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8: Results

2: The Baum-Welch Algorithm 

7: Evaluation Methodology

• ApHMM (ASIC) and ApHMM-GPU implementations

• Compared with CPU, GPU, and FPGA baselines

• Use cases
1. Error correction and polishing
2. Multiple sequence alignment
3. Protein Family Search

• Evaluating
1. Area and power
2. Performance

• Datasets
• Error correction: 50,000 random E. coli reads
• Protein family search: Mapping Mitochondrial carrier to 

the entire Pfam database
• Multiple sequence alignment: Aligning commonly used 

protein families to each other

3: Sources of Inefficiencies in the Baum-Welch Algorithm

1: Profile Hidden Markov Models (pHMMs)
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The Baum-Welch algorithm is the main computational overhead

ApHMM significantly accelerates the end-to-end 
execution times of important applications

Limited performance improvements for the Forward 
Calculation due to the data movement overhead

Significant improvements in terms of performance and 
energy consumption
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PHMM Sequence:…ACTT…
Sequence	#1: …AGGGCTT…
Sequence	#2: …ATT…	(Deleted	C)
Sequence	#3: …ACTG…

PHMMs are useful to identify 
differences and similarities
between sequences using:

Insertions (I) Deletions (D) Substitution or Match 

1. Forward Calculation 2. Backward Calculation

Transitions between states

Recognition (emission) of 
each character within states

Probabilities assigned to 
transitions and emissions

3.1. Updating Transitions 3.2. Updating Emissions

Massive Parallelism

Data Dependency
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a) Forward Calculation in pHMMs b)	Forward Calculation in HMMs
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Standard HMM accelerators are oblivious to the data 
dependency pattern in pHMMs

4: Problem and Goal
• The Baum-Welch algorithm 

is useful for many 
applications but remains 
computationally costly due 
to several sources of 
inefficiencies

• Our goal is to
• Accelerate the Baum-

Welch algorithm while

• Eliminating its 
inefficiencies

• Using a hardware-
software co-design

• ApHMM is the first work 
that accelerates the Baum-
Welch algorithm for pHMMs

5: ApHMM Overview & Filtering Mechanism
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6: Computing the Baum-Welch Algorithm
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4-core ApHMM provides the best overall speedup

Limited scalability for using many cores with ApHMM due 
to the data movement overhead

https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU

