
Designing, Modeling, and Optimizing
Data-Intensive Computing Systems

proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op
gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een commissie
aangewezen door het College voor Promoties in het openbaar te verdedigen op

maandag 29 maart 2021 om 16:00 uur

door

Gagandeep Singh

geboren te Chandigarh, India

ar
X

iv
:2

20
8.

08
88

6v
1 

 [
cs

.A
R

] 
 1

8 
A

ug
 2

02
2



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A. B. Smolders
1e promotor: prof.dr. H. Corporaal
2e promotor: prof.dr. O. Mutlu (ETH Zürich)
copromotor: dr.ir. S. Stuijk
leden: prof.dr. H.P. Hofstee (IBM Research Austin/TU Delft)

prof.dr. F. Catthoor (IMEC/KU Leuven)
prof.dr.ir. C.H. van Berkel

adviseurs: dr. O. Unsal (BSC-CNS)
dr. D. Diamantopoulos (IBM Research Europe)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstem-
ming met de TU/e Gedragscode Wetenschapsbeoefening.



Designing, Modeling, and Optimizing
Data-Intensive Computing Systems

Gagandeep Singh



Doctorate committee:

prof.dr. H. Corporaal Eindhoven University of Technology, 1st promotor
prof.dr. O. Mutlu ETH Zürich, 2nd promotor
dr.ir. S. Stuijk Eindhoven University of Technology, copromotor
prof.dr.ir. A.B. Smolders Eindhoven University of Technology, chairman
prof.dr. H.P. Hofstee IBM Research Austin/TU Delft
prof.dr. F. Catthoor IMEC/KU Leuven
prof.dr.ir. C.H. van Berkel Eindhoven University of Technology
dr. O. Unsal BSC-CNS
dr. D. Diamantopoulos IBM Research Europe

This work is supported in part by the European Commission under Marie Sklodowska-Curie
Innovative Training Networks European Industrial Doctorate (Project ID: 676240).

© Copyright 2021, Gagandeep Singh
All rights reserved. Reproduction in whole or in part is prohibited without the written
consent of the copyright owner.

Cover design by Harpreet Kaur

Printed by ProefschriftMaken || www.proefschriftmaken.nl

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-5227-6



Abstract

The cost of moving data between the memory units and the compute units is a
major contributor to the execution time and energy consumption of modern workloads
in computing systems. At the same time, we are witnessing an enormous amount
of data being generated across multiple application domains. Moreover, the end of
Dennard scaling, the slowing of Moore’s law, and the emergence of dark silicon limit
the attainable performance on current computing systems. These trends suggest
a need for a paradigm shift towards a data-centric approach where computation is
performed close to where the data resides. This approach allows us to overcome our
current systems’ performance and energy limitations by minimizing the data movement
overhead by ensuring that data does not overwhelm system components. Further, a
data-centric approach can enable a data-driven view where we take advantage of vast
amounts of available data to improve architectural decisions. Our current systems
are designed to follow rigid and simple policies that lack adaptability. Therefore,
current system policies fail to provide robust improvement across varying workloads
and system conditions.

As a step towards modern computing architectures, this dissertation contributes to
various aspects of the data-centric approach and further proposes several data-driven
mechanisms.

First, we design NERO, a data-centric accelerator for a real-world weather pre-
diction application. NERO overcomes the memory bottleneck of weather prediction
stencil kernels by exploiting near-memory computation capability on specialized field-
programmable gate array (FPGA) accelerators with high-bandwidth memory (HBM)
that are attached through a cache-coherent interconnect to a host CPU system. Sec-
ond, we explore the applicability of different number formats, including fixed-point,
floating-point, and posit, for memory-bound stencil kernels. We search for the appro-
priate bit-width that reduces the memory footprint and improves the performance
and energy efficiency with minimal loss in the accuracy.

Third, we propose NAPEL, an ML-based application performance and energy
prediction framework for data-centric architectures. NAPEL uses ensemble learning
to build a model that, once trained for a fraction of programs, can predict the
performance and energy consumption of different applications. Fourth, we present
LEAPER, the first use of few-shot learning to transfer FPGA-based computing models
across different hardware platforms and applications. LEAPER provides the ability
to reuse a prediction model built on an inexpensive low-end local system to a new,
unknown, high-end FPGA-based system.

Fifth, we propose Sibyl, the first reinforcement learning-based mechanism for data
placement in hybrid storage systems. Sibyl is a data-driven mechanism. It observes



different features of the running workload as well as the storage devices to make
system-aware data placement decisions. For every decision it makes, Sibyl receives a
reward from the system that it uses to evaluate the long-term performance impact of
its decision and continuously optimizes its data placement policy online. Our extensive
real-system evaluation demonstrates that Sibyl provides adaptivity and extensibility by
continuously learning from and autonomously adapting to the workload characteristics,
storage configuration and device characteristics, and system-level feedback to maximize
the overall long-term performance of a hybrid storage system. We interpret Sibyl’s
policy through our explainability analysis and conclude that Sibyl provides an effective
and robust approach to data placement in current and future hybrid storage systems.

Overall, this thesis provides two key conclusions: (1) hardware acceleration on an
FPGA+HBM fabric is a promising solution to overcome the data movement bottleneck
of our current computing systems; (2) data should drive system and design decisions
by leveraging inherent data characteristics to make our computing systems more
efficient. Thus, we conclude that the mechanisms proposed by this dissertation provide
promising solutions to handle data well by following a data-centric approach and
further demonstrates the importance of leveraging data to devise data-driven policies.

We hope that the proposed architectural techniques and detailed experimental
results presented in this dissertation will enable the development of energy-efficient
data-intensive computing systems and drive the exploration of new mechanisms to
improve the performance and energy efficiency of future computing systems.



Acknowledgements

At the end of this journey, I believe Ph.D. is more than just a thesis. It is who
you have become. I would like to reflect on the many people who have supported and
helped me to become who I am today. Certainly, I would not have gotten this far
without the support of many excellent people around me.

First and foremost, I express my gratitude to my promotor, Dr. Henk Corporaal,
for giving me the opportunity and for his unwavering support and guidance throughout
my Ph.D. Henk has been more than a supervisor and always guided me on any matter
I needed his help. Despite his busy schedule, he always made time to discuss and
brainstorm about any idea and always provided rigorous feedback. I would like to
thank my co-promotor, Dr. Sander Stuijk, for his supervision and guidance. Sander
was instrumental in my Ph.D. as he always believed in my skills and helped me to set
ambitious but realistic goals. Moreover, a special mention for helping with incessant
administrative issues.

My time at ETH with the SAFARI research group took my research career to
the next level. I am deeply indebted to Dr. Onur Mutlu for his invaluable scientific
discussions, feedback, and support. His passion for Computer Architecture intrigued
me to pursue research in this domain. I am grateful to have experienced the rigor,
thought, and care Onur puts into every scientific task. Further, he always makes
sure that extraneous issues do not constraint us in any way, so we can focus on
high-impact research and realize our true potential. I cannot begin without expressing
my gratitude to Dr. Juan Gómez-Luna, who provided me with the encouragement
and patience throughout my Ph.D. He always believed in my abilities and motivated
me to keep going. I also thank Jisung Park, Nastaran Hajinazar, and Rakesh Nadig
for their discussions, feedback, collaboration, and support. I would like to recognize
the help I received from Kaan Kara, Geraldo Oliviera, Jeremie Kim, Damla Senol
Cali, Mohammed Alser, Rahul Bera, Konstantinos Kanellopoulas, Abdullah Giray
Yağlıkçı, Can Firtina, Taha Shahroodi, Tracy Ewen, and Christian Rossi.

During my secondment at IBM Research, I had invaluable experiences that have
shaped me both personally and professionally. I am incredibly grateful to Dionysios
Diamantopoulos. I spent more time in his office than in mine discussing and brain-
storming while using his coffee machine. I would like to extend my sincere thanks to
Christoph Hagleitner for the guidance and for providing access to the IBM systems.
I always enjoyed our interactions, both technical and lunch-time. Special thanks to
Ronald Luijten for our numerous discussions on weather forecasting and personal
guidance. One of the greatest joys of working at IBM is the presence of many talented
individuals who I called upon numerous times for their expertise during my research,
and thus I would like to express my appreciation to Robert Haas, Giovanni Mariani,



Andreea Anghel, Abu Sebastian, Florian Auernhammer, Gero Dittmann, Raphael
Polig, Jan van Lunteren, Teodoro Laino, Miguel Prada, Martino Dazzi, Irem Boy-
bat, Iason Giannopoulos, Mitra Purandare, Francois Abel, Beat Weiss, Pier Andrea
Francese, Celestine Dünner, Burkhard Ringlein, Judith Blanc, Lilli-Marie Pavka, and
numerous other IBMers and interns for many interesting discussions and assistance
with my work. I also had the great pleasure of working with Lorenzo Chelini, Ahsan
Jawed Awan (Ericsson Research), and Stefano Corda.

I would like to thank the members of the doctoral committee for agreeing to
participate in my defense during such difficult times, as well as for taking the time to
read my drafts and provide constructive feedback, which helped improve the quality
of this thesis.

I am deeply indebted to my family, who has done everything in their power to
support me in both my academic and personal life. My father, Harinder Singh’s stead-
fastness and humbleness, my mother Ravinder Kaur’s kindness and encouragement,
and my sister Jasmeet Kaur’s unique perspective and guidance have helped me focus
on what is important. Their support underlies everything that I do, and I am grateful
to have such a wonderful family.

I am grateful to Jan and Evelyn for making my time in the Netherlands mem-
orable. Last but not least, I cannot begin to express my gratitude to Lenka, Ilde,
Mladen, Savvas, Victor, Luc, Mark, Barry, Amr, Marja, Kanishkan, Sajid, Alessandro,
Sayandip, Paul, Hamideh, Mojtaba, Kamlesh, Umar, Roel, and other friends and
colleagues from Eindhoven who always invited me to every event and never made me
feel that I am away from them. I appreciate their continued motivation and support
throughout my stay away from home in the Netherlands and Switzerland.

Gagandeep Singh
Zürich, Switzerland

March 12, 2021



Contents

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Problem and Thesis Statement . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Data-Centric Computing . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Data-Driven System Optimization . . . . . . . . . . . . . . . . 6

1.2 Overview of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Near-Memory Computing 15
2.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Classification and Evaluation . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Challenges of Near-Memory Computing . . . . . . . . . . . . . . . . . 21

2.3.1 Performance Evaluation Tools and Benchmarks . . . . . . . . 21
2.3.2 Virtual Memory Support . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Memory Coherency . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Data Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 NERO: A Near-High Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Representative COSMO Stencils . . . . . . . . . . . . . . . . . 28
3.2.2 CAPI SNAP Framework . . . . . . . . . . . . . . . . . . . . . 29

3.3 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 NERO, A Near HBM Weather Prediction Accelerator . . . . . 30
3.3.2 NERO Application Framework . . . . . . . . . . . . . . . . . 33

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



3.4.1 System Integration . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.4 FPGA Resource Utilization . . . . . . . . . . . . . . . . . . . 38

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Low Precision Processing for High Order Stencil Computations 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Stencil Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Precision Optimization . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Evaluated Arbitrary Precision . . . . . . . . . . . . . . . . . . 44

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Emulated Precision Tuning . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Case Study for Current Multi-Core Systems and Arbitrary Pre-

cision Supported Hardware . . . . . . . . . . . . . . . . . . . . 47
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 NAPEL: Near-Memory Computing Application Performance Pre-
diction via Ensemble Learning 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 NAPEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 NMC Architecture . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Code Instrumentation and Analysis . . . . . . . . . . . . . . . 57
5.2.4 Central Composite Design . . . . . . . . . . . . . . . . . . . . 58
5.2.5 Ensemble Machine Learning . . . . . . . . . . . . . . . . . . . 59

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Model Training and Prediction Time . . . . . . . . . . . . . . 61
5.3.3 Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.4 Use Case: NMC-Suitability Analysis . . . . . . . . . . . . . . 64

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 LEAPER: Modeling FPGA-Based Systems via Few-Shot Learning 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 LEAPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 FPGA Configuration Options and Application Features . . . . 71



6.2.3 Latin Hypercube Statistical Sampling . . . . . . . . . . . . . . 73
6.2.4 Base Model Building . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.5 Cloud Model Building via Transfer Learner . . . . . . . . . . . 74

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Hardware Platform and Tools . . . . . . . . . . . . . . . . . . 76
6.3.2 Target Model Accuracy Analysis . . . . . . . . . . . . . . . . 78
6.3.3 Target Cloud FPGA Model Building Cost . . . . . . . . . . . 82
6.3.4 Base Model Accuracy Analysis . . . . . . . . . . . . . . . . . . 83
6.3.5 Why Does LEAPER Work? . . . . . . . . . . . . . . . . . . . 84
6.3.6 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . 85

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning 89
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2.1 Hybrid Storage Systems (HSSs) . . . . . . . . . . . . . . . . . 94
7.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.2 Why Is RL a Good Fit for Data Placement in Hybrid Storage

Systems? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 Sibyl: RL Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.6 Sibyl: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6.1 Sibyl Data Placement Algorithm . . . . . . . . . . . . . . . . 104
7.6.2 Detailed Design of Sibyl . . . . . . . . . . . . . . . . . . . . . 104

7.7 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.8.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 110
7.8.2 Performance on Unseen Workloads . . . . . . . . . . . . . . . 112
7.8.3 Performance on Mixed Workloads . . . . . . . . . . . . . . . . 112
7.8.4 Performance with Different Features . . . . . . . . . . . . . . 114
7.8.5 Performance with Different Hyper-Parameters . . . . . . . . . 115
7.8.6 Sensitivity to Fast Storage Capacity . . . . . . . . . . . . . . . 115
7.8.7 Tri-Hybrid Storage Systems . . . . . . . . . . . . . . . . . . . 116

7.9 Explainability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.10 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.10.1 Inference and Training Latencies . . . . . . . . . . . . . . . . 120
7.10.2 Area Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.12 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



8 Conclusions and Future Directions 125
8.1 Outlook and Future Directions . . . . . . . . . . . . . . . . . . . . . . 127

8.1.1 Data-Centric Computing . . . . . . . . . . . . . . . . . . . . . 127
8.1.2 Data-Driven System Optimization . . . . . . . . . . . . . . . . 129

A Review of Near-Memory Data-Centric Architectures 131
A.1 Processing Near-Main Memory . . . . . . . . . . . . . . . . . . . . . 131

A.1.1 Programmable Unit . . . . . . . . . . . . . . . . . . . . . . . . 131
A.1.2 Fixed-Function Unit . . . . . . . . . . . . . . . . . . . . . . . 134
A.1.3 Reconfigurable Unit . . . . . . . . . . . . . . . . . . . . . . . . 136

A.2 Processing Near-Storage Class Memory . . . . . . . . . . . . . . . . . 137
A.2.1 Programmable Unit . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2.2 Fixed-Function Unit . . . . . . . . . . . . . . . . . . . . . . . 138
A.2.3 Reconfigurable Unit . . . . . . . . . . . . . . . . . . . . . . . . 139

B PreciseFPGA: Low Precision Accelerator Search for FPGA 141
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.2.1 Effect on Power Consumption . . . . . . . . . . . . . . . . . . 143
B.2.2 Effect on Inference Accuracy . . . . . . . . . . . . . . . . . . . 143
B.2.3 Design Space Exploration Time . . . . . . . . . . . . . . . . . 144

B.3 PreciseFPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.3.2 HLS-based Features . . . . . . . . . . . . . . . . . . . . . . . . 146
B.3.3 Function Detector and Feature Predictor . . . . . . . . . . . . 147
B.3.4 Resource and Power Predictor . . . . . . . . . . . . . . . . . . 148

B.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.4.1 Resource and Power Prediction . . . . . . . . . . . . . . . . . 150
B.4.2 Pareto Curve Generation . . . . . . . . . . . . . . . . . . . . . 150

B.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C Other Works of the Author 155

Bibliography 157

List of Publications 187

Curriculum Vitae 189



List of Figures

1-1 Classification of computing systems based on working set location [172]. 4

2-1 Micron’s Hybrid Memory Cube (HMC) [367] comprising of several
DRAM layers stacked on top of a logic layer connected by through-
silicon vias (TSVs). The memory organization is divided into vaults,
with each vault consisting of multiple DRAM banks . . . . . . . . . 16

2-2 Processing options in the memory hierarchy highlighting three compu-
tation paradigms: (1) Compute-centric approach where data is moved
through various levels of memory to the processor for computing; (2)
Near-memory computing approach where the processing elements are
placed closer to memory; and (3) Computation-in memory approach
that uses inherent properties of memory to perform computation . . 17

3-1 Roofline [501] for POWER9 (1-socket) showing vertical advection
(vadvc) and horizontal diffusion (hdiff) kernels for single-thread and
64-thread implementations. The plot shows also the rooflines of the
FPGAs used in this chapter . . . . . . . . . . . . . . . . . . . . . . . 27

3-2 Horizontal diffusion compound kernel composition in a two dimensional
plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-3 (a) Heterogeneous platform with an IBM POWER9 system connected
to an HBM-based FPGA board via CAPI2. (b) Execution timeline
with data flow sequence from the host DRAM to the onboard FPGA
memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-4 Architecture overview of NERO with data flow sequence from the host
DRAM to the on-board FPGA memory via POWER9 cachelines. We
depict a single processing element (PE) fetching data from a dedicated
HBM port. The number of HBM ports scales linearly with the number
of PEs. Heterogeneous partitioning of on-chip memory blocks reduces
read and write latencies across the FPGA memory hierarchy . . . . . 32

3-5 NERO application framework. We co-design our software and hardware
using the SNAP framework. COSMO API allows the host to offload
kernels to our FPGA platform . . . . . . . . . . . . . . . . . . . . . 34

i



3-6 Performance and FPGA resource utilization of single vadvc PE, as a
function of tile-size, using hand-tuning and auto-tuning for (a) single-
precision (32-bit) and (b) half-precision (16-bit). We highlight the
Pareto-optimal solution that we use for our vadvc accelerator (with a
red circle). Note that the Pareto-optimal solution changes with precision 36

3-7 Single-precision performance for (a) vadvc and (b) hdiff, as a function
of accelerator PE count on the HBM- and DDR4-based FPGA boards.
We also show the single socket (64 threads) performance of an IBM
POWER9 host system for both vadvc and hdiff . . . . . . . . . . . 36

3-8 Energy efficiency for (a) vadvc and (b) hdiff on HBM- and DDR4-
based FPGA boards. We also show the single socket (64 threads) energy
efficiency of an IBM POWER9 host system for both vadvc and hdiff 38

4-1 (a) 7-point stencil and 25-point elementary stencils (b) Compound hor-
izontal diffusion stencil that is used by the COSMO weather prediction
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4-2 Overview of application precision exploration. The designer inputs
the code with an appropriate precision template. Exhaustive precision
exploration is performed for different number systems that include
fixed-point arithmetic, floating-point arithmetic, and posit arithmetic.
While exploring, error tracking is performed using the 2-norm matrix
approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-3 Arithmetic types used with widths indicated above each field. IEEE
single precision floating-point number is 32-bit where a positive sign bit
is represented by a 0 and a negative by 1. Fixed-point has fixed integer
and fraction bits where w (total bits) could be any multiple of 2, based
on the bitwidth of the data path. Dynamic floating-point arithmetic
uses arbitrary exponent and mantissa bits. A posit number [165] is
similar to floating-point with additional bits for the regime part. It has
es exponent bits, but depending upon the data this could be omitted
(same is valid for mantissa bits) . . . . . . . . . . . . . . . . . . . . . 45

4-4 Total bits vs accuracy (percentage) for (a) 7-point, (b) 25-point, and
(c) horizontal diffusion compared to single-precision IEEE floating-point
representation. Notation fixed (w,i) defines a fixed number with total w
bits including i integer bits. With floatx, e refers to the exponent bits
and m defines the mantissa. In the case of the posit number system, n
is the total number of bits with es bits for the exponent part . . . . 47

4-5 (a) CAPI 2-based accelerator platform with IBM® POWER9 (b) FPGA
is acting as a peer to the CPU by accessing the main memory through a
high-performance CAPI2 link, enabled by PSL. Data flow sequence from
the Host DRAM to the onboard FPGA memory. A software-defined
API handles offloading jobs to accelerators with an interrupt-based
queuing mechanism that allows minimal CPU usage (thus, power)
during FPGA use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



4-6 Roofline [501] for POWER9 (1-socket) showing elementary stencil
(7-point and 25-point) and horizontal diffusion (hdiff) kernels for
single-thread baseline and 64-thread fully-optimized implementations.
The plot shows also the roofline of the FPGA with attained performance
of our examined stencils using different precision data types . . . . . 49

4-7 Evaluated design points for different stencil kernels. The plot shows
energy efficiency (GFLOPS/Watt) with different precision implementa-
tions on an Alpha-Data ADM-PCIE-9V3 [5] card featuring the Xilinx
Virtex Ultrascale+ XCVU3P-FFVC1517 . . . . . . . . . . . . . . . . 51

5-1 Overview of NAPEL training and prediction . . . . . . . . . . . . . . 55
5-2 Overview of a system with NMC capability. On the right, an abstract

view of application code with kernels that are offloaded to NMC . . . 56
5-3 Central composite DoE for two parameters (x, y). For example, for

atax (x, y) are (dimension, threads) . . . . . . . . . . . . . . . . . . . 58
5-4 NAPEL’s prediction speedup (in increasing order) over Ramulator for

256 DoE configurations. . . . . . . . . . . . . . . . . . . . . . . . . . 62
5-5 Mean relative error for performance (a) and energy (b) predictions

using NAPEL vs. other methods. . . . . . . . . . . . . . . . . . . . . 63
5-6 Execution time and energy on an IBM POWER9. . . . . . . . . . . 64
5-7 Estimated EDP reduction of offloading to NMC units versus execu-

tion on the baseline host CPU. “Actual” denotes the estimation with
Ramulator. “NAPEL” denotes NAPEL’s prediction results. . . . . . 64

6-1 Comparison of traditional learning approach and LEAPER. Traditional
learning methods are costly because they build models only for a specific
environment. LEAPER allows transfer of models from a low-cost
edge FPGA, where data collection is easier, to a high-cost cloud FPGA
environment to build cheaper and faster models. . . . . . . . . . . . . 70

6-2 Overview of LEAPER. Base Model Building: LEAPER builds ML
models that predict performance and resource usage for an applica-
tion on an FPGA. Target Model Building: with few-shot learning,
LEAPER adapts base models to a new, unknown environment, from
which only a few labeled samples are needed. . . . . . . . . . . . . . 71

6-3 LHS with 2 parameters where the input space is divided into equal
intervals and 9 non-overlapping sample points are chosen. . . . . . . 73

6-4 LEAPER’s accuracy for transferring base models across CAPI-enabled
cloud FPGA-based systems. The legends indicate the target platforms.
The base model was trained on a low-end PYNQ-Z1 board and, for
each application, we transfer this model to different high-end cloud
FPGA-based platforms using different samples (horizontal axis) from
the target platform. Once trained using few shot, the transferred model
makes predictions for all other configurations in the target platform. . 79

iii



6-5 LEAPER’s accuracy for transferring base models across various ap-
plications. The legends indicate the number of samples. Each plot
represents a different application as a base learner. We transfer these
base learners, trained on the PYNQ-Z1 platform, by using invariant
configuration features to build a target application model. . . . . . . 80

6-6 Two numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . 82
6-7 Mean accuracy for performance and resource utilization predictions

using LEAPER’s base model vs. other methods: XGB (XGBoost), an
artificial neural network (ANN), and a decision tree (DT). . . . . . . 84

7-1 Overview of a hybrid storage system . . . . . . . . . . . . . . . . . . 95
7-2 Average request latency normalized to Fast-Only policy . . . . . . . . 96
7-3 Randomness and hotness characteristics of real-world MSRC work-

loads [324] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7-4 Timeline of accessed logical addresses and request sizes during the

execution of rsrch_0 workload . . . . . . . . . . . . . . . . . . . . . 97
7-5 Main components of general RL . . . . . . . . . . . . . . . . . . . . . 99
7-6 Formulating data placement as an RL problem . . . . . . . . . . . . . 101
7-7 Overview of Sibyl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7-8 Training network design using as input the state features from Table 7.1.

The inference network is identical except it is used only for inference 103
7-9 Two numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . 106
7-10 Two numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . 111
7-11 Request throughput (IOPS) under two different hybrid storage configu-

rations (normalized to Fast-Only) . . . . . . . . . . . . . . . . . . . . 112
7-12 Average request latency on unseen workloads (normalized to Fast-Only)

under two HSS configurations . . . . . . . . . . . . . . . . . . . . . . 113
7-13 Average request latency on mixed workloads (normalized to Fast-Only)

and two HSS configurations . . . . . . . . . . . . . . . . . . . . . . . 114
7-14 Average request latency when using different features (see Table 7.1)

for the state space of Sibyl in the H&L HSS configuration (normalized
to Fast-Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7-15 Sensitivity of Sibyl throughput to: (a) the discount factor (𝛾), (b)
the learning rate (𝛼), (c) the exploration rate (𝜖), averaged across 14
workloads (normalized to Fast-Only) . . . . . . . . . . . . . . . . . . 116

7-16 Average request latency for various fast storage device sizes (normalized
to Fast-Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7-17 Average request latency for the tri-hybrid HSS (normalized to Fast-Only) 118
7-18 Sibyl’s preference for the fast storage device under different HSS config-

urations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7-19 Two numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . 119

B-1 Power consumption with change in bitwidth for LeNet-5 [250, 339]. . 143

iv



B-2 Error in the inference accuracy of LeNet-5 [250, 339]. To find the
optimum bitwidth that minimizes the error without a drastic increase
in power consumption, we need to determine both the integer and the
fractional part of a fixed-point configuration. . . . . . . . . . . . . 144

B-3 Overiew of PreciseFPGA. . . . . . . . . . . . . . . . . . . . . . . . . 145
B-4 Pareto-Optimal plot of power vs relative error for 8 different architec-

tures of LeNeT-5-based [250, 339] CNN model. . . . . . . . . . . . . . 151

v



vi



List of Tables

1.1 List of contributions and methods used to achieve the thesis statement 8

2.1 Classification metrics that we use to analyze some notable NMC archi-
tectures (see Table 2.2). . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Classification and evaluation of representative architectures in category
of our NMC taxonomy, refer to Table 2.1 for the legend . . . . . . . . 19

2.3 Academic NMC simulators . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 System parameters and hardware configuration for the CPU and the
FPGA board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 FPGA resource utilization in our highest-performing HBM-based de-
signs for vadvc and hdiff . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 System parameters and hardware configuration for the CPU and the
FPGA board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 FPGA resource utilization and performance for the examined stencil
kernels on FPGA testbeds, with different precisions . . . . . . . . . . 51

5.1 Main application and architectural features . . . . . . . . . . . . . . . 57
5.2 Evaluated applications and their DoE parameters (“DoE param.”).

For each DoE parameter, we show its five levels (minimum, low, cen-
tral, high, maximum) and test input . . . . . . . . . . . . . . . . . . . 59

5.3 System parameters and configuration . . . . . . . . . . . . . . . . . . 61
5.4 Number of DoE configurations (“#DoE conf”) for gathering training

data (“DoE run (mins)”), NAPEL training time (“Train+Tune (mins)”),
including tuning, and NAPEL prediction time (“Pred. (mins)”). . . . 62

5.5 Related works in different domains . . . . . . . . . . . . . . . . . . . 65

6.1 The FPGA configuration options used to train our ML-models. . . . . 72
6.2 Main application features extracted from LLVM. . . . . . . . . . . . . 72
6.3 Evaluated applications; description including their major kernels and

the input dataset. For major kernels, we mention the optimization
space where × represents the optimization being applied to multiple
loops or elements. see Table 6.1 for description of the optimization
options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 System parameters and configuration. . . . . . . . . . . . . . . . . . . 81

vii



6.5 Average accuracy (%) comparison of LEAPER with decision tree (DT)
and adaBoost (ADA) as TL for 5-shot transfer. . . . . . . . . . . . . 81

6.6 DoE time for gathering sampled data points for a single CPU-FPGA
platform (“DoE run (hours)”), DoE execution time on the deployed
platform (“Exec (ms)”), Estimated Cost on a cloud platform (“Est.
Cost ($)”), time for gathering 5 labeled samples (“5-shot (hours)”),
LEAPER time including the transfer time (“Transfer (msec)”), “Speedup”
over building a new model from scratch using just the DoE data (still
more cost-efficient than traditional “brute-force” training). . . . . . . 83

6.7 Execution time and resource utilization for low-end base configuration
(PYNQ-Z1) and high-end cloud configuration, a Nimbix np8f1 instance
(POWER8, ADM-PCIE-KU3 with CAPI-1). . . . . . . . . . . . . . . 83

6.8 Jensen-Shannon Divergence (JSD) [273] between performance distri-
butions of different applications. JSD measures statistical distance
between two probability distributions. . . . . . . . . . . . . . . . . . . 85

7.1 State features used by Sibyl . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Hyper-parameters considered for tuning . . . . . . . . . . . . . . . . 108
7.3 Host system and storage devices used in hybrid storage configurations 109
7.4 Characteristics of 14 evaluated workloads . . . . . . . . . . . . . . . . 110
7.5 Characteristics of mixed workloads . . . . . . . . . . . . . . . . . . . 113

8.1 List of contributions and methods used to achieve the thesis statement 126

B.1 Components and their features extracted from the C-Synthesis report. 147
B.2 Example of an HLS C-Synthesis report with outputs from function-

detector and feature-predictor. . . . . . . . . . . . . . . . . . . . . . . 148
B.3 Model runtime and resource prediction results. . . . . . . . . . . . . . 150

viii



Chapter 1

Introduction

A wide range of application domains have emerged with the ubiquity of computing
platforms in every aspect of our daily lives. These modern workloads (e.g., machine
learning, graph processing, and bioinformatics) demand high compute capabilities
within strict power constraints [147]. However, today’s computing systems are getting
constrained by current technological capabilities, making them incapable of delivering
the required performance. We highlight three major trends that call for a paradigm
shift in the computing system landscape.
(1) The Memory Wall: Over the years, the improvements in memory access latency
have not been able to keep up with the improvements in processor latency, which is
referred to as the memory wall [509]. Earlier, system architects tried to bridge this
gap by introducing multiple levels of the memory hierarchy that can cache data to
avoid unnecessary off-chip data movement. Yet, the system remained compute-centric,
where the data has to move a long distance from the memory subsystem over the
power-hungry off-chip data bus through multiple levels of memory hierarchy to the
compute units for processing. This compute-centric nature has lead to a fundamental
data movement bottleneck, which incurs a significant amount of energy and latency
overhead in our current computing systems [331]. In addition, for a given application,
there can be a strong mismatch between the nature of the data access patterns and the
layout of the data in memory. Such a mismatch leads to limited spatial locality, which
causes frequent data movement between the memory subsystem and the processing
units.
(2) The Slowdown of Moore’s Law: The continuation of Moore’s law allowed more
transistors per chip for each transistor node technology generation. This transistor
scaling enabled us to have CPUs composed of a multi-core architecture with multiple
levels of caches. In 1974, Dennard [109] postulated that the total chip power for a given
chip area stayed constant from one process generation to another. This trend allowed
CPU vendors to have higher clock frequencies without drastically impacting the

1



2 CHAPTER 1. INTRODUCTION

overall system power consumption. However, with the demise of Dennard scaling [109],
we witness that with every process generation, total chip power does not remain
constant due to the leakage effects. The leakage effects limit the shrinking of gate
oxide in a transistor that forces higher voltage than required for Dennard scaling,
which in turn increases the power density. As a result, the system-level performance
gains are not enough to motivate a further increase in the single-core clock frequency
compared to the significant increase in energy consumption. This increase in power
consumption has led to the onset of dark silicon [123] in servers, whereby a large
portion of transistors on a chip has to be switched off or run at a lower frequency to
avoid the effects of high leakage [301]. While in system-on-a-chip (SoC)-based designs,
specialized heterogeneous cores have emerged to overcome the disadvantages of dark
silicon and slowdown of Moore’s law [173], where each core is optimized for a specific
task. Therefore, in the Post-Dennard scaling era, the single-core CPU performance
has stagnated because of its inability to operate within the given power budget.

Over the years, advancements in manufacturing technology have been slowing
due to device physics limitations in transistor node scaling. On the other hand, the
memory scaling is becoming even more challenging [138, 150, 326]. However, the
demand for performance with high energy-efficiency has continued to grow. In the high-
performance computing (HPC) domain, current scaling issues and high communication
overheads limit HPC systems to realize exascale computers needed for modern and
future data-intensive workloads [334].

Therefore, future architectural innovations are expected to come from optimizations
across the entire hardware/software computing stack [327, 328].
(3) The Data Avalanche: At the same time, we are witnessing an enormous
amount of data being generated across multiple application domains [334] like weather
prediction modeling, radio astronomy, bioinformatics, material science, chemistry,
health sciences, etc. In the domain of climate and weather modeling, for example,
there is a data avalanche due to large atmospheric simulations [410]. Major efforts
are currently underway towards refining the resolution grid of climate models that
would generate zettabytes of data [410]. These high-resolution simulations are useful to
predict and address events like severe storms. However, the sheer amount of generated
data is one of the biggest challenges to overcome.

The Consortium for Small-Scale Modeling (COSMO) [116] built one such weather
model to meet the high-resolution forecasting requirements of weather services. We
use COSMO as a major case-study in this thesis. The main computational pipeline
of COSMO consists of compound stencil kernels that operate on a three-dimensional
grid [167]. The performance of these compound stencil kernels is dominated by
memory-bound operations with irregular memory access patterns and low arithmetic
intensity that often results in <10% sustained floating-point performance on current



1.1. PROBLEM AND THESIS STATEMENT 3

CPU-based systems [290] that standard CPU-based optimization techniques cannot
overcome (see Chapter 3).

We find another relevant example in radio astronomy. The first phase of the Square
Kilometre Array (SKA) aims to process over 100 terabytes of raw data samples per
second, yielding of the order of 300 petabytes of SKA data produced annually [209].
Recent biological disciplines such as genomics have also emerged as one of the most
data-intensive workloads across all different sciences wherein just a single human
genome sequence produces hundreds of gigabytes of raw data. With the rapid advance-
ment in sequencing technology, the data volume in genomics is projected to surpass
the data volume in all other application domains [337].

The above trends suggest that computer architects and system designers need to
develop novel architectural solutions to overcome the aforementioned major technologi-
cal challenges and effectively handle the overwhelming amount of data.

This chapter serves as an introduction to this dissertation. The chapter is structured
as follows. Section 1.1 highlights the two guiding principles that we follow in this
dissertation to overcome our current system challenges. Based on these guiding
principles, we provide the thesis statement. Section 1.2 describes our approach to
solve the thesis statement, while Section 1.3 lists the contributions of this dissertation.
Finally, Section 1.4 provides the dissertation outline.

1.1 Problem and Thesis Statement

Future architectural innovations are expected to come from optimizations across
the entire hardware/software computing stack [327]. We highlight two guiding prin-
ciples that can be applied in complementary aspects of computer architecture to
overcome the current system challenges and improve the overall performance: (1) data-
centric computing, where we bring processing closer to the memory and use different
techniques to reduce the data movement bottleneck (such as hardware specialization,
data quantization, and domain specific-memory hierarchies); (2) data-driven system
optimization, where we exploit the available data to perform architectural decisions or
predictions.

1.1.1 Data-Centric Computing

Today’s memory hierarchy usually consists of multiple levels of cache, the main
memory, and the storage. The traditional approach is to move data up to caches from
the storage and then process it. Figure 1-1 depicts the system evolution based on



4 CHAPTER 1. INTRODUCTION

the information referenced by a program during execution, which is referred to as a
working set [172]. Prior systems were based on a compute-centric approach where data
is moved to the core for processing (Figure 1 (a)-(c)). In contrast, the data-centric
approach aims at processing close to where the data resides. This approach couples
compute units close to the data and seek to minimize the expensive data movement.
The system ensures that data does not overwhelm its components.

As shown in Figure 1 (d-e), near-memory computing (NMC) [11, 12, 68, 132, 145,
155, 182, 183, 225, 334, 434] and computation-in memory (CIM) [7, 77, 144, 264, 265,
399, 416, 417, 419, 429] are two data-centric paradigms. In near-memory computing
(Figure 1 (d)), we place the processing cores closer to the memory units. On the other
hand, the computation-in-memory (Figure 1 (e)) paradigm is more disruptive as it
aims at reducing data movement completely by using memories with built-in compute
capability (e.g., resistive random-access memory (ReRAM) and phase-change memory
(PCM)). Processing right at the “home” of data can significantly diminish the data
movement problem of data-intensive applications. Thus, data-centric architectures
have the potential to overcome our current data movement bottleneck.

Figure 1-1: Classification of computing systems based on working set loca-
tion [172]. Prior systems were based on a compute-centric approach where data
is moved to the core for processing (Figure 1-1 (a)-(c)), whereas now, with near-
memory computing (Figure 1-1 (d)), the processing cores are brought closer to
the place where data resides. Therefore, in a data-centric approach, the data
resides much closer to the processing units than in a compute-centric approach.
Computation-in-memory (Figure 1-1 (e)) further reduces data movement by
using memories with built-in compute capability (e.g., phase-change memory
(PCM) [265])

Heterogeneous computing has emerged as an answer to continue to improve
performance beyond the limits imposed by the slow down in Moore’s Law and the end
of Dennard scaling [447]. Heterogeneous computing entails complementing processing
elements with different compute capabilities, each to perform the tasks to which it
is best suited. In the HPC domain, coupling specialized compute units with general-
purpose cores while following a data-centric approach can meet the high-performance



1.1. PROBLEM AND THESIS STATEMENT 5

computing demands and provides the ability to realize exascale systems needed to
process data-intensive workloads [334].

The graphics processing unit (GPU) is one of the most popular acceleration
platforms. GPUs have been used to accelerate workloads like computer graphics and
linear algebra [485] because of their many-core architecture. However, GPUs are
power-hungry due to high transistor density and, depending on the power constraints,
may not always be the ideal platform for implementation. Recently, the use of field-
programmable gate array (FPGA) in accelerating machine learning workloads with
high energy-efficiency has inspired researchers to explore the use of FPGAs instead of
GPUs for various high-performance computing applications [73, 119].

FPGAs provide a unique combination of flexibility and performance without the
cost, complexity, and risk of developing custom application-specific integrated circuits
(ASICs). The researchers at CERN, for example, are using FPGAs to accelerate
physics workload in CERN’s exploration for dark matter [119]. Microsoft’s Project
Catapult [73] is another example of how FPGAs can be used in the data center
infrastructure. Driven by Catapult’s promising research results, Microsoft further
deployed the architecture on the Azure cloud marketplace [316]. Such integration
for certain workloads can even offer more energy efficiency than CPU or GPU-based
systems. However, taking full advantage of FPGAs for accelerating a workload is
not a trivial task. Compared to CPUs or GPUs, an FPGA must exploit an order of
magnitude more parallelism in a target workload to compensate for the lower clock
frequency.

The above trend raises a question: how can we accelerate other scientific
applications in an energy-efficient way on specialized hardware?

Modern FPGAs show four key trends.
• The integration of high-bandwidth memory (HBM) [179] on the same package as

an FPGA allows us to implement our accelerator logic much closer to the memory
with an order of magnitude more bandwidth than the traditional DDR4-based
FPGA boards. Thus, these modern FPGAs adopt a data-centric approach.

• The introduction of UltraRAM (URAM) [470] along with the BlockRAM (BRAM)
that offers massive scratchpad-based on-chip memory next to the logic.

• New cache-coherent interconnects, such as IBM Coherent Accelerator Processor
Interface (CAPI) [444], Cache Coherent Interconnect for Accelerators (CCIX) [49],
and Compute Express Link (CXL) [421], allow tight integration of FPGAs with
CPUs at high bidirectional bandwidth (on the order of tens of GB/s). This
integration reduces programming effort and enables us to coherently access the host
system’s memory through a pointer rather than having multiple copies of the data.



6 CHAPTER 1. INTRODUCTION

• FPGAs are being manufactured with an advanced technology node of 7-14nm
FinFET technology [140] that offers higher performance.

These four trends suggest that modern FPGA architectures deliver
unprecedented levels of integration and compute capability due to new
technological advances, which further provides an opportunity to over-
come the memory bottleneck of real-world data-intensive applications.

1.1.2 Data-Driven System Optimization

On a computing system, we generally run a diverse set of workloads that generate
a large amount of data. However, our present systems do not take advantage of vast
amounts of data available to them [327, 328, 331]. Current systems are built around
rigid design rules that follow fixed heuristic-driven policies or perform an exhaustive
exploration with a change in system scenario rather than leveraging previous knowledge.
Moreover, these heuristic-driven approaches cannot fully capture complex relations
present in various aspects of the computer architecture, such as data placement,
memory management, and task scheduling. These approaches favor certain workloads
and/or system configurations over others without considering an application’s inherent
behavior or the underlying device characteristics. For example, the storage subsystem
keeps executing the same data placement policy during the entire lifetime of a system
regardless of the impact of the resulting decisions on the system. A storage subsystem
sees a vast amount of data, yet it cannot learn from that data and adapt its policy
because the policy is rigid and hard-coded by a human.

To overcome the inefficiency of our current computing system, we need to devise
data-driven mechanisms that take advantage of the vast amount of available data by
exploiting inherent data characteristics [52, 197, 205, 206, 207, 208, 217, 370, 371,
457, 521]. To this end, a data-driven approach can enable machine learning (ML)
techniques in different aspects of computer architecture design and use. ML models are
trained to make predictions or decisions without explicit programming by discovering
inherent patterns or relationships in the data. Traditionally, computer architects have
focused more on accelerating ML algorithms. In contrast, only in the past few years
have we seen a growth in works using ML for architecture design and use [374].

Therefore, there is an opportunity to develop novel mechanisms that allow
computers to learn from experiences and reuse those experiences to make
future decisions. In turn, closing a loop where computer architects enable
ML and ML improves computer architectures. Moreover, we need to assess
if these machine learning-driven approaches can outperform our current
human-driven approaches.

Data-driven techniques using ML can assist us in many aspects of computer



1.2. OVERVIEW OF OUR APPROACH 7

architecture, including architectural evaluation and design space exploration (DSE).
In the early design stage, architects often use various evaluation techniques to navigate
the design space of new architectures, avoiding the cost of chip fabrication. Usually, we
employ analytic models or simulation techniques to provide performance and energy
consumption estimates while using different workloads or architectural configurations.
Analytic models are typically based on simple mathematical equations that provide
fast estimates but at the cost of accuracy. Therefore, we often resort to simulation-
based techniques that can model architectural interactions more accurately. However,
simulation techniques can be extremely slow because a single simulation for a real-world
application with a representative dataset can take hours or even days (see Chapter 5).
This slow speed cannot meet the modern design productivity demands, despite the
efforts of accelerating simulations with both hardware [372] and software-based [405]
techniques.

In the later phase of the design cycle, architects often use FPGAs to prototype
their design to get the accurate performance and power estimates. An FPGA is highly
configurable and allows us to reconfigure its circuitry to implement any algorithm.
However, an FPGA’s large configuration space and the complex interactions among
configuration options lead many developers to explore individual optimization options
in an ad hoc manner. Moreover, FPGAs have infamously low productivity due to the
time-consuming FPGA mapping process [345].

Therefore, a common challenge that past works have also faced is how to evaluate
the performance of an application or a new architecture in a reasonable
amount of time [346] such that a large design space can be covered?

Thesis Statement

Based on the above-discussed aspects, the thesis problem statement is as follows:
Design system architectures to effectively handle data by: (1) overcoming the data
movement bottleneck in data-intensive applications through a data-centric approach of
bringing processing close to the memory and ensuring that data does not overwhelm
system components; thus, enabling high performance in an energy-efficient way; and (2)
further leverage the enormous amount of data to model and optimize computing systems
by exploiting the inherent data characteristics to perform data-driven decisions.

1.2 Overview of Our Approach

In line with the thesis statement, this dissertation provides five contributions based
on nine methods (concepts) to handle and leverage data effectively. In Table 1.1,
we discuss nine different methods that we use in this dissertation. Methods are



8 CHAPTER 1. INTRODUCTION

architectural concepts that we use in our contribution to reach a specific goal. We
use six data-centric (DC) methods that put data and its processing at the center
of the design. These methods minimize data movement and maximize efficiency
while processing, accessing, and storing data. We also adopt three data-driven (DD)
methods that take advantage of the vast amount of data that flow through the system.
We briefly discuss these nine methods.

Table 1.1: We highlight across five contributions nine different methods (con-
cepts) used in this dissertation to achieve the thesis statement of handling data
well. We make use of two guiding principles: (1) data-centric (DC) is bringing
processing closer to where data resides and ensuring that data does not over-
whelm system components; (2) data-driven (DD) is leveraging data to perform
architectural decisions or predictions

CONTRIBUTIONS
METHODS NERO [434] Low Precision [436] NAPEL [437] LEAPER [433] Sibyl [438]

Specialization (DC) FPGA-based
accelerator

Implementation on
an FPGA for fixed-
point and floating-
point representation

FPGA-based
accelerator

Revisit memory
hierarchy (DC)

Scratchpad-based
hybrid memory

Tiered hybrid
storage system

Reducing copies
between host and
accelerator (DC)

Shared memory
space Quantize data

Dataflow
architecture (DC) Task pipelining

Near-memory
computing (DC)

Processing near-
high-bandwidth
memory

Processing near-
3D stacked memory

Reducing memory
footprint (DC)

Single and half
floating-point
precision

Different number
representations–
posit, fixed-point,
and floating-point

Static ML (DD)
Learns application
performance and
energy consumption

Learns resource
utilization and
performance
models

Speed up design
space exploration
(DD)

Auto-tuning
for data transfer
window size

Supervised ML,
Design of
experiment

Few-shot
learning

Design of
experiment

Dynamic ML (DD) Reinforcement
Learning

Goal
Overcome memory
bottleneck of
weather prediction
application

Investigate
computationally
cheaper number
representations

Quick performance
and energy
estimates of new
applications

Quick area and
performance
estimates on
new high-end
FPGA-based
platforms

Efficient and
high performance
data placement
mechanism

1. Specialization (DC): Using specialized hardware platforms such as an FPGA to
accelerate an application in an energy-efficient way.

2. Revisit memory hierarchy (DC): Design memory hierarchies to provide low
latency access to data.

3. Reducing copies between host and accelerator (DC): Minimize the redun-
dant amount of data copies between the host and the specialized hardware.



1.2. OVERVIEW OF OUR APPROACH 9

4. Near-memory computing (DC): Process data closer to the main memory to
reduce the data movement overhead.

5. Dataflow architecture (DC): Enable task-level parallelism while exploiting
data-level parallelism to maximize the utilization of compute resources.

6. Reducing the memory footprint (DC): Reduce an application’s required
memory space to efficiently access and process data.

7. Static machine learning (DD): Leveraging ML during the design phase of
architecture.

8. Speedup design space exploration (DD): Quick and accurate architectural
evaluation and exploration.

9. Dynamic machine learning (DD): Leveraging reinforcement learning (RL) dur-
ing the run-time of a system to continuously adapt system policies.

We demonstrate these above nine methods across the following five mechanisms.

First, we design NERO, a data-centric accelerator for a real-world weather prediction
application. As mentioned above, the sheer amount of atmospheric simulation data
generated is one of the biggest challenges in the domain of weather prediction. We use
a heterogeneous system comprising of IBM® POWER9 CPU with field-programmable
gate array (FPGA) as our target platform. An FPGA can provide both flexibility
and energy efficiency, and moreover, is a cost-effective alternative to an application-
specific integrated circuit (ASIC). We create a heterogeneous domain-specific memory
hierarchy using on-chip URAMs and BRAMs on an FPGA. Unlike traditionally fixed
CPU memory hierarchies, which perform poorly with irregular access patterns and
suffer from cache pollution effects, application-specific memory hierarchies are shown
to improve energy and latency by tailoring the cache levels and cache sizes to an ap-
plication’s memory access patterns [465]. NERO overcomes the memory bottleneck of
weather prediction stencil kernels by exploiting near-memory computation capabilities
on specialized FPGA accelerators with high-bandwidth memory (HBM), which are
attached to the host CPU.

Second, we explore the applicability of different number formats and exhaustively
search for the appropriate bit-width for memory-bound stencil kernels to improve
performance and energy-efficiency with minimal loss in the accuracy. Stencils are one
of the most widely used kernels in real-world applications. Based on an exhaustive
exploration of a broad range of number systems – fixed-point, floating-point, and
posit [165] – we provide the precision and the corresponding accuracy deviation. Each
number representation offers a different dynamic range, the usability of which depends
upon the target workload.



10 CHAPTER 1. INTRODUCTION

Third, we propose NAPEL, a machine learning-based application performance and
energy prediction framework for data-centric architectures. NAPEL uses ensemble
learning to build a model that, once trained for a fraction of programs on a number of
architecture configurations, can predict the performance and energy consumption of
different applications.

Fourth, we present LEAPER, the first use of few-shot learning to transfer FPGA-
based computing models across different hardware platforms and applications. Machine
learning (ML)-based modeling has emerged as an alternative to traditional, slow
simulation (or evaluation) techniques [346]. ML modeling provides the capability
to both quickly evaluate various architectural design choices and perform suitability
analysis for many workloads. Thus, quick exploration and large prediction time savings
compared to simulation are possible. To this end, we develop NAPEL and LEAPER,
which are ML-based model solutions.

However, ML needs a large amount of data to train models, which requires running
time-consuming simulations. To alleviate this problem, we use a technique called the
design of experiments (DoE) [321] to extract representative data with a small number
of experimental runs. DoE is a set of statistical techniques meant to locate a small set
of points in a parameter space with the goal of representing the whole parameter space.
The traditional brute-force approach to collecting training data is time-consuming:
the sheer number of experiments renders detailed simulations intractable.

Fifth, we propose Sibyl, the first technique that uses reinforcement learning (RL)
for data placement in hybrid storage systems. Sibyl observes different features of
the running workload as well as the storage devices to make system-aware data
placement decisions. For every decision it makes, Sibyl receives a reward from the
system that it uses to evaluate the long-term performance impact of its decision and
continuously optimizes its data placement policy online. Compared to supervised
learning, reinforcement learning provides the following three benefits. First, supervised
learning requires large amounts of labeled data. In some scenarios, collecting labeled
data can be difficult or even infeasible. Second, unlike supervised learning, which is
purely driven by prediction accuracy, an RL-agent is objective-driven, making RL a
great fit for objective-driven policies. Third, RL does not require separate training and
testing phases. Instead, RL continuously learns and adapts based on the changes in
the environment. We implement Sibyl on real systems with various HSS configurations,
including dual- and tri-hybrid storage systems. Our in-depth evaluation of Sibyl shows
that it outperforms four state-of-the-art techniques over a wide variety of applications
with a low implementation overhead.



1.3. CONTRIBUTIONS 11

1.3 Contributions
This dissertation makes the following key contributions:
1. In Chapter 3, we propose NERO, the first near-HBM FPGA-based accelerator for

representative kernels from a real-world weather prediction application. Weather
prediction is one such high-performance computing application that generates a
large amount of data. It consists of compound stencil kernels that operate on a
three-dimensional grid. Such compound kernels are dominated by memory-bound
operations with complex memory access patterns and low arithmetic intensity. This
poses a fundamental challenge to acceleration.
(a) We perform a detailed roofline analysis to show that representative weather

prediction kernels are constrained by memory bandwidth on state-of-the-art
CPU systems.

(b) We optimize NERO with a data-centric caching scheme with precision-optimized
tiling for a heterogeneous memory hierarchy (consisting of URAM, BRAM,
and HBM).

(c) We evaluate the performance and energy consumption of our accelerator and
perform a scalability analysis. We show that an FPGA+HBM-based design
outperforms a complete 16-core POWER9 system (running 64 threads) by 4.2×
for the vertical advection (vadvc) and 8.3× for the horizontal diffusion (hdiff)
kernels with energy reductions of 22× and 29×, respectively.

2. In Chapter 4, we perform a precision exploration of the three-dimensional stencil
kernels for future mixed-precision systems using a wide range of number systems,
including fixed-point, floating-point, and posit.
(a) We provide the precision and the corresponding accuracy deviation for a broad

range of number systems – fixed-point, floating-point, and posit.
(b) We tune stencil-based kernels on a state-of-the-art IBM POWER9 CPU and

further evaluate them on an FPGA, which is coherently attached to the
host memory. Thus, this chapter fills the gap between the current hardware
capabilities and future hardware design.

(c) As an extension of this chapter, in Appendix B, we demonstrate our approach
to automate the exploration for fixed-point configurations. We show our results
for tuning the precision of weights for a neural network.

3. In Chapter 5, we propose NAPEL, a new, fast high-level performance and energy
estimation framework for NMC architectures. NAPEL is the first such model
to leverage ensemble learning techniques, specifically random forest, to quickly
estimate the performance and energy consumption of previously-unseen applications
in the early stages of design space exploration for NMC architectures.



12 CHAPTER 1. INTRODUCTION

(a) We reduce the simulation time needed to gather training data for NAPEL by
employing a DoE technique [300], which selects a small number of application
input configurations that well represent the entire space of input configurations.

(b) We show that NAPEL can provide performance and energy estimates 220×
faster than a state-of-the-art microarchitecture simulator with an average error
rate of 8.5% (performance) and 11.6% (energy) compared to the simulator.

(c) We show that we can use NAPEL to accurately determine if, and by how much,
executing a certain workload on a specific NMC architecture can improve
performance and reduce energy consumption versus execution on a CPU.

4. In Chapter 6, we present LEAPER, the first use of few-shot learning to transfer
FPGA-based computing models across different hardware platforms and appli-
cations. This approach dramatically reduces (up to 10×) the training overhead
by adapting a base model trained on a low-end edge FPGA platform to a new,
unknown high-end environment (a cloud environment in our case) rather than
building a new model from scratch).
(a) We create an ensemble of transfer learning models to accurately transfer

learning from multiple base learners to avoid a negative transfer, i.e., severe
degradation of the predictive power of the transferred model.

(b) We demonstrate our approach across five state-of-the-art, high-end, on-premise
cloud FPGA-based platforms with three different interconnect technologies,
between host CPU and FPGA, on six real-world applications. For 5-shot
learning, we achieve an average performance and area prediction accuracy of
80–90%.

5. In Chapter 7, we propose Sibyl, a new self-optimizing mechanism that uses
reinforcement learning to make data placement decisions in hybrid storage systems.
Sibyl dynamically learns, using both multiple workload features and system-level
feedback information, how to continuously adapt its policy to improve its long-term
performance for a workload.
(a) We show on real hybrid storage systems (HSSs) that prior state-of-the-art

HSS data placement mechanisms fall short of the oracle placement due to:
lack of (1) adaptivity to workload changes and storage device characteristics,
and (2) extensibility.

(b) We conduct an in-depth evaluation of Sibyl on real systems with various HSS
configurations, showing that it outperforms four state-of-the-art techniques
over a wide variety of applications with a low implementation overhead.

(c) We provide an in-depth explanation of Sibyl’s actions that show that Sibyl
performs dynamic data placement decisions by learning changes in the level of
asymmetry in the read/write latencies and the number and types of storage



1.4. DISSERTATION STRUCTURE 13

devices.
(d) We freely open-source Sibyl to aid future research in data placement for storage

systems [95].

6. In addition to the above contributions, in Chapter 2, we analyze and organize
the extensive body of literature on near-memory computing architectures across
various dimensions: starting from the memory level where this paradigm is applied
to the granularity of an application that could be executed on these architectures.
(a) A survey of existing near-memory computing architectures. We review more

than 30 architectures in detail and identify the strengths and weaknesses of
the existing architectures in Appendix A.

(b) We highlight the opportunities and the challenges in the domain of near-
memory computing.

Thesis Conclusion
Overall, we make the following two conclusions for this thesis.

1. Hardware acceleration on an FPGA+HBM fabric is a promising solution to
reduce the data movement bottleneck of our current computing systems in an
energy-efficient way.

2. Data should drive system and design decisions by exploiting the inherent
characteristics of data to perform efficient architectural decisions or predictions
in various design aspects of the computer architecture.

Therefore, we conclude that the mechanisms proposed by this dissertation provide
promising solutions to handle data well by following a data-centric approach and
further demonstrate the importance of leveraging data to devise data-driven policies.

1.4 Dissertation Structure
This thesis is organized into eight chapters. Chapter 2 provides background

into near-memory computing, where we classify and evaluate various state-of-the-art
data-centric architectures. In Appendix A, we describe in detail all the evaluated
architectures. Additionally, Chapter 2 also highlights various challenges that need
to be addressed. Chapter 3 presents NERO, a data-centric architecture of weather
prediction application. Chapter 4 explores the applicability of different number systems
for stencil kernels. As an extension to Chapter 4, Appendix B presents PreciseFPGA. It
provides an automated exploration framework for fixed-point representation. Chapter 5
introduces NAPEL, a fast high-level performance, and energy estimation framework.



14 CHAPTER 1. INTRODUCTION

Chapter 6 presents LEAPER, our approach to quickly model different FPGA-based
hardware platforms and applications. Chapter 7 introduces Sibyl, the first RL-based
data-driven mechanism for data placement in a hybrid storage system. Chapter 8
concludes this dissertation and provides future directions that are enabled by its
results – both in the domain of data-centric computing and data-driven optimization
that can help us overcome present computing system challenges. In addition to the
works presented in this thesis, Appendix C highlights several other contributions of
the author.



Chapter 2

Near-Memory Computing

In the literature, data-centric computing has manifested with names such as
processing-in memory (PIM), near-data processing (NDP), near-memory processing
(NMP), or in the case of non-volatile memories as in-storage processing (ISP). However,
all these terms fall under the same umbrella of near-memory computing (NMC), with
the core principle of performing processing closer to the memory in contrast to the
traditional compute-centric approach. In this dissertation, we focus on NMC rather
than in-situ data-centric computing called computation-in-memory that performs
logical operations using memory itself by exploiting physical properties of memory
devices, such as phase-change memory.

This chapter deals with analyzing and organizing the extensive body of literature
on NMC architectures across various dimensions: starting from the memory level
where this paradigm is applied to the granularity of an application that could be
executed on these architectures. We provide representative architectures in each
category of our NMC taxonomy. The remainder of this chapter is structured as follows.
Section 2.1 provides background on near-memory computing. Section 2.2 outlines the
evaluation and classification scheme that we use. Section 2.3 highlights the present
challenges with NMC-based systems, which include lack of evaluation tools, virtual
memory, memory coherence, task scheduling, and data mapping. Finally, Section 2.4
concludes the chapter.

2.1 Background and Related Work

The idea of processing close to the memory dates back to the 1960s [442]. However,
the first appearance of data-centric systems can be traced back to the early 1990s [108,
121, 153, 220, 240, 364]. As an example, Vector IRAM (VIRAM) [243], where the

The content of this chapter was published as “Near-Memory Computing: Past, Present, and
Future” in MICPRO 2019.

15



16 CHAPTER 2. NEAR-MEMORY COMPUTING

researchers develop a vector processor with an on-chip embedded DRAM. They use
VIRAM to exploit data parallelism in multimedia applications. Although such works
obtained promising results, these earlier systems did not penetrate the market, and
their adoption remained limited. One of the main reasons was attributed to the
technological limitations because the amount of memory we could integrate with the
processor was limited due to the difference in logic and memory technology processes.

Today, after almost two decades of dormancy, research in NMC architectures is
regaining attention. We can largely attribute this resurgence to the following three
reasons. First, technological advancements in the stacking technology – 3D ( e.g.,
hybrid memory cube (HMC) [367] see Figure 2-1) and 2.5D (e.g., high-bandwidth
memory (HBM) [179]) stacking that blends logic and memory in the same package.
Second, moving the computation closer to where the data reside allows for sidestepping
the performance and energy bottlenecks due to data movement by circumventing
memory-package pin-count limitations. Third, the increase in data volumes produced
in various application domains, such as weather prediction modeling, radio astronomy,
and bioinformatics, calls for newer architectures designed to handle the overwhelming
amount of data. As a result, in recent years, researchers have proposed various NMC
designs and proved their potential in enhancing performance in many application
domains [11, 12, 68, 132, 145, 155, 182, 183, 225, 334, 434]. For CIM-based archi-
tectures, prior works demonstrate that CIM can be achieved using various memory
technologies such as static random-access memory (SRAM) [7, 120, 216, 429], dynamic
random-access memory (DRAM) [77, 416, 417], PCM [265], and ReRAM [246, 262,
420].

Partition

Vault

Logic Layer DRAM Layer

Figure 2-1: Micron’s Hybrid Memory Cube (HMC) [367] comprising of sev-
eral DRAM layers stacked on top of a logic layer connected by through-silicon
vias (TSVs). The memory organization is divided into vaults, with each vault
consisting of multiple DRAM banks

Loh et al. [286], in their position paper, present an initial taxonomy for NMC.
This taxonomy is based on the computing interface with software. Siegl et al. [425],
in an overview paper, gave a historical evolution of NMC. Similar to the approach



2.2. CLASSIFICATION AND EVALUATION 17

of this thesis, Mutlu et al. [331], provide a thorough overview of the mechanisms
and challenges in the field of near-memory computing. Unlike the survey of this
thesis, the paper [331] does not focus on providing systematization to the literature.
Our review characterizes near-memory computing literature in various dimensions
starting from the memory level, where we apply the paradigm of near-memory com-
puting to the type of near-memory processing unit, memory integration, and type of
workloads/applications.

2.2 Classification and Evaluation
Figure 2-2 shows a high-level view of our classification based on the level in the

memory hierarchy. We further split our classification into the type of processing
unit (programmable, fixed-function, or reconfigurable). Conceptually the approach of
near-memory computing can be applied to any level or type of memory to improve
the overall system performance. Our taxonomy does not include magnetic disk-based
systems because nowadays, it is only used as a long-term cold data storage medium,
i.e., for long-term and rarely accessed data [139]. Nevertheless, there have been
various research efforts towards providing processing capabilities in the disk. However,
the industry did not adopt it widely due to the marginal performance improvement
that could not justify the associated cost [226, 400]. Instead, we include emerging
non-volatile memories termed storage class memory (SCM) [333], which are trying to
fill the latency gap between DRAM and disk.

Processing
Near

Cache

Processing
Near
SCM

Processing 
Near

Main MemoryP
ro

c
e
s
s
in

g
 N

e
a
r

H
e
te

ro
g
e
n
o
u
s
 

M
e
m

o
ry

Near-Memory 

Computing

Computation

In-Memory

Compute-Centric

Figure 2-2: Processing options in the memory hierarchy highlighting three
computation paradigms: (1) Compute-centric approach where data is moved
through various levels of memory to the processor for computing; (2) Near-
memory computing approach where the processing elements are placed closer
to memory; and (3) Computation-in memory approach that uses inherent prop-
erties of memory to perform computation

This section introduces the classification and evaluation metrics (see Table 2.1) used
to analyze various architectures in Appendix A.1 and Appendix A.2. We summarize



18 CHAPTER 2. NEAR-MEMORY COMPUTING

different architectures in Table 2.1.
For each architecture, we evaluate and classify across five main categories:

• Memory - The type of memory technology is one of the most fundamental
questions on which the near-memory architecture depends.

• Processing - The type of processing unit and the granularity of processing it
performs plays a critical role in our analysis.

• Tool - Any system’s success depends heavily on the available tool support. The
effectiveness of the tool infrastructure indicates the maturity of the architecture.

• Interoperability - It is the integration of NMC processing units into the overall
computer system architecture. Interoperability deals with aspects such as virtual
memory support, memory coherence, efficient task scheduling, and data mapping.
Interoperability is one of the key enablers for the adoption of any new system.

• Application - NMC follows a data-centric principle and is usually specialized
for a particular workload or a set of workloads. Therefore, in our evaluation, we
include the domain of the application.

Table 2.1: Classification metrics that we use to analyze some notable NMC
architectures (see Table 2.2).

Property Abbreviation Description

Memory

Hierarchy
MM Main memory
SCM Storage class memory
HM Heterogenous memory

Type

C3D Commercial 3D memory
PCM Phase change memory

DRAM Dynamic random-access memory
SSD Solid-state drive

Integration US Conventional unstacked
S Stacked using 2.5D or 3D

Processing

NMC/Host
Unit

CPU Central processing unit
GPU Graphics processing unit

FPGA Field programmable gate array
CGRA Coarse-grained reconfigurable

architecture
ACC Application-specific accelerator

Implemen-
tation

P Programmable unit
F Fixed-function unit
R Reconfigurable unit

Granularity
I Instruction
K Kernel
A Application

Host Unit Type of the host unit

Tool Evaluation
Technique

A Analytic
S Simulation
P Prototype/Hardware

Interop-
erability

Programming
Model - Programming model for

NMC unit
Memory Coherence Y/N Mechanism for memory coherence
Virtual Memory Y/N Virtual memory support

Application
Domain Workload - Target application domain

for the architecture



2.2. CLASSIFICATION AND EVALUATION 19

Discussion
Based on the above classification, we highlight some of the notable architectures

in the domain of near-memory computing. All solutions discussed in this section are
summarized in Table 2.2 and described in Appendix A. From Table 2.2, we make the
following five observations.

Table 2.2: Classification and evaluation of representative architectures in cate-
gory of our NMC taxonomy, refer to Table 2.1 for the legend

NMC Architecture Memory Processing Tool Interoperability App. Domain

A
rc

hi
te

ct
ur

e

Y
ea

r

H
ie

ra
rc

hy

T
yp

e

In
te

gr
at

io
n

N
M

C
U

ni
t

Im
pl

em
en

ta
ti

on

G
ra

nu
la

ri
ty

H
os

t
U

ni
t

E
va

lu
at

io
n

P
ro

gr
am

m
in

g
M

od
el

C
ac

he
C

oh
er

en
ce

V
ir

tu
al

M
em

or
y

W
or

kl
oa

d

XSD [88] 2013 SCM SSD US GPU P A CPU S MapReduce - - MapReduce
SmartSSD [219] 2013 SCM SSD US CPU P A CPU P MapReduce Y N Database
WILLOW [415] 2014 SCM SSD US CPU P K CPU P API Y - Generic
NDC [382] 2014 MM C3D S CPU P K CPU S MapReduce R N MapReduce
TOP-PIM [527] 2014 MM C3D S GPU P K CPU S OpenCL Y - Graph and HPC
AMC [334] 2015 MM C3D S CPU P K CPU S OpenMP Y Y HPC
JAFAR [510] 2015 MM DRAM US ACC F K CPU S API - Y Database
TESSERACT [11] 2015 MM C3D S CPU F A CPU S API Y N Graph processing
Gokhale [154] 2015 MM C3D S ACC F K CPU S API Y Y Generic
HRL [145] 2015 MM C3D S CGRA+FPGA R A CPU S MapReduce Y N Data analytics
ProPRAM [494] 2015 SCM PCM US CPU P I - S ISA Extension - - Data analytics
BlueDBM [212] 2015 SCM SSD US FPGA R K - P API - - Data analytics
NDA [129] 2015 MM DRAM S CGRA R K CPU S OpenCL Y Y MapReduce
PIM-enabled [12] 2015 MM C3D S ACC F I CPU S ISA extension Y Y Generic
IMPICA [183] 2016 MM C3D S ACC F K CPU S API Y Y Pointer chasing
TOM [182] 2016 MM C3D S GPU P K GPU S CUDA Y Y Generic
BISCUIT [160] 2016 SCM SSD US ACC F K CPU P API - - Database
Pattnaik [365] 2016 MM C3D S GPU P K GPU S CUDA Y - Generic
CARIBOU [199] 2017 SCM DRAM US FPGA R K CPU P API - - Database
Vermij [478] 2017 MM C3D S ACC F A CPU S API Y Y Sorting
SUMMARIZER [241] 2017 SCM SSD US CPU P K CPU P API - - Database
MONDRIAN [105] 2017 MM C3D S CPU P K CPU A+S API - Y Data analytics
GraphPIM [332] 2017 MM DRAM US ACC F I CPU S API Y N Graph
MCN [15] 2018 MM DRAM US CPU P K CPU P TCP/IP Y Y Generic
DNN-PIM [280] 2018 MM C3D S CPU + ACC P+F K CPU P+S OpenCL Y N DNN training
Boroumand [57] 2018 MM C3D S CPU+ACC P+F K CPU S - Y - Google workloads
GRIM-Filter [234] 2018 MM C3D S ACC F K CPU S - Y - Read mapping
CompStor [463] 2018 SCM SSD US CPU P A CPU P API - Y Text search
RecNMP [225] 2020 MM DRAM US ACC F K CPU S API Y Y Recommendation system
GenASM [68] 2020 MM C3D S ACC F K CPU S API Y - String matching
NATSA [132] 2020 MM C3D S ACC F K - S API - - Time series analysis
NERO [434] 2020 MM C3D S ACC R K CPU P API Y Y Weather prediction modeling
FIMDRAM [247] 2021 MM C3D S ACC P I - P API Y Y Machine learning

First, the efficacy of architectural proposals has mostly been tested using simulators.
A few works emulate [33, 160, 199, 219, 241, 415] their proposal on an FPGA. Recently,
HBM [179] has been adopted by GPU and FPGA vendors. In the future, we expect
more evaluation studies on these HBM-equipped platforms and upcoming platforms
with NMC capabilities, such as FIMDRAM [259] and UPMEM [155].

Second, the majority of research papers published over the years have proposed



20 CHAPTER 2. NEAR-MEMORY COMPUTING

homogeneous processing units near the main memory. However, the logic considered
varies in its compute capabilities, e.g., simple in-order cores [11, 15, 105, 241, 260, 334,
382, 407, 463], graphics processing units [88, 182, 365, 527], field-programmable gate
arrays [145, 199, 212], and application-specific accelerators [12, 132, 154, 160, 183,
225, 280, 332, 478, 510].

Third, the majority of the NMC proposals are targeted towards data-intensive
applications e.g., graph processing [11, 332, 527], MapReduce [88, 129, 382], machine
learning [260, 280], and database [160, 199, 219, 241, 407, 510].

Fourth, most of the architectures propose adding compute capabilities in the logic
layer of HMC-based memory [11, 12, 57, 68, 105, 132, 145, 154, 182, 183, 225, 259,
260, 280, 334, 365, 382, 478, 527]. However, memory vendors such as Micron have
announced to pursue HBM instead of focusing on HMC [315]. Fifth, despite the
promises made by existing proposals on NMC, the support for virtual memory, memory
coherence, and compiler support is fairly limited. In most of the works [105, 160, 199,
241, 260, 332, 463, 478], the programmers are expected to re-write their code using
specialized APIs in order to reap the benefits of NMC.

Based on the above observations, we make the following three conclusions.

1. HBM-equipped specialized hardware has the potential to reduce the memory
bandwidth bottleneck, but a study of their advantages for a real-world data-
intensive application is still missing.

2. The idea of populating homogeneous processing units near-memory to accelerate
a specific class of workloads is limited in the sense that NMC enabled servers
that would be deployed in the data centers are expected to host a wide variety of
workloads. Hence, these systems would need heterogeneous processing units near
the memory [57, 145, 280] to support the complex mix of data center workloads.

3. For broader adoption of the NMC by the application programmers, we would re-
quire methods that enable transparent offloading to the NMC units. Transparent
offloading requires the compiler or the run-time system to identify NMC-suitable
code regions based on some application characteristics, such as the number of
last-level cache misses [12, 33, 34, 154, 169] and bandwidth utilization [183, 280,
527]. Unfortunately, integrating a profiler (such as Linux perf [375] or Intel
Pin [395]) in a compiler or run-time system is still a challenging task [169] due
to its dynamic nature. Therefore, current solutions rely on commercial profiling
tools, such as Intel VTune [195], to detect the offloading kernels [33, 34, 183].



2.3. CHALLENGES OF NEAR-MEMORY COMPUTING 21

2.3 Challenges of Near-Memory Computing
In this section, we highlight five critical challenges in the domain of NMC. The

challenges include evaluation tools, virtual memory support, memory coherency, task
scheduling, and data mapping. We need to address these challenges before NMC can
be established as a de facto solution for modern data-intensive workloads.

2.3.1 Performance Evaluation Tools and Benchmarks
As mentioned in Section 1.1, architects often use various evaluation techniques to

navigate the design space of a new architecture. Based on the level of detail required,
architects make use of analytic models or more detailed simulation-based techniques.
(1) Analytic modeling abstracts low-level system details and provide quick perfor-
mance estimates at the cost of accuracy. In the early design stage, system architects
are faced with large design choices that range from semiconductor physics and circuit
level to micro-architectural properties and cooling concerns [210]. Thus, during the
first stage of design-space exploration, analytic models can provide quick estimates.
(2) Simulation-based modeling allows us to achieve more accurate performance
numbers by precisely modeling various micro-architectural mechanisms. This approach,
however, can be quite slow compared to analytic techniques. There have been various
academic efforts [20, 203, 261, 402] to build open-source NMC simulators. However,
there is a large room for improvement for developing a cycle-accurate simulator
that can allow us to explore a wide range of near-memory compute configurations.
In Table 2.3, we mention some of the academic efforts to create NMC simulation
infrastructure.

Table 2.3: Academic NMC simulators

Simulator Year NMC capabilities
Sinuca [20] 2015 Yes
HMC-SIM [261] 2016 Limited
CasHMC [203] 2016 No
SMC [37] 2016 Yes
CLAPPS [351] 2017 Yes
Ramulator-PIM [402] 2019 Yes

As the field of NMC does not have very sophisticated tools and techniques,
researchers often spend a significant amount of time building the appropriate evaluation
environment [351, 437]. Additionally, there is a critical need for near-memory specific
benchmarks of workloads that could benefit from NMC [352]. Such a benchmark
suite can allow researchers to evaluate different architectural proposals and faithfully
reproduce results.



22 CHAPTER 2. NEAR-MEMORY COMPUTING

2.3.2 Virtual Memory Support

To access data inside the main memory, the CPU performs address translation
from a data’s virtual address to the actual physical address in the main memory.
The address translation can be achieved by using the following two mechanisms:
segmentation or paging. Segmentation [255, 522] consists of a simplified approach
where part of the linear virtual address space is mapped to physical memory using
a direct segment. However, segmentation requires frequent swapping of segments
between the main memory and the storage, leading to fragmentation. Therefore, the
use of a paging mechanism is gaining wider adoption.

Paging is a memory management mechanism that entails dividing virtual address
space into blocks of addresses referred to as pages. A page table stores mapping
between virtual to physical address and cache recently used mapping into a translation
lookaside buffer (TLB). A miss in the TLB would lead to a long-latency table walk,
which can degrade the application performance. Several studies have been proposed
to improve the efficiency of address translation, such as by speeding up address
translation [43, 360], increasing the TLB reach [32, 97], and introducing caches to
store page table address [42, 51, 53].

In an NMC-based system, if an NMC accelerator requires many page table walks
for the host CPU, it would substantially reduce the overall performance. Therefore,
we need an effective address translation mechanism for NMC architectures. As an
example, Hsieh et al. [183] design an NMC-side page table for their NMC accelerator,
which avoids the use of CPU-side address translation. Past works adopt either a
software-based [146, 182, 449, 498] or a hardware-based [37] approach to map between
virtual and physical addresses.

2.3.3 Memory Coherency

Coherency is one of the most critical challenges in the adoption of NMC. An NMC
processing unit could modify the data, which the host CPU might require. Therefore,
we need to maintain a coherence protocol between the shared memory. A fine-grain
coherence mechanism might lead to a large number of coherence messages between
the NMC cores and the host cores. Therefore, the employed coherence mechanism can
drastically affect the performance and the programming model. In NMC, researchers
try to overcome this issue by following the two approaches listed below.
(1) Restricted memory region-based techniques such as the one used by Farmahini
et al. [129] divide the memory into two parts: one for the host processor and another
for the accelerator, which is uncacheable. Ahn et al. [11] use a similar approach for
graph processing algorithms. Another strategy proposed by Ahn et al. [12] provides a
simple hardware-based solution in which the NMC operations are restricted to only



2.3. CHALLENGES OF NEAR-MEMORY COMPUTING 23

one last-level cache block, due to which they can monitor the cache block and request
for invalidation or write-back if required.
(2) Non-restricted memory region-based techniques allow NMC units to access
the entire memory space. Pattnaik et al. [365] propose maintaining coherence between
the host GPU and near-memory compute units by flushing the L2 cache in the host
GPU after kernel execution. However, this approach could evict potentially useful
data from the cache. Another way is to implement a look-up table-based mechanism,
as Hsieh et al. [182]. The NMC units record the cache line address that the offloaded
block has updated, and once the offloaded block is processed, the NMC units send this
address back to the host system. Subsequently, the host system gets the latest data
from memory by invalidating the reported cache lines. More recently, Boroumand et al.
[58] overcome the coherence issue with a specialized coherence protocol that batches
and compresses multiple coherence requests from NMC units. As a result of this, the
authors can achieve a near-ideal coherence mechanism.

2.3.4 Task Scheduling

A critical challenge in adopting NMC is to support a heterogeneous processing
environment comprising a host system and NMC processing units. It is not trivial
to determine which part of an application should run on the NMC processing units.
Works such as [169, 182] leave this effort on the compiler, while others [12, 148, 510]
assume the programmer would manage the scheduling of tasks. Another approach [12,
260, 332] uses some special set of NMC instructions, which invokes NMC processing
units. This approach, however, calls for a sophisticated mechanism as it affects most
of the software stack from the application down to the instruction set architecture.

