
Efficient DNN Training at Scale:
from Algorithms to Hardware

https://github.com/tbd-ai/tbd-suite tbd-suite.ai

Gennady Pekhimenko, Assistant Professor

EcoSystem Group

Systems/Architecture Is a Servant for ML

2

GPU

TPU

ML Researcher

System-level optimizations for DNNs
Researchers proposed many system-level
optimizations for DNN computation,
however, their performance largely
depends on the entire stack

Given a full-stack configuration:

• How much better can we do to improve
performance?

• How to identify future opportunities?

Algorithm

ResNet GNMT BERT

Software:
Framework

Library
cuDNN MKL Eigen NCCL

SSD

Hardware:
Accelerator

Connection

CPU GPU TPU

PCIe Ethernet Infiniband NVLink

FPGA

3

Machine Learning Benchmarking and Analysis

4

In collaboration with Project Fiddle (MSR)

5

Performance bottlenecks
in DNN Training

Tools Key performance metrics

Diverse benchmark suite with
state-of-the-art models

Analysis &
Optimizations

6

Performance bottlenecks
in DNN Training

Tools Key performance metrics

Diverse benchmark suite with
state-of-the-art models

Analysis &
Optimizations

Training Benchmarks for DNNs (TBD), Jan. 2018

7
https://github.com/tbd-ai/tbd-suite

Applications Models Dataset # of layers Dominant layer Maintainer

Image
Classification

ResNet-50 T,M,C

Inception-v3 T,M,C
ImageNet 50 (152 max)

42 CONV Hongyu Zhu

Machine
Translation

Seq2Seq T,M

Transformer T,M
IWSLT15 5

12
LSTM

Attention
Bojian Zheng

Andrew Pelegris

Object Detection Faster RCNN T,M

Mask RCNN P
Pascal VOC 101 CONV Hongyu Zhu

Zilun Zhang

Speech
Recognition Deep Speech 2 P, M LibriSpeech 7 (9 max) RNN Kuei-Fang Hsueh

Jiahuang Lin

Recommendation
System NCF P MovieLens 4 GMF, MLP Izaak Niksan

Adversarial
Network WGAN T

Downsampled
ImageNet 14+14 CONV Andrew Pelegris

Reinforcement
Learning A3C T,M Atari 2600 4 CONV Mohamed Akrout

(Footnotes indicate available implementation: T for , M for , C for , P for)

tbd-suite.ai

TBD Benchmark Suite, Aug. 2020 update

https://github.com/tbd-ai/tbd-suite

Applications Models Dataset # of layers Dominant layer Maintainer

Image
Classification

ResNet-50 T,M

Inception-v3 T,M
ImageNet 50 (152 max)

42 CONV Xin Li

Machine
Translation

Seq2Seq T,M

Transformer T,M
IWSLT16 5

12
LSTM

Attention
Yu Bo Gao
Yu Bo Gao

Object Detection Mask RCNN T, P

EfficeintDet T, P
COCO 101 CONV Yu Bo Gao

Speech
Recognition Deep Speech 2 P LibriSpeech 7 (9 max) RNN Cong Wei

Language
Modeling BERT P SQuAD 24 BERT block Xin Li

Reinforcement
Learning MiniGo T 38 CONV Cong Wei

(Footnotes indicate available implementation: T for , M for , , P for)

tbd-suite.ai

MLPerf -> MLCommons

9

MLPerf Training, MLSys 2020 MLPerf Inference, ISCA 2020

Be
nc

hm
ar

ks

Da
ta

se
ts

Be
st

pr

ac
tic

es

ML
innovation

The v0.7 (datacenter, edge, mobile) result highlights:

● 23 submitting organizations
● Over 1,200 peer-reviewed results - twice as many as the first round

● More than doubles the number of applications in the suite

● New dedicated set of MLPerf Mobile benchmarks
● Randomized third party audits for rules compliance

Read more in the press release.

https://mlcommons.org/en/inference-datacenter-07/
https://mlcommons.org/en/inference-edge-07/
https://mlcommons.org/en/inference-mobile-07/
https://mlcommons.org/en/news/mlperf-inference-v07/

