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uploads on

facebook
180PB

searches on

Google
98PB

(11 Tube

15PB

Michael Wise, ASTRON, "Science data centre challenges”, DOME Symposium, May, 2017
NVIDIA/MeteoSwiss: An example of COSMO simulation with cloud patterns over Switzerland and surrounding areas
C. Schar et al., “Kilometer-scale climate models: Prospects and challenges,” BAMS, 2020



Current Computing Systems

Floating _ Leakage L1
point
Integer core

L1 to L2 bus

DDR chip
DDRI/0

System-level energy
break down

R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, 2nd Workshop on Near-Data Processing, 2014
A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks”, ASPLOS, 2018



Current Computing Systems

Leakage 11

L1 to L2 bus

* Data movement dominates energy Flosting
consumption

Integer core

* Especially off-chip data movement

DDR chip
DDR1/0

Data Access and data movement
~70%

System-level energy
break down

R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, 2nd Workshop on Near-Data Processing, 2014
A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks”, ASPLOS, 2018



Current Computing Systems

Processing

* Data movement dominates energy " o
consumption

Leakage 11

L1 to L2 bus

Integer core

* Especially off-chip data movement

DDR chip
DDR1/0

Data Access and data movement
~70%

System-level energy
break down

R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, 2nd Workshop on Near-Data Processing, 2014
A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks”, ASPLOS, 2018



Current Computing Systems

* Data movement dominates ener CPU
, gy .
consumption Cuchel: 12 |
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* Especially off-chip data movement
| DRAM \m




Current Computing Systems

* Data movement dominates energy
consumption

* Especially off-chip data movement

$

e Data-intensive workloads are
memory-bound



Data-Centric Computing

Accelerator
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CPU

!

Couan J

1




Data-Centric Computing

Heterogeneous

Memory

Couan J
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Data-Centric Computing

FPGA ‘ |
S CPU
Heterogeneous T —
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Thesis Statement

Design system architectures to effectively handle data by:

Data-centric approach

Data-driven approach

11



Thesis Contributions

L O Acce

NERO

leration

® Reduce data overhead
Low precision computing

Heterogeneous
Memory Hierarchy

L © Modeling \
NAPEL

- :
O Design spucé
exploration

/ High Bandwidth

 LEAPER

\Memory (HBM)

B Data-Centric
B Data-Driven

© Data placement
QRator

|
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(1) NERO: Weather Prediction Accelerator

|

B Data-Centric

Heterogeneous

I ceu |
Memory Hierarchy Hﬁ

High Bandwidth

\Memory (HBM)

Bandwidth
\ DRAM \m
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(1) NERO: Weather Prediction Accelerator

Key: Stencil computation % .
y

 Complex memory-access patterns

e.g., 7-point Jacobi
in 3D plane
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(1) NERO: Weather Prediction Accelerator

Key: Stencil computation

 Complex memory-access patterns
Laplace

* ~80 compound stencils Wy
Flux
Horizontal diffusion
stencil composition
(Courtesy CSCS/ETH
and Ronald Luijten)

New value

15



(1) NERO: Weather Prediction Accelerator

Key: Stencil computation

 Complex memory-access patterns
Laplace

* ~80 compound stencils Wy
Flux
Horizontal diffusion
stencil composition
(Courtesy CSCS/ETH
and Ronald Luijten)

New value

Memory bound with limited performance

16



(1) NERO: Weather Prediction Accelerator

S : AlphaDat
Source: IBM ource: Alphal)ata

IBM POWERY9 CPU HBM-based FPGA board

Near-HBM FPGA-based accelerator
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(1) NERO: Weather Prediction Accelerator

Compared to IBM POWER9 CPU
4x-8x faster with 22x-29x energy reductions

Energy efficiency of 1.5-17.3 GFLOPS/Watt

18



(1) NERO: Weather Prediction Accelerator

|

B Data-Centric

Heterogeneous

I ceu |
Memory Hierarchy Hﬁ

High Bandwidth

\Memory (HBM)

Bandwidth
\ DRAM \m
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(2) Reduced-Precision Stencil Computation

B Data-Centric
(@ Reduce data overhead
/ Low precision computing
FPGA CPU

Heterogeneous
Memory Hierarchy

High

Bandwidth
\ DRAM \m

High Bandwidth

\Memory (HBM) /
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(2) Reduced-Precision Stencil Computation

High-precision computation is costly

Requiring higher power, energy, and bandwidth

y4

a Representation &
y Quantization

Accuracy/Energy
Trade-off?

21



(2) Reduced-Precision Stencil Computation

50% fewer bits with only 1% loss of accuracy

30-50x higher energy efficiency

22



(2) Reduced-Precision Stencil Computation

B Data-Centric
(@ Reduce data overhead
/ Low precision computing
FPGA CPU

Heterogeneous
Memory Hierarchy

High

Bandwidth
\ DRAM \m

High Bandwidth

\Memory (HBM) /
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(3) NAPEL: ML-Based Simulation

B Data-Driven

Heterogeneous

oy |

|

© Modeling \

NAPEL

High Bandwidth

\Memory (HBM)

Bandwidth
\ DRAM \m
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(3) NAPEL: ML-Based Simulation

Early-stage simulation:
* Workload suitability analysis
* Design space exploration (DSE)

* Example Simulators: Sinuca[2015], Gem5+HMC[2017], Ramulator-PIM[2019]

Simulation of real workloads can be
10000x slower than native-execution!!!

