
ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis
Can Firtina1, Kamlesh Pillai2, Gurpreet S. Kalsi2, Bharathwaj Suresh2, Damla Senol Cali3, Jeremie S. Kim1, Taha Shahroodi4,

Meryem Banu Cavlak1, Joel Lindegger1, Mohammed Alser1, Juan Gómez Luna1, Sreenivas Subramoney2, and Onur Mutlu1,3

1

8: Results

2: The Baum-Welch Algorithm

7: Evaluation Methodology

• ApHMM (ASIC) and ApHMM-GPU implementations

• Compared with CPU, GPU, and FPGA baselines

• Use cases
1. Error correction and polishing
2. Multiple sequence alignment
3. Protein Family Search

• Evaluating
1. Area and power
2. Performance

• Datasets
• Error correction: 50,000 random E. coli reads
• Protein family search: Mapping Mitochondrial carrier to

the entire Pfam database
• Multiple sequence alignment: Aligning commonly used

protein families to each other

3: Sources of Inefficiencies in the Baum-Welch Algorithm

1: Profile Hidden Markov Models (pHMMs)

arXiv Preprint Source Code

The Baum-Welch algorithm is the main computational overhead

ApHMM significantly accelerates the end-to-end
execution times of important applications

Limited performance improvements for the Forward
Calculation due to the data movement overhead

Significant improvements in terms of performance and
energy consumption

2 3 4

A C T

I I I

D D D

T

I

D

PHMM Sequence:…ACTT…
Sequence	#1: …AGGGCTT…
Sequence	#2: …ATT…	(Deleted	C)
Sequence	#3: …ACTG…

PHMMs are useful to identify
differences and similarities
between sequences using:

Insertions (I) Deletions (D) Substitution or Match

1. Forward Calculation 2. Backward Calculation

Transitions between states

Recognition (emission) of
each character within states

Probabilities assigned to
transitions and emissions

3.1. Updating Transitions 3.2. Updating Emissions

Massive Parallelism

Data Dependency

Error
Correction

80604020
Percentage	of	Total	Execution	Time	(%)

0

Forward	Calculation Backward	Calculation Parameter	Updates

100

Protein
Family	Search

Multiple
Sequence
Alignment

24.11% 21.65%

26.48% 24.96%

75.63%10.47%12.47%

21.65%24.11%

26.48% 24.96%

!! " "
#
0
1
2
3

0 1 2 3 4 5 6 7 8
0
1
2
3

0 1 2 3 4 5 6 7 8

a) Forward Calculation in pHMMs b)	Forward Calculation in HMMs

!! " "
#

Standard HMM accelerators are oblivious to the data
dependency pattern in pHMMs

4: Problem and Goal
• The Baum-Welch algorithm

is useful for many
applications but remains
computationally costly due
to several sources of
inefficiencies

• Our goal is to
• Accelerate the Baum-

Welch algorithm while

• Eliminating its
inefficiencies

• Using a hardware-
software co-design

• ApHMM is the first work
that accelerates the Baum-
Welch algorithm for pHMMs

5: ApHMM Overview & Filtering Mechanism

Memory	(DRAM/L2/L1)

ApHMM	Core

CPU

Compute	BlockControl	Block

Calculate	Forward	
(Full)

Calculate	Backward	
(Step-by-Step)

Update	Transition	
Probabilities
(Step-by-Step)

Update	Emission	
Probabilities
(Step-by-Step)

LUT

Transition	
Scratchpad

Histogram
Filter

Data	Control

Parameters

Index	Control

6: Computing the Baum-Welch Algorithm

Compute	Block

Index	Control

Update	Emission	(UE)

Calculate	
Emission
Numerator

Calculate	
Emission

Denominator

Division	&	
Update	
Emission

Calculate	Forward/Backward	&	Update	Transition

Write	
Selector

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	Group	#1

PE	Engine	#1PE	Engine	#1PE	Engine	#1PE	Engine	#1

PE	Engine	#1

Forward/
Backward	(PE)

Update	Transition	(UT)

LUT

Dot	Product	Tree Accumulator

Reduction	Tree

8KB	Transition	
Scratchpad

TE	MUL MUL ADD FP	DIV

Previous	Step	Coefficients	(L1):
!! " or	#!"#(%) (Broadcasting)

!!"# %
or	#!(")!! " ,	#!"# %

!! " or	#!"#(%)

'$%×)&"'(*)

'$%×)&"'(*)

Previous	Transition	Numerator

N
or
m
al
iz
ed
	R
un
ti
m
e

(O
ve
r	
15
0-
ba
se
	R
ea
ds
)

4

10.9

2.4 1

25

6.5

150-base	Reads 650-base	Reads 1000-base	Reads

ApHMM (w/o	Filtering) ApHMM (with	Filtering)

0
5
10
15
20
25

Histogram	Filter

.

.

.

!, #
$%, $&

$', $(, $!
$$,)%,)$,…
$+, $,, $#,…

State	IDs	(-) Max.	Value

$. %%
0. #&
0. !!
0. !)
0. ,(

0. %(

Same	Memory
Block

/! $' = %. !'

Ignore	rest	
when	the	
filter	is	full

Filter	is	full

.

.

.

(a) (b)

Forward
Calculation

Backward
Calculation

100
101
102
103

Parameter
Updates

Complete
Baum-Welch

(a
)S
pe
ed
up
	

O
ve
r	
CP
U
-1

Complete	Baum-Welch Error	Correction
10-4
10-3
10-2

100

Protein
Family
Search

Multiple
Sequence
Alignment

(b
)	E
ne
rg
y	
Re
du
ct
io
n

O
ve
r	
CP
U
-1

10-1

HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

Error	Correction Protein	Family	Search

100

101

102

HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

1	Thread Multiple
Sequence
Alignment

Sp
ee
du
p	
ov
er
	C
PU
-1

12	Threads 32	Threads

CPU-1 ApHMM-1 ApHMM-2 ApHMM-4 ApHMM-8

0.2
0.4
0.6
0.8
1.0

Error	Correction Protein	Family
Search

Multiple	Sequence
Alignment	(MSA)

Overhead

N
or
m
al
iz
ed
	R
un
ti
m
e

(A
pH

M
M
-1
)

1.0

0.9

4-core ApHMM provides the best overall speedup

Limited scalability for using many cores with ApHMM due
to the data movement overhead

https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU

