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Systems/Architecture Is a Servant for ML

ML Researcher



System-level optimizations for DNNs

Researchers proposed many system-level
optimizations for DNN computation,
however, their performance largely
depends on the entire stack

Given a full-stack configuration:

« How much better can we do to improve
nerformance?

« How to identify future opportunities?
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Training Benchmarks for DNNs (TBD), Jan. 2018

Applications Models Dataset # of layers Dominant layer Maintainer
Image ResNet-50 74,¢ 50 (152 max)
Classification Inception-v3 14¢ ImageNet 42 CONV Hongyu Zhu
Machine Seq2Seq 7 \WSLT15 5 LSTM Bojian Zheng
Translation Transformer 7y 12 Attention Andrew Pelegris
Object Detection Faster RCNN 7y Hongyu Zhu
Mask RCNN » el ek 0 CIonY Zilun Zhang
Speech " Kuei-Fang Hsueh
Recognition Deep Speech 2 p LibriSpeech 7 (9 max) RNN Jiahuang Lin
AEIIICIE e NCF , MovieLens 4 GMF, MLP Izaak Niksan
System
Adversarial WGAN ; Downsampled 14+14 CONV Andrew Pelegris
Network ImageNet
Sl e A3C 7y Atari 2600 4 CONV Mohamed Akrout

Learning

(Footnotes indicate available implementation: T for # , M for @xnet , C for CNTK » P for pytbreH)



TBD Benchmark Suite, Aug. 2020 update

Applications

Image
Classification

Machine
Translation

Object Detection

Speech
Recognition
Language
Modeling

Reinforcement
Learning

(Footnotes indicate available implementation: 7 for ¥

tbd-suite.ai

Models Dataset
ReSN.et'5O ™ ImageNet
Inception-v3 7,

Seq2Seq IWSLT16
Transformer 7y
Mask RCNN TP
EfficeintDet 1 p COCO
Deep Speech 2 p LibriSpeech
BERT SQuAD
MiniGo 7

# of layers Dominant layer
50 (152 max)
49 CONV
5 LSTM
12 Attention
101 CONV
7 (9 max) RNN
24 BERT block
38 CONV

M for @Xnet, P forpyTHRCH )

https://github.com/tbd-ai/tbd-suite

Maintainer
Xin Li

Yu Bo Gao
Yu Bo Gao

Yu Bo Gao
Cong Wei
Xin Li

Cong Wei



MLPerf -> MLCommons

ML
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MLPerf Training, MLSys 2020 MLPerf Inference, ISCA 2020

MLPerf best result speedup The v0.7 (datacenter, edge, mobile) result highlights:

25 weeEee ® 23 submitting organizations

" ® QOver 1,200 peer-reviewed results - twice as many as the first round
® More than doubles the number of applications in the suite

; ® New dedicated set of MLPerf Mobile benchmarks

° ® Randomized third party audits for rules compliance

° I _I -I Read more in the press release.
0 -. -.


https://mlcommons.org/en/inference-datacenter-07/
https://mlcommons.org/en/inference-edge-07/
https://mlcommons.org/en/inference-mobile-07/
https://mlcommons.org/en/news/mlperf-inference-v07/

Analysis &
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Key performance metrics
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Performance Metrics

o Throughput
Number of data samples processed per second

o Compute Utilization
GPU busy time over Elapsed time

o« FP32/FP16/Tensor Core Utilization

Average instructions executed per cycle over Maximum instructions per cycle

« Memory Breakdown
Which data structures occupy how much memory



Analysis &
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Memory Profiler (BERT)

B PositionwiseFFN
1 I AttentionCell
B Embed

1 Others

| EEZ4 Untrackable

B Feature Maps
Il Parameters
[ Others
L2l Untrackable
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La'yer Data Structure
GPU Memory Consumption Breakdown

)

Feature maps are still more important than weights for memory consumption



Performance bottlenecks
in DNN Training

Analysis &

Optimizations
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Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang', Yifan Bai!, Gennady Pekhimenko?-?
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Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

Problem: BP imposes a strong sequential dependency along layers during the

gradient computations.

Key idea: We pfopose scaling BP by Pafallel Scan Algorithm (BPPSA):

 Reformulate B '

* Scaled b . | IIeI-

e)-a-sea-n- OPEFE!"U'IGH.

t

4...............

[

Key Results: O(Icm\n) vs Qn) steps on a,rallehy tem‘s\
s ey Sye i K e Wi
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BP’s Strong Sequential Dependency

f—b Linear - RelU Linear - Loss —>l
Vi T VI
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r VI
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fFRL_ 0% e ( 9 ) | ( de ) AN
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>\ I
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‘Strong Sequential Dependency a

ong layers. ‘
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Rethinking BP from an Algorithm
Perspective

* Problems with strong sequential dependency were
(80’), but in a much simpler context. i

* We propose scaling Back-Propagation by Parallel Scan Aigor|
* Reformulate BP as a scan operation.
* Scale BP by a customized Blelloch Scan algorithm.
* Leverage sparsity in the Jacobians.

18



What is a Scan! Operation?

Binary, associative operator: + ldentity: O

Input sequence: E EI EI

N
J

Nl A~

Exclusive scan: E E E

Compute partial reductions at each step of the sequence.

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)

19



Linear Scan

] 2] ][] [s][e] 2]

Step: executing the

operator once. 3
Number of Elements (n) n
Worker (p): an instance of execution;

e.g., a core in a multi-core CPU

On a single worker: perform scan
linearly; takes n steps.

With more workers: Can we achieve
sublinear steps?

15

28|



Blelloch Scan: @ Up-sweep Phase

2] [s][a][s][e][7][8
;
Up-sweep

Al e 26

Compute partial sums
via a reduction tree.

21



Blelloch Scan: @ Down-sweep Phase

Parallel {r n B n IE n
LG

Down-sweep
] [=
B

Combine partial sums
across branches.




Blelloch Scan: Efficiency

Logarithmic
steps along the | 2logn <
critical path.




Reformulate BP as a Scan Operation, _, ,

T

_ (afi+1)
Binary, associative operator: 4A O B=BA Identity: @ Jit1= o%;

o seqverce: [0 [ 1B 1 1B [ [

Exclusive scan:

Key Insight: matrix multiplication in BP is also binary & associative! ‘

24



Scale BP by
Blelloch Scan

Logarithmic
steps along the | 2logn <
critical path!

Down-sweep

&a] Multiplications are

tA’ noncommutative.




End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline

when batch size B=16, sequence length T=1000:
—PBaseline —BPPSA

2.4

- Numerical differences do not effect
» convergence.
@ 2
e
—
o 1.8
=
S 16
©
| S
= 14

< >
1.2 —
0 1000 2000 3(I 2.17% speedup on the overall training time.

Wall-clock Time(S)

26



Sensitivity Analysis: Model Length

Backward Pass Sp Sequence length (T) reflects the
100 Baseline] 108% =

model length n.

5

i BPPSA scales with the model

;}-’. length (n);
until being bounded by the

1 J I number of workers (p).
100 300 10k 30k

Sequence Length (T)

27



O https://github.com/UofT-EcoSystem/hfta

Horizontally Fused Training Array:

An Effective Hardware Utilization Squeezer For Training Novel Deep Learning Models

Shang Wang*12, Peiming Yang*32, Yuxuan Zheng*>, Xin Li*?, Gennady Pekhimenko?'?

4 5.
< intel

1 % 2
) VECTOR
Computer Science ‘ ¢ INSTITUTE
— NVIDIA.

%2 UNIVERSITY OF TORONTO

AAAAA

MLSys 2021


https://github.com/UofT-EcoSystem/hfta

Does Training Utilize the Hardware Well?

MAKING YOUR DATA CENTER 'GREEN'

29



Hardware Resource Usage @ '\

Monitored over 2 months: 51K jobs, 472K GPU hours.

GPU Hour Usage Breakdown

Dist.
Training
Single-GPU 24%
Training
e Other
26%

Single-GPU training:
* Dominates the GPU hour usage.

VECTOR
INSTITUTE

30



Hardware Resource Usage @ '\

GPU Hour Usage Breakdown

Repetitive
Single-GPU
Training
46%

Repetitive single-GPU training:
 Dominates the GPU hour usage.
* Concurrent jobs; same program; different configs.

* For hyper-param. tuning or convergence stability testing.

VECTOR
INSTITUTE

31



e Moiation e
Hardware Resource Usage @ '\7‘ VECTOR

INSTITUTE

GPU Utilization
50%

40%
30%
20% o ® ©

10% ¢ ®
0%

o 1 2 3 4 5 6 7 8 9 10 11 12

- . o Job Index
Repetitive single-GPU training:

e (Often have low hardware utilization.

Why? N



___ Background&Motivation I AL Releton
Why Hardware Underutilization?

DL Hardware

XS
N 75X
W=

\1 "; X
T/

2
S\
A‘\\

V¥
y—
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Performance Optimization is Hard.

More so for system & architecture “novices”
Increasing the batch size? ('J)

Question for @PyTorch and @NvidiaAl folks: | just |
noticed that 5x5 convs (used r?eawly so. my pytorch code is slow. what do peopldjus fo
very slow with fp16 on Volta. I'm guq  \ \filinn2 ~brofile iiict tells me run_backwardlis
-U Does—== ,.: h; - ,J~+~ l o *M_ saalloly I
1 tuto] ) ) -
thed® [Discussion] Why are RNNs so slow in §t@psigh?
& Posted b * P eqa D 4/ TheB g = 2 ves ag
78 [D] D 1 ] A
utiliz Low GPU usage when training
Discuss ‘
Flat Minimum 1 Keras Hi all,

Does not Work univ "é”My = =) low GPU}:erformance is slower than my CPU. Is my GPU too
* Generalization gap.

wear\, anu my 8 core CPU stronger?
* Batch size scaling limit.

