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Systems/Architecture Is a Servant for ML 

2

GPU

TPU

ML Researcher



System-level optimizations for DNNs
Researchers proposed many system-level 
optimizations for DNN computation, 
however, their performance largely 
depends on the entire stack

Given a full-stack configuration:

• How much better can we do to improve 
performance?

• How to identify future opportunities?

Algorithm

ResNet GNMT BERT

Software:
Framework

Library
cuDNN MKL Eigen NCCL

SSD

Hardware:
Accelerator

Connection

CPU GPU TPU

PCIe Ethernet Infiniband NVLink

FPGA
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Machine Learning Benchmarking and Analysis
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In collaboration with Project Fiddle (MSR)
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Training Benchmarks for DNNs (TBD), Jan. 2018
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https://github.com/tbd-ai/tbd-suite

Applications Models Dataset # of layers Dominant layer Maintainer

Image 
Classification

ResNet-50 T,M,C

Inception-v3 T,M,C
ImageNet 50 (152 max)

42 CONV Hongyu Zhu

Machine 
Translation

Seq2Seq T,M

Transformer T,M
IWSLT15 5

12
LSTM

Attention
Bojian Zheng

Andrew Pelegris

Object Detection Faster RCNN T,M

Mask RCNN P
Pascal VOC 101 CONV Hongyu Zhu

Zilun Zhang

Speech 
Recognition Deep Speech 2 P, M LibriSpeech 7 (9 max) RNN Kuei-Fang Hsueh

Jiahuang Lin

Recommendation 
System NCF P MovieLens 4 GMF, MLP Izaak Niksan

Adversarial 
Network WGAN T

Downsampled
ImageNet 14+14 CONV Andrew Pelegris

Reinforcement 
Learning A3C T,M Atari 2600 4 CONV Mohamed Akrout

(Footnotes indicate available implementation: T for          , M for                , C for            , P for              ) 

tbd-suite.ai



TBD Benchmark Suite, Aug. 2020 update

https://github.com/tbd-ai/tbd-suite

Applications Models Dataset # of layers Dominant layer Maintainer

Image 
Classification

ResNet-50 T,M

Inception-v3 T,M
ImageNet 50 (152 max)

42 CONV Xin Li

Machine 
Translation

Seq2Seq T,M

Transformer T,M
IWSLT16 5

12
LSTM

Attention
Yu Bo Gao
Yu Bo Gao

Object Detection Mask RCNN T, P

EfficeintDet T, P
COCO 101 CONV Yu Bo Gao

Speech 
Recognition Deep Speech 2 P LibriSpeech 7 (9 max) RNN Cong Wei

Language 
Modeling BERT P SQuAD 24 BERT block Xin Li

Reinforcement 
Learning MiniGo T 38 CONV Cong Wei

(Footnotes indicate available implementation: T for          , M for                ,  , P for                  ) 

tbd-suite.ai



MLPerf -> MLCommons
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MLPerf Training, MLSys 2020 MLPerf Inference, ISCA 2020
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The v0.7 (datacenter, edge, mobile) result highlights:

● 23 submitting organizations
● Over 1,200 peer-reviewed results - twice as many as the first round 

● More than doubles the number of applications in the suite

● New dedicated set of MLPerf Mobile benchmarks
● Randomized third party audits for rules compliance 

Read more in the press release.

https://mlcommons.org/en/inference-datacenter-07/
https://mlcommons.org/en/inference-edge-07/
https://mlcommons.org/en/inference-mobile-07/
https://mlcommons.org/en/news/mlperf-inference-v07/
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Performance Metrics

● Throughput
Number of data samples processed per second

● Compute Utilization
GPU busy time over Elapsed time

● FP32/FP16/Tensor Core Utilization
Average instructions executed per cycle over Maximum instructions per cycle

● Memory Breakdown
Which data structures occupy how much memory

https://github.com/tbd-ai/tbd-suitetbd-suite.ai 11
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Memory Profiler (BERT)

Feature maps are still more important than weights for memory consumption
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Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang1,2, Yifan Bai1, Gennady Pekhimenko1,2

1 2

MLSys 2020



Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL) 
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

16

Problem: BP imposes a strong sequential dependency along layers during the 
gradient computations.

