VECTOR
UNIVERSITY OF -\¢ INSTITUTE
¥/ TORONTO @

Efficient DNN Training at Scale:
from Algorithms to Hardware

Gennady Pekhimenko, Assistant Professor

EcoSystem Group

https://github.com/tbd-ai/tbd-suite tbd-suite.ai

Systems/Architecture Is a Servant for ML

ML Researcher

System-level optimizations for DNNs

Researchers proposed many system-level
optimizations for DNN computation,
however, their performance largely
depends on the entire stack

Given a full-stack configuration:

« How much better can we do to improve
nerformance?

« How to identify future opportunities?

Algorithm

ResNet

GNMT

BERT

SSD

Software;
Framework

@
\
lensor

PYTHRCH

Library

cuDNN

MKL

Hardware:
Accelerator

CPU

GPU

TPU

FPGA

Connection

PCle || Ethernet “ Infiniband “ NVLink

IISWC 2018

In collaboration with Project Fiddle (MSR)

Diverse benchmark suite with
state-of-the-art models

Performance bottlenecks
in DNN Training

Analysis &
Optimizations

Tools Key performance metrics

Diverse benchmark suite with
state-of-the-art models

Analysis &

Optimizations

Training Benchmarks for DNNs (TBD), Jan. 2018

Applications Models Dataset # of layers Dominant layer Maintainer
Image ResNet-50 74,¢ 50 (152 max)
Classification Inception-v3 14¢ ImageNet 42 CONV Hongyu Zhu
Machine Seq2Seq 7 \WSLT15 5 LSTM Bojian Zheng
Translation Transformer 7y 12 Attention Andrew Pelegris
Object Detection Faster RCNN 7y Hongyu Zhu
Mask RCNN » el ek 0 CIonY Zilun Zhang
Speech " Kuei-Fang Hsueh
Recognition Deep Speech 2 p LibriSpeech 7 (9 max) RNN Jiahuang Lin
AEIIICIE e NCF , MovieLens 4 GMF, MLP Izaak Niksan
System
Adversarial WGAN ; Downsampled 14+14 CONV Andrew Pelegris
Network ImageNet
Sl e A3C 7y Atari 2600 4 CONV Mohamed Akrout

Learning

(Footnotes indicate available implementation: T for # , M for @xnet , C for CNTK » P for pytbreH)

TBD Benchmark Suite, Aug. 2020 update

Applications

Image
Classification

Machine
Translation

Object Detection

Speech
Recognition
Language
Modeling

Reinforcement
Learning

(Footnotes indicate available implementation: 7 for ¥

tbd-suite.ai

Models Dataset
ReSN.et'5O ™ ImageNet
Inception-v3 7,

Seq2Seq IWSLT16
Transformer 7y
Mask RCNN TP
EfficeintDet 1 p COCO
Deep Speech 2 p LibriSpeech
BERT SQuAD
MiniGo 7

of layers Dominant layer
50 (152 max)
49 CONV
5 LSTM
12 Attention
101 CONV
7 (9 max) RNN
24 BERT block
38 CONV

M for @Xnet, P forpyTHRCH)

https://github.com/tbd-ai/tbd-suite

Maintainer
Xin Li

Yu Bo Gao
Yu Bo Gao

Yu Bo Gao
Cong Wei
Xin Li

Cong Wei

MLPerf -> MLCommons

ML

Founding Members 0 e
etk AMDO1 AI'M gaides erifaur ({cerebras DLLEMC d[_l
: 2
@ amaTRIX (,Enﬂame FACEBOOK Al FUﬁTSU FURIDSA GIGABYTE Google GML GRAPHCORE | -
e
gr Oq‘ Q T % ﬁ;ﬂ;’mm inspur @ Al € xALRAY 4l LANDING Al B¥ Microsoft c q_) O
3 & B
“?1 Nettrixse | opPpPoO Qualcomm ‘ SambaNova SAMSUNG SYNTIANT C) U) 0
Viyrtieai NVIDIA RedHat ’ Bamce GJ CDU q) S
m M o
L Tens vmware £ vMind £XLUNX Supporting Members ~ E@so LSDTech

MLPerf Training, MLSys 2020 MLPerf Inference, ISCA 2020

MLPerf best result speedup The v0.7 (datacenter, edge, mobile) result highlights:

25 weeEee ® 23 submitting organizations

" ® QOver 1,200 peer-reviewed results - twice as many as the first round
® More than doubles the number of applications in the suite

; ® New dedicated set of MLPerf Mobile benchmarks

° ® Randomized third party audits for rules compliance

° I _I -I Read more in the press release.
0 -. -.

https://mlcommons.org/en/inference-datacenter-07/
https://mlcommons.org/en/inference-edge-07/
https://mlcommons.org/en/inference-mobile-07/
https://mlcommons.org/en/news/mlperf-inference-v07/

Analysis &
Optimizations

Key performance metrics

10

Performance Metrics

o Throughput
Number of data samples processed per second

o Compute Utilization
GPU busy time over Elapsed time

o« FP32/FP16/Tensor Core Utilization

Average instructions executed per cycle over Maximum instructions per cycle

« Memory Breakdown
Which data structures occupy how much memory

Analysis &

Optimizations

12

Memory Profiler (BERT)

B PositionwiseFFN
1 I AttentionCell
B Embed

1 Others

| EEZ4 Untrackable

B Feature Maps
Il Parameters
[Others
L2l Untrackable

o0

H 50%

(@)

H 71%

~

H 27%

[\

4% 1 19%

Memory Consumption (GiB)

H 9%

1%

9% K

| 9%

La'yer Data Structure
GPU Memory Consumption Breakdown

)

Feature maps are still more important than weights for memory consumption

Performance bottlenecks
in DNN Training

Analysis &

Optimizations

14

Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang', Yifan Bai!, Gennady Pekhimenko?-?