10

Performance bottlenecks
in DNN Training

Tools Key performance metrics

Diverse benchmark suite with
state-of-the-art models

Analysis &
Optimizations

Performance Metrics

● Throughput
Number of data samples processed per second

● Compute Utilization
GPU busy time over Elapsed time

● FP32/FP16/Tensor Core Utilization
Average instructions executed per cycle over Maximum instructions per cycle

● Memory Breakdown
Which data structures occupy how much memory

https://github.com/tbd-ai/tbd-suitetbd-suite.ai 11

12

Performance bottlenecks
in DNN Training

Tools Key performance metrics

Diverse benchmark suite with
state-of-the-art models

Analysis &
Optimizations

Memory Profiler (BERT)

Feature maps are still more important than weights for memory consumption

14

Performance bottlenecks
in DNN Training

Tools Key performance metrics

Diverse benchmark suite with
state-of-the-art models

Analysis &
Optimizations

Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang1,2, Yifan Bai1, Gennady Pekhimenko1,2

1 2

MLSys 2020

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

16

Problem: BP imposes a strong sequential dependency along layers during the
gradient computations.

Key idea: We propose scaling BP by Parallel Scan Algorithm (BPPSA):
• Reformulate BP into a scan operation.
• Scaled by a customized parallel algorithm.1 2 3 4 5 6 7 8

0 1 3 6 10 15 21 28
Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.
Up to 108× backward pass speedup (→ 2.17× overall speedup).

BP’s Strong Sequential Dependency

Linear𝑥⃗
𝜵 𝒍

17

𝛻"⃗𝑙 =
𝜕𝑓(𝑥⃗)
𝜕𝑥⃗

#

𝛻$("⃗)𝑙

Strong Sequential Dependency along layers.

ReLU
𝜵𝒍

Linear

𝜵𝒍
Loss 𝑙

𝝏𝒇(⦁)
𝝏⦁

𝑻 𝝏𝒇(⦁)
𝝏⦁

𝑻

𝑓 𝑥⃗

𝑥⃗

𝜕𝑓(𝑥⃗)
𝜕𝑥⃗

Jacobian

Rethinking BP from an Algorithm
Perspective

18

• Problems with strong sequential dependency were studied in the past
(80’), but in a much simpler context.

• We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale BP by a customized Blelloch Scan algorithm.
• Leverage sparsity in the Jacobians.

What is a Scan1 Operation?

Input sequence:

Binary, associative operator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

19

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)

Linear Scan

20

1 2 3 4 5 6 7

3

6

10

15

21

28

On a single worker: perform scan
linearly; takes n steps.

Worker (p): an instance of execution;
e.g., a core in a multi-core CPU

Number of Elements (n)

With more workers: Can we achieve
sublinear steps?

Ti
m

e

n

Step: executing the
operator once.

Blelloch Scan: ①Up-sweep Phase

21

1 2 3 4 5 6 7 8

3 7 11 15

10 26A B

A+B

Up-sweep

Compute partial sums
via a reduction tree.

Ti
m

e

Blelloch Scan: ② Down-sweep Phase

22

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

A

B

B

A+B

Down-sweep

Combine partial sums
across branches.

Ti
m

e

Parallel

28

Blelloch Scan: Efficiency

23

2logn
Logarithmic
steps along the
critical path.

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

Ti
m

e

28

I G7 G6 G5 G4 G3 G2 G10 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J11 2 3 4 5 6 7 8

Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

24

A ◊ B = BA

Gi= 𝜵𝒙𝒊𝒍

Ji+1	=
𝝏𝒙𝒊"𝟏
𝝏𝒙𝒊

𝑻

Key Insight: matrix multiplication in BP is also binary & associative!

+ Identity: I0

Scale BP by
Blelloch Scan

2logn
Logarithmic
steps along the
critical path!

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4 I

G6 I J3:4 G4

G7 I J6 G6 J4 G4 J2 G2

I G7 G6 G5 G4 G3 G2

Ti
m

e

A

B

B

BA

Down-sweep

AB

Matrix
multiplications are
noncommutative. G1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1000 2000 3000 4000 5000

Tr
ai

ni
ng

 L
os

s

Wall-clock Time (s)

Baseline BPPSA

End-to-end Training Speedup
Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

26

Numerical differences do not effect
convergence.

2.17× speedup on the overall training time.