25



(3) NAPEL.:

Application

ML.-Based Simulation

&\ # Performance/

5@ Energy Prediction

ML Model

up to 1039x faster than
simulator

26



(3) NAPEL: ML-Based Simulation

B Data-Driven

Heterogeneous

oy |

|

© Modeling \

NAPEL

High Bandwidth

\Memory (HBM)

Bandwidth
\ DRAM \m
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(4) LEAPER: ML-Based DSE Framework For FPGAs

B Data-Driven

cPu |
Heterogeneous H
Memory Hierurchy ﬁ
Bandwidth
\ DRAM \m

/ . N\
© Design space/ High Bandwidth

exploration Memory (HBM)




(4) LEAPER: ML-Based DSE Framework For FPGAs
Exploration on an FPGA

|
P |
4 —d ba ‘l :1‘:".‘:'“" D «J|~ 3 I
= \/\ADO! weepy SRR !
‘ . e - |
= i |
. ‘ 2 |
.. Synthesis I Configuration
Application Place & Route Low-end FPGA I Design Space
(~ hours)

29



(4) LEAPER: ML-Based DSE Framework For FPGAs
Exploration on an FPGA

AA[GY Wiy uE ;

. P 7
’ oo =it )
*\/NADQM » s~
g ral R AR S
[ o e é“!
T £ B g

.. Synthesis Configuration
Application Place & Route Low-end FPGA Design Space
(~ hours)

Huge design space with
time-consuming FPGA design cycle
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(4) LEAPER: ML-Based DSE Framework For FPGAs
Exploration on an FPGA

|
‘ OO e T I
r AN Le »"‘”‘" “l“ g0 u: 3 I A
w=p\/VADO' wp SRS |
- i |
. - - |
.. Synthesis I Configuration
Application Place & Route Low-end FPGA | Design Space N
(~ hours)
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(4) LEAPER: ML-Based DSE Framework For FPGAs
Exploration on a Different FPGA

Perf/Energy

A =P \/\VADO' iy v

Configuration
Design Space ML Model

Synthesis

Application Place & Route Cloud FPGA
(~ hours)

[ o
S I S S S S . . ..
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(4) LEAPER: ML-Based DSE Framework For FPGAs
Exploration on a Different FPGA

Model trained for a specific environment
cannot predict for a new, unknown environment

Perf/Energy

|
; |
| O :
=P \/VADO' wep | I ve
: o X I
|
Synthesis : Configuration
Application Place & Route Cloud FPGA | Design Space ML Model

~ houtrs
( ) 33



(4) LEAPER: ML-Based DSE Framework For FPGAs
Exploration on a Different FPGA

'_}j\

Configuration
Design Space Reuse
Perf/Energy
[
[

Configuration
Design Space ML Model
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(4) LEAPER: ML-Based DSE Framework For FPGAs
Exploration on a Different FPGA

80-909%0 accuracy with 10x faster exploration

35



(4) LEAPER: ML-Based DSE Framework For FPGAs

B Data-Driven

cPu |
Heterogeneous H
Memory Hierurchy ﬁ
Bandwidth
\ DRAM \m

/ . N\
© Design space/ High Bandwidth

exploration Memory (HBM)




(5) QRator: Efficient Data-Placement Mechanism

B Data-Driven

cPu |
Het
ooy Hararr ﬁﬁ
Bandwidth
: \ DRAM \m
High Bandwidth -{6 Data placement
Memory (HBM) s-l-oruge QRator
2 >
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(5) QRator: Efficient Data-Placement Mechanism

Hybrid Storage Subsystem

Data
Management
Hot datf ﬁold data

Fast Storage M

TGNy Promote/Demote

=

Slow Storage

Big/Cheap

Self-adaptable, efficient data-placement is challenging

38




(5) QRator: Efficient Data-Placement Mechanism

A
o0
A%

Reward Action

Performance

Hybrid

Observation

Request and

Select device
Device status

Storage

Performance improvement of 30-50%0 compared to
state-of-the-art data-placement techniques

39



(5) QRator: Efficient Data-Placement Mechanism

B Data-Driven

cPu |
Het
ooy Hararr ﬁﬁ
Bandwidth
: \ DRAM \m
High Bandwidth -{6 Data placement
Memory (HBM) s-l-oruge QRator
2 >
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Thesis Contributions

 @Acceleration

NERO
4-8x faster with 22x-29x
\_ Power reductions

PGA

Heterogeneous

2

50% fewer bits with 30-50x
/ \
CPU

Memory Hierarchy

Reduce data overheu}
Low precision computing

higher energy efficiency

© Modeling

NAPEL
~1000x faster P

$

(O Design space’; yioh Bandwidth
exploration Memory (HBM)
J\

LEAPER
10x faster

o

High 3

Bandwidth r
| DRAM \m

$

Storage

B Data-Centric
B Data-Driven

© Data placement
QRator
30-50% better performance

|
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Backup



NERO:

A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling



Executive Summary

* Motivation: Stencil computation is an essential part of weather prediction applications

Problem: Memory bound with limited performance and high energy consumption on
multi-core architectures

Goal: Mitigate the performance bottleneck of compound weather prediction kernels in
an energy-efficient way

e Our contribution: NERO

* First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction
application

* Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system

* Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
* Scalability analysis for both DDR4 and HBM-based FPGA boards

Evaluation

 NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels

* NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3
GFLOPS/Watt

45
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Stencil Computations and Applications

Stencil computations update values in a S
grid using a fixed pattern of grid points

-I+ I+I*

y

Stencils are used in ~30% of high-performance
computing applications

e.g., 7-point Jacobi
== in 3D plane

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics
Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" IJSSOE, 2010 a7



Stencil Characteristics

High-order stencil computations are cache unfriendly

* Limited arithmetic intensity

e Sparse and complex access pattern
Z

X
-t I+I*
y Read Array

Write Array

e.g., 7-point Jacobi in 3D plane Mapping of 7-point Jacobi from 3D plane onto 1D plane

Image source: Xu, Jingheng et al. “Performance Tuning and Analysis for Stencil-Based Applications on POWERS8 Processor” ACM TACO, 2018



Stencil Characteristics

Performance bottleneck




Stencil Computations in Weather Applications

COSMO (Consortium for Small-Scale Modeling) st s

weather prediction application f 7 / >
* The essential part of the weather prediction models *{5>" Sos Y?fr?;’f
is called dynamical core % d
Bound 1, Boun
* Around 80 different stencil compute motifs SR s
Bmlmd / Siiz;fs
e ~30 variables and ~70 temporary arrays (3D grids) \VAWW/
13 arrays
* Horizontal diffusion and vertical advection poreeie
Section of
 Complex stencil programs (Cflgils‘j‘gsf:?g;}l E)Appmm;df

and Ronald Luijten) \\ l /

VApptp FWSCuv
9 arrays 14 arrays

50



Example Complex Stencil: Horizontal Diffusion

* Compound stencil kernel consists of a collection
of elementary stencil kernels

* |terates over a 3D grid performing Laplacian Laplace
and flux operations

* Complex memory access behavior and Flux
low arithmetic intensity

@*/‘\

Horizontal diffusion
New value ~ composition

' > (Courtesy CSCS/ETH
® &—/ and Ronald Luijten)

DFG source: Gysi, Tobias, et al. “MIODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous Architectures” ICS, 2015
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IBM POWERY Roofline Analysis

1047

—_
o
w
IIII

Performance [Gflops]

—_
(e}
iy
Illll

100

POWERY9 socket (486.4 Gflops/socket)

29.1 Gflops |
(64 threads):

I
3.3 Gflops‘I
)|

(1 thread

¢

58.5 Gflops
(64 threads)

5.1 Gflops
1 thread)

=== Vertical Advection

--- Horizontal Diffusion -

1071

10t TS
Arithmetic Intensity [flop/byte]
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IBM POWERSY Roofline Analysis

Weather kernels are

DRAM bandwidth constrained
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Silicon Alternatives

FLEXIBILITY

FPGAs are highly configurable!

1]

Blm||m|m|m|=
Silim||m||m|m|=
1 o | o || o ||
OO0 OO0 oo oo

EFFICIENCY

)
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Heterogeneous System: CPU+FPGA

00

M.

" 1000000000000

Source: AlphaData

Source: IBM

POWER9 AC922 HBM-based AD9H7 board

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7
Xilinx Virtex Ultrascale+™ XCVU37P-2

57



Heterogeneous System: CPU+FPGA

R e

Source: AlphaData

Source: IBM

POWER9 AC922 DDR4-based AD9V3 board

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7 2. DDR4-based board AD9V3
Xilinx Virtex Ultrascale+™ XCVU37P-2 Xilinx Virtex Ultrascale+™ XCVU3P-2

58



FPGAs Have Tremendous Potential

Performance [Gflops]

—
(a)
S

—_
o
w

—_
o
N

—_
(e
=

AD9H7 FPGA+HBM (3.6 Tflops)

AD9V3 FPGA+DDR4 (0.97 Tflops)

ops/socket)

3.3 Gflop
(1 thread)

7

58.5 Gflops
(64 threads)

=== Vertical Advection

I
I
I
I
‘ 5.1 Gflops
: (1 thread)
I
I

--- Horizontal Diffusion -

100 1
Arithmetic Intensity [flop/byte]

102
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NERO: A Near High-Bandwidth Memory Stencil
Accelerator for Weather Prediction Modeling

* First near-HBM FPGA-based accelerator for representative kernels from a real-
world weather prediction application

e Data-centric caching with precision-optimized tiling for a heterogeneous memory
hierarchy

* In-depth scalability analysis for both DDR4 and HBM-based FPGA boards

61



NERO Design Flow

62



NERO Design Flow

\3D Window
Host DRAM

Weather data in the host DRAM




NERO Design Flow

1 POWER9 Cache-line
1024bits = 128B -> 32 x float32 512-pit

FPGA AXI Register

CAPI2
512bits x 2 reads <:>

Cache-line transfer over CAPI2



NERO Design Flow

HBM2 Stack
&4 L 16x.. {3 256-bit AXI3
L Stream Converter
256-bit to 512-bit 512-bit to 256-bit
Fields Stream Splitter ﬁ
Q Q 512-bit| | sSingle
Atmospheric | | 212-bit e :ttr‘g;‘:; utput
components || YP9S wceon stream
stream stream

Data mapping onto HBM




NERO Design Flow

<>
HBM2 Stack

L Stream Converter
2

56-bit to 512-bit 512-bit to 256-bit

Fields Stream Splitter

Q Q 512-bit| | Single
components || YP9S |**7| wcon stream| | stream
stream stream

Data mapping onto HBM




NERO Design Flow

<>
HBM2 Stack

@ 16x (}L 256-bit AXI3

L Stream Converter
256-bit to 512-bit 512-bit to 256-bit

Fields Stream Splitter

v/ I\ 512-bit

512-bit 512-bit| | output utput
upos [***| wcon stream| | stream
stream stream

Data mapping onto HBM

Atmospheric
components




NERO Design Flow

Software-defined FPGA data

(un)packing input stream

~

Forward Sweep

|fl> ] Intermediate& @ VADVC

FIFO Engine

-

Backward Sweep
Y.
2D partitioned BRAM or URAM

\

output stream

Main execution pipeline



NERO Design Flow

Software-defined FPGA data

(un)packing input stream
] Forward Sweep

Y g -

3D window gridding/degridding /ntermed/ateQ <L VA bvc
FIFO Engine
Backward Sweep

Y

2D partitioned BRAM or URAM

Main execution pipeline



NERO Design Flow

1 POWER9 Cache-line
1024bits = 128B -> 32 x float32 512-pit

FPGA AXI Register

CAPI2
512bits x 2 reads <_:>

) ©M§?@85Wisé
>

H_-J
3D Window y
Y
o
- oftware-define ata .
@ _léx (:E 256-bit AXI3 (un)packing input stream
L Stream Converter
256-bit to 512-bit 512-bit to 256-bit ! Forward Sweep
Fields Stream Splitter | | e A ——— |fl> /ntermediate& L VADVC
— — —— — FIFO Engine
/Yy [ singe | o =
Atmospheric | | 512-bit 512-bit :tlg;l:; utput — > 1, Backward Sweep
components || YPOS |*"°| wcon stream 2D partitioned BRAM or URAM |
stieah]  [Bicam output stream

Complete design flow




NERO Application Framework

) N E RO commun |Cates to Host POWER Coherent Accelerator
H oSt over CAP I 2 System Processor Proxy (CAPP)

(Coherent Accelerator FPGA

__________________________________________________________

Processor Interface) | R T

PE | PE | sse:e PE | PE
Partitioned On-chip Memor




NERO Application Framework

* NERO communicates to
Host over CAPI2
(Coherent Accelerator
Processor Interface)

* COSMO API handles
offloading jobs to NERO

COSMO WEATHER
MODEL

| COSMO API | libCXL |

Host POWER
System

FPGA



NERO Application Framework

* NERO communicates to Host over Host POWER
CAPI2 (Coherent Accelerator System

Processor Interface) FPGA

* COSMO API handles offloading

AXI Lite Bus
MMIO Control registers

AXI Full Bus
jObS to NERO Burst Tral;vsacl:ions SNAP
o Job Stream
SNAP (Storage, Network, and Manager | |Scheduler| | AX! DMA

Analytics Programming) allows for
seamless integration of the
COSMO API

https://github.com/open-power/snap

73


https://github.com/open-power/snap

NERO Application Framework

* NERO communicates to Host over |[cosMO WEATHER| Host POWER ngql\gz l':\tpl-l\ccele| ra::l;::XL
MODEL Svst
CAPI2 (Coherent Accelerator ystem Processor Proxy (CAPP)

Processor Interface)

PCle4 CAPI2 POWER Service Layer (PSL)

1 I
1 1
1 1
1 1
1 |
1 |
! AXI Full Bus AXI Lite Bus !
: Burst Transactions SNAP MMIO Control registers :
1 |
1 - !
1 e ] |
1 A | |
1 1
1 1
1 I
1 1
1 1
1 1
1 1
1 I
1 I
1 1
1 1

* COSMO API handles offloading
jobs to NERO

NERO
Job Stream
[ ) AXI DMA PE | PE | :=:=- PE | PE
SNAP (Storage, Network, and Manager | |Scheduler S om ch e
Analytics Programming) allows for

HBM Memory Controller

seamless integration of the e e A — B
5 %t T % 2 T - 53

COSMO API HBM2 Stack 1 HBM2 Stack 2

https://github.com/open-power/snap
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Precision-optimized Tiling

* The best window size is COSMO WEATHER|  Host POWER ng\"g 2Ll r;i'ngL
o MODEL ntAccele
critical System ’ ADF

FPGA

_____________________________________________________

PCled CAPI2 POWER Service Loy7r (ML

| 1
| I
| I
| I
| I
| 1
! AXI Full Bus AXI Lite Bus !
| - o I
I Burst Transactions SNAP MMIO Control registers R
| I
1 - 1
1 T ] 1
| A ] I
| I
| 1
| 1
| I
| 1
| 1
| 1
| 1
| |
| I
| I

* Formulate the search for the
best window size as a multi-
objective auto-tuning problem

: : Job Stream A Sle
* Taking into account the Manager | |Scheduler| | AX DMA 3 e
datatype precision
HBM Memory Controller
ilGx t """""" ¥  16x t """"
* We make use of OpenTuner ]3 HBM2 Stack 1 %BI\/IZ Stack 2

https://github.com/jansel/opentuner
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https://github.com/jansel/opentuner

Precision-optimized Tiling
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Precision-optimized Tiling

Single Precision

)
S—
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Q O
L
96 NGl S
) (a)
O , B
m 2N
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| G- 2 .......................................................
e ® | e« auto-tuned

@
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Resource utilization (%)



Precision-optimized Tiling

Single Precision

Half Precision

= 16] Q208 o8, « 64x649
e
E 14 sl Al g eI e e O T T e e e R e
912 ...............................................................................................................................................................
Qopol b)
S . ~
E 8 ................................................... ’ hand_tuned ........
| -

6 ...........................................................
£ «  auto-tuned
q) 4 ....... ' ....................................... D S—
O 5 6 7 8 9 10

Resource utilization (%)
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Precision-optimized Tiling

Pareto-optimal tile size depends on

the data precision

80
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NERO Performance Analysis

Vertical Advection

Number of PEs
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NERO Performance Analysis

Vertical Advection

Horizontal Diffusion

0.84

Number of PEs

8 12
Number of PEs

14
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NERO Performance Analysis

NERO is 4.2x and 8.3x faster than

a complete POWERO9 socket

84



Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Etficiency Analysis

Summary



How Energy Efficient is NERO?

Vertical Advection

W

N

Energy Efficiency (GFlop/s/Watt)

0 4 8 12 14
Number of PEs



How Energy Efficient is NERO?

Enabling many HBM ports might not always be

the determining factor

87



How Energy Efficient is NERO?

Horizontal Diffusion

N
o

—_
@)

&)

Energy Efficiency (GFlop/s/Watt)
S

o

0 4 8 12 14
Number of PEs
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How Energy Efficient is NERO?

NERO reduces energy consumption
by 22x and 29x compared to
a complete POWER9 socket

NERO provides energy efficiency of
1.5 GFLOPS/Watt and
17.3 GFLOPS/Watt
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Summary

* Motivation: Stencil computation is an essential part of weather prediction
applications

* Problem: Memory bound with limited performance and high energy
consumption on multi-core architectures

e Goal: Mitigate the performance bottleneck of compound weather prediction
kernelsinan  energy-efficient way

e Our contribution: NERO

First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction
application

* Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system

* Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
* Scalability analysis for both DDR4 and HBM-based FPGA boards

 Evaluation

 NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels
* NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt
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Low Precision Processing for High
Order Stencil Computation



Executive Summary

* Motivation: Low precision computing is a promising approach to solve
data movement bottleneck for emerging big data workloads

* Problem: A key barrier to a widespread adoption of reduced-precision
computing is the lack of an architecture exploiting arbitrary precision,
supported by a software layer that controls the precision of
computations

e Our contribution:

» Systematic precision exploration for various 3D stencils for a wide range of number
systems-fixed, float, posit

e Using a state-of-the-art multi-core CPU with FPGA to show the capability of reduced
precision
* Evaluation
* 50% lower bits with only 1% loss of accuracy for all the number systems

* Lower precision leads to “FPGA peak performance of 468-659 GOP/s with
30-50x higher energy efficiency



Stencil Computations and Applications

* Stencils are widely used in many applications:
* fluid dynamics, image processing, atmospheric modelling
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Application Structure

e Stencil is computed using some elementary operations (e.g. weighted
difference)

» Stencil operates on high-order (multi-dimancinnall fiald/arrawv
* Often consists of multiple update steg
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Workload characteristics

* High-order stencil computations are cache unfriendly

 Limited arithmetic intensity: only reuse potential in neighboring
pixels

* Sparse and complex access pattern:

x _Read Array
> LI (1 1111 11 [ 1]

vl [ tJ [WriteArray

Image source: Performance Tuning and Analysis for Stencil-Based Applications on POWERS8 Processor — Xu et al. (2018) 926



Conventional Computation ...

Integer core

Clock
Leakage

. ta Access
» Data access consumes a major part

L1P
L1Pto L2 bus

* Applications are increasingly data hungry DO Data Movement

* Data movement energy dominates compute
* Especially true for off-chip movement

System-level power break down*

* R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, IBM J. Research Develop., vol. 59, no. 2/3, 2015 97



Conventional Computation ...

-loating point

Integer core

Clock
ta Access Leakage

* Data access consumes a major par L1D

L1P
L1P to L2 bus

—

* Applications are increasingly data hungry

L2 cache Data Movement

.

Data movement bottleneck

System-level power break down*

* R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”, IBM J. Research Develop., vol. 59, no. 2/3, 2015 98



Reduced-Precision Computations

 Stencil computations generally use a high-precision number
format
* Many emerging applications use reduced-precision data

types
* Examples: 16-bit floats, 8 or 16-bit integers.

y Quantization

N

Accuracy/Energy
trade-off?