1 % 2
. VECTOR
Computer Science -\¢ INSTITUTE

nnnnn

MLSys 2020

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

Problem: BP imposes a strong sequential dependency along layers during the

gradient computations.

Key idea: We pfopose scaling BP by Pafallel Scan Algorithm (BPPSA):

 Reformulate B '

* Scaled b . | IIeI-

e)-a-sea-n- OPEFE!"U'IGH.

t

4...............

[

Key Results: O(Icm\n) vs Qn) steps on a,rallehy tem‘s\
s ey Sye i K e Wi

16

BP’s Strong Sequential Dependency

f—b Linear - RelU Linear - Loss —>l
Vi T VI
4 A

r VI
) H‘““"’H: 0f (@) af (+) af ()" "3
fFRL_ 0% e (9) | (de) AN
- / / | \ N
e // // I \\ \\
Jacobian 2 2 1 4 2
>\ I
— af(x) _nllllll- HE lllx-_ul |] | | H H . IIxI_
Vfl = Py Vf(,g)l — — —

‘Strong Sequential Dependency a

ong layers. ‘

17

Rethinking BP from an Algorithm
Perspective

* Problems with strong sequential dependency were
(80’), but in a much simpler context. i

* We propose scaling Back-Propagation by Parallel Scan Aigor|
* Reformulate BP as a scan operation.
* Scale BP by a customized Blelloch Scan algorithm.
* Leverage sparsity in the Jacobians.

18

What is a Scan! Operation?

Binary, associative operator: + ldentity: O

Input sequence: E EI EI

N
J

Nl A~

Exclusive scan: E E E

Compute partial reductions at each step of the sequence.

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)

19

Linear Scan

] 2]][] [s][e] 2]

Step: executing the

operator once. 3
Number of Elements (n) n
Worker (p): an instance of execution;

e.g., a core in a multi-core CPU

On a single worker: perform scan
linearly; takes n steps.

With more workers: Can we achieve
sublinear steps?

15

28|

Blelloch Scan: @ Up-sweep Phase

2] [s][a][s][e][7][8
;
Up-sweep

Al e 26

Compute partial sums
via a reduction tree.

21

Blelloch Scan: @ Down-sweep Phase

Parallel {r n B n IE n
LG

Down-sweep
] [=
B

Combine partial sums
across branches.

Blelloch Scan: Efficiency

Logarithmic
steps along the | 2logn <
critical path.

Reformulate BP as a Scan Operation, _, ,

T

_ (afi+1)
Binary, associative operator: 4A O B=BA Identity: @ Jit1= o%;

o seqverce: [0 [1B 1 1B [[

Exclusive scan:

Key Insight: matrix multiplication in BP is also binary & associative! ‘

24

Scale BP by
Blelloch Scan

Logarithmic
steps along the | 2logn <
critical path!

Down-sweep

&a] Multiplications are

tA’ noncommutative.

End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline

when batch size B=16, sequence length T=1000:
—PBaseline —BPPSA

2.4

- Numerical differences do not effect
» convergence.
@ 2
e
—
o 1.8
=
S 16
©
| S
= 14

< >
1.2 —
0 1000 2000 3(I 2.17% speedup on the overall training time.

Wall-clock Time(S)

26

Sensitivity Analysis: Model Length

Backward Pass Sp Sequence length (T) reflects the
100 Baseline] 108% =

model length n.

5

i BPPSA scales with the model

;}-’. length (n);
until being bounded by the

1 J I number of workers (p).
100 300 10k 30k

Sequence Length (T)

27

O https://github.com/UofT-EcoSystem/hfta

Horizontally Fused Training Array:

An Effective Hardware Utilization Squeezer For Training Novel Deep Learning Models

Shang Wang*12, Peiming Yang*32, Yuxuan Zheng*>, Xin Li*?, Gennady Pekhimenko?'?

4 5.
< intel

1 % 2
) VECTOR
Computer Science ‘ ¢ INSTITUTE
— NVIDIA.

%2 UNIVERSITY OF TORONTO

AAAAA

MLSys 2021

https://github.com/UofT-EcoSystem/hfta

Does Training Utilize the Hardware Well?

MAKING YOUR DATA CENTER 'GREEN'

29

Hardware Resource Usage @ '\

Monitored over 2 months: 51K jobs, 472K GPU hours.

GPU Hour Usage Breakdown

Dist.
Training
Single-GPU 24%
Training
e Other
26%

Single-GPU training:
* Dominates the GPU hour usage.

VECTOR
INSTITUTE

30

Hardware Resource Usage @ '\

GPU Hour Usage Breakdown

Repetitive
Single-GPU
Training
46%

Repetitive single-GPU training:
 Dominates the GPU hour usage.
* Concurrent jobs; same program; different configs.

* For hyper-param. tuning or convergence stability testing.

VECTOR
INSTITUTE

31

e Moiation e
Hardware Resource Usage @ '\7‘ VECTOR

INSTITUTE

GPU Utilization
50%

40%
30%
20% o ® ©

10% ¢ ®
0%

o 1 2 3 4 5 6 7 8 9 10 11 12

- . o Job Index
Repetitive single-GPU training:

e (Often have low hardware utilization.

Why? N

___ Background&Motivation I AL Releton
Why Hardware Underutilization?

DL Hardware

XS
N 75X
W=

\1 "; X
T/

2
S\
A‘\\

V¥
y—

33

Performance Optimization is Hard.

More so for system & architecture “novices”
Increasing the batch size? ('J)

Question for @PyTorch and @NvidiaAl folks: | just |
noticed that 5x5 convs (used r?eawly so. my pytorch code is slow. what do peopldjus fo
very slow with fp16 on Volta. I'm guq \ \filinn2 ~brofile iiict tells me run_backwardlis
-U Does—== ,.: h; - ,J~+~ l o *M_ saalloly I
1 tuto])) -
thed® [Discussion] Why are RNNs so slow in §t@psigh?
& Posted b * P eqa D 4/ TheB g = 2 ves ag
78 [D] D 1] A
utiliz Low GPU usage when training
Discuss ‘
Flat Minimum 1 Keras Hi all,

Does not Work univ "é”My = =) low GPU}:erformance is slower than my CPU. Is my GPU too
* Generalization gap.

wear\, anu my 8 core CPU stronger?
* Batch size scaling limit.

*Keskar et al. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017
*Shallue et al. Measuring the effects of data parallelism on neural network training. J. Mach. Learn. Res., 20:112:1-112:49, 2019

Accelerators Get More Powerful.

Compute
Power

Year TPU v1 TPU v2

Unoptimized workload - Harder to utilize well.

35

Why Hardware Underutilization?

DL Hardware

Performance optimization is hard. Accelerators get more powerful.

‘~

How to improve hardware utilization? (°

36

Background & Motivation

Train >1 Models on 1 Accelerator
Simultaneously?

Special features for sharing among arbitrary processes.
(e.g., MPS and MIG on NVIDIA GPUs)

7/ AN

7N

. NVI DIA

Less effective for repetitive training jobs.
=~ Other accelerators (e.g., TPUs) do not possess such features.

What to do instead?

37

Background & Motivation

Key Ideas

HFTA

P 4

3 /// &

‘I!!l.ﬂ“[1/
GHARAGTERISTIGS”

38

Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

39

Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

40

Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

Same types of ops.

41

Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

Same types of ops with the same shapes.

42

Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

rr
P < B v B B

rr
— . B B

Same types of ops with the same shapes.

What to do with it?

43

Inter-model Horizontal Operator Fusion

Learning Rate; =0.01 (L1~ LL S0~ J U -
Learning Rates Fused Fused Fused
We propose: . . .
PIOPPE = {0.01, 0.03} ’ RelU M Linear
ot -2 8-

But, DL stack — training single models on separate accelerators.

| T 4
O PyTorch o @Xnet

sorFlow

ey
offmse

3= i i

= oo gt : . Al

i ., (SR 3 Ji), | (s

- | | i

: EMN : b ' iy b D g
| T <.l -))

.3 = | =

‘ I

e

. : woll
How to |-00--0

S o 44

______ Background&Motivation | WA Rauaton
Implementation Reuse

Horizontally fused ops - other existing mathematically equivalent ops.

) l | I“::‘

What about other ops?

hr

45

Horizontally Fused Training Array (HFTA)

Background & Motivation

Different ops - different rules - tools required.

B Fused -~ Fused -~ Fused
Linear RelU Linear

HFTA

46

Horizontally Fused Training Array (HFTA)

Background & Motivation

We choose PyTorch for its popularity, but the idea is general.

B Fused -~ Fused -~ Fused
Linear RelLU Linear
HFTA
O PyTorch

47

Horizontally Fused Training Array (HFTA)

Background & Motivation

Support all DL framework’s hardware backends.

B Fused -~ Fused B Fused
Linear RelU Linear

HFTA

48

HFTA Components
Learning Rate
m

HFTA
O PyTO rch PyTorch/XLA

V100

49

Background & Motivation HFTA “

HFTA: Fused Operators

Convld, Conv2d, ConvTranspose2d
Linear

MaxPool2d, AdaptiveAv
In Outputs

Dgopout, Dr , X
Heighl?% tghN@m]L Norr Lay vod B
Embeddjng il

Rel¥)¥ReLU6 FF Convac
MultiheadAt , Tra erk ayer

What else can we fuse? 50

______ Background&Motivation | WA Fauaton
HFTA: Fused Optimizers and LR Schedulers

Adadelta, Adam
SteplLR
For Model #1 [
Learning Rate Gradients g% I
(0 # (OIIIIIIIII] - sl

#5
#GH H‘HHHH
#7

What else can we fuse? 51

No Impact on Convergence

Mathematically Equivalent Transformations

Training ResNet-18 on CIFAR-10 with

- Three Different Learning Rates
3.00 -
cme Serial:LR=0.002 eecee HFTA:LR=0.002
" Serial:LR=0.001 HFTA:LR=0.001
2 2.50 - a=Serial:LR=0.0005 ceeee HFTA:LR=0.0005
—]
2 500 A
BE-EE 5550
I= 1.50 A
1.00 1
0.50 -
O'OO T T T T T
0 2000 4000 6000 8000 10000

Training Iterations

What about training throughputs? @ 53

Methcdclogy: Environment

Accelerators:

cuDNN

L 2

|
|
I TPU v3
|
|
|
|
From: I
: Google Cloud
Versions: |
! |
. |
O PyTorch | 1.7
|
& |
NVIDIA. | I
CUDA
! |
! |
! |

..ﬁ.‘o
Eavs

54

_____ Background&Motivation | WM fwlaton
Methodology: Baselines

One model per accelerator.

Serial

ML~

| s

The common practice in hyper-param. tuning frameworks.

55

_____ Background&Motivation | WM fwlaton
Methodology: Baselines

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

Concurrent

Kernels are time-multiplexed.

56

_____ Background&Motivation | WM fwlaton
Methodology: Baselines

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

NS
700

1, 1
I T

Co-run >1 kernels if a single kernel underutilizes the GPU.

57

Background & Motivation HFTA

Methodology: Baselines

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

NN

7
7
A

‘l’lll;A.\\x‘» 25

D

P

RN
N
A

Slice (only) A100 into (< 7) partitions.

58

Methodology: Workloads

Model : PointNet DCGAN ResNet,s MobileNet,;, Transformer BERT \iedium
e e
Point Cloud Point Cloud Images L Language
|
Task | Classification Segmentation Generation Image Classification Modeling (LM) Mask LM
_— . - 1 ———
Dataset | ShapeNet part LSUN CIFAR-10 WikiText-2

| T

Not intensively optimized - realistically reflect novel DL research workloads.

59

V100 Results

Keep sharing with more models until OOM.

 Serial
e Concurrent
e MPS

PointNet Classification on V100

1 2 3 4 5
Number of Training Models

—a— hfta:fp32

-~ —serial:fp32

= mps:fp32
concurrent:fp32

60

V100 Results

Fixed memory budget, HFTA co-trains more models than MPS and concurrent.

PointNet Classification on V100

3
M
2.5 ———
r T
5 7 —a— hfta:fp32
P
s 2 P ~ - serial:fp32
00 A
g 7 —a—mps:fp32
£ 15 < concurrent:fp32
- X
1_4__/_:’..-4————'!
0.5 I I I]
1 2 3 4 5

61
Number of Training Models

V100 Results

Same # of models & same GPU, HFTA achieves higher throughput than all baselines.

PointNet Classification on V100

3
. |
2.5 I I —
5 Lo — i hfta:fp32
e 2 I J, = ~ - serial:fp32
%o 7 —is=mps:fp32
£ 15 I < I concurrent:fp32
= _

~

—

Mixed Precision? (°

1 Z 5 4 D

62
Number of Training Models

How About Mixed Precision?

HFTA can better exploit tensor cores during AMP training than all baselines.

PointNet Classification on V100

6
> — i hfta:fp32
—e—hfta:amp
s 4 — — serial:fp32
o / serial:amp
a0 3 —a—mps:fp32
o //:' - —s—mps:amp
= 2 7 - concurrent:fp32

eaunaqrrent:amp

Different GPUs? (;9

T Z J =F J \v) 7 O 7

Number of Training Models

63

How About Fancier GPUs?

Since Mem(A100) > Mem(RTX6000), HFTA can fit more models on A100.

PointNet Classification on RTX6000

14

Throughput
e
(e))} (0¢] o N

S

—a— hfta:fp32
—e—hfta:amp
— —serial:fp32
serial:amp
—a—mps:fp32
M —e—MmpsS:amp
—a—mig:fp32
—e—mMmig:amp
concurrent:fp32
. concurrent:amp

1 3 5 7 91113151719 2123 25
Number of Training Models

PointNet Classification on A100

14

Throughput
e
(@)} (0e] o N

1 3 5 7 9 111315171921 23 25
Number of Training Models 64

How About TPUs?

HFTA achieves 4.93% over Serial.

PointNet Classification on TPU v3

(@)

| [LT]

(92

N

——hfta

Throughput

w

—serial

N

Lo~ \

Why is HFTA effective? [°°

= = —4 T —g =4 7 A —4

Number of Training Models >

______ Background&Motivation | WA | Faaon
Performance Analysis: Memory

GPU
Memory
Footprint

1 2 1 2

Number of Training Models Number of Training Models

Why?

66

_ Ealaton
Performance Analysis: Memory

Overhead: MPS duplicates the overhead.
(reserved by DL framework stacks)
MPS . HFTA
GPU
Memory
o . . .
1 2 1 2
Number of Training Models Number of Training Models

~

Any other reason why HFTA is effective? [° 67

_ Ewlaton
Performance Analysis: Compute

—a— hfta:fp32 —e—hfta:amp —~ —serial:fp32 ——serial:amp —as—mps:fp32
—e—mps:amp —a—mig:fp32 —e—mMmig:amp concurrent:fp32 concurrent:amp
sm_active on A100 sm_occupancy on A100 tensor_active on A100
0.8 = 0.35 = 0.025 =
0.3 0.02
0.25
0.2 0.015
0.15 0.01
0.1
0.05 0.005
O!IIIIIIIIIIIIIIIIIIIIIIII O’irlrllllllIIIIIIIIIIIIIIIII O rr 171777 110101 1 1 17 17 17 17 17 17T 1T 1T T T1TT1
1 357 91113151719212325 1 357 91113151719212325 1 357 91113151719212325

Number of Training Models Number of Training Models Number of Training Models

_ Ewlaton
Performance Analysis: Compute

sm_active: Fraction of cycles when SMs have resident warps.
sm_occupancy: Ratio of # resident warps over SM’s max. # warps.
tensor_active: Fraction of cycles when tensor cores are active.

Proxy metrics for different
aspects of GPU utilization.

—a— hfta:fp32 —e—hfta:amp —~ —serial:fp32 ——serial:amp —as—mps:fp32
—e—mps:amp —a—mig:fp32 —e—mMmig:amp concurrent:fp32 concurrent:amp
sm_active on A100 sm_occupancy on A100 tensor_active on A100
0.8 = 0.35 = 0.025 =
0.3 0.02
0.25
0.2 0.015
0.15 0.01
0.1
0.05 0.005 -
O!IIIIIIIIIIIIIIIIIIIIIIII O O rr 171777 110101 1 1 17 17 17 17 17 17T 1T 1T T T1TT1
1 357 91113151719212325 1 357 91113151719212325 1 357 91113151719212325

Number of Training Models Number of Training Models Number of Training Models

_ Ewlaton
Performance Analysis: Compute

While MPS & MIG does improve utilization, HFTA is more effective!

—a— hfta:fp32 —e—hfta:amp —~ —serial:fp32 ——serial:amp —as—mps:fp32
—e—mps:amp —a—mig:fp32 —e—mMmig:amp concurrent:fp32 concurrent:amp
sm_active on A100 sm_occupancy on A100 tensor_active on A100
0.8 0.35 = 0.025
' 0.02
0.25
0.015
0.15 0.01
0.05 ¢ 0.005
O!IIIIIIIIIIIIIIIIIIIIIIII O’irlrllIIIIIIIIIIIIIIIIIIIII O rr 171777 110101 1 1 17 17 17 17 17 17T 1T 1T T T1TT1
1 357 91113151719212325 1 357 91113151719212325 1 357 91113151719212325

Number of Training Models Number of Training Models Number of Training Models

More Results in the Paper

PointNet Segmentation, DCGAN, ResNet-18, MobileNetys; ..., Transformer, BERT,;.4iym
* On GPUs, HFTA achieves:

* 2.42% to 11.50% over Serial.

* 1.25% to 4.72% over MPS.

* 1.33% to0 4.88% over MIG.
e On TPUs, HFTA achieves 2.98% to 15.13% over Serial.

HFTA’s Integration with hyper-parameter tuning algorithms.
* Reduce total GPU hour cost by up to 5.10%,

Performance sensitivity study on partially fused ResNet-18.

71

ECHO: Compiler-based GPU Memory Footprint
Reduction for LSTM RNN Training

Bojian Zheng'?, Nandita Vijaykumar!-3, Gennady Pekhimenko?'2

& VECTOR -
Computer Science -\¢ INSTITUTE < lntel
Y 2V

%2 UNIVERSITY OF TORONTO 3

o M'st
AAAAA

S ——

—
—
E——

ISCA 2020

Background: Feature Maps

 Stashed data by the forward pass to compute the backward gradients

(@ Eaatico Mamc)
3 Feature Maps,

[La rge Temporal Gap between Usage]
[1] M. Rhu et al. vDNN: Virtualized Dee.p' Neural
* The cause of high memory footprint in s ey Elneent el

[2] A.Jain et al. Gist: Efficient Data Encoding for

ConVO|Utiona| Neural Networks (CNNS)-[1’ 2] Deep Neural Network Training. ISCA 2018

/3

A
Background: LSTM RNN C)' » |

Neural Machine Translation (NMT)

* Long-Short-Term-Memory Recurrent
Neural Network (LSTM RNN)

* Heavily adopted in sequence analysis
(e.g., machine translation (NMT) &
speech recognition (DeepSpeech?).

DeepSpeech2

* Its training is inefficient on the GPUs,
especially when compared with CNN.[% 2]

[1] J. Bradbury et al. Quasi-Recurrent Neural Networks. ICLR 2016
[2] T. Lei et al. Simple Recurrent Units for Highly Parallelizable Recurrence. EMNLP 2018

r
2

Why LSTM RNN Training is Inefficient?

Training throughput saturates as batch Training throughput is limited by the

Size increases. memary capacity.
= ResNet (CNN) — & NMT (LSTM RNN)
g 300 _—es s s e s . o g g Ly 1 i i T B 12
= = tys | & @
z z 11 GB Memory CapaCJ:cy, g gg
= 200- < 1000 8 U~
w0 75 =
—’ — z\ [,
5 5 2 S e
E" 100+ g* 500+ —— Throughput 4 g E
%D %D ----- Memory 2 %
& gl - | o 0Lf—— | —10
R= 2" 8 16 32 64 = 416 32 64 128
S Batch Size £ Batch Size

Memory capacity limits the NMT training throughput. .

GPU Memory Profiling Results

M Feature Maps

m Weights
Workspace
Untrackable

Feature maps dominate the GPU memory footprint.

76

Selective Recomputation

* Key Idea: Trade runtime with memory.

(@ Eant o Mamc) o

ey > T Total Vermory |
B (n, T)I -

Consumption

- En,T—S | _-onsumption)
U2
& ,
O g
>

Node Index

* The recomputation path should only involve lightweight operators.
77

0 Accurate Footprint Estimation

Example: Z = tanh(X + Y)

For each recomputation to be
efficient, need to estimate its
effect on the global footprint.

Selective Recomputation causes:
(—) increased memory footprint &
—) performance degradation!

/8

0 Accurate Footprint Estimation

For each recomputation to be
efficient, need to estimate its
effect on the global footprint.

Selective Recomputation causes:

(+) feature maps: T*N — 2TN

Global Footprint Analysis:
1. shapes and types
2. reuse Challenging!

@ Non-Conservative Overhead Estimation

Example: Y = XW7T

For each recomputation to be Compute-Heavy
efficient, need to estimate its * 50% of the NMT training time

effect on the runtime overhead. + Excluded in prior works

E. Compute-Heavy Layers |

Layer-Specific Property:
dE dE dE dET
n-a ey

(NO Dependency on Y)

ECHO: A Graph Compiler Pass

* Integrated in the MXNet NNVM!1 module

* Fully Automatic & Transparent
* Requires NO changes in the training source code.

* Addresses the 2 key challenges of Selective Recomputation:

0 Accurate Footprint Estimation
w Bidirectional Dataflow Analysis

@ Non-Conservative Overhead Estimation
w [ayer Specific Optimizations

[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

31

https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

ECHO: Bidirectional Dataflow Analysis

Example: Z; = tanh(X + Y;),i € [1,T]
T

* Storage Reuse AL
Causes ALL correlated operators to Zfl 7o BT
forward propagate simultaneously. B4 [T x N 4@ TxN 4@
sizeof z FeatureMapsnew) < x..ta’nh h tanh |+ tanh
—_—— : l tanh
sizeof ZFeatureMapsold> IlzN_i_Z’IlV J [N

32

Evaluation: Benchmarks

Sockeyelll

[1] F. Hieber et al. Sockeye: A Toolkit for Neural Machine Translation.
Arxiv Preprint 2017

e State-of-the-Art Neural Machine
Translation Toolkit under MXNet

* Datasets:

* IWSLT’15 English-Vietnamese
(Small)

* WMT’16 English-German (Large)

* Key Metrics:
* Training Throughput
* GPU Memory Consumption

* Training Time to
Validation BLEU Score

33

Evaluation: Systems

Baseline System without

Baseline . :
Selective Recomputation
Mirror T. Chen et al.lt i et 2016
Compiler-based Automatic and
ECHO

Transparent Optimizations

34

ECHO ’s Effect on Memory and Performance

Small Dataset, Single-GPU Experiment /‘ 2X Training Batch Size
1 Baselinelg_lgg B Echop-_ 193 B Echop_ o

& e e o
i 7T lllE

[a—
[\

m =
S <2
Q wn
2 9 %1500- [)
=S | Ve
z 2 i L e
2 6 = 1000 — -
o = et
O = :
& 3 2500 | 4
@ ()
: | E
y =
> 0 0
Reduction Ratio Overhead
Niieor Haog Hagh

85

ECHO ’s Effect on Training Convergence

Better

1

Large Dataset, Multi-GPU Experiment,

Same Number of Training Steps

—_——

Validation BLEU Score
W
(]

(=]

N\
N

[a—
o0

[E—
N

(@)

Baseling2® ¢, —e— Mirror2% &2
Target BLEU Score 28.0
: I
< —| 1.00 x
: i
I
i »| 1.08 %
1
»| 0.74 %
0 100 200 300 400 500

Time (min)

—a— Echol' 5}

ECHO achieves:

+ Same Validation BLEU Score
+ Faster Convergence
+ Fewer Compute Devices

36

Gist: Efficient Data Encoding for
Deep Neural Network Training

Illwlllllllll'l"'[‘

In collaboration with Project Fiddle (MSR)
2018

Relu -> Pool

Relu Backward Propagation

Input Feature Output Feature
Map (X) Map (Y)
DNN
Layer

Input Output \/
Gradient (dX) Gradient (dY)
dX = (Y, dY)

dx =y >07dy:O;

Binarize — 1 bit representation
(Lossless)

Relu/Pool -> Conv

Sparsity

Sparsity analysis on VGG16 (10 epochs)

o

p—(o
8

(@) —
- =
©
S

pooll
relu3_1
pool2
pool3
pool4
pool5

relu2 0
relu3_0
relu4 0
relud 1
relus 0

Sparse Storage Dense Compute
(Lossless)

89

Compression Ratio

=
L
-

B Lossless - Lossy

O Basehne B Lossless

aganst CNTh baseline
e
b

Memory [ootprint ratio

=)
-

" AlexNet | NiN | Overfeat | VGG16 ' Inception ' geoMean

Up to 2X compression ratio
With minimal performance overhead

90

Gist Summary

Systematic memory breakdown analysis for image classification

Layer-specific lossless encodings
Binarization and sparse storage/dense compute

Aggressive lossy encodings
With delayed precision reduction

Footprint reduction measured on real systems:
Up to 2X reduction with only 4% performance overhead
Further optimizations - more than 4X reduction

91

New Generation of Debugging/Prediction
Tools

 Daydream: Accurately Estimating the Efficacy of Performance
Optimizations for DNN Training (USENIX ATC’20)

[

 Skyline: Interactive In-editor Performance Visualizations and
Debugging for DNN Training (UIST’20)

* Habitat: Prediction-guided Hardware Selection for Deep Neural
Network Training (USENIX ATC’21)

O PyTorch

92

Skyline

Interactive In-editor Performance
Visualizations and Debugging for
DNN Training

Geoffrey X. Yu, Tovi Grossman,
Gennady Pekhimenko

UNIVERSITY OF VECTOR
INSTITUTE
L TORONTO :

7 resnet.py — ~/projects/remote/skyline/resnet

lh Skyl
e):
(block, - 1
§ widt)
ne THROUGHP!
uper(ResNet, self).) 160
I N
ples
rm_layer nn.Bat
elf € norm_layer
elf. =6
elf. =1
f replace ride th lati is None: PREDICTED MAXINUM
replace_stride_with_dilation = [False, False, False] samples/second
en(replace_stride_with_dilation) ! H
ek or(N
mat(replace_stride_with_dilation))
self.qg groups
self. idth width_per_group
self. = nn.Conv2d(3, self.i I , ker ize=7, stride=2, 1dding=3,
ias=Fal PeAK USAGE

self.bnl = ayer(self.i

self. = nn.ReLU(inp !l 1575

self. = nn.MaxP i(kernel_size=3, stride=2, padding=1)
self.layerl = self._make_layer(block, 64, layers([0])
self.layer2 = self. _make_layer(block, 128, layers[l], stride=2,
dilate=replace_stride_with_dilation[@])
Lf = self J block, 2 [2] tride=2,
dilate=replace_stride_with_dilation[1])

Tired of not knowing why your model is
slow and/or uses up so much memory?

Sam Bowman
@sleepinyourhat

Hal Daumé Il
@haldaume3

Any tips onIidentifying speed bottlenecks (profiling)lwith

@PyTorch? Right now bumbling along with cProfile.

Q28 12:16 PM - May 26, 2017

L See Sam Bowman's other Tweets

Sam Bowman @sleepinyourhat - May 26, 2017 hd

Any tips on identifying speed bottlenecks (pr
@PyTorch? Right now bumbling along with ¢

Joachim Hagege
@JoachimHagege

Hi Sam. I'm|struggling with same issue right
Did you identify best practices since posting
Thanks !

O 10:32 AM - Nov 11, 2018

& See Joachim Hagege's other Tweets

® |l
> 3:47 PM-May 7, 2017

il Daim

" Jeremy Howard W
' @jeremyphoward

Does anyone have any detailed tips, walkthrus, or tutorials on
how tolprofile @PyTorch code running on the GPU?I

I'm trying to optimize efficientnet and want to see exactly where
the time is spent.

QO 312 10:29 AM - Oct 25, 2019 ©)

Q 62 people are talking about this >

dvice forjdebugging slow backw—.. - ——_

% mrdrozdov Andrew Drozdov

33 people are talking about this
Apr'17

| am working with a recursive neural network where the forward pass takes roughly 2s on average, and

the backward pass closer to 7 or 8s. Does this sound like normal behavior? | wonder what | could be

doing which is causing such a slowdown.

| have a lot of narrow/chunk/cat in the model. Could this be a factor?

created

@Apr 7

last reply 4
% Dec 17

1.3k 4

replies views users

:ionlrunning very slow?:ll a
mount of training set, it is t:
y code, | found the loss.bac
er, both score and target a

2019

| @PDE
I|ke link " b, 4

ir Tweets

jay.

y pytorch code is slow.Jwhat do people us for profiling?
le just tells me run_backward is expensive, which is not s

3 of codeland

sher | know.

Model
Model
Model
Model
Model
Model
Model

time
time
time
time
time
time
time

on
on
on
on
on
on
on

dynamic attentior
| use two for loops

®

P

Sam Bowman @sleepinyourhat - May 26, 2017

Any tips on identifying speed bottlenecks (profiling) with
@PyTorch? Right now bumbling along with cProfile.

@zicokolter

@ Zico Kolter
s :

Intersperse torch.cuda.synchronize() liberall
cuda code, to see where the bottlenecks acually are...

hen debuggi

Q4 3:09 PM - May 27, 2017

2 See Zico Kolter's other Tweets

ely slow I

Profiling pytorch scripts?

hughperkins

I've written a pytorch script, aml looking to speed it up.I

I've tried the following:

* use a c4.4xlarge, in cpu mode, instead of Mac OS X, in ¢
Mac ()

e use an aws g2, in cuda mode => twice as fast as Mac lap

e use an aws p2, in cuda mode => another 50% as fast as |

Now at this point, I'm not sure which bits are slow

e |f it was a c++ script, that didnt use cuda, | might use eith
debugger, stop it, and store the stacktrace. do this eg 5-1
tend to me in man yof the stacktraces => this is the bottle

o if it was cltorch, or deepcl, well | pre-instrumented them w

e in pytorch cuda, | suppose | should use an nviida profiler”

Its not clear to me which bits of the program are taking the time,
at a higher level than nvidia profiler probably. Thoughts on idea:
pytorch?

Skyline: Interactive In-editor Performance Debugging

o Key performance metrics 5L, e roupe, replce/stride it oationsone,
(throughput, memory usage) bl Sl 0

e [teration runtime and memory
footprint breakdowns e s it st comtution rvens 182

e Interactive visualizations
linked to batch size predictions

: - \ ; : |

e Live and proactive N e J
performance debugging during e et el b o, T st |
development I i 7974

MaxiMum CapaciTy

OPyTorch & ATOM

96

Skyline: Interactive In-editor Performance Debugging

@ [) |2 resnet.py — ~/projects/remote/skyline/resnet
resnet.py L Skyline

previous_dilation = self.dilation —
if dilate:
self.dilation %= stride

e Key performance metrics

if stride != 1 or self.inplanes != planes *x block.expansion:

= . i (
(t h ro u g h p u t, m e m O ry u Sa ge) downzz:s;il(szqf?ei:;iz::,l planes * block.expansion, stride),

norm_layer(planes * block.expansion),

|
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer)) PREDICTED MAXIMUM
self.inplanes = planes * block.expansion

& Training Throughput

Weights |

THROUGHPUT

160

samples/second

for _ in range(1, blocks): E 182
layers.append(block(self.inplanes, planes, groups=self.groups, xi samples/second
base_width=self.base_width, dilation=self.dilation, @
°
norm_layer=norm_layer)) ®
°
return nn.Sequential(xlayers) é s U e ey (e
183 def forward(self, x, target):l <
x = self.convl(x) PERIAUSACE
x = self.bnl(x)
x = self.relu(x) 1575
x = self.maxpool(x) Megabytes
x = self.layerl(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
MAXIMUM CAPACITY
x = self.avgpool(x) . 7974
x = torch.flatten(x, 1) —
b
x = self.fc(x) . ARG
return self.loss_fn(x, target) e T
Ready
~/projects/remote/skyline/resnet/resnet.py 183:34 LF UTF-8 Python OGitHub ©0-Git (0) @ 1update

97

Skyline: Interactive In-editor Performance Debugging

[) [) |4) resnet.py — ~/projects/remote/skyline/resnet
resnet.py L Skyline

previous_dilation = self.dilation & Training Throughput

if dilate:
self.dilation %= stride
stride = 1

if stride != 1 or self.inplanes != planes * block.expansion: The A
downsample = nn.Sequential(160

convlxl(self.inplanes, planes * block.expansion, stride),

samples/second
norm_layer(planes * block.expansion),

. . layers = [] ' .
* lIteration run time and memory D T R e g
self.inplanes = planes * block.expansion

.
footp rl nt brea kdowns for _ in range(1, blocks): 182
layers.append(block(self.inplanes, planes, groups=self.groups, samples/second

base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))

PREDICTED MAXIMUM

return nn.Sequential(xlayers) € Peak Memory Usage

183 def forward(self, x, target):l
x = self.convl(x) PEAK USAGE
x = self.bnl(x)
x = self.relu(x) 1575
x = self.maxpool(x) Megabytes
x = self.layerl(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
MAXIMUM CAPACITY
x = self.avgpool(x) 7974
x = torch.flatten(x, 1) Veaabyt
x = self.fc(x) coanvies
return self.loss_fn(x, target)
Ready
~/projects/remote/skyline/resnet/resnet.py 183:34 LF UTF-8 Python OGitHub ©0-Git (0) @ 1update

98

Skyline: Interactive In-editor Performance Debugging

self.

THROUGHPU
160
REDICTED MAXIMUM
out = self. out) 182
out = self. out e ‘

e Interactive visualizations
linked to batch size predictions

PEAK USAGE
1575

7974

99

Skyline: Interactive In-editor Performance Debugging

THROUGHPU
160

DICTED MAXIMUM
182

PEAK USAGE

15675

* Live and proactive s = 1
performance debugging during
400 7974

development

100

N e '# resnet.py — ~/projects/remote/skyline/resnet

resnet.py L Skyline

105 class ResNet(nn.Module)ﬂ
def __init_ (self, block
groups=1, w
orn_tayer=f [Nteractive visualizations tied to the code!
super(ResNet, self).
if norm_layer is None:

norm_layer = nn.BatchNorm2d

self._norm_layer = norm_layer

& Training Throughput

|
Weights

THROUGHPUT

159

samples/second

PREDICTED MAXIMUM

181

samples/second

self.inplanes = 64
self.dilation i |
if replace_stride_with_dilation is None:
each element in the tuple indicates if we should replace
the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))

€ Peak Memory Usage

PEAK USAGE

1572

Megabytes

self.groups = groups

self.base_width = width_per_group

self.convl = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)

self.bnl = norm_layer(self.inplanes)

self.relu = nn.ReLU(inplace=True)

self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

self.layerl = self._make_layer(block, 64, layers[0])

self.layer2 = self._make_layer(block, 128, layers[1l], stride=2,

dilate=replace_stride_with_dilation[0])
—— = — e = - - . Ready

MAXIMUM CAPACITY

7974

I Megabytes

Forward and Backward
Activations |
A

~[projects/remote/skyline/resnet/resnet.py 105:25 LF UTF-8 Python OGitHub 0 Git (0) [1update

My Students: EcoSystem Research Group

TR

Hongyu Zhu (PhD)

Bojian Zheng (PhD)
Alexandra Tsvetkova (PhD)
James Gleeson (PhD, co-advised)
Anand Jayarajan (PhD)
Mustafa Quraish (PhD)
Shang (Sam) Wang (MSc)
Jiacheng Yang (MASc)
Pavel Golikov (MSc)
Yaoyao Ding (MASc)
Daniel Snider (MSc)

Kevin Song (MASc)

Yu Bo Gao (BSc)

Kimberly Hau (BASc)
Qingyuan Qie (BSc)
Chenhao Jiang (BSc)
Murali Andoorveedu (BASc)

