TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-Basecalling Filtering

Meryem Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joel Lindegger, Mohammad Sadr, Nika Mansouri Ghiasi, Can Alkan and Onur Mutlu

1: Problem

- Basecalling consumes 84.2% of total execution time, bottlenecking the genome analysis pipeline
- The majority of the reads do no match the reference genome (i.e., useless reads) and thus are discarded after basecalling, wasting the basecalling computation
- Targeted sequencing approaches cannot be applied as general purpose pre-basecalling filters since they
- have low sensitivity or
- poor scalability to large target references or
- lack of adaptability to different applications

2: Our Goal

Eliminate the **wasted computation** in basecalling while maintaining high accuracy, scalability and adaptability

3: Key Observation & Idea

Key Observation: Typical reason for discarding basecalled reads (i.e., useless reads) is that they do not match some reference genome

Key Idea: Filter out useless reads before basecalling with a highly accurate and high-performance pre-basecalling filter

4: TargetCall

Mechanism: TargetCall consists of two components:

• LightCall: A light-weight basecaller that outputs **noisy** reads with **high performance**

• Similarity Check: Computes the similarity of the noisy read to the reference genome

We use minimap2 for the Similarity Check module

5: Evaluation Methodology

Baselines:

- Benefits of Pre-Basecalling Filtering: Bonito
- Comparison against Targeted Sequencing: UNCALLED & Sigmap Datasets:
- 5 different read sets from various organisms
- 4 different reference genomes with various sizes

Evaluation System:

- LightCall: NVIDIA A100 & TITAN V GPUs
- Similarity Check: AMD EPYC 7742 CPU with **196GB DRAM**
- Sigmap & UNCALLED: AMD EPYC 7742 CPU with **1TB DRAM**

SAFARI

Our goal is to eliminate wasted computation in basecalling with high accuracy using low-cost pre-basecalling filters

TargetCall improves the basecalling execution time by 3.31x by filtering out 94.71% of the useless reads with high accuracy (98.88%) in keeping the useful reads

Source Code

6: Results

6.1: Basecalling Speedup

TargetCall provides up to 3.31x basecalling speedup on average

6.2: Comparison against SOTA: Precision

TargetCall provides +62.3/+58.5 more precision in filtering out useless reads compared to Sigmap/UNCALLED

6.3: Comparison against SOTA: Performance

TargetCall provides 9.72x/1.46x better end-to-end basecalling performance over Sigmap/UNCALLED

TargetCall provides **higher** (11.85x/2.04x) **speedup** over Sigmap/UNCALLED with a **larger reference genome** (chm13)

More Results in the Paper

TargetCall:

• Analysis of different LightCall architectures

Comparison against SOTA:

TargetCall's recall, throughput and peak memory against SOTA