1

10

100

10 30 100 300 1k 3k 10k 30k

Sp
ee

du
p

Sequence Length (T)

Backward Pass Speedup over
Baseline

Sensitivity Analysis: Model Length

27

Sequence length (T) reflects the
model length n.

BPPSA scales with the model
length (n);

108× =

until being bounded by the
number of workers (p).

Horizontally Fused Training Array:
An Effective Hardware Utilization Squeezer For Training Novel Deep Learning Models

Shang Wang4,1,2, Peiming Yang*3,2, Yuxuan Zheng*5, Xin Li*2, Gennady Pekhimenko1,2

1 2 3 4 5

https://github.com/UofT-EcoSystem/hfta

MLSys 2021

https://github.com/UofT-EcoSystem/hfta

Background & Motivation HFTA Evaluation

Does Training Utilize the Hardware Well?

29

Background & Motivation HFTA Evaluation

Hardware Resource Usage @

30

Monitored over 2 months: 51K jobs, 472K GPU hours.

Dist.
Training

24%

Other
26%

Single-GPU
Training

50%

GPU Hour Usage Breakdown

Single-GPU training:
• Dominates the GPU hour usage.

Background & Motivation HFTA Evaluation

Repetitive
Single-GPU

Training
46%

GPU Hour Usage Breakdown

Hardware Resource Usage @

31

Repetitive single-GPU training:
• Dominates the GPU hour usage.
• Concurrent jobs; same program; different configs.
• For hyper-param. tuning or convergence stability testing.

Background & Motivation HFTA Evaluation

Hardware Resource Usage @

32

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8 9 10 11 12
Job Index

GPU Utilization

Repetitive single-GPU training:
• Often have low hardware utilization.

Why?

Background & Motivation HFTA Evaluation

Why Hardware Underutilization?

33

DL Hardware

? ?

Background & Motivation HFTA Evaluation

Performance Optimization is Hard.

34

More so for system & architecture “novices”.
Increasing the batch size?

3Keskar et al. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017
4Shallue et al. Measuring the effects of data parallelism on neural network training. J. Mach. Learn. Res., 20:112:1–112:49, 2019

• Generalization gap.
• Batch size scaling limit.

Does not work universally:

Steps

Batch Size

Background & Motivation HFTA Evaluation

Accelerators Get More Powerful.

35

Unoptimized workload → Harder to utilize well.

Year

Compute
Power V100 A100

TPU v3

P100

TPU v2TPU v1

Background & Motivation HFTA Evaluation

Why Hardware Underutilization?

36

How to improve hardware utilization?

DL Hardware

Performance optimization is hard. Accelerators get more powerful.

Background & Motivation HFTA Evaluation

Train >1 Models on 1 Accelerator
Simultaneously?

37

Special features for sharing among arbitrary processes.
(e.g., MPS and MIG on NVIDIA GPUs)

Other accelerators (e.g., TPUs) do not possess such features.
Less effective for repetitive training jobs.

What to do instead?

HMMA

HMMA

MIG

SGEMM

MPS

SGEMM

Background & Motivation HFTA Evaluation

Key Ideas

38

Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

39

Model

Model

Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

40

Model

Model

Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

41

Same types of ops.

ReLU LinearLinear

ReLU LinearLinear

Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

42

ReLU LinearLinear

ReLU LinearLinear

Same types of ops with the same shapes.

Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Launched repetitively (e.g., hyper-parameter tuning)

Model Similarity

43

ReLU LinearLinearX

ReLU LinearLinearX

Same types of ops with the same shapes.

What to do with it?

Background & Motivation HFTA Evaluation

Learning Rate2 = 0.03

Learning Rate1 = 0.01

Inter-model Horizontal Operator Fusion

44

ReLU LinearLinearX

ReLU LinearLinearX

Learning Rates
= {0.01, 0.03} X Fused

ReLU
Fused
Linear

Fused
Linear

But, DL stack

How to ?

We propose:

→ training single models on separate accelerators.

Background & Motivation HFTA Evaluation

Implementation Reuse

45

bmm

MatMul

SoftMax

Mask

Scale

MatMul

Q K V

Horizontally fused ops → other existing mathematically equivalent ops.

What about other ops?

Background & Motivation HFTA Evaluation

Horizontally Fused Training Array (HFTA)

46

HFTA

Different ops → different rules → tools required.

X Fused
ReLU

Fused
Linear

Fused
Linear

Background & Motivation HFTA Evaluation

Horizontally Fused Training Array (HFTA)

47

We choose PyTorch for its popularity, but the idea is general.

HFTA
X Fused

ReLU
Fused
Linear

Fused
Linear

Background & Motivation HFTA Evaluation

Horizontally Fused Training Array (HFTA)

48

Support all DL framework’s hardware backends.

V100 TPU v3

HFTA
X Fused

ReLU
Fused
Linear

Fused
Linear

A100

PyTorch/XLA

Background & Motivation HFTA Evaluation

HFTA Components

49
V100 TPU v3

HFTA

A100

PyTorch/XLA

Operators Optimizers Learning Rate
Schedulers

Background & Motivation HFTA Evaluation

Conv1d, Conv2d, ConvTranspose2d
Linear
MaxPool2d, AdaptiveAvgPool2d
Dropout, Dropout2d,
BatchNorm1d, BatchNorm2d, LayerNorm,
Embedding
ReLU, ReLU6, Tanh, LeakyReLU,
MultiheadAttention, TransformerEncoderLayer

HFTA: Fused Operators

50

Conv2d

Conv2d

Inputs Outputs
Filters

Grouped
Conv2dHeight

Width

Channel

What else can we fuse?

Background & Motivation HFTA Evaluation

HFTA: Fused Optimizers and LR Schedulers

51

GradientsLearning Rate

Adadelta, Adam
StepLR

For Model #1
#2

#4
#3

#5
#6
#7

What else can we fuse?

Background & Motivation HFTA Evaluation

No Impact on Convergence

53

Mathematically Equivalent Transformations

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2000 4000 6000 8000 10000

Tr
ai

ni
ng

 L
os

s

Training Iterations

Training ResNet-18 on CIFAR-10 with
Three Different Learning Rates

Serial:LR=0.002 HFTA:LR=0.002
Serial:LR=0.001 HFTA:LR=0.001
Serial:LR=0.0005 HFTA:LR=0.0005

What about training throughputs?

Background & Motivation HFTA Evaluation

Methodology: Environment

54

Accelerators:

From:

RTX6000V100 A100 TPU v3

1.6

7.6.5

1.7

8.0.2

1.7

10.2 11.0.3

Versions:

Background & Motivation HFTA Evaluation

Methodology: Baselines

55

GEMM

Serial

The common practice in hyper-param. tuning frameworks.

One model per accelerator.

Background & Motivation HFTA Evaluation

Methodology: Baselines

56

SGE MM

SGE MM

Concurrent

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

GEMM

Serial

Kernels are time-multiplexed.

Background & Motivation HFTA Evaluation

Methodology: Baselines

57

SGEMM

SGE MM

SGE MM

Concurrent

GEMM

Serial

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

Co-run >1 kernels if a single kernel underutilizes the GPU.

MPS

SGEMM

Background & Motivation HFTA Evaluation

Methodology: Baselines

58

HMMA

HMMA

MIG

SGE MM

SGE MM

Concurrent

GEMM

Serial

Some accelerators (e.g. NVIDIA GPUs) support running >1 processes.

Slice (only) A100 into (≤ 7) partitions.

SGEMM

MPS

SGEMM

Background & Motivation HFTA Evaluation

Methodology: Workloads

59

Model PointNet DCGAN ResNet18 MobileNetV3L Transformer BERTMedium

Task Point Cloud
Classification

Point Cloud
Segmentation

Images
Generation Image Classification Language

Modeling (LM) Mask LM

Dataset ShapeNet part LSUN CIFAR-10 WikiText-2

Not intensively optimized → realistically reflect novel DL research workloads.

Background & Motivation HFTA Evaluation

HFTA achieves significantly higher peak throughput than all baselines:
• Serial
• Concurrent
• MPS

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Th
ro

ug
hp

ut

Number of Training Models

PointNet Classification on V100

hfta:fp32
serial:fp32
mps:fp32
concurrent:fp32

V100 Results

60

Keep sharing with more models until OOM.

Background & Motivation HFTA Evaluation

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Th
ro

ug
hp

ut

Number of Training Models

PointNet Classification on V100

hfta:fp32
serial:fp32
mps:fp32
concurrent:fp32

Fixed memory budget, HFTA co-trains more models than MPS and concurrent.

