/s with 30-50x higher energy efficiency

NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning

Executive Summary

- Motivation: A promising paradigm to alleviate data movement bottleneck is near-memory computing (NMC), which consists of placing compute units close to the memory subsystem
- Problem: Simulation times are extremely slow, imposing long runtime especially in the early-stage design space exploration
- Goal: A quick high-level performance and energy estimation framework for NMC architectures
- Our contribution: NAPEL
 - Fast and accurate performance and energy prediction for previously-unseen applications using ensemble learning
 - Use intelligent statistical techniques and micro-architecture-independent application features to minimize experimental runs

Evaluation

- NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
- Error rates (average) of 8.5% and 11.5% for performance and energy estimation

Massive amounts of data

Paradigm Shift - NMC

 Compute-centric to a datacentric approach

NMC Simulators

- Simulation for:
 - Design space exploration (DSE)
 - Workload suitability analysis
- NMC Simulators:
 - Sinuca, 2015
 - HMC-SIM, 2016
 - CasHMC, 2016
 - Smart Memory Cube (SMC), 2016
 - CLAPPS, 2017
 - Gem5+HMC, 2017
 - Ramulator-PIM¹, 2019

NMC Simulators

- Simulation for:
 - Design space exploration (DSE)
 - Workload suitability analysis

Simulation of real workloads can be 10000x slower than native-execution!!!

- Smart Memory Cube (SMC), 2016
- CLAPPS, 2017
- Gem5+HMC, 2017
- Ramulator-PIM¹, 2019

NMC Simulators

- Simulation for:
 - Design space exploration (DSE)
 - Workload suitability analysis

Idea: Leverage ML with statistical techniques for quick NMC performance/energy prediction

- Smart Memory Cube (SMC), 2016
- CLAPPS, 2017
- Gem5+HMC, 2017
- Ramulator-PIM¹, 2019

NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning

NAPEL Model Training

Phase 1: LLVM Analyzer

Phase 2: Microarchitecture Simulation

Phase 3: Ensemble ML Training

NAPEL Framework

NAPEL Prediction

Experimental Setup

- Host System
 - IBM POWER9
 - Power: AMESTER
- NMC Subsystem
 - Ramulator-PIM¹

- Workloads
 - PolyBench and Rodinia
 - Heterogeneous workloads such as image processing, machine learning, graph processing etc.
- Accuracy in terms of mean relative error (MRE)

NAPEL Accuracy: Performance and Energy Estimates

NAPEL Accuracy: Performance and Energy Estimates

MRE of 8.5% and 11.6% for performance and energy

Speed of Evaluation

Application	Training/Prediction Time					
Name	#DoE conf.	DoE run (mins)	Train+Tune (mins)	Pred. (mins)		
atax	11	522	34.9	0.49		
bfs	31	1084	34.2	0.48		
bp	31	1073	43.8	0.47		
chol	19	741	34.9	0.49		
gemv	19	741	24.4	0.51		
gesu	19	731	36.1	0.51		
gram	19	773	36.5	0.52		
kme	31	742	36.9	0.55		
lu	19	633	37.9	0.51		
mvt	19	955	38.0	0.54		
syrk	19	928	35.7	0.51		
trmm	19	898	37.6	0.48		

Speed of Evaluation

220x (up to 1039x) faster than NMC simulator

U					
kme	31	742	36.9	0.55	-S. S. S
lu	19	633	37.9	0.51	∃ ₂₀₀
mvt	19	955	38.0	0.54	<u>a</u> 200 –
syrk	19	928	35.7	0.51	Ž
trmm	19	898	37.6	0.48	0
					— DoE configurations 256

Use Case: NMC Suitability Analysis

 Assess the potential of Assess the potential of offloading a workload to NMC₁₀ 5

• NAPEL provides accurate prediction of NMC suitability

 MRE between 1.3% to 26.3% (average 14.1%)

Conclusion and Summary

- Motivation: A promising paradigm to alleviate data movement bottleneck is *near-memory* computing (NMC), which consists of placing compute units close to the memory subsystem
- **Problem:** Simulation times are extremely slow, imposing long run-time especially in the early-stage design space exploration
- Goal: A quick high-level performance and energy estimation framework for NMC architectures
- Our contribution: NAPEL
 - Fast and accurate performance and energy prediction for previously-unseen applications using ensemble learning
 - Use intelligent statistical techniques and micro-architecture-independent application features to minimize experimental runs

Evaluation

- NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
- Error rates (average) of 8.5% and 11.5% for performance and energy estimation

LEAPER: Modeling Cloud FPGA-based systems via transfer learning

Executive Summary

Motivation: Machine-learning-based models have gained traction to overcome the slow downstream implementation process of FPGAs.