*Keskar et al. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017
*Shallue et al. Measuring the effects of data parallelism on neural network training. J. Mach. Learn. Res., 20:112:1-112:49, 2019



Accelerators Get More Powerful.

Compute
Power

Year TPU v1 TPU v2

Unoptimized workload - Harder to utilize well.

35



Why Hardware Underutilization?

DL Hardware

Performance optimization is hard. Accelerators get more powerful.

‘~

How to improve hardware utilization? ( °

36



Background & Motivation

Train >1 Models on 1 Accelerator
Simultaneously?

Special features for sharing among arbitrary processes.
(e.g., MPS and MIG on NVIDIA GPUs)

7/ AN

7N

. NVI  DIA

Less effective for repetitive training jobs.
=~ Other accelerators (e.g., TPUs) do not possess such features.

What to do instead?

37



Background & Motivation

Key Ideas

HFTA

P 4

3 /// &

‘I!!l.ﬂ“[ 1/
GHARAGTERISTIGS”

38



Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

39



Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

40



Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

Same types of ops.

41



Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

Same types of ops with the same shapes.

42



Model Similarity

Launched repetitively (e.g., hyper-parameter tuning)

rr
P < B v B B

rr
— . B B

Same types of ops with the same shapes.

What to do with it?

43



Inter-model Horizontal Operator Fusion

Learning Rate; =0.01 (L1~ LL S0~ J U -
Learning Rates Fused Fused Fused
We propose: . . .
PIOPPE = {0.01, 0.03} ’ RelU M Linear
ot -2 8-

But, DL stack — training single models on separate accelerators.

| T 4
O PyTorch o @Xnet

sorFlow

ey
offmse

3= i i

= oo gt : . Al

i ., (SR 3 Ji ), | (s

- | | i

: EMN : b ' iy b D g
| T <.l - ) )

.3 = | =

‘ I

e

. : woll
How to |-00--0

S o 44



______ Background&Motivation | WA Rauaton
Implementation Reuse

Horizontally fused ops - other existing mathematically equivalent ops.

) l | I“::‘

What about other ops?

hr

45



Horizontally Fused Training Array (HFTA)

Background & Motivation

Different ops - different rules - tools required.

B Fused -~ Fused -~ Fused
Linear RelU Linear

HFTA

46



Horizontally Fused Training Array (HFTA)

Background & Motivation

We choose PyTorch for its popularity, but the idea is general.

B Fused -~ Fused -~ Fused
Linear RelLU Linear
HFTA
O PyTorch

47



Horizontally Fused Training Array (HFTA)

Background & Motivation

Support all DL framework’s hardware backends.

B Fused -~ Fused B Fused
Linear RelU Linear

HFTA

48



HFTA Components
Learning Rate
m

HFTA
O PyTO rch PyTorch/XLA

V100

49



Background & Motivation HFTA “

HFTA: Fused Operators

Convld, Conv2d, ConvTranspose2d
Linear

MaxPool2d, AdaptiveAv
In Outputs

Dgopout, Dr , X
Heighl?% tghN@m]L Norr Lay vod B
Embeddjng il

Rel¥)¥ReLU6 FF Convac
MultiheadAt , Tra erk ayer

What else can we fuse? 50



______ Background&Motivation | WA Fauaton
HFTA: Fused Optimizers and LR Schedulers

Adadelta, Adam
SteplLR
For Model #1 [
Learning Rate Gradients g% I
(0 # (OIIIIIIIII] - sl

#5
#GH H‘HHHH
#7

What else can we fuse? 51



No Impact on Convergence

Mathematically Equivalent Transformations

Training ResNet-18 on CIFAR-10 with

- Three Different Learning Rates
3.00 -
cme Serial:LR=0.002  eecee HFTA:LR=0.002
" Serial:LR=0.001 HFTA:LR=0.001
2 2.50 - a=Serial:LR=0.0005  ceeee HFTA:LR=0.0005
—]
2 500 A
BE-EE 5550
I= 1.50 A
1.00 1
0.50 -
O'OO T T T T T
0 2000 4000 6000 8000 10000

Training Iterations

What about training throughputs? @ 53



Methcdclogy: Environment

Accelerators:

cuDNN

L 2

|
|
I TPU v3
|
|
|
|
From: I
: Google Cloud
Versions: |
! |
. |
O PyTorch | 1.7
|
& |
NVIDIA. | I
CUDA
! |
! |
! |

..ﬁ.‘o
Eavs

54




_____ Background&Motivation | WM fwlaton
Methodology: Baselines

One model per accelerator.

Serial

ML~

| s

The common practice in hyper-param. tuning frameworks.

55



_____ Background&Motivation | WM fwlaton
Methodology: Baselines

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

Concurrent

Kernels are time-multiplexed.

56



_____ Background&Motivation | WM fwlaton
Methodology: Baselines

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

NS
700

1, 1
I T

Co-run >1 kernels if a single kernel underutilizes the GPU.

57



Background & Motivation HFTA

Methodology: Baselines

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

NN

7
7
A

‘l’lll;A.\\x‘» 25

D

P

RN
N
A

Slice (only) A100 into (< 7) partitions.