V100 Results

61

Background & Motivation HFTA Evaluation

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Th
ro

ug
hp

ut

Number of Training Models

PointNet Classification on V100

hfta:fp32
serial:fp32
mps:fp32
concurrent:fp32

Same # of models & same GPU, HFTA achieves higher throughput than all baselines.

V100 Results

62

Mixed Precision?

Background & Motivation HFTA Evaluation

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut

Number of Training Models

PointNet Classification on V100

hfta:fp32
hfta:amp
serial:fp32
serial:amp
mps:fp32
mps:amp
concurrent:fp32
concurrent:amp

HFTA can better exploit tensor cores during AMP training than all baselines.

How About Mixed Precision?

63

Different GPUs?

Background & Motivation HFTA Evaluation

How About Fancier GPUs?

64

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25

Th
ro

ug
hp

ut
Number of Training Models

PointNet Classification on A100

hfta:fp32
hfta:amp
serial:fp32
serial:amp
mps:fp32
mps:amp
mig:fp32
mig:amp
concurrent:fp32
concurrent:amp

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25

Th
ro

ug
hp

ut

Number of Training Models

PointNet Classification on RTX6000

Since Mem(A100) > Mem(RTX6000), HFTA can fit more models on A100.

Background & Motivation HFTA Evaluation

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13

Th
ro

ug
hp

ut

Number of Training Models

PointNet Classification on TPU v3

hfta

serial

HFTA achieves 4.93× over Serial.

How About TPUs?

65

Why is HFTA effective?

Background & Motivation HFTA Evaluation

Performance Analysis: Memory

66

GPU
Memory
Footprint

Number of Training Models
1 2

Number of Training Models
1 2

MPS HFTA

Why?

Background & Motivation HFTA Evaluation

Overhead:
(reserved by DL framework stacks)

Performance Analysis: Memory

67

GPU
Memory
Footprint

1 2 1 2

MPS HFTA

Number of Training Models Number of Training Models

MPS duplicates the overhead.

Any other reason why HFTA is effective?

Background & Motivation HFTA Evaluation

Performance Analysis: Compute

68

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

sm_active on A100

hfta:fp32 hfta:amp serial:fp32 serial:amp mps:fp32
mps:amp mig:fp32 mig:amp concurrent:fp32 concurrent:amp

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

sm_occupancy on A100

0

0.005

0.01

0.015

0.02

0.025

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

tensor_active on A100

Background & Motivation HFTA Evaluation

Performance Analysis: Compute

69

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

sm_active on A100

hfta:fp32 hfta:amp serial:fp32 serial:amp mps:fp32
mps:amp mig:fp32 mig:amp concurrent:fp32 concurrent:amp

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

sm_occupancy on A100

0

0.005

0.01

0.015

0.02

0.025

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

tensor_active on A100

sm_active: Fraction of cycles when SMs have resident warps.
sm_occupancy: Ratio of # resident warps over SM’s max. # warps.
tensor_active: Fraction of cycles when tensor cores are active.

Proxy metrics for different
aspects of GPU utilization.

Background & Motivation HFTA Evaluation

Performance Analysis: Compute

70

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

sm_active on A100

hfta:fp32 hfta:amp serial:fp32 serial:amp mps:fp32
mps:amp mig:fp32 mig:amp concurrent:fp32 concurrent:amp

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

sm_occupancy on A100

0

0.005

0.01

0.015

0.02

0.025

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

tensor_active on A100

While MPS & MIG does improve utilization, HFTA is more effective!

Background & Motivation HFTA Evaluation

More Results in the Paper

71

PointNet Segmentation, DCGAN, ResNet-18, MobileNetV3Large, Transformer, BERTMedium
• On GPUs, HFTA achieves:
• 2.42× to 11.50× over Serial.
• 1.25× to 4.72× over MPS.
• 1.33× to 4.88× over MIG.

• On TPUs, HFTA achieves 2.98× to 15.13× over Serial.

HFTA’s Integration with hyper-parameter tuning algorithms.
• Reduce total GPU hour cost by up to 5.10×.

Performance sensitivity study on partially fused ResNet-18.

> $15,000

ECHO: Compiler-based GPU Memory Footprint
Reduction for LSTM RNN Training

Bojian Zheng1,2, Nandita Vijaykumar1,3, Gennady Pekhimenko1,2

1 2 3

ISCA 2020

Background: Feature Maps

73

• Stashed data by the forward pass to compute the backward gradients

• The cause of high memory footprint in
Convolutional Neural Networks (CNNs).[1, 2]

Feature Maps

Large Temporal Gap between Usage
[1] M. Rhu et al. vDNN: Virtualized Deep Neural

Networks for Scalable, Memory-Efficient Neural
Network Design. MICRO 2016

[2] A. Jain et al. Gist: Efficient Data Encoding for
Deep Neural Network Training. ISCA 2018

• Long-Short-Term-Memory Recurrent
Neural Network (LSTM RNN)
• Heavily adopted in sequence analysis

(e.g., machine translation (NMT) &
speech recognition (DeepSpeech2).
• Its training is inefficient on the GPUs,

especially when compared with CNN.[1, 2]

Background: LSTM RNN

74

Neural Machine Translation (NMT)

DeepSpeech2

[1] J. Bradbury et al. Quasi-Recurrent Neural Networks. ICLR 2016
[2] T. Lei et al. Simple Recurrent Units for Highly Parallelizable Recurrence. EMNLP 2018

Why LSTM RNN Training is Inefficient?

Training throughput saturates as batch
size increases.

Training throughput is limited by the
memory capacity.

75
Memory capacity limits the NMT training throughput.

NMT (LSTM RNN)ResNet (CNN)

11 GB Memory Capacity

GPU Memory Profiling Results

76
Feature maps dominate the GPU memory footprint.

Feature Maps
Weights
Workspace
Untrackable

𝟖𝟕%

MXNet GPU Memory Profiler

Selective Recomputation

• Key Idea: Trade runtime with memory.

• The recomputation path should only involve lightweight operators.
77

𝑻 Total Memory
Consumption

Feature Maps

Recomputation Path
Recomputation

❶ Accurate Footprint Estimation

For each recomputation to be
efficient, need to estimate its
effect on the global footprint.

Example: 𝑍 = tanh 𝑋 + 𝑌

78

Selective Recomputation causes:
(−) increased memory footprint &
(−) performance degradation!

LOSE

❶ Accurate Footprint Estimation

For each recomputation to be
efficient, need to estimate its
effect on the global footprint.

Example: 𝑍' = tanh 𝑋 + 𝑌' , 𝑖 ∈ 1, 𝑇

79

Selective Recomputation causes:
(+) feature maps: 𝑇𝟐𝑁 → 𝟐𝑇𝑁

Global Footprint Analysis:
1. shapes and types
2. reuse Challenging!

❷ Non-Conservative Overhead Estimation

For each recomputation to be
efficient, need to estimate its
effect on the runtime overhead.

Example: 𝑌 = 𝑋𝑊)

• Compute-Heavy
• 50% of the NMT training time

• Excluded in prior works

80

Compute-Heavy Layers

Layer-Specific Property:
-.
-/
= -.

-0
𝑊 & -.

-1
= -.

-0

#
𝑋

(NO Dependency on 𝑌)

ECHO: A Graph Compiler Pass

• Integrated in the MXNet NNVM[1] module
• Fully Automatic & Transparent
• Requires NO changes in the training source code.

• Addresses the 2 key challenges of Selective Recomputation:
❶ Accurate Footprint Estimation

☞ Bidirectional Dataflow Analysis
❷ Non-Conservative Overhead Estimation

☞ Layer Specific Optimizations

81

[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

ECHO: Bidirectional Dataflow Analysis

• Storage Reuse
Causes ALL correlated operators to
forward propagate simultaneously.

sizeof 8FeatureMaps"#$ ≤

sizeof 8FeatureMaps%&'

Example: 𝑍' = tanh 𝑋 + 𝑌' , 𝑖 ∈ 1, 𝑇

82

𝑇*𝑁 ≰ 2𝑇𝑁

Evaluation: Benchmarks

Sockeye[1]
• State-of-the-Art Neural Machine

Translation Toolkit under MXNet
• Datasets:
• IWSLT’15 English-Vietnamese

(Small)
• WMT’16 English-German (Large)

• Key Metrics:
• Training Throughput
• GPU Memory Consumption
• Training Time to

Validation BLEU Score

83

[1] F. Hieber et al. Sockeye: A Toolkit for Neural Machine Translation.
Arxiv Preprint 2017