Key idea: We propose scaling BP by Parallel Scan Algorithm (BPPSA):
• Reformulate BP into a scan operation.
• Scaled by a customized parallel algorithm.1 2 3 4 5 6 7 8

0 1 3 6 10 15 21 28
Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.
Up to 108× backward pass speedup (→ 2.17× overall speedup).



BP’s Strong Sequential Dependency

Linear𝑥⃗
𝜵 𝒍
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Strong Sequential Dependency along layers.
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Rethinking BP from an Algorithm 
Perspective
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• Problems with strong sequential dependency were studied in the past 
(80’), but in a much simpler context.

• We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale BP by a customized Blelloch Scan algorithm.
• Leverage sparsity in the Jacobians.



What is a Scan1 Operation?

Input sequence:

Binary, associative operator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

19

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)



Linear Scan

20

1 2 3 4 5 6 7

3

6

10

15

21

28

On a single worker: perform scan 
linearly; takes n steps. 

Worker (p): an instance of execution; 
e.g., a core in a multi-core CPU 

Number of Elements (n)

With more workers: Can we achieve 
sublinear steps?

Ti
m

e

n

Step: executing the 
operator once.



Blelloch Scan: ①Up-sweep Phase

21

1 2 3 4 5 6 7 8

3 7 11 15

10 26A B

A+B

Up-sweep

Compute partial sums 
via a reduction tree.

Ti
m

e



Blelloch Scan: ② Down-sweep Phase
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1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

A

B

B

A+B

Down-sweep

Combine partial sums
across branches.

Ti
m

e

Parallel

28



Blelloch Scan: Efficiency
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2logn
Logarithmic
steps along the 
critical path.

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

Ti
m

e

28



I G7 G6 G5 G4 G3 G2 G10 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J11 2 3 4 5 6 7 8

Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

24

A ◊ B = BA

Gi= 𝜵𝒙𝒊𝒍

Ji+1	=
𝝏𝒙𝒊"𝟏
𝝏𝒙𝒊

𝑻

Key Insight: matrix multiplication in BP is also binary & associative!

+ Identity: I0



Scale BP by 
Blelloch Scan

2logn
Logarithmic
steps along the 
critical path!

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4 I

G6 I J3:4 G4

G7 I J6 G6 J4 G4 J2 G2

I G7 G6 G5 G4 G3 G2

Ti
m

e

A

B

B

BA

Down-sweep

AB

Matrix 
multiplications are 
noncommutative. G1
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Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:
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Numerical differences do not effect 
convergence.

2.17× speedup on the overall training time.
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Sequence Length (T)

Backward Pass Speedup over 
Baseline

Sensitivity Analysis: Model Length

27

Sequence length (T) reflects the 
model length n.

BPPSA scales with the model 
length (n);

108× = 

until being bounded by the 
number of workers (p).



Horizontally Fused Training Array: 
An Effective Hardware Utilization Squeezer For Training Novel Deep Learning Models

Shang Wang4,1,2, Peiming Yang*3,2, Yuxuan Zheng*5, Xin Li*2, Gennady Pekhimenko1,2

1 2 3 4 5

https://github.com/UofT-EcoSystem/hfta

MLSys 2021

https://github.com/UofT-EcoSystem/hfta


Background & Motivation HFTA Evaluation

Does Training Utilize the Hardware Well?

29



Background & Motivation HFTA Evaluation

Hardware Resource Usage @

30

Monitored over 2 months: 51K jobs, 472K GPU hours.

Dist. 
Training

24%

Other
26%

Single-GPU 
Training

50%

GPU Hour Usage Breakdown

Single-GPU training:
• Dominates the GPU hour usage.



Background & Motivation HFTA Evaluation

Repetitive 
Single-GPU 

Training
46%

GPU Hour Usage Breakdown

Hardware Resource Usage @

31

Repetitive single-GPU training:
• Dominates the GPU hour usage.
• Concurrent jobs; same program; different configs. 
• For hyper-param. tuning or convergence stability testing.



Background & Motivation HFTA Evaluation

Hardware Resource Usage @

32

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8 9 10 11 12
Job Index

GPU Utilization

Repetitive single-GPU training:
• Often have low hardware utilization.