58



Methodology: Workloads

Model : PointNet DCGAN ResNet,s MobileNet,;, Transformer BERT \iedium
e e
Point Cloud Point Cloud Images L Language
|
Task | Classification Segmentation  Generation Image Classification Modeling (LM) Mask LM
_— . - 1 —————————————————————————————————————————
Dataset | ShapeNet part LSUN CIFAR-10 WikiText-2

| T

Not intensively optimized - realistically reflect novel DL research workloads.

59



V100 Results

Keep sharing with more models until OOM.

 Serial
e Concurrent
e MPS

PointNet Classification on V100

1 2 3 4 5
Number of Training Models

—a— hfta:fp32

-~ —serial:fp32

= mps:fp32
concurrent:fp32

60




V100 Results

Fixed memory budget, HFTA co-trains more models than MPS and concurrent.

PointNet Classification on V100

3
M
2.5 ———
r T
5 7 —a— hfta:fp32
P
s 2 P ~ - serial:fp32
00 A
g 7 —a—mps:fp32
£ 15 < concurrent:fp32
- X
1_4__/_:’..-4————'!
0.5 I I I ]
1 2 3 4 5

61
Number of Training Models



V100 Results

Same # of models & same GPU, HFTA achieves higher throughput than all baselines.

PointNet Classification on V100

3
. |
2.5 I I —
5 Lo — i hfta:fp32
e 2 I J, = ~ - serial:fp32
%o 7 —is=mps:fp32
£ 15 I < I concurrent:fp32
= _

~

—

Mixed Precision? ( °

1 Z 5 4 D

62
Number of Training Models



How About Mixed Precision?

HFTA can better exploit tensor cores during AMP training than all baselines.

PointNet Classification on V100

6
> — i hfta:fp32
—e—hfta:amp
s 4 — — serial:fp32
o / serial:amp
a0 3 —a—mps:fp32
o //:' - —s—mps:amp
= 2 7 - concurrent:fp32

eaunaqrrent:amp

Different GPUs? (;9

T Z J =F J \v) 7 O 7

Number of Training Models

63



How About Fancier GPUs?

Since Mem(A100) > Mem(RTX6000), HFTA can fit more models on A100.

PointNet Classification on RTX6000

14

Throughput
e
(e))} (0¢] o N

S

—a— hfta:fp32
—e—hfta:amp
— —serial:fp32
serial:amp
—a—mps:fp32
M —e—MmpsS:amp
—a—mig:fp32
—e—mMmig:amp
concurrent:fp32
. concurrent:amp

1 3 5 7 91113151719 2123 25
Number of Training Models

PointNet Classification on A100

14

Throughput
e
(@)} (0e] o N

1 3 5 7 9 111315171921 23 25
Number of Training Models 64



How About TPUs?

HFTA achieves 4.93% over Serial.

PointNet Classification on TPU v3

(@)

| [ LT ]

(92

N

——hfta

Throughput

w

—serial

N

Lo~ \

Why is HFTA effective? [ °°

= = —4 T —g =4 7 A —4

Number of Training Models >



______ Background&Motivation | WA | Faaon
Performance Analysis: Memory

GPU
Memory
Footprint

1 2 1 2

Number of Training Models Number of Training Models

Why?

66



_ Ealaton
Performance Analysis: Memory

Overhead: MPS duplicates the overhead.
(reserved by DL framework stacks)
MPS . HFTA
GPU
Memory
o . . .
1 2 1 2
Number of Training Models Number of Training Models

~

Any other reason why HFTA is effective? [ ° 67



_ Ewlaton
Performance Analysis: Compute

—a— hfta:fp32 —e—hfta:amp —~ —serial:fp32 ——serial:amp —as—mps:fp32
—e—mps:amp —a—mig:fp32 —e—mMmig:amp concurrent:fp32 concurrent:amp
sm_active on A100 sm_occupancy on A100 tensor_active on A100
0.8 = 0.35 = 0.025 =
0.3 0.02
0.25
0.2 0.015
0.15 0.01
0.1
0.05 0.005
O!IIIIIIIIIIIIIIIIIIIIIIII O’irlrllllllIIIIIIIIIIIIIIIII O rr 171777 110101 1 1 17 17 17 17 17 17T 1T 1T T T1TT1
1 357 91113151719212325 1 357 91113151719212325 1 357 91113151719212325

Number of Training Models Number of Training Models Number of Training Models



_ Ewlaton
Performance Analysis: Compute

sm_active: Fraction of cycles when SMs have resident warps.
sm_occupancy: Ratio of # resident warps over SM’s max. # warps.
tensor_active: Fraction of cycles when tensor cores are active.

Proxy metrics for different
aspects of GPU utilization.