Evaluation: Systems

84

Baseline Baseline System without
Selective Recomputation

Mirror T. Chen et al.[1]

ECHO
Compiler-based Automatic and
Transparent Optimizations

[1] T. Chen et al. Training Deep Nets with
Sublinear Memory Cost. Arxiv Preprint 2016

Mirror Low HighECHO High Low
Reduction Ratio Overhead

ECHO ’s Effect on Memory and Performance
Small Dataset, Single-GPU Experiment

85

2× Training Batch Size

11 GB Memory Capacity

ECHO ’s Effect on Training Convergence
Large Dataset, Multi-GPU Experiment,
Same Number of Training Steps

86

ECHO achieves:
+ Same Validation BLEU Score
+ Faster Convergence
+ Fewer Compute Devices

Better

Gist: Efficient Data Encoding for
Deep Neural Network Training

In collaboration with Project Fiddle (MSR)

Relu -> Pool

88

Relu Backward Propagation

Binarize – 1 bit representation
(Lossless)

Relu/Pool -> Conv

89

Sparse Storage Dense Compute
(Lossless)

Compression Ratio

90

Up to 2X compression ratio
With minimal performance overhead

Gist Summary

• Systematic memory breakdown analysis for image classification
• Layer-specific lossless encodings

• Binarization and sparse storage/dense compute

• Aggressive lossy encodings
• With delayed precision reduction

• Footprint reduction measured on real systems:
• Up to 2X reduction with only 4% performance overhead
• Further optimizations – more than 4X reduction

91

New Generation of Debugging/Prediction
Tools
• Daydream: Accurately Estimating the Efficacy of Performance

Optimizations for DNN Training (USENIX ATC’20)

• Skyline: Interactive In-editor Performance Visualizations and
Debugging for DNN Training (UIST’20)

• Habitat: Prediction-guided Hardware Selection for Deep Neural
Network Training (USENIX ATC’21)

92

Interactive In-editor Performance
Visualizations and Debugging for

DNN Training

Geoffrey X. Yu, Tovi Grossman,
Gennady Pekhimenko

Skyline

Tired of not knowing why your model is
slow and/or uses up so much memory?

Tired of not knowing why your model is slow
and/or uses up so much memory?

Skyline: Interactive In-editor Performance Debugging

• Key performance metrics
(throughput, memory usage)

• Iteration run time and memory
footprint breakdowns

• Interactive visualizations
linked to batch size predictions

• Live and proactive
performance debugging during
development

96

Skyline: Interactive In-editor Performance Debugging

97

• Key performance metrics
(throughput, memory usage)

• Iteration run time and memory
footprint breakdowns

• Interactive visualizations
linked to batch size predictions

• Live and proactive
performance debugging during
development

Skyline: Interactive In-editor Performance Debugging

• Key performance metrics
(throughput, memory usage)

• Iteration run time and memory
footprint breakdowns

• Interactive visualizations
linked to batch size predictions

• Live and proactive
performance debugging during
development

98

Skyline: Interactive In-editor Performance Debugging

• Key performance metrics
(throughput, memory usage)

• Iteration run time and memory
footprint breakdowns

• Interactive visualizations
linked to batch size predictions

• Live and proactive
performance debugging during
development

99

Skyline: Interactive In-editor Performance Debugging

• Key performance metrics
(throughput, memory usage)

• Iteration run time and memory
footprint breakdowns

• Interactive visualizations
linked to batch size predictions

• Live and proactive
performance debugging during
development

100

101

Interactive visualizations tied to the code!

My Students: EcoSystem Research Group
• Hongyu Zhu (PhD)
• Bojian Zheng (PhD)
• Alexandra Tsvetkova (PhD)
• James Gleeson (PhD, co-advised)
• Anand Jayarajan (PhD)
• Mustafa Quraish (PhD)
• Shang (Sam) Wang (MSc)
• Jiacheng Yang (MASc)
• Pavel Golikov (MSc)
• Yaoyao Ding (MASc)
• Daniel Snider (MSc)
• Kevin Song (MASc)

• Yu Bo Gao (BSc)
• Kimberly Hau (BASc)
• Qingyuan Qie (BSc)
• Chenhao Jiang (BSc)
• Murali Andoorveedu (BASc)