Why?



Background & Motivation HFTA Evaluation

Why Hardware Underutilization?

33

DL Hardware

? ?



Background & Motivation HFTA Evaluation

Performance Optimization is Hard.

34

More so for system & architecture “novices”.
Increasing the batch size?

3Keskar et al. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017
4Shallue et al. Measuring the effects of data parallelism on neural network training. J. Mach. Learn. Res., 20:112:1–112:49, 2019

• Generalization gap.
• Batch size scaling limit.

Does not work universally:

Steps

Batch Size



Background & Motivation HFTA Evaluation

Accelerators Get More Powerful.

35

Unoptimized workload → Harder to utilize well. 

Year

Compute
Power V100 A100

TPU v3

P100

TPU v2TPU v1



Background & Motivation HFTA Evaluation

Why Hardware Underutilization?

36

How to improve hardware utilization?

DL Hardware

Performance optimization is hard. Accelerators get more powerful.



Background & Motivation HFTA Evaluation

Train >1 Models on 1 Accelerator 
Simultaneously?

37

Special features for sharing among arbitrary processes. 
(e.g., MPS and MIG on NVIDIA GPUs)

Other accelerators (e.g., TPUs) do not possess such features.
Less effective for repetitive training jobs.

What to do instead?

HMMA

HMMA

MIG

SGEMM

MPS

SGEMM



Background & Motivation HFTA Evaluation

Key Ideas

38



Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03 

Learning Rate1 = 0.01 

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

39

Model

Model
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Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity
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Model

Model



Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

41

Same types of ops. 

ReLU LinearLinear

ReLU LinearLinear



Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

42

ReLU LinearLinear

ReLU LinearLinear

Same types of ops with the same shapes. 



Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

43

ReLU LinearLinearX

ReLU LinearLinearX

Same types of ops with the same shapes. 

What to do with it?
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Learning Rate2 = 0.03

Learning Rate1 = 0.01

Inter-model Horizontal Operator Fusion 

44

ReLU LinearLinearX

ReLU LinearLinearX

Learning Rates 
= {0.01, 0.03} X Fused

ReLU
Fused
Linear

Fused
Linear

But, DL stack

How to                                ?

We propose:

→ training single models on separate accelerators.
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Implementation Reuse

45

bmm

MatMul

SoftMax

Mask

Scale

MatMul

Q K V

Horizontally fused ops → other existing mathematically equivalent ops.

What about other ops?
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Horizontally Fused Training Array (HFTA)

46

HFTA

Different ops → different rules → tools required. 

X Fused
ReLU

Fused
Linear

Fused
Linear
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Horizontally Fused Training Array (HFTA)

47

We choose PyTorch for its popularity, but the idea is general.

HFTA
X Fused

ReLU
Fused
Linear

Fused
Linear



Background & Motivation HFTA Evaluation

Horizontally Fused Training Array (HFTA)

48

Support all DL framework’s hardware backends.

V100 TPU v3

HFTA
X Fused

ReLU
Fused
Linear

Fused
Linear

A100

PyTorch/XLA



Background & Motivation HFTA Evaluation

HFTA Components

49
V100 TPU v3

HFTA

A100

PyTorch/XLA

Operators Optimizers Learning Rate 
Schedulers



Background & Motivation HFTA Evaluation

Conv1d, Conv2d, ConvTranspose2d
Linear 
MaxPool2d, AdaptiveAvgPool2d
Dropout, Dropout2d, 
BatchNorm1d, BatchNorm2d, LayerNorm, 
Embedding 
ReLU, ReLU6, Tanh, LeakyReLU,
MultiheadAttention, TransformerEncoderLayer

HFTA: Fused Operators

50

Conv2d

Conv2d

Inputs Outputs
Filters

Grouped 
Conv2dHeight

Width

Channel

What else can we fuse?
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HFTA: Fused Optimizers and LR Schedulers

51

GradientsLearning Rate

Adadelta, Adam
StepLR

For Model #1
#2

#4
#3

#5
#6
#7

What else can we fuse?
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No Impact on Convergence
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Mathematically Equivalent Transformations
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Training ResNet-18 on CIFAR-10 with 
Three Different Learning Rates

Serial:LR=0.002 HFTA:LR=0.002
Serial:LR=0.001 HFTA:LR=0.001
Serial:LR=0.0005 HFTA:LR=0.0005

What about training throughputs?
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Methodology: Environment
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Accelerators:

From:

RTX6000V100 A100 TPU v3

1.6

7.6.5

1.7

8.0.2

1.7

10.2 11.0.3

Versions:
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Methodology: Baselines
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GEMM

Serial

The common practice in hyper-param. tuning frameworks.