To this end, a run-time system capable of dynamically profiling applications to
identify the potential offloads candidates for NMC processing units [182, 280] can
significantly help with task scheduling. Therefore, there is still a lot of research
required in coming up with an efficient approach to ease the programming burden.

2.3.5 Data Mapping

The problem of data mapping and data layout have been analyzed in various
contexts to improve the spatial locality of a workload [75, 228, 306, 502]. The absence
of an adequate data mapping mechanism can severely hamper the benefits of processing
close to memory. A data mapping scheme should map data in such a way that the
data required by the NMC processing units is readily available in the vicinity (data
and code co-location). Hence, it is crucial to look into effective data mapping schemes.
Hsieh et al. [182] propose a hardware/software co-design method to predict which
pages of the memory would be used by the offloaded code segment, following which



24 CHAPTER 2. NEAR-MEMORY COMPUTING

they place those pages in the memory stack closest to the offloaded code segment.
Yitbarek et al. [522] propose a data mapping scheme to place contiguous addresses

in the same vault of an HMC-based memory allowing accelerators to access data
directly from their local vault. Xiao et al. [512] propose to model an application
as a two-layer graph through the LLVM-intermediate representation (LLVM-IR), to
distinguish between memory and computation operations. On building one such graph,
their framework detects groups of vertices, called community, that have a higher
probability of connection with each other. Each community is mapped to a different
vault of an HMC-based memory. Thus, this technique allows multiple NMC units to
perform computation in parallel on multiple data elements.

2.4 Conclusion
Data-centric computing aims to reduce the data movement overhead by imple-

menting processing capabilities close to where the data resides. With “close” being
a relative term, there is a wide range of possibilities to bring computation closer to
the data, resulting in various architectures being investigated today. Data-centric
computing is attributed as one of the few real solutions to address the current scaling
issues in HPC systems to realize exascale computers needed for modern and future
data-intensive workloads. There are two different approaches to enable data-centric
computing. First, near-memory computing (NMC), which adds processing capabilities
closer to the existing memory architectures. Second, computation-in memory (CIM),
which exploits the memory architecture and intrinsic properties of emerging technolo-
gies to perform operations using memory itself. This thesis focuses on NMC-based
architectures and techniques to overcome the data movement bottleneck.

This chapter analyzes NMC-based architectures across various dimensions and
highlights that NMC is still in its infancy. We need to address multiple architectural
challenges before NMC can be established as an essential component of HPC systems to
accelerate data-intensive workloads. Besides designing and evaluating NMC processing
capabilities for data-intensive workloads, we stress the demand for sophisticated tools
and techniques to enable the design space exploration for these novel architectures.
Further, we need to solve various challenges related to the overall system integration.
To overcome these challenges, we should consider data as a paramount resource and
provide various mechanisms to handle and leverage the vast amount of data. In this
dissertation, we tackle the above challenges in three different ways. First, we demon-
strate NMC processing capabilities for a real-world data-intensive weather prediction
application. Second, we provide data-driven machine learning-based solutions that
allow quick and accurate performance estimation during the design-time. Third, we
leverage the vast amount of available data to drive run-time system-level decisions.



Chapter 3

NERO: A Near-High
Bandwidth Memory Stencil
Accelerator for Weather
Prediction Modeling

Modern data-intensive applications demand high compute capabilities with strict
power constraints. Unfortunately, such applications suffer from a significant waste of
both execution cycles and energy in current computing systems due to the costly data
movement between the compute units and the memory units. Weather prediction
modeling is one such data-intensive application where we generate petabytes of data.
Moreover, ongoing climate change calls for fast and accurate weather and climate
modeling. However, when solving large-scale weather prediction simulations, state-
of-the-art CPU and GPU implementations suffer from limited performance and high
energy consumption. These implementations are dominated by complex irregular
memory access patterns and low arithmetic intensity that pose fundamental challenges
to acceleration. To overcome these challenges, in this chapter, we propose and evaluate
the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth
memory (HBM).

The content of this chapter was published as “NERO: A Near High-Bandwidth Memory Stencil
Accelerator for Weather Prediction Modeling” in FPL 2020. (Nominated for the Stamatis Vassiliadis
Memorial Best Paper Award)
Our earlier work was published as “NARMADA: Near-Memory Horizontal Diffusion Accelerator for
Scalable Stencil Computations” in FPL 2019 where we accelerate only horizontal diffussion kernel
from the COSMO (Consortium for Small-Scale Modeling) model.

25



26 CHAPTER 3. NERO

3.1 Introduction
Accurate weather prediction using detailed weather models is essential to make

weather-dependent decisions in a timely manner. The Consortium for Small-Scale
Modeling (COSMO) [116] built one such weather model to meet the high-resolution
forecasting requirements of weather services. The COSMO model is a non-hydrostatic
atmospheric prediction model currently being used by a dozen nations for meteorolog-
ical purposes and research applications.

The central part of the COSMO model (called dynamical core or dycore) solves
the Euler equations on a curvilinear grid and applies implicit discretization (i.e.,
parameters are dependent on each other at the same time instance [56]) in the vertical
dimension and explicit discretization (i.e., a solution is dependent on the previous
system state [56]) in the horizontal dimension. The use of different discretizations leads
to three computational patterns [458]: 1) horizontal stencils, 2) tridiagonal solvers in
the vertical dimension, and 3) point-wise computation. These computational kernels
are compound stencil kernels that operate on a three-dimensional grid [167]. Vertical
advection (vadvc) and horizontal diffusion (hdiff) are such compound kernels found in
the dycore of the COSMO weather prediction model. These kernels are representative
of the data access patterns and algorithmic complexity of the entire COSMO model.
They are similar to the kernels used in other weather and climate models [227, 338,
529]. Their performance is dominated by memory-bound operations with unique
irregular memory access patterns and low arithmetic intensity that often results in
<10% sustained floating-point performance on current CPU-based systems [290].

Figure 3-1 shows the roofline plot [501] for an IBM 16-core POWER9 CPU
(IC922).1 After optimizing the vadvc and hdiff kernels for the POWER architecture
by following the approach in [515], they achieve 29.1 GFLOP/s and 58.5 GFLOP/s,
respectively, for 64 threads. Our roofline analysis indicates that these kernels are
constrained by the host DRAM bandwidth. Their low arithmetic intensity limits their
performance, which is one order of magnitude smaller than the peak performance, and
results in a fundamental memory bottleneck that standard CPU-based optimization
techniques cannot overcome.

Our goal is to overcome the memory bottleneck of weather prediction kernels
by exploiting near-memory computation capability on FPGA accelerators with high-
bandwidth memory (HBM) [179, 251, 252] that are attached to the host CPU. Figure 3-
1 shows the roofline models of the two FPGA cards (AD9V3 [5] and AD9H7 [4]) used in
this chapter. FPGAs can handle irregular memory access patterns efficiently and offer
significantly higher memory bandwidth than the host CPU with their on-chip URAMs

1IBM and POWER9 are registered trademarks or common law marks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies.



3.1. INTRODUCTION 27

10 1 100 101 102

Arithmetic Intensity [flop/byte]

101

102

103
At

ta
in

ab
le

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

ec
]

58.5GFlop/s

5.13GFlop/s

29.1GFlop/s

3.3GFlop/s

      
      

DRAM

110GBps experimental BW on STREAM

      L
3-cache

(208.57)x16=3337GBps
486.4 GFLOP/s/socket (3.8GHz x 16 cores x 8 flops/cycle)

AD9V3 FPGA (0.97 TFLOP/s, 32GBps DRAM, 1.62 TBps BRAM, 200MHz)

AD9H7 FPGA (3.6  TFLOP/s, 410GBps HBM, 7.26 TBps BRAM, 400MHz)

Attainable performance is constra-
ined by memory bandwidth, as
CPU micro-architecture features
become ineffective for a given
arithmetic intensity and access
patterns do not favor the memory
hierarchy.

Roofline for POWER9 (16-core, SMT4) & [AD9V3,AD9H7] FPGAs

hdiff (P9 64 threads)
hdiff (P9 1 thread)
vadvc (P9 64 threads)
vadvc (P9 1 thread)
Arithmetic Intensity for hdiff
Arithmetic Intensity for vadvc

Figure 3-1: Roofline [501] for POWER9 (1-socket) showing vertical advection
(vadvc) and horizontal diffusion (hdiff) kernels for single-thread and 64-thread
implementations. The plot shows also the rooflines of the FPGAs used in this
chapter

(UltraRAM), BRAMs (block RAM), and off-chip HBM (high-bandwidth memory
for the AD9H7 card). However, taking full advantage of FPGAs for accelerating
a workload is not a trivial task. To compensate for the higher clock frequency of
the baseline CPUs, our FPGAs must exploit at least one order of magnitude more
parallelism in a target workload. This is challenging, as it requires sufficient FPGA
programming skills to map the workload and optimize the design for the FPGA
microarchitecture.

As mentioned in Section 1.1.1, modern FPGA boards deploy new cache-coherent
interconnects, such as IBM Coherent Accelerator Processor Interface (CAPI) [444],
Cache Coherent Interconnect for Accelerators (CCIX) [49], and Compute Express Link
(CXL) [421], which allow tight integration of FPGAs with CPUs at high bidirectional
bandwidth (on the order of tens of GB/s). However, memory-bound applications
on FPGAs are limited by the relatively low DDR4 bandwidth (72 GB/s for four
independent dual-rank DIMM interfaces [513]). To overcome this limitation, FPGA
vendors have started offering devices equipped with HBM [180, 194, 252, 514] with a
theoretical peak bandwidth of 410 GB/s. HBM-equipped FPGAs have the potential
to reduce the memory bandwidth bottleneck, but a study of their advantages for
real-world memory-bound applications is still missing.



28 CHAPTER 3. NERO

We aim to answer the following research question: Can FPGA-based acceler-
ators with HBM mitigate the performance bottleneck of memory-bound
compound weather prediction kernels in an energy-efficient way? As an
answer to this question, we present NERO, a near-HBM accelerator for weather
prediction. We design and implement NERO on an FPGA with HBM to optimize
two kernels (vertical advection and horizontal diffusion), which notably represent
the spectrum of computational diversity found in the COSMO weather prediction
application. We co-design a hardware-software framework and provide an optimized
API to interface efficiently with the rest of the COSMO model, which runs on the CPU.
Our FPGA-based solution for hdiff and vadvc leads to performance improvements
of 4.2× and 8.3× and energy reductions of 22× and 29×, respectively, with respect to
optimized CPU implementations [515].

3.2 Background

In this section, we first provide an overview of the vadvc and hdiff compound
stencils, which represent a large fraction of the overall computational load of the
COSMO nnweather prediction model. Second, we introduce the CAPI SNAP (Stor-
age, Network, and Analytics Programming) framework2 that we use to connect our
NERO accelerator to an IBM POWER9 system.

3.2.1 Representative COSMO Stencils

A stencil operation updates values in a structured multidimensional grid based on
the values of a fixed local neighborhood of grid points. Vertical advection (vadvc) and
horizontal diffusion (hdiff) from the COSMO model are two such compound stencil
kernels, which represent the typical code patterns found in the dycore of COSMO.
Algorithm 1 shows the pseudo-code for vadvc and hdiff kernels. The horizontal
diffusion kernel iterates over a 3D grid performing Laplacian and flux to calculate
different grid points, as shown in Figure 3-2. Vertical advection has a higher degree of
complexity since it uses the Thomas algorithm [460] to solve a tri-diagonal matrix
of the velocity field along the vertical axis. Unlike the conventional stencil kernels,
vertical advection has dependencies in the vertical direction, which leads to limited
available parallelism.

Such compound kernels are dominated by memory-bound operations with complex
memory access patterns and low arithmetic intensity. This poses a fundamental
challenge to acceleration. CPU implementations of these kernels [515] suffer from

2https://github.com/open-power/snap



3.2. BACKGROUND 29

Laplace Flux Output

Figure 3-2: Horizontal diffusion compound kernel composition in a two dimen-
sional plane

Algorithm 1 Pseudo-code for vertical advection and horizontal diffusion kernels used
by the COSMO [116] weather prediction model
1: function verticalAdvection(float * ccol, float * dcol, float * wcon, float * ustage,

float * upos, float * utens, float * utensstage)
2: for c ← 2 to column – 2 do
3: for r ← 2 to row-2 do
4: function forwardSweep(float * ccol, float * dcol, float * wcon, float * ustage,

float * upos, float * utens, float * utensstage)
5: for d ← 1 to depth do
6: /* forward sweep calculation */
7: function backwardSweep(float * ccol, float * dcol, float * wcon, float * ustage,

float * upos, float * utens, float * utensstage)
8: for d ← depth – 1 to1 do
9: /* backward sweep calculation */
10: function horizontalDiffusion(float * src, float * dst)
11: for d ← 1 to depth do
12: for c ← 2 to column – 2 do
13: for r ← 2 to row-2 do
14: /* Laplacian calculation */
15: lapCR = laplaceCalculate(c, r)
16: /* row-laplacian */
17: lapCRm = laplaceCalculate(c, r – 1)
18: lapCRp = laplaceCalculate(c, r + 1)
19: /* column-laplacian */
20: lapCmR = laplaceCalculate(c – 1, r)
21: lapCpR = laplaceCalculate(c + 1, r)
22: /* column-flux calculation */
23: fluxC = lapCpR – lapCR
24: fluxCm = lapCR – lapCmR
25: /* row-flux calculation */
26: fluxR = lapCRp – lapCR
27: fluxRm = lapCR – lapCmR
28: /* output calculation */
29: dest[d][c][r ] = src[d][c][r ] – c1 * (fluxCR – fluxCmR) + (fluxCR – fluxCRm)

limited data locality and inefficient memory usage, as our roofline analysis in Figure 3-1
exposes.

3.2.2 CAPI SNAP Framework

The OpenPOWER Foundation Accelerator Workgroup [353] created the CAPI
SNAP framework, an open-source environment for FPGA programming productivity.



30 CHAPTER 3. NERO

CAPI SNAP provides two key benefits [499]: (i) it enables an improved developer
productivity for FPGA acceleration and eases the use of CAPI’s cache-coherence
mechanism, and (ii) it places FPGA-accelerated compute engines, also known as
FPGA actions, closer to relevant data to achieve better performance. SNAP provides
a simple API to invoke an accelerated action, and also provides programming methods
to instantiate customized accelerated actions on the FPGA side. These accelerated
actions can be specified in C/C++ code that is then compiled to the FPGA target
using the Xilinx Vivado High-Level Synthesis (HLS) tool [484].

3.3 Design Methodology

3.3.1 NERO, A Near HBM Weather Prediction Accelerator

The low arithmetic intensity of real-world weather prediction kernels limits the
attainable performance on current multi-core systems. This sub-optimal performance
is due to the kernels’ complex memory access patterns and their inefficiency in
exploiting a rigid cache hierarchy, as quantified in the roofline plot in Figure 3-1.
These kernels cannot fully utilize the available memory bandwidth, which leads to
high data movement overheads in terms of latency and energy consumption. We
address these inefficiencies by developing an architecture that combines fewer off-chip
data accesses with higher throughput for the loaded data. To this end, our accelerator
design takes a data-centric approach [11, 12, 57, 147, 182, 183, 234, 330, 432, 437]
that exploits near high-bandwidth memory acceleration.

Figure 3-3a shows a high-level overview of our integrated system. An HBM-based
FPGA is connected to a server system based on an IBM POWER9 processor using the
Coherent Accelerator Processor Interface version 2 (CAPI2). The FPGA consists of
two HBM stacks3, each with 16 pseudo-memory channels [35]. A channel is exposed
to the FPGA as a 256-bit wide port, and in total, the FPGA has 32 such ports. The
HBM IP provides 8 memory controllers (per stack) to handle the data transfer to and
from the HBM memory ports. Our design consists of an accelerator functional unit
(AFU) that interacts with the host system through the power service layer (PSL),
which is the CAPI endpoint on the FPGA. An AFU comprises of multiple processing
elements (PEs) that perform compound stencil computation. Figure 3-4 shows the
architecture overview of NERO. As vertical advection is the most complex kernel, we
depict our architecture design flow for vertical advection. We use a similar design for
the horizontal diffusion kernel.

The weather data, based on the atmospheric model resolution grid, is stored in

3We enable only a single stack based on our resource and power consumption analysis for the
vadvc kernel.



3.3. DESIGN METHODOLOGY 31

PSL

IBM 

Power9 

C
A

P
I2

HBM IP

M
e
m

o
ry

 C
o
n
tr

o
lle

r

DRAM

P9 

Core

256-bit 

AXI3

Accelerator Functional Unit

BRAM

PE

FF

URAM LU

LU

5
1
2
-b

it

HBM2 

Stack 2

....16x

BRAM

PE

FF

URAM LU

LU

....

HBM2 

Stack 1

....16xFPGA

(a)

POWER9 

Host

CAPI2 

DMA

HBM 

Memory

PE1 

Time

Data Packing/Unpacking

 Address Translation & Coherency by PSL

POWER9 cacheline transfer 1024-bit=128B

AXI Full Bus 
Transaction

Cacheline buffering

Shared mem.
start notify

Shared mem.
completion notify

Host execution

A
X

I lite
 c

o
n

ro
l flo

w

Dataflow execution

MC1* MC1

FPGA
Execution

*MC= memory channel

(b)

Figure 3-3: (a) Heterogeneous platform with an IBM POWER9 system con-
nected to an HBM-based FPGA board via CAPI2. (b) Execution timeline with
data flow sequence from the host DRAM to the onboard FPGA memory

the DRAM of the host system ( 1 in Figure 3-4). We employ the double buffering
technique between the CPU and the FPGA to hide the PCIe (Peripheral Component
Interconnect Express [305]) transfer latency. By configuring a buffer of 64 cache lines,
between the AXI4 interface of CAPI2/PSL and the AFU, we can reach the theoretical
peak bandwidth of CAPI2/PCIe (x8 PCIe Gen4 interface with a theoretical peak
bandwidth 15.75 GB/s and a transfer rate of 16 GT/s). We create a specialized
memory hierarchy from the heterogeneous FPGA memories (i.e., URAM, BRAM, and
HBM). By using a greedy algorithm, we determine the best-suited hierarchy for our
kernel. The memory controller (shown in Figure 3-3a) handles the data placement to
the appropriate memory type based on programmer’s directives.

On the FPGA, following the initial buffering ( 2 ), the transferred grid data is
mapped onto the HBM memory ( 3 ). As the FPGA has limited resources, we propose
a 3D window-based grid transfer from the host DRAM to the FPGA, facilitating
a smaller, less power-hungry deployment. The window size represents the portion
of the grid a processing element (PE in Figure 3-3a) would process. Most FPGA
developers manually optimize for the right window size. However, manual optimization
is tedious because of the huge design space, and it requires expert guidance. Further,
selecting an inappropriate window size leads to sub-optimal results. Our experiments
(in Section 3.4.2) show that: (1) finding the best window size is critical in terms of
the area vs. performance trade-off, and (2) the best window size depends on the
datatype precision. Hence, instead of pruning the design space manually, we formulate
the search for the best window size as a multi-objective auto-tuning problem taking
into account the datatype precision. We make use of OpenTuner [26], which uses
machine-learning techniques to guide the design-space exploration.

Our design consists of multiple PEs (shown in Figure 3-3a) that exploit data-level



32 CHAPTER 3. NERO

POWER9 

Host System

Virtual 

address 
translation  

by PSL
FPGA AXI Register

512-bit x 2 reads

FPGA  Cacheline Buffer

32 x float32

HBM2 Stack

256-bit AXI3

256-bit to 512-bit 512-bit to 256-bit

.......16x

Software-defined FPGA 
data (un)packing 

 

Single 

output 

stream

2D partitioned BRAM or URAM

3D window gridding/degridding

Fields Stream Splitter

Backward Sweep

Intermediate 

FIFO

...

VADVC 

Engine

1 POWER9 Cache-line 

1024-bit = 128B -> 32 x float32

512-bit 

wcon 

stream 

...
Multiple fields 

to represent 

atmospheric 

components

512-bit 

upos 
stream 

512-bit
CAPI2

512-bit 

output 

stream 

Weather data
 in the host 

DRAM

Stream Converter1

2

3

4

5

6

7

8

Precision-aware 

auto-tuning for 

window size
Forward Sweep

Figure 3-4: Architecture overview of NERO with data flow sequence from the
host DRAM to the on-board FPGA memory via POWER9 cachelines. We de-
pict a single processing element (PE) fetching data from a dedicated HBM port.
The number of HBM ports scales linearly with the number of PEs. Heteroge-
neous partitioning of on-chip memory blocks reduces read and write latencies
across the FPGA memory hierarchy

parallelism in COSMO weather prediction kernels. A dedicated HBM memory port is
assigned to a specific PE; therefore, we enable as many HBM ports as the number
of PEs. This allows us to use the high HBM bandwidth effectively because each PE
fetches from an independent port. In our design, we use a switch, which provides
the capability to bypass the HBM, when the grid size is small, and map the data
directly onto the FPGA’s URAM and BRAM. The HBM port provides 256-bit data,
which is half the size of the CAPI2 bitwidth (512-bit). Therefore, to match the CAPI2
bandwidth, we introduce a stream converter logic ( 4 ) that converts a 256-bit HBM
stream to a 512-bit stream (CAPI compatible) or vice versa. From HBM, a PE reads
a single stream of data that consists of all the fields4 that are needed for a specific
COSMO kernel computation. The PEs use a fields stream splitter logic ( 5 ) that splits
a single HBM stream to multiple streams (512-bit each), one for each field.

To optimize a PE, we apply various optimization strategies. First, we exploit
the inherent parallelism in a given algorithm through hardware pipelining. Second,
we partition on-chip memory to avoid the stalling of our pipelined design, since
the on-chip BRAM/URAM has only two read/write ports. Third, all the tasks
execute in a dataflow manner that enables task-level parallelism. vadvc is more
computationally complex than hdiff because it involves forward and backward sweeps

4Fields represent atmospheric components like wind, pressure, velocity, etc. that are required for
weather calculation.



3.3. DESIGN METHODOLOGY 33

with dependencies in the z-dimension. While hdiff performs only Laplacian and flux
calculations with dependencies in the x- and y-dimensions. Therefore, we demonstrate
our design flow by means of the vadvc kernel (Figure 3-4). Note that we show only a
single port-based PE operation. However, for multiple PEs, we enable multiple HBM
ports.

We make use of memory reshaping techniques to configure our memory space
with multiple parallel BRAMs or URAMs [113]. We form an intermediate memory
hierarchy by decomposing (or slicing) 3D window data into a 2D grid. This allows us
to bridge the latency gap between the HBM memory and our accelerator. Moreover, it
allows us to exploit the available FPGA resources efficiently. Unlike traditionally-fixed
CPU memory hierarchies, which perform poorly with irregular access patterns and
suffer from cache pollution effects, application-specific memory hierarchies are shown
to improve energy and latency by tailoring the cache levels and cache sizes to an
application’s memory access patterns [465].

The main computation pipeline ( 7 ) consists of a forward and a backward sweep
logic. The forward sweep results are stored in an intermediate buffer to allow for
backward sweep calculation. Upon completion of the backward sweep, results are
placed in an output buffer that is followed by a degridding logic ( 6 ). The degridding
logic converts the calculated results to a 512-bit wide output stream ( 8 ). As there is
only a single output stream (both in vadvc and hdiff), we do not need extra logic to
merge the streams. The 512-bit wide stream goes through an HBM stream converter
logic ( 4 ) that converts the stream bitwidth to HBM port size (256-bit).

Figure 3-3b shows the execution timeline from our host system to the FPGA
board for a single PE. The host offloads the processing to an FPGA and transfers
the required data via DMA (direct memory access) over the CAPI2 interface. The
SNAP framework allows for parallel execution of the host and our FPGA PEs while
exchanging control signals over the AXI lite interface [36]. On task completion, the
AFU notifies the host system via the AXI lite interface and transfers back the results
via DMA.

3.3.2 NERO Application Framework

Figure 3-5 shows the NERO application framework to support our architecture. A
software-defined COSMO API ( 1 ) handles offloading jobs to NERO with an interrupt-
based queuing mechanism. This allows for minimal CPU usage (and, hence, power
usage) during FPGA operation. NERO employs an array of processing elements to
compute COSMO kernels, such as vertical advection or horizontal diffusion. Addi-
tionally, we pipeline our PEs to exploit the available spatial parallelism. By accessing
the host memory through the CAPI2 cache-coherent link, NERO acts as a peer to
the CPU. This is enabled through the Power-Service Layer (PSL) ( 2 ). SNAP ( 3 )



34 CHAPTER 3. NERO

allows for seamless integration of the COSMO API with our CAPI-based accelerator.
The job manager ( 4 ) dispatches jobs to streams, which are managed in the stream
scheduler ( 5 ). The execution of a job is done by streams that determine which data
is to be read from the host memory and sent to the PE array through DMA transfers
( 6 ). The pool of heterogeneous on-chip memory is used to store the input data from
the main memory and the intermediate data generated by each PE.

CAPI2 POWER Service Layer (PSL)

Job 

Manager

Stream 

Scheduler
AXI DMA

CAPI2

SNAP

FPGA

AXI Lite Bus

MMIO Control registers

AXI Full Bus

Burst Transactions

PE PE

NERO

Partitioned On-chip Memory

PEPE

Host POWER 
System

Coherent Accelerator 

Processor Proxy (CAPP)

COSMO API libCXLCOSMO WEATHER 

MODEL

PCIe4

HBM Memory Controller

HBM2 Stack 1

16x......

HBM2 Stack 2

16x......

2

3

4 5 6

1

.....

Figure 3-5: NERO application framework. We co-design our software and hard-
ware using the SNAP framework. COSMO API allows the host to offload
kernels to our FPGA platform

3.4 Results

3.4.1 System Integration

We implemented our design on an Alpha-Data ADM-PCIE-9H7 card [4] featur-
ing the Xilinx Virtex Ultrascale+ XCVU37P-FSVH2892-2-e [479] and 8GiB HBM2
(i.e., two stacks of 4GiB each) [179] with an IBM POWER9 as the host system.
The POWER9 socket has 16 cores, each of which supports four-thread simultane-
ous multi-threading. We compare our HBM-based design to a conventional DDR4
DRAM [5] based design. We perform the experiments for the DDR4-based design
on an Alpha-Data ADM-PCIE-9V3 card featuring the Xilinx Virtex Ultrascale+
XCVU3P-FFVC1517-2-i [479].

Table 3.1 provides our system parameters. We have co-designed our hardware and
software interface around the SNAP framework while using the HLS design flow.



3.4. RESULTS 35

Table 3.1: System parameters and hardware configuration for the CPU and the
FPGA board

Host CPU 16-core IBM POWER9 AC922
@3.2 GHz, 4-way SMT

Cache-Hierarchy 32 KiB L1-I/D, 256 KiB L2, 10 MiB L3
System Memory 16x32GiB RDIMM DDR4 2666 MHz

HBM-based
FPGA Board

Alpha Data ADM-PCIE-9H7
Xilinx Virtex Ultrascale+ XCVU37P-2
8GiB (HBM2) with PCIe Gen4 x8

DDR4-based
FPGA Board

Alpha Data ADM-PCIE-9V3
Xilinx Virtex Ultrascale+ XCVU3P-2
8GiB (DDR4) with PCIe Gen4 x8

3.4.2 Evaluation

We run our experiments using a 256 × 256 × 64-point domain similar to the
grid domain used by the COSMO weather prediction model. We employ an auto-
tuning technique to determine a Pareto-optimal solution (in terms of performance and
resource utilization) for our 3D window dimensions. The auto-tuning with OpenTuner
exhaustively searches for every tile size in the x- and y-dimensions for vadvc.5 For
hdiff, we consider sizes in all three dimensions. We define our auto-tuning as a multi-
objective optimization with the goal of maximizing performance with minimal resource
utilization. Section 3.3 provides further details on our design. Figure 3-6 shows
hand-tuned and auto-tuned performance and FPGA resource utilization results for
vadvc, as a function of the chosen tile size. From the figure, we draw two observations.

First, by using the auto-tuning approach and our careful FPGA microarchitecture
design, we can get Pareto-optimal results with a tile size of 64×2×64 for single-precision
vadvc, which gives us a peak performance of 8.49 GFLOP/s. For half-precision, we
use a tile size of 32× 16× 64 to achieve a peak performance of 16.5 GFLOP/s. We
employ a similar strategy for hdiff to attain a single-precision performance of 30.3
GFLOP/s with a tile size of 16 × 64 × 8 and a half-precision performance of 77.8
GFLOP/s with a tile size of 64× 8× 64.

Second, in FPGA acceleration, designers usually rely on expert judgement to
find the appropriate tile-size and often adapt the design to use homogeneous tile
sizes. However, as shown in Figure 3-6, such hand-tuned implementations lead to
sub-optimal results in terms of either resource utilization or performance.

We conclude that the Pareto-optimal tile size depends on the data precision
used: a good tile-size for single-precision might lead to poor results when used with
half-precision.

5vadvc has dependencies in the z-dimension; therefore, it cannot be parallelized in the z-dimension.



36 CHAPTER 3. NERO

12 14 16 18 20
Resource utilization (%)

2

4

6

8
Pe

rfo
rm

an
ce
 (G

Fl
op

/s
)

4x4
8x8 16x16 32x32 64x64

64x2

(a)

hand-tuned
auto-tuned

5 6 7 8 9 10
Resource utilization (%)

4

6

8

10

12

14

16

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

4x4
8x816x16 32x32 64x6432x16

64x2

(b)

hand-tuned
auto-tuned

Figure 3-6: Performance and FPGA resource utilization of single vadvc PE, as
a function of tile-size, using hand-tuning and auto-tuning for (a) single-precision
(32-bit) and (b) half-precision (16-bit). We highlight the Pareto-optimal solu-
tion that we use for our vadvc accelerator (with a red circle). Note that the
Pareto-optimal solution changes with precision

Figure 3-7 shows single-precision performance results for the (a) vertical advection
and (b) horizontal diffusion kernels. For both kernels, we implement our design on an
HBM- and a DDR4-based FPGA board. To compare the performance results, we scale
the number of PEs and analyze the change in execution time. For the DDR4-based
design, we can accommodate only 4 PEs on the 9V3 board, while for the HBM-based
design, we can fit 14 PEs before exhausting the on-board resources. We draw four
observations from the figure.