Alternative platforms

Processing Units
ASICs for
emerging
workloads, e.g.
Google TPU

FLEXIBILITY Registers

Control
Unit

EFFICIENCY

(CU) Arithmetic
Logic Unit
(ALU)

00 00 0O oo 25

00 00 0o oo
[ |
]
||
[ |

FPGAs ideal for adapting to rapidly evolving workloads!
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Problem statement

e Stencils have many applications, but difficult to map to traditional
platforms

* Low precision computing is a promising approach to solve data
movement bottleneck for emerging big data workloads

* FPGAs might enable energy-efficient mapping of various stencil
applications

Main contributions:

. Systerlnatic exploration of reduced-precision number formats for
stencils

* A case study on a state-of-the-art IBM MPSoC + FPGA platform
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Outline

* Introduction

* Precision exploration

 Evaluation on MPSoC + FPGA platform
* Conclusions
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Precision Exploration Methodology

Designer Input
Code instrumentaton —»
Error metric

Emulation
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Step 1: Code Instrumentation

Designer Input
Code instrumentaton —»
Error metric
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High-order stencil benchmarks

» Elementary stencil: 7 and 25 points
« Compound stencil: horizontal diffusion

» Sweep over a 3D grid with 1280 x 1080 x 960 output pixels
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Step 2: Precision Tuning

Designer Input
Code instrumentaton
Error metric

e

Emulation

Error Tracking
__ Online 2-norm matrix

based tracking

o

106



Arbitrary Number Formats

* Fixed-point- Xilinx fixed-point library from the Vivado 2018.2
* Dynamic Floating-point —Floatx library *

* Posit- Universal number system 2

w i bits (w-i) bits
integer fraction Fixed-point )
1 bit e bits m bits .
+/- exponent mantissa Dyna_mic _ >Arbltrary
Floating-point( Formats
1 bit ri...r, bits €1,€5...€5 bits mantissa, if any
+/- | regime exponent fraction Posit

 https://github.com/oprecomp/FloatX
2https://github.com/stillwater-sc/universal 107



https://github.com/oprecomp/FloatX
https://github.com/stillwater-sc/universal

Step 3: Error Tracking

Designer Input

Code instrumentaton

Error metric

B>

Precision Tuning
Exhaustive search

Fixed

Float

Posit
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Results — Emulated Precision Tuning

* Float and Posit obtain full accuracy with less bits
e Significant bit width reduction with accuracy loss of 1%
* Compound stencils require higher dynamic range than 7 and 25 kernel

1 fixed(w,i)
Bl floatx(e,m)
El posit(n,es)
32
D 28
@ 24
8 20
L 16

100 99.9999.9 99 95 90
(a)

/-point 109



Outline

* Introduction

* Precision exploration

* Evaluation on MPSoC + FPGA platform
* Conclusions
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Case Study: CPU+FPGA

* Host System
* |IBM POWER9

* FPGA board

e Xilinx Virtex®
Ultrascale+™
XCVU3P-2

* Power: IBM
AMESTER?

IBM
Power9

P9

Processor Bu:

Core
g
MC

CAPI

g

Host DRAM

) . ! = - i
4'@%. Memory Controller

PCle
Gen4
T
J_ FPGA DRAM

CPU-FPGA co-design execution flow

98% stencil

Host Data
Preparation

CAPI2.0 execution time

| '

FPGA
execution

Host Data
Storage

-
CAPI2.0

3https://github.com/open-power/amester
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I Techno

300 Instructions

Virt Addr
Variables

Storage Area

Variables

Device Driver

Input

Input
Data e

Data

Output
Data

3 versions of the data (not coherent).
1000s of instructions in the device driver.

logy Overview

External
Output

Typical I/O Model Flow:| Total ~13us for data prep |

10,000 Instructions Application 3,000 Instructions
/ Dependent, but
7.9us Equal to below

Dionysios Diamantopoulos, IBM Research — Zurich, COOL Chips 2018

4.9us

1,000 Instructions

\1,000 Instructions/

Virt Addr

POWERS POWERS POWERS POWERS POWERS

Core Core Core Core

Flow with a CAPI Model: Total 0.36ps

400 Instructions

0.3us

100 Instructions

0.06ps

Application
Dependent, but
Equal to above
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The Accelerator Architecture

* Accelerators are acting as peers to CPU, by accessing the main

memory through a high-performance cache-coherent link, enabled
by PSL.

Host POWER System STENCIL API | libCXL
: Coherent Accelerator » Offloading jobs (“actions”) to accelerators
OS / Virtual Memory/ CPU Processor Proxy (CAPP) g ( )

is handled by a software-defined API, with

EPGA an interrupt-based queuing mechanism,

S allowing minimal CPU usage (thus power)
' POWER Service Layer (PSL) - during FPGA use.

AXI Full Bus AXI Lite Bus
Burst Transactions STENCIL-SNAP MMIO Control registers

T R

Job AXI Stream Processing Elements Array

1

PE | PE | PE | PE | PE
.|Manager|| DMA | |Scheduler — .
I Partitioned On-chip Memory

Accelerated "Actions"

__________________________________________________
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FPGA-aware Roofline

* Performance gap on multi-core bridged by exploiting data locality
* FPGA improves throughput by 2.5x — 4.1x compared to multi-core
* Using reduced-precision formats improves throughput by additional ~2x

Attainable Performance [G(FL)OP/sec]

107

-
o

=
o

=
o

Roofline for POWER9(8335 GTH, 16-cores, SMT4) and AD9V3 FPGA

3

-

o

N
e

i 468. A.5279 i 4 659.1
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/
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10
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FPGA energy-efficiency

* MPSoC to FPGA: 10x — 30x energy-efficiency
* Single-precision to half-precision float: reduced #DSPs and #BRAMs per FLOP