—a— hfta:fp32 —e—hfta:amp —~ —serial:fp32 ——serial:amp —as—mps:fp32
—e—mps:amp —a—mig:fp32 —e—mMmig:amp concurrent:fp32 concurrent:amp
sm_active on A100 sm_occupancy on A100 tensor_active on A100
0.8 = 0.35 = 0.025 =
0.3 0.02
0.25
0.2 0.015
0.15 0.01
0.1
0.05 0.005 -
O!IIIIIIIIIIIIIIIIIIIIIIII O O rr 171777 110101 1 1 17 17 17 17 17 17T 1T 1T T T1TT1
1 357 91113151719212325 1 357 91113151719212325 1 357 91113151719212325

Number of Training Models Number of Training Models Number of Training Models



_ Ewlaton
Performance Analysis: Compute

While MPS & MIG does improve utilization, HFTA is more effective!

—a— hfta:fp32 —e—hfta:amp —~ —serial:fp32 ——serial:amp —as—mps:fp32
—e—mps:amp —a—mig:fp32 —e—mMmig:amp concurrent:fp32 concurrent:amp
sm_active on A100 sm_occupancy on A100 tensor_active on A100
0.8 0.35 = 0.025
' 0.02
0.25
0.015
0.15 0.01
0.05 ¢ 0.005
O!IIIIIIIIIIIIIIIIIIIIIIII O’irlrllIIIIIIIIIIIIIIIIIIIII O rr 171777 110101 1 1 17 17 17 17 17 17T 1T 1T T T1TT1
1 357 91113151719212325 1 357 91113151719212325 1 357 91113151719212325

Number of Training Models Number of Training Models Number of Training Models



More Results in the Paper

PointNet Segmentation, DCGAN, ResNet-18, MobileNetys; ..., Transformer, BERT,;.4iym
* On GPUs, HFTA achieves:

* 2.42% to 11.50% over Serial.

* 1.25% to 4.72% over MPS.

* 1.33% to0 4.88% over MIG.
e On TPUs, HFTA achieves 2.98% to 15.13% over Serial.

HFTA’s Integration with hyper-parameter tuning algorithms.
* Reduce total GPU hour cost by up to 5.10%,

Performance sensitivity study on partially fused ResNet-18.

71



ECHO: Compiler-based GPU Memory Footprint
Reduction for LSTM RNN Training

Bojian Zheng'?, Nandita Vijaykumar!-3, Gennady Pekhimenko?'2
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Background: Feature Maps

 Stashed data by the forward pass to compute the backward gradients

(@ Eaatico Mamc )
3 Feature Maps,

[La rge Temporal Gap between Usage]
[1] M. Rhu et al. vDNN: Virtualized Dee.p' Neural
* The cause of high memory footprint in s ey Elneent el

[2] A.Jain et al. Gist: Efficient Data Encoding for

ConVO|Utiona| Neural Networks (CNNS)-[1’ 2] Deep Neural Network Training. ISCA 2018

/3



A
Background: LSTM RNN C)' » |

Neural Machine Translation (NMT)

* Long-Short-Term-Memory Recurrent
Neural Network (LSTM RNN)

* Heavily adopted in sequence analysis
(e.g., machine translation (NMT) &
speech recognition (DeepSpeech?).

DeepSpeech2

* Its training is inefficient on the GPUs,
especially when compared with CNN.[% 2]

[1] J. Bradbury et al. Quasi-Recurrent Neural Networks. ICLR 2016
[2] T. Lei et al. Simple Recurrent Units for Highly Parallelizable Recurrence. EMNLP 2018

r
2




Why LSTM RNN Training is Inefficient?

Training throughput saturates as batch Training throughput is limited by the

Size increases. memary capacity.
= ResNet (CNN) — & NMT (LSTM RNN)
g 300 _—es s s e s . o g g Ly 1 i i T B 12
= = tys | & @
z z 11 GB Memory CapaCJ:cy, g gg
= 200- < 1000 8 U~
w0 75 =
—’ — z\ [,
5 5 2 S e
E" 100+ g* 500+ —— Throughput 4 g E
%D %D ----- Memory 2 %
& gl - | o 0Lf—— | —10
R= 2" 8 16 32 64 = 416 32 64 128
S Batch Size £ Batch Size

Memory capacity limits the NMT training throughput. .



GPU Memory Profiling Results

M Feature Maps

m Weights
Workspace
Untrackable

Feature maps dominate the GPU memory footprint.

76



Selective Recomputation

* Key Idea: Trade runtime with memory.

(@ Eant o Mamc ) o

ey > T Total Vermory |
B (n, T)I -

Consumption

- En,T—S | _-onsumption )
U2
& ,
O g
>

Node Index

* The recomputation path should only involve lightweight operators.
77



0 Accurate Footprint Estimation

Example: Z = tanh(X + Y)

For each recomputation to be
efficient, need to estimate its
effect on the global footprint.

Selective Recomputation causes:
(—) increased memory footprint &
—) performance degradation!

/8



0 Accurate Footprint Estimation

For each recomputation to be
efficient, need to estimate its
effect on the global footprint.

Selective Recomputation causes:

(+) feature maps: T*N — 2TN

Global Footprint Analysis:
1. shapes and types
2. reuse Challenging!