Problem: (1) A model trained for a specific environment cannot predict for a new, unknown environment (2) Training requires large amounts of data, which is cost-inefficient because of the time-consuming FPGA design cycle.

Goal: Leverage and transfer our ML-based performance models trained on a low-end local system to a new, unknown, high-end FPGA-based system, thereby avoiding the aforementioned two main limitations of traditional ML-based approaches.

Our contribution:

• First transfer learning-based approach for FPGA-based systems that allows us to leverage a model trained on a low-end edge FPGA and adapt it to high-end FPGA-based systems via few-shot learning.

Evaluation

- Demonstrate our approach across five state-of-the-art, high-end FPGA-based platforms with three different interconnect technologies on six real-world applications.
- Transferred models from a low-end edge board to high-end FPGA-based systems achieve high accuracy of 80-90% for resource prediction.

Traditional Approach

Our Approach

Results: Resource Model Transfer

Transferred models achieve high accuracy of 80-90% for resource prediction

Complete List of Publications

- 1. Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications", IEEE Micro 2021
- 2. Gagandeep Singh, Dionysios Diamantopoulos, Juan Gomez-Luna, Sander Stuijk, Onur Mutlu and Henk Corporaal, "Modeling FPGA-Based Heterogeneous Computing via Few-Shot Learning", FPGA 2021
- 3. Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near-High Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling", FPL 2020
- **4. Gagandeep Singh**, Juan Gómez-Luna, Giovanni Mariani, Geraldo F. Oliveira, Stefano Corda, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NAPEL: Near-memory computing application performance prediction via ensemble learning." DAC 2019
- 5. Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Sander Stuijk, and Henk Corporaal, "NARMADA: Near-memory horizontal diffusion accelerator for scalable stencil computations." FPL 2019
- 6. Gagandeep Singh, Dionysios Diamantopoulos, Sander Stuijk, Christoph Hagleitner, and Henk Corporaal, "Low precision processing for high order stencil computations." LNCS 2019
- 7. Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra, "Near-memory computing: Past, present, and future." MICPRO 2019
- 8. Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra, "A Review of Near Memory Computing Architectures Opportunities and Challenges." DSD 2019
- 9. Dionysios Diamantopoulos, Burkhard Ringlein, Mitra Purandare, Gagandeep Singh, and Christoph Hagleitner, "Agile Autotuning of a Transprecision Tensor Accelerator Overlay", FPL 2020
- 10. Kanishkan Vadivel, Lorenzo Chelini, Ali Bana Gozar, **Gagandeep Singh**, Stefano Corda, Roel Jordans and Henk Corporaal, "TDO-CIM: Transparent Detection and Offloading for Computation Inmemory", DATE 2020
- 11. Corda, Stefano, Gagandeep Singh, Ahsan Javed Awan, Roel Jordans, and Henk Corporaal, "Memory and parallelism analysis using a platform-independent approach." SCOPES 2019
- 12. Corda, Stefano, Gagandeep Singh, Ahsan Javed Awan, Roel Jordans, and Henk Corporaal, "Platform independent software analysis for near memory computing." DSD 2019.
- 13. Jan van Lunteren, Ronald Luijten, Dionysios Diamantopoulos, Florian Auernhammer, Christoph Hagleitner, Lorenzo Chelini, Stefano Corda, **Gagandeep Singh**, "Coherently Attached Programmable Near-Memory Acceleration Platform and its application to Stencil Processing.", DATE 2019

Patent:

Ronald Luijten, Gagandeep Singh, Joost VandeVondele, "CGRA accelerator for weather/climate dynamics simulation" P201909001US01