* Float to Fixed-point: significant reduction in #DSPs per FLOP
* Reducing bit-width further only reduces #BRAMs (#DSPs remain the same)

(00]
o

—&— 7/point
70 i . fixed(21,5) fixed(11,5)
>0 25point . ‘e
C © 60 —e— HDIFF
o=
Y5 50
Y O .
= fixed(22,7) fixed(14,7)
—a 40 _
o0 fixed(16,4)
Ed 30 fixed(20,4)
&)
=20

floa

=
o

Precision Types
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Conclusion and Summary

* Motivation: Low precision computing is a promising approach to solve
data movement bottleneck for emerging big data workloads

* Problem: A ke?/1 barrier to a widespread adoption of reduced-precision
computing is the lack of an architecture exploiting arbitrary precision,
supported by a software layer that controls the precision of
computations.

e Our contribution:

* Systematic precision exploration for various 3D stencils for a wide range of number systems-fixed, float,
posit
* Using state-of-the-art MPSoC with FPGA to show the capability of reduced precision

e Evaluation

* 50% lower bits with only 1% loss of accuracy for all the number systems

* Lower precision leads to “FPGA peak performance of 468-659 GOP/s with
30-50x higher energy efficiency
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NAPEL: Near-Memory Computing
Application Performance Prediction
via Ensemble Learning



Executive Summary

* Motivation: A promising paradigm to alleviate data movement
bottleneck is near-memory computing (NMC), which consists of
placing compute units close to the memory subsystem

* Problem: Simulation times are extremely slow, imloosir_\g long run-
time especially in the early-stage design space exploration

e Goal: A quick high-level performance and energy estimation
framework for NMC architectures

e Our contribution: NAPEL

* Fast and accurate performance and energy prediction for previously-unseen applications using ensemble
learning

 Use intelligent statistical techniques and micro-architecture-independent application features to
minimize experimental runs

e Evaluation

* NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
* Error rates (average) of 8.5% and 11.5% for performance and energy estimation

We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/
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Paradigm Shift - NMC

* Compute-centric to a data-
centric approach

* Biggest enabler — stackin — :
technolegyrenn — T
hhhd ) —
I 1 )
ereonmact M Logic layer DDRAM aver N

Link Link ....| Link
Ctrl Ctrl Ctrl

R

External Interface 121

Core Core .... Core




NMC Simulators

e Simulation for:

* Design space exploration (DSE)
* Workload suitability analysis

* NMC Simulators:
* Sinuca, 2015
e HMC-SIM, 2016
e CasHMC, 2016
* Smart Memory Cube (SMC), 2016
 CLAPPS, 2017
* Gem5+HMC, 2017
e Ramulator-PIMz, 2019

Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/ 122



NMC Simulators

Simulation of real workloads can be 10000x slower

than native-execution!!!
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NMC Simulators

Idea: Leverage ML with statistical techniques for

quick NMC performance/energy prediction
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INAPEL: Necar-Memory Computing Application
Pertormance Prediction via Ensemble Learning

NAPEL Model Training

SRS )
LLVM Kernel Analyzer (1 Hyper-parameter
| . Tuning /
lAplecatlon Instruction | Memory ILP Application 7
| l T Mix Behavior "\ Features © 1
.. | Ensemble Model i
coEe Microarchitecture Simulation @ | Training Learning Generation| |
Instrumentation . | Dataset Alcorith g
) Pro Instructions | - gorithm
gram : - :
— Execution Trace [ JferCycle ) |
Simulation +Hardware ||
Traces Features / | Validation
L J/
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Phase 1: LLLVM Analyzer

-
LLVM Kernel Analyzer (1
|Application Instruction | Memory e
| l Mix Behavior ’
Code
Instrumentation
| Program
. Trace
Execution : . -
Simulation
Traces
N

126



Phase 2: Microarchitecture Simulation

4 ™
| Application
e Microarchitecture Simulation & .
Instrumentation
| Program
4 o Execgution . Trace. -
R ™ T Simulation
High— O : Q. races
Central .:--- ----- ‘I- ----- --’6 -
\\‘ : / Central composite design of experiments technique to minimize the number of
Low— - : -O . . .
ving | g x experiments while data collection
I | B

I. w +
Min Low Central  High Max
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Phase 3: Ensemble ML Training

Application Features

Instruction Mix

- ke e ——— m—
Reuse distance . / \\.
; ,nyper-parameter‘x‘
Memory traffic Tuning

Register traffic Application 9 \ /
_ Features l
Memory footprint

' (—_. . | Ensemble
., Training Lesarnin G MOd(:‘I
Architecture Features " Dataset g eneration
Instructions | ———

~ | Algorithm
Core type L

#PEs

Per Cycle
+ Hardware
Features

Core frequency

Validation

S Cache line size

DRAM layers

Cache access fraction

DRAM access fraction
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NAPEL Framework

Application

|

Code
Instrumentation

%

—

LLVM Kernel Analyzer o

Instruction| | Memory

Mix Behavior ILP

Microarchitecture Simulation @

Program
. Trace
Execution . .
Simulation
Traces

NAPEL Model Training

_ [ Application
Features

Instructions
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+ Hardware
Features

N
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- Algorithm
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NAPEL Prediction

AN

New Code Instruction
Application Instrumentation Mix

(NAPEL Model Prediction

Memory

Behavior ILP

LLVM Kernel AnalyzerQ

Application
Features

NMC
Prediction

Model

Performance/
Energy
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Experimental Setup

* Host System
* IBM POWER9 NMC Subsyste% Application

* Power: AMESTER /" Host CPU | |
Host 3D | |
Processor Stacked __ K |
* NMC Subsystem B Memory / } o
* Ramulator-PIM* Cache =}Kernel
‘ e
]

\Hierarchy / NMC Cores/
v
- ¥

 Workloads

* PolyBench and Rodinia

* Heterogeneous workloads such as image processing, machine
learning, graph processing etc.

e Accuracy in terms of mean relative error (MRE)

thttps://github.com/CMU-SAFARI/ramulator-pim/ 131



NAPEL Accuracy: Performance and Energy Estimates

80
v . . 1<
2 60 A (a) Performance prediction Decision tree
&R ‘ B ANN
& = 40 - m NAPEL N
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$ w20 - . “in
S it it T i it N .00
0 NS T NN NN | i NN NN AN i
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NAPEL Accuracy: Performance and Energy Estimates

Decision tree

.g __ 80 - (b) Energy prediction

© X ] <
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Speed of Evaluation

Application Training/Prediction Time

Name #DoE conf. DoE run (mins) Train+Tune (mins) Pred. (mins)
atax 11 D22 34.9 0.49
bfs 31 1084 34.2 0.48
bp 5 | 1073 43.8 0.47
chol 19 741 34.9 0.49
gemv 19 741 24.4 0.51
gesu 19 7351 36.1 0.51
gram 19 73 36.5 0.92
kme 31 742 36.9 0.55
lu 19 633 37.9 0.51
mvt 19 955 38.0 0.54
syrk 19 928 35.7 0.51
trmm 19 898 37.6 0.48

1200
o
-
2 1000
o

@)
2 = 800
Sl
S £ 600
— (O
fills
S O 400
- (@)
L 200
<
P

- 256 DoE
configurations
B for 12

evaluated
applications

1 DoE configurations
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Speed of Evaluation

1200

Application Training/Prediction Time >

kme 31 742 36.9 0.55 w 3

lu 19 633 37.9 0.51 "

mvt 19 955 38.0 0.54 % 200
syrk 19 928 35.7 0.51 =

trmm 19 898 37.6 0.48 o -+
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Use Case: NMC Suitability Analysis

* Assess the potential of °
offloading a workload to NMCc >

J Actual
B NAPEL

10

* NAPEL provides accurate
prediction of NMC suitability

EDP Reduct

O - N W b

* MRE between 1.3% to 26.3%
(average 14.1%)
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Conclusion and Summary

Motivation: A promising paradigm to alleviate data movement bottleneck is near-memory
computing (NMC), which consists of placing compute units close to the memory subsystem

Problem: Simulation times are extremely slow, imposing long run-time especially in the
early-stage design space exploration

Goal: A quick high-level performance and energy estimation framework for NMC
architectures

Our contribution: NAPEL

 Fast and accurate performance and energy prediction for previously-unseen
applications using ensemble learning

* Use intelligent statistical techniques and micro-architecture-independent application
features to minimize experimental runs

Evaluation
* NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
* Error rates (average) of 8.5% and 11.5% for performance and energy estimation

We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/
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LEAPER:

Modeling Cloud FPGA-based
systems via transfer learning



Executive Summary

Motivation: Machine-learning-based models have gained traction to overcome the slow downstream
implementation process of FPGAs.

Problem: (1) A model trained for a specific environment cannot predict for a new, unknown environment (2)
Training requires large amounts of data, which is cost-inefficient because of the time-consuming FPGA design
cycle.

Goal: Leverage and transfer our ML-based performance models trained on a low-end local system to a new,
unknown, high-end FPGA-based system, thereby avoiding the aforementioned two main limitations of traditional
ML-based approaches.

Our contribution:

* First transfer learning-based approach for FPGA-based systems that allows us to leverage a model trained on a
low-end edge FPGA and adapt it to high-end FPGA-based systems via few-shot learning.

Evaluation

 Demonstrate our approach across five state-of-the-art, high-end FPGA-based platforms with three different
interconnect technologies on six real-world applications.

* Transferred models from a low-end edge board to high-end FPGA-based systems achieve high accuracy of 80-
90% for resource prediction.
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Traditional Approach

Low-end FPGA 7 ML model for
. Fast A . low-end FPGA
bitstream o o° . m—--
generation ® o ® arge amatin A
. Cheap ) > of samples
. o
e Easily ' @
accessible Configuration Traditional
- siow High-end FPGA 2 Learning
bitstream o ML model for
generationg o o° high-end FPGA
I: Expenive ‘\ ® P —
Not eas_lly ) e LIPS e Large amount/L
accessible * o of samples
* Noisy and Confi
Error-prone on /guratlon

140



Our Approach
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Results: Resource Model Transfer

100 Base Learner: BLSTM" 01l @2 @5 @310 @15 @20 .25I 100 Base Learner: CEDD =D12H5 .1Om15.20.25|‘_'_
90 4 .

o
e
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Accuracy (%)
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Transferred models achieve high accuracy
of 80-90% for resource prediction
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