@ Non-Conservative Overhead Estimation

Example: Y = XW7T

For each recomputation to be  Compute-Heavy
efficient, need to estimate its * 50% of the NMT training time

effect on the runtime overhead. + Excluded in prior works

E. Compute-Heavy Layers |

Layer-Specific Property:
dE  dE dE  dET
n-a ey

(NO Dependency on Y)




ECHO: A Graph Compiler Pass

* Integrated in the MXNet NNVM!1 module

* Fully Automatic & Transparent
* Requires NO changes in the training source code.

* Addresses the 2 key challenges of Selective Recomputation:

0 Accurate Footprint Estimation
w Bidirectional Dataflow Analysis

@ Non-Conservative Overhead Estimation
w [ayer Specific Optimizations

[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm
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ECHO: Bidirectional Dataflow Analysis

Example: Z; = tanh(X + Y;),i € [1,T]
T

* Storage Reuse AL
Causes ALL correlated operators to Zfl 7o BT
forward propagate simultaneously. B4 [T x N 4@ TxN 4@
sizeof z FeatureMapsnew) < x..ta’nh h tanh |+ tanh
—_—— : l tanh
sizeof ZFeatureMapsold> IlzN_i_Z’IlV J [N
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Evaluation: Benchmarks

Sockeyelll

[1] F. Hieber et al. Sockeye: A Toolkit for Neural Machine Translation.
Arxiv Preprint 2017

e State-of-the-Art Neural Machine
Translation Toolkit under MXNet

* Datasets:

* IWSLT’15 English-Vietnamese
(Small)

* WMT’16 English-German (Large)

* Key Metrics:
* Training Throughput
* GPU Memory Consumption

* Training Time to
Validation BLEU Score
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Evaluation: Systems

Baseline System without

Baseline . :
Selective Recomputation
Mirror T. Chen et al.lt i et 2016
Compiler-based Automatic and
ECHO

Transparent Optimizations
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ECHO ’s Effect on Memory and Performance

Small Dataset, Single-GPU Experiment /‘ 2X Training Batch Size
1 Baselinelg_lgg B Echop-_ 193 B Echop_ o

& e e o
i 7T lllE

[a—
[\

m =
S <2
Q wn
2 9 %1500- [ )
=S | Ve
z 2 i L e
2 6 = 1000 — -
o = et
O = :
& 3 2500 | 4
@ ()
: | E
y =
> 0 0
Reduction Ratio Overhead
Niieor Haog Hagh
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ECHO ’s Effect on Training Convergence

Better

1

Large Dataset, Multi-GPU Experiment,

Same Number of Training Steps

—_——

Validation BLEU Score
W
(]

(=]

N\
N

[a—
o0

[E—
N

(@)

Baseling2® ¢, —e— Mirror2% &2
Target BLEU Score 28.0
: I
< —| 1.00 x
: i
I
i »| 1.08 %
1
»| 0.74 %
0 100 200 300 400 500

Time (min)

—a— Echol' 5}

ECHO achieves:

+ Same Validation BLEU Score
+ Faster Convergence
+ Fewer Compute Devices
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Gist: Efficient Data Encoding for
Deep Neural Network Training

Illwlllllllll'l"'[‘

In collaboration with Project Fiddle (MSR)
2018



Relu -> Pool

Relu Backward Propagation

Input Feature Output Feature
Map (X) Map (Y)
DNN
Layer

Input Output \/
Gradient (dX) Gradient (dY)
dX = (Y, dY)

dx =y >07dy:O;

Binarize — 1 bit representation
(Lossless)




Relu/Pool -> Conv

Sparsity

Sparsity analysis on VGG16 (10 epochs)

o

p—( o
8

(@) —
- =
©
S

pooll
relu3_1
pool2
pool3
pool4
pool5

relu2 0
relu3_0
relu4 0
relud 1
relus 0

Sparse Storage Dense Compute
(Lossless)
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Compression Ratio

=
L
-

B Lossless - Lossy

O Basehne B Lossless

aganst CNTh baseline
e
b

Memory [ootprint ratio

=)
-

" AlexNet | NiN | Overfeat | VGG16 ' Inception ' geoMean

Up to 2X compression ratio
With minimal performance overhead
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Gist Summary

Systematic memory breakdown analysis for image classification

Layer-specific lossless encodings
Binarization and sparse storage/dense compute

Aggressive lossy encodings
With delayed precision reduction

Footprint reduction measured on real systems:
Up to 2X reduction with only 4% performance overhead
Further optimizations - more than 4X reduction
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New Generation of Debugging/Prediction
Tools

 Daydream: Accurately Estimating the Efficacy of Performance
Optimizations for DNN Training (USENIX ATC’20)

[

 Skyline: Interactive In-editor Performance Visualizations and
Debugging for DNN Training (UIST’20)

* Habitat: Prediction-guided Hardware Selection for Deep Neural
Network Training (USENIX ATC’21)

O PyTorch
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Skyline

Interactive In-editor Performance
Visualizations and Debugging for
DNN Training

Geoffrey X. Yu, Tovi Grossman,
Gennady Pekhimenko

UNIVERSITY OF VECTOR
INSTITUTE
L TORONTO :

7 resnet.py — ~/projects/remote/skyline/resnet

lh Skyl
e):
( block, - 1
§ widt )
ne THROUGHP!
uper(ResNet, self). ) 160
I N
ples
rm_layer nn.Bat
elf € norm_layer
elf. =6
elf. =1
f replace ride th lati is None: PREDICTED MAXINUM
replace_stride_with_dilation = [False, False, False] samples/second
en(replace_stride_with_dilation) ! H
ek or( N
mat(replace_stride_with_dilation))
self.qg groups
self. idth width_per_group
self. = nn.Conv2d(3, self.i I , ker ize=7, stride=2, 1dding=3,
ias=Fal PeAK USAGE

self.bnl = ayer(self.i

self. = nn.ReLU(inp !l 1575

self. = nn.MaxP i(kernel_size=3, stride=2, padding=1)
self.layerl = self._make_layer(block, 64, layers([0])
self.layer2 = self. _make_layer(block, 128, layers[l], stride=2,
dilate=replace_stride_with_dilation[@])
Lf = self J block, 2 [2] tride=2,
dilate=replace_stride_with_dilation[1])




Tired of not knowing why your model is
slow and/or uses up so much memory?



Sam Bowman
@sleepinyourhat

Hal Daumé Il
@haldaume3

Any tips onIidentifying speed bottlenecks (profiling)lwith

@PyTorch? Right now bumbling along with cProfile.

Q28 12:16 PM - May 26, 2017

L See Sam Bowman's other Tweets

Sam Bowman @sleepinyourhat - May 26, 2017 hd

Any tips on identifying speed bottlenecks (pr
@PyTorch? Right now bumbling along with ¢

Joachim Hagege
@JoachimHagege

Hi Sam. I'm|struggling with same issue right
Did you identify best practices since posting
Thanks !

O 10:32 AM - Nov 11, 2018

& See Joachim Hagege's other Tweets

® |l
>  3:47 PM-May 7, 2017

il Daim

" Jeremy Howard W
' @jeremyphoward

Does anyone have any detailed tips, walkthrus, or tutorials on
how tolprofile @PyTorch code running on the GPU?I

I'm trying to optimize efficientnet and want to see exactly where
the time is spent.

QO 312 10:29 AM - Oct 25, 2019 ©)

Q 62 people are talking about this >

dvice forjdebugging slow backw—.. - ——_

% mrdrozdov Andrew Drozdov

33 people are talking about this
Apr'17

| am working with a recursive neural network where the forward pass takes roughly 2s on average, and

the backward pass closer to 7 or 8s. Does this sound like normal behavior? | wonder what | could be

doing which is causing such a slowdown.

| have a lot of narrow/chunk/cat in the model. Could this be a factor?

created

@Apr 7

last reply 4
% Dec 17

1.3k 4

replies views users

:ionlrunning very slow?:ll a
mount of training set, it is t:
y code, | found the loss.bac
er, both score and target a

2019

| @PDE
I|ke link " b, 4

ir Tweets

jay.

y pytorch code is slow.Jwhat do people us for profiling?
le just tells me run_backward is expensive, which is not s

3 of codeland

sher | know.

Model
Model
Model
Model
Model
Model
Model

time
time
time
time
time
time
time

on
on
on
on
on
on
on

dynamic attentior
| use two for loops

®

P

Sam Bowman @sleepinyourhat - May 26, 2017

Any tips on identifying speed bottlenecks (profiling) with
@PyTorch? Right now bumbling along with cProfile.

@zicokolter

@ Zico Kolter
s :

Intersperse torch.cuda.synchronize() liberall
cuda code, to see where the bottlenecks acually are...

hen debuggi

Q4 3:09 PM - May 27, 2017

2 See Zico Kolter's other Tweets

ely slow I

Profiling pytorch scripts?

hughperkins

I've written a pytorch script, aml looking to speed it up.I

I've tried the following:

* use a c4.4xlarge, in cpu mode, instead of Mac OS X, in ¢
Mac ()

e use an aws g2, in cuda mode => twice as fast as Mac lap

e use an aws p2, in cuda mode => another 50% as fast as |

Now at this point, I'm not sure which bits are slow

e |f it was a c++ script, that didnt use cuda, | might use eith
debugger, stop it, and store the stacktrace. do this eg 5-1
tend to me in man yof the stacktraces => this is the bottle

o if it was cltorch, or deepcl, well | pre-instrumented them w

e in pytorch cuda, | suppose | should use an nviida profiler”

Its not clear to me which bits of the program are taking the time,
at a higher level than nvidia profiler probably. Thoughts on idea:
pytorch?