One model per accelerator.



Background & Motivation HFTA Evaluation

Methodology: Baselines
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SGE MM

SGE MM

Concurrent

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

GEMM

Serial

Kernels are time-multiplexed.



Background & Motivation HFTA Evaluation

Methodology: Baselines
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SGEMM

SGE MM

SGE MM

Concurrent

GEMM

Serial

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

Co-run >1 kernels if a single kernel underutilizes the GPU.

MPS

SGEMM
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Methodology: Baselines
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HMMA

HMMA

MIG

SGE MM

SGE MM

Concurrent

GEMM

Serial

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

Slice (only) A100 into (≤ 7) partitions.

SGEMM

MPS

SGEMM
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Methodology: Workloads
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Model PointNet DCGAN ResNet18 MobileNetV3L Transformer BERTMedium

Task Point Cloud
Classification

Point Cloud
Segmentation

Images 
Generation Image Classification Language

Modeling (LM) Mask LM

Dataset ShapeNet part LSUN CIFAR-10 WikiText-2

Not intensively optimized → realistically reflect novel DL research workloads. 
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HFTA achieves significantly higher peak throughput than all baselines:
• Serial
• Concurrent
• MPS

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Th
ro

ug
hp

ut

Number of Training Models

PointNet Classification on V100

hfta:fp32
serial:fp32
mps:fp32
concurrent:fp32

V100 Results

60

Keep sharing with more models until OOM.
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Fixed memory budget, HFTA co-trains more models than MPS and concurrent.

V100 Results
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concurrent:fp32

Same # of models & same GPU, HFTA achieves higher throughput than all baselines.

V100 Results

62

Mixed Precision?
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PointNet Classification on V100
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mps:amp
concurrent:fp32
concurrent:amp

HFTA can better exploit tensor cores during AMP training than all baselines.

How About Mixed Precision? 

63

Different GPUs?
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How About Fancier GPUs?
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PointNet Classification on RTX6000

Since Mem(A100) > Mem(RTX6000), HFTA can fit more models on A100.
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PointNet Classification on TPU v3

hfta

serial

HFTA achieves 4.93× over Serial.

How About TPUs?

65

Why is HFTA effective?
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Performance Analysis: Memory
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GPU 
Memory 
Footprint

Number of Training Models 
1 2

Number of Training Models 
1 2

MPS HFTA

Why?
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Overhead:
(reserved by DL framework stacks)

Performance Analysis: Memory

67

GPU 
Memory 
Footprint

1 2 1 2

MPS HFTA

Number of Training Models Number of Training Models 

MPS duplicates the overhead.

Any other reason why HFTA is effective?
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Performance Analysis: Compute
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Performance Analysis: Compute
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sm_active: Fraction of cycles when SMs have resident warps.
sm_occupancy: Ratio of # resident warps over SM’s max. # warps.
tensor_active: Fraction of cycles when tensor cores are active.      

Proxy metrics for different 
aspects of GPU utilization.
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Performance Analysis: Compute
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While MPS & MIG does improve utilization, HFTA is more effective!
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More Results in the Paper

71

PointNet Segmentation, DCGAN, ResNet-18, MobileNetV3Large, Transformer, BERTMedium
• On GPUs, HFTA achieves:
• 2.42× to 11.50× over Serial.
• 1.25× to 4.72× over MPS.
• 1.33× to 4.88× over MIG.

• On TPUs, HFTA achieves 2.98× to 15.13× over Serial.

HFTA’s Integration with hyper-parameter tuning algorithms.
• Reduce total GPU hour cost by up to 5.10×.

Performance sensitivity study on partially fused ResNet-18.

> $15,000



ECHO: Compiler-based GPU Memory Footprint 
Reduction for LSTM RNN Training 

Bojian Zheng1,2, Nandita Vijaykumar1,3, Gennady Pekhimenko1,2

1 2 3

ISCA 2020



Background: Feature Maps
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• Stashed data by the forward pass to compute the backward gradients

• The cause of high memory footprint in 
Convolutional Neural Networks (CNNs).[1, 2]

Feature Maps

Large Temporal Gap between Usage
[1]  M. Rhu et al. vDNN: Virtualized Deep Neural 

Networks for Scalable, Memory-Efficient Neural 
Network Design. MICRO 2016

[2]  A. Jain et al. Gist: Efficient Data Encoding for 
Deep Neural Network Training. ISCA 2018



• Long-Short-Term-Memory Recurrent 
Neural Network (LSTM RNN)
• Heavily adopted in sequence analysis

(e.g., machine translation (NMT) & 
speech recognition (DeepSpeech2).
• Its training is inefficient on the GPUs, 

especially when compared with CNN.[1, 2]

Background: LSTM RNN

74

Neural Machine Translation (NMT)

DeepSpeech2

[1] J. Bradbury et al. Quasi-Recurrent Neural Networks. ICLR 2016
[2] T. Lei et al. Simple Recurrent Units for Highly Parallelizable Recurrence. EMNLP 2018



Why LSTM RNN Training is Inefficient?

Training throughput saturates as batch 
size increases.

Training throughput is limited by the 
memory capacity.
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Memory capacity limits the NMT training throughput.

NMT (LSTM RNN)ResNet (CNN)

11 GB Memory Capacity



GPU Memory Profiling Results
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Feature maps dominate the GPU memory footprint.

Feature Maps
Weights
Workspace
Untrackable

𝟖𝟕%

MXNet GPU Memory Profiler 



Selective Recomputation

• Key Idea: Trade runtime with memory.

• The recomputation path should only involve lightweight operators.
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𝑻 Total Memory 
Consumption

Feature Maps

Recomputation Path
Recomputation



❶ Accurate Footprint Estimation

For each recomputation to be 
efficient, need to estimate its 
effect on the global footprint.

Example: 𝑍 = tanh 𝑋 + 𝑌
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Selective Recomputation causes:
(−) increased memory footprint & 
(−) performance degradation!

LOSE



❶ Accurate Footprint Estimation

For each recomputation to be 
efficient, need to estimate its 
effect on the global footprint.

Example: 𝑍' = tanh 𝑋 + 𝑌' , 𝑖 ∈ 1, 𝑇
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Selective Recomputation causes:
(+) feature maps: 𝑇𝟐𝑁 → 𝟐𝑇𝑁

Global Footprint Analysis:
1. shapes and types
2. reuse Challenging!



❷ Non-Conservative Overhead Estimation

For each recomputation to be 
efficient, need to estimate its 
effect on the runtime overhead. 

Example: 𝑌 = 𝑋𝑊)

• Compute-Heavy
• 50% of the NMT training time

• Excluded in prior works
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Compute-Heavy Layers

Layer-Specific Property: 
-.
-/
= -.

-0
𝑊 & -.

-1
= -.

-0

#
𝑋

(NO Dependency on 𝑌)



ECHO: A Graph Compiler Pass

• Integrated in the MXNet NNVM[1] module
• Fully Automatic & Transparent
• Requires NO changes in the training source code.

• Addresses the 2 key challenges of Selective Recomputation:
❶ Accurate Footprint Estimation

☞ Bidirectional Dataflow Analysis
❷ Non-Conservative Overhead Estimation

☞ Layer Specific Optimizations
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[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

https://github.com/apache/incubator-mxnet/tree/master/src/nnvm


ECHO: Bidirectional Dataflow Analysis

• Storage Reuse
Causes ALL correlated operators to 
forward propagate simultaneously.

sizeof 8FeatureMaps"#$ ≤

sizeof 8FeatureMaps%&'

Example: 𝑍' = tanh 𝑋 + 𝑌' , 𝑖 ∈ 1, 𝑇
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𝑇*𝑁 ≰ 2𝑇𝑁



Evaluation: Benchmarks

Sockeye[1]
• State-of-the-Art Neural Machine 

Translation Toolkit under MXNet
• Datasets:
• IWSLT’15 English-Vietnamese 

(Small)
• WMT’16 English-German (Large)

• Key Metrics:
• Training Throughput
• GPU Memory Consumption
• Training Time to 

Validation BLEU Score
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[1] F. Hieber et al. Sockeye: A Toolkit for Neural Machine Translation. 
Arxiv Preprint 2017



Evaluation: Systems
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Baseline Baseline System without 
Selective Recomputation 

Mirror T. Chen et al.[1]

ECHO
Compiler-based Automatic and 
Transparent Optimizations

[1] T. Chen et al. Training Deep Nets with 
Sublinear Memory Cost. Arxiv Preprint 2016



Mirror Low HighECHO High Low
Reduction Ratio Overhead

ECHO ’s Effect on Memory and Performance
Small Dataset, Single-GPU Experiment
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2× Training Batch Size

11 GB Memory Capacity



ECHO ’s Effect on Training Convergence
Large Dataset, Multi-GPU Experiment, 
Same Number of Training Steps
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ECHO achieves:
+ Same Validation BLEU Score
+ Faster Convergence
+ Fewer Compute Devices

Better



Gist: Efficient Data Encoding for 
Deep Neural Network Training

In collaboration with Project Fiddle (MSR)



Relu -> Pool
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Relu Backward Propagation

Binarize – 1 bit representation
(Lossless)



Relu/Pool -> Conv
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Sparse Storage Dense Compute
(Lossless)



Compression Ratio
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Up to 2X compression ratio
With minimal performance overhead



Gist Summary

• Systematic memory breakdown analysis for image classification
• Layer-specific lossless encodings

• Binarization and sparse storage/dense compute

• Aggressive lossy encodings
• With delayed precision reduction

• Footprint reduction measured on real systems:
• Up to 2X reduction with only 4% performance overhead
• Further optimizations – more than 4X reduction
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New Generation of Debugging/Prediction 
Tools
• Daydream: Accurately Estimating the Efficacy of Performance              

Optimizations for DNN Training (USENIX ATC’20)

• Skyline: Interactive In-editor Performance Visualizations and 
Debugging for DNN Training (UIST’20)

• Habitat: Prediction-guided Hardware Selection for Deep Neural 
Network Training (USENIX ATC’21)
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Interactive In-editor Performance 
Visualizations and Debugging for 

DNN Training

Geoffrey X. Yu, Tovi Grossman, 
Gennady Pekhimenko

Skyline



Tired of not knowing why your model is 
slow and/or uses up so much memory?



Tired of not knowing why your model is slow
and/or uses up so much memory?



Skyline: Interactive In-editor Performance Debugging

• Key performance metrics 
(throughput, memory usage)

• Iteration run time and memory 
footprint breakdowns

• Interactive visualizations 
linked to batch size predictions

• Live and proactive
performance debugging during 
development
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Skyline: Interactive In-editor Performance Debugging
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• Key performance metrics 
(throughput, memory usage)

• Iteration run time and memory 
footprint breakdowns

• Interactive visualizations 
linked to batch size predictions

• Live and proactive
performance debugging during 
development



Skyline: Interactive In-editor Performance Debugging

• Key performance metrics 
(throughput, memory usage)

• Iteration run time and memory 
footprint breakdowns

• Interactive visualizations 
linked to batch size predictions

• Live and proactive
performance debugging during 
development
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Skyline: Interactive In-editor Performance Debugging

• Key performance metrics 
(throughput, memory usage)

• Iteration run time and memory 
footprint breakdowns

• Interactive visualizations 
linked to batch size predictions

• Live and proactive
performance debugging during 
development
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Skyline: Interactive In-editor Performance Debugging

• Key performance metrics 
(throughput, memory usage)

• Iteration run time and memory 
footprint breakdowns

• Interactive visualizations 
linked to batch size predictions

• Live and proactive
performance debugging during 
development
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Interactive visualizations tied to the code!
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