Skyline: Interactive In-editor Performance Debugging

o Key performance metrics 5L, e roupe, replce/stride it oationsone,
(throughput, memory usage) bl Sl 0

e [teration runtime and memory
footprint breakdowns e s it st comtution rvens 182

e Interactive visualizations
linked to batch size predictions

: - \ ; : |

e Live and proactive N e J
performance debugging during e et el b o, T st |
development I i 7974

MaxiMum CapaciTy

OPyTorch & ATOM
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Skyline: Interactive In-editor Performance Debugging

@ [ ) |2 resnet.py — ~/projects/remote/skyline/resnet
resnet.py L Skyline

previous_dilation = self.dilation —
if dilate:
self.dilation %= stride

e Key performance metrics

if stride != 1 or self.inplanes != planes *x block.expansion:

= . i (
(t h ro u g h p u t, m e m O ry u Sa ge) downzz:s;il(szqf?ei:;iz::,l planes * block.expansion, stride),

norm_layer(planes * block.expansion),

|
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer)) PREDICTED MAXIMUM
self.inplanes = planes * block.expansion

& Training Throughput

Weights |

THROUGHPUT

160

samples/second

for _ in range(1, blocks): E 182
layers.append(block(self.inplanes, planes, groups=self.groups, xi samples/second
base_width=self.base_width, dilation=self.dilation, @
°
norm_layer=norm_layer)) ®
°
return nn.Sequential(xlayers) é s U e ey (e
183 def forward(self, x, target):l <
x = self.convl(x) PERIAUSACE
x = self.bnl(x)
x = self.relu(x) 1575
x = self.maxpool(x) Megabytes
x = self.layerl(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
MAXIMUM CAPACITY
x = self.avgpool(x) . 7974
x = torch.flatten(x, 1) —
b
x = self.fc(x) . ARG
return self.loss_fn(x, target) e T
Ready
~/projects/remote/skyline/resnet/resnet.py  183:34 LF  UTF-8 Python OGitHub ©0-Git (0) @ 1update
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Skyline: Interactive In-editor Performance Debugging

[ ) [ ) |4) resnet.py — ~/projects/remote/skyline/resnet
resnet.py L Skyline

previous_dilation = self.dilation & Training Throughput

if dilate:
self.dilation %= stride
stride = 1

if stride != 1 or self.inplanes != planes * block.expansion: The A
downsample = nn.Sequential( 160

convlxl(self.inplanes, planes * block.expansion, stride),

samples/second
norm_layer(planes * block.expansion),

. . layers = [] ' .
* lIteration run time and memory D T R e g
self.inplanes = planes * block.expansion

.
footp rl nt brea kdowns for _ in range(1, blocks): 182
layers.append(block(self.inplanes, planes, groups=self.groups, samples/second

base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))

PREDICTED MAXIMUM

return nn.Sequential(xlayers) € Peak Memory Usage

183 def forward(self, x, target):l
x = self.convl(x) PEAK USAGE
x = self.bnl(x)
x = self.relu(x) 1575
x = self.maxpool(x) Megabytes
x = self.layerl(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
MAXIMUM CAPACITY
x = self.avgpool(x) 7974
x = torch.flatten(x, 1) Veaabyt
x = self.fc(x) coanvies
return self.loss_fn(x, target)
Ready
~/projects/remote/skyline/resnet/resnet.py  183:34 LF  UTF-8 Python OGitHub ©0-Git (0) @ 1update
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Skyline: Interactive In-editor Performance Debugging

self.

THROUGHPU
160
REDICTED MAXIMUM
out = self. out) 182
out = self. out e ‘

e Interactive visualizations
linked to batch size predictions

PEAK USAGE
1575

7974
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Skyline: Interactive In-editor Performance Debugging

THROUGHPU
160

DICTED MAXIMUM
182

PEAK USAGE

15675

* Live and proactive s = 1
performance debugging during
400 7974

development
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N e '# resnet.py — ~/projects/remote/skyline/resnet

resnet.py L Skyline

105 class ResNet(nn.Module)ﬂ
def __init_ (self, block
groups=1, w . . . . .
orn_tayer=f [Nteractive visualizations tied to the code!
super(ResNet, self).
if norm_layer is None:

norm_layer = nn.BatchNorm2d

self._norm_layer = norm_layer

& Training Throughput

|
Weights

THROUGHPUT

159

samples/second

PREDICTED MAXIMUM

181

samples/second

self.inplanes = 64
self.dilation i |
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))

€ Peak Memory Usage

PEAK USAGE

1572

Megabytes

self.groups = groups

self.base_width = width_per_group

self.convl = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)

self.bnl = norm_layer(self.inplanes)

self.relu = nn.ReLU(inplace=True)

self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

self.layerl = self._make_layer(block, 64, layers[0])

self.layer2 = self._make_layer(block, 128, layers[1l], stride=2,

dilate=replace_stride_with_dilation[0])
—— = — e = - - . Ready

MAXIMUM CAPACITY

7974

I Megabytes

Forward and Backward
Activations |
A

~[projects/remote/skyline/resnet/resnet.py  105:25 LF UTF-8 Python OGitHub 0 Git (0) [ 1update
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