0 4 8 12 14
Number of PEs

0

4

8

12

16

R
un

tim
e 
(m

se
c)

16.12

8.06

4.03 2.02 1.11

15.39

8.98

6.34
POWER9 socket (64 threads)

(a) HBM
DDR4

0 4 8 12 14
Number of PEs

0

2

4

6

8

R
un

tim
e 
(m

se
c) 6.3

3.1
1.67

0.84
0.42

4.17

2.36
1.72

1.39

POWER9 socket (64 threads)

(b) HBM
DDR4

Figure 3-7: Single-precision performance for (a) vadvc and (b) hdiff, as a func-
tion of accelerator PE count on the HBM- and DDR4-based FPGA boards. We
also show the single socket (64 threads) performance of an IBM POWER9 host
system for both vadvc and hdiff

First, our full-blown HBM-based vadvc and hdiff implementations provide
157.1 GFLOP/s and 608.4 GFLOP/s performance, which are 4.2× and 8.3× higher
than the performance of a complete POWER9 socket. For half-precision, if we use the



3.4. RESULTS 37

same amount of PEs as in single precision, our accelerator reaches a performance of
247.9 GFLOP/s for vadvc (2.1× the single-precision performance) and 1.2 TFLOP/s
for hdiff (2.5× the single-precision performance). Our DDR4-based design achieves
34.1 GFLOP/s and 145.8 GFLOP/s for vadvc and hdiff, respectively, which are
1.2× and 2.5× the performance on the POWER9 CPU.

Second, for a single PE, which fetches data from a single memory channel, the
DDR4-based design provides higher performance than the HBM-based design. This is
because the DDR4-based FPGA has a larger bus width (512-bit) than an HBM port
(256-bit). This leads to a lower transfer rate for an HBM port (0.8-2.1 GT/s6) than
for a DDR4 port (2.1-4.3 GT/s). One way to match the DDR4 bus width would be
to have a single PE fetch data from multiple HBM ports in parallel. However, using
more ports leads to higher power consumption (∼1 Watt per HBM port).

Third, as we increase the number of PEs, we observe a linear reduction in the
execution time of the HBM-based design. This is because we can evenly divide the
computation between multiple PEs, each of which fetches data from a separate HBM
port.

Fourth, in the DDR4-based design, the use of only a single channel to feed multiple
PEs leads to a congestion issue that causes a non-linear run-time reduction. As
we increase the number of accelerator PEs, we observe that the PEs compete for a
single memory channel, which causes frequent stalls. This phenomenon leads to worse
performance scaling characteristics for the DDR4-based design as compared to the
HBM-based design.

3.4.3 Energy Analysis

We compare the energy consumption of our accelerator to a 16-core POWER9
host system. For the POWER9 system, we use the AMESTER7 tool to measure the
active power8 consumption. We measure 99.2 Watts for vadvc, and 97.9 Watts for
hdiff by monitoring built-in power sensors in the POWER9 system.

By executing these kernels on an HBM-based board, we reduce the energy con-
sumption by 22× for vadvc and 29× for hdiff compared to the 16-core POWER9
system. Figure 3-8 shows the energy efficiency (GFLOPS per Watt) for vadvc and
hdiff on the HBM- and DDR4-based designs. We make three major observations
from the figure.

First, with our full-blown HBM-based designs (i.e., 14 PEs for vadvc and 16 PEs
for hdiff), we achieve energy efficiency values of 1.5 GFLOPS/Watt and 17.3 GFLOP-

6Gigatransfers per second.
7https://github.com/open-power/amester
8Active power denotes the difference between the total power of a complete socket (including

CPU, memory, fans, I/O, etc.) when an application is running compared to when it is idle.



38 CHAPTER 3. NERO

0 4 8 12 14
Number of PEs

0

1

2

3

En
er

gy
 E

ffi
ci

en
cy

 (G
Fl
op

/s
/W

at
t)

1.37

1.65 1.78 1.71
1.451.44 1.61

1.31

POWER9 socket (64 threads)

(a)

HBM
DDR4

0 4 8 12 14
Number of PEs

0

5

10

15

20

En
er

gy
 E

ffi
ci

en
cy

 (G
Fl

op
/s

/W
at

t)

6.5

10.8

15.17
17.33 17.34

9.75

13.24 14.8 14.58

POWER9 socket (64 threads)

(b)

HBM
DDR4

Figure 3-8: Energy efficiency for (a) vadvc and (b) hdiff on HBM- and DDR4-
based FPGA boards. We also show the single socket (64 threads) energy effi-
ciency of an IBM POWER9 host system for both vadvc and hdiff

S/Watt for vadvc and hdiff, respectively.
Second, the DDR4-based design is more energy efficient than the HBM-based

design when the number of PEs is small. This observation is inline with our discussion
about performance with small PE counts in Section 3.4.2. However, as we increase the
number of PEs, the HBM-based design provides better energy efficiency for memory-
bound kernels. This is because more data can be fetched and processed in parallel via
multiple ports.

Third, kernels like vadvc, with intricate memory access patterns, are not able to
reach the peak computational power of FPGAs. The large amount of control flow in
vadvc leads to large resource consumption. Therefore, when increasing the PE count,
we observe a high increase in power consumption with low energy efficiency.

We conclude that enabling many HBM ports might not always be beneficial in
terms of energy consumption because each HBM port consumes ∼1 Watt of power
consumption. However, data-parallel kernels like hdiff can achieve much higher
performance in an energy efficient manner with more PEs and HBM ports.

3.4.4 FPGA Resource Utilization

Table 3.2 shows the resource utilization of vadvc and hdiff on the AD9H7 board.
We draw two observations. First, there is a high BRAM consumption compared to
other FPGA resources. This is because we implement input, field, and output signals as
hls::streams. In high-level synthesis, by default, streams are implemented as FIFOs
that make use of BRAM. Second, vadvc has a much larger resource consumption
than hdiff because vadvc has higher computational complexity and requires a larger
number of fields to perform the compound stencil calculation. Note that for hdiff,



3.5. RELATED WORK 39

we can accommodate more PEs, but in this thesis, we make use of only a single HBM
stack. Therefore, we use 16 PEs because a single HBM stack offers 16 memory ports.

Table 3.2: FPGA resource utilization in our highest-performing HBM-based
designs for vadvc and hdiff

Algorithm BRAM DSP FF LUT URAM
vadvc 81% 39% 37% 55% 53%
hdiff 58% 4% 6% 11% 8%

3.5 Related Work
To our knowledge, this is the first thesis to evaluate the benefits of using FPGAs

equipped with high-bandwidth memory (HBM) to accelerate stencil computation.
We exploit near-memory capabilities of such FPGAs to accelerate important weather
prediction kernels.

Modern workloads exhibit limited locality and operate on large amounts of data,
which causes frequent data movement between the memory subsystem and the pro-
cessing units [57, 147, 329, 330]. This frequent data movement has a severe impact
on overall system performance and energy efficiency. A way to alleviate this data
movement bottleneck [57, 147, 329, 330, 432] is near-memory computing (NMC), which
consists of placing processing units closer to memory. NMC is enabled by new memory
technologies, such as 3D-stacked memories [179, 233, 251, 252, 367], and also by
cache-coherent interconnects [49, 421, 444], which allow close integration of processing
units and memory units. Depending on the applications and systems of interest
(e.g., [11, 12, 13, 31, 38, 57, 59, 86, 129, 146, 175, 176, 183, 219, 231, 257, 260, 285, 323,
332, 418]), prior works propose different types of near-memory processing units, such
as general-purpose CPU cores [11, 15, 57, 58, 59, 105, 241, 260, 334, 382, 407], GPU
cores [149, 182, 365, 527], reconfigurable units [145, 199, 212, 435], or fixed-function
units [12, 160, 175, 176, 183, 234, 280, 332].

FPGA accelerators are promising to enhance overall system performance with low
power consumption. Past works [17, 18, 19, 78, 112, 151, 185, 204, 212, 222, 256] show
that FPGAs can be employed effectively for a wide range of applications. The recent
addition of HBM to FPGAs presents an opportunity to exploit high memory bandwidth
with the low-power FPGA fabric. The potential of high-bandwidth memory [179, 252]
has been explored in many-core processors [149, 376] and GPUs [149, 539]. A recent
work [495] shows the potential of HBM for FPGAs with a memory benchmarking tool.
NERO is the first work to accelerate a real-world HPC weather prediction application
using the FPGA+HBM fabric. Compared to a previous work [435] that optimizes



40 CHAPTER 3. NERO

only the horizontal diffusion kernel on an FPGA with DDR4 memory, our analysis
reveals that the vertical advection kernel has a much lower compute intensity with
little to no regularity. Therefore, this thesis accelerates both kernels that together
represent the algorithmic diversity of the entire COSMO weather prediction model.
Moreover, compared to [435], NERO improves performance by 1.2× on a DDR4-based
board and 37× on an HBM-based board for horizontal diffusion by using a dataflow
implementation with auto-tuning.

Enabling higher performance for stencil computations has been a subject of op-
timizations across the whole computing stack [30, 87, 94, 103, 134, 157, 167, 177,
309, 406, 443, 454, 487]. Szustak et al. accelerate the MPDATA advection scheme
on multi-core CPU [452] and computational fluid dynamics kernels on FPGA [245].
Bianco et al. [54] optimize the COSMO weather prediction model for GPUs while
Thaler et al. [458] port COSMO to a many-core system. Wahib et al. [486] develop
an analytical performance model for choosing an optimal GPU-based execution strat-
egy for various scientific applications, including COSMO. Gysi et al. [167] provide
guidelines for optimizing stencil kernels for CPU–GPU systems.

3.6 Conclusion
We introduce NERO, the first design and implementation on a reconfigurable fabric

with high-bandwidth memory (HBM) to accelerate representative weather prediction
kernels, i.e., vertical advection (vadvc) and horizontal diffusion (hdiff), from a real-
world weather prediction application. These kernels are compound stencils that are
found in various weather prediction applications, including the COSMO model. We
show that compound kernels do not perform well on conventional architectures due
to their complex data access patterns and low data reusability, which make them
memory-bounded. Therefore, they greatly benefit from our near-memory computing
solution that takes advantage of the high data transfer bandwidth of HBM.

NERO’s implementations of vadvc and hdiff outperform the optimized software
implementations on a 16-core POWER9 with 4-way multithreading by 4.2× and
8.3×, with 22× and 29× less energy consumption, respectively. We conclude that
hardware acceleration on an FPGA+HBM fabric is a promising solution for compound
stencils present in weather prediction applications. We hope that our reconfigurable
near-memory accelerator inspires developers of different high-performance computing
applications that suffer from the memory bottleneck.



Chapter 4

Low Precision Processing for
High Order Stencil
Computations

Modern scientific workloads have demonstrated the inefficiency of using high-
precision formats. Moving to a lower bit format or even to a different number system
can provide tremendous gains in terms of performance and energy efficiency. This
chapter explores the applicability of different number formats and searches for the
appropriate bit-width for three-dimensional stencil kernels, which are among the most
widely used scientific workloads. Further, we demonstrate the achievable performance
of these kernels on state-of-the-art hardware that includes a host CPU connected to an
FPGA. An FPGA provides us with the capability to implement arbitrary fixed-point
precision. Thus, this chapter fills the gap between current hardware capabilities and
future systems for stencil-based scientific applications.

4.1 Introduction
Stencil computation is essential for numerical simulations of finite difference

methods (FDM) [357] and is applied in iterative solvers of linear equation systems.
We use stencil computation in a wide range of applications, including computational
fluid dynamics [187], image processing [178], weather prediction modeling [116],
etc. A stencil operation [167] defines a computation sequence where elements in a
multidimensional grid are updated using data values from a subset of its neighbors
based on a fixed pattern.

Stencil computation is applied to data structures that are generally much larger

The content of this chapter was published as “Low Precision Processing for High Order Stencil
Computations” in Springer LNCS 2019.

41



42
CHAPTER 4. LOW PRECISION PROCESSING FOR HIGH ORDER STENCIL

COMPUTATIONS

than the available system’s cache capacity [104]. Stencils are cache-unfriendly because
the amount of data reuse within a stencil iteration is limited to the number of points
in a stencil. Due to the cache-unfriendly, complex data access patterns, and low
operational intensity [434, 515], stencil compute kernels do not perform well on
traditional CPU or GPU-based systems.

High-performance implementations of stencils on modern processors operate using
a single-precision or a double-precision floating-point data type. The floating-point
format is the most widely supported datatypes by our current hardware devices. Using
this data type in real-world applications, which use large grid sizes, puts enormous
stress on the memory subsystem. Therefore, storing data in the memory using a
smaller number of bits can decrease the memory footprint and provide reductions
in latency and energy consumption. The industry trend [136] shows a clear shift
away from using floating-point representation. For example, applications like neural
networks can use an 8-bit fixed-point format or lower precision without significant
loss in accuracy [200]. Hence, in this chapter, we examine the use of different number
systems – fixed-point, posits, floating-point – and analyze the precision tolerance of
three-dimensional stencil kernels, one of the most widely used kernels in real-world
applications.

4.2 Background
This section provides details on the stencil kernels used and discusses the relevance

of the precision analysis.

4.2.1 Stencil Benchmark
Stencil computation updates a multi-dimensional grid based on a specific com-

putation pattern. A stencil kernel’s performance on the current multicore system
depends heavily on the data mapping of the grid. For instance, suppose a 3D grid
in (row, column, depth). When the grid is stored by row, accessing data elements in
the other dimensions typically results in cache eviction. This issue is because, for
real-world applications, the problem size is too large to fit in the processor cache.
This chapter focuses on both a 7-point and 25-point 3D elementary stencil and a
compound horizontal diffusion (hdiff) stencil, shown in Figure 4-1. These kernels
access a three-dimensional grid and have complex access patterns. The 3D 7-point
and 25-point (see Figure 4-1a) stencils commonly arise from the finite difference
method for solving partial differential equations [515]. The 7-point stencil performs
eight FLOPS per grid point, while the 25-point stencil performs twenty-seven FLOPS
per grid point (without any common subexpression elimination). Thus, the arithmetic
intensity, the ratio of FLOPS performed for each byte of memory traffic, is much



4.2. BACKGROUND 43

x

y

z

(a)

Laplace Flux Output

(b)

Figure 4-1: (a) 7-point stencil and 25-point elementary stencils (b) Compound
horizontal diffusion stencil that is used by the COSMO weather prediction
model

higher for the 25-point stencil than the 7-point stencil.
As discussed in Chapter 3, stencil patterns in a real-world weather prediction

application consist of a collection of stencils that performs a sequence of element-
wise computations. Horizontal diffusion kernel is an example of one such kernel that
executes each stencil using a separate loop nest. It iterates over a 3D grid that performs
laplacian and flux, as depicted in Figure 4-1b, as well as calculations for different grid
points. Such compound kernels have intricate memory access patterns because they
apply a series of elementary stencil operations. Although such implementations may
be straightforward to write, they are not efficient in terms of data locality, memory
usage, or parallelism.

4.2.2 Precision Optimization
IEEE-754 floating-point representation has become the universal standard in

modern computing systems. Floating-point numbers have a mantissa and exponent
component with an additional bit to represent the sign of a number. In terms of
computing resources, this floating-point arithmetic requires complex circuitry leading
to high latency and power consumption [136].

The use of low-precision arithmetic with a minimal loss in the accuracy has been
proposed as a promising alternative to the commonly used floating-point arithmetic
for emerging workloads, e.g., machine learning and graph processing. From the system
perspective, there are two main benefits of moving to a lower precision. First, the
hardware resources for a given silicon area may enable higher operations per second
(OPS) at a lower precision as these operations require less hardware area, and thus
power. Note, this also necessitates efficient memory traffic management. Secondly,
many operations are memory bandwidth bound [432, 437], and reducing precision
would allow for better cache usage and reduction of bandwidth bottlenecks. Thus,
data can be moved faster through the memory hierarchy to maximize the utilization
of computing resources.



44
CHAPTER 4. LOW PRECISION PROCESSING FOR HIGH ORDER STENCIL

COMPUTATIONS

Emulation
Fixed

Float

Posit

Precision Tuning
Exhaustive search

Designer Input
Code instrumentaton

Error metric

Error Tracking
Online 2-norm matrix 

based tracking 

1 2 3

Figure 4-2: Overview of application precision exploration. The designer in-
puts the code with an appropriate precision template. Exhaustive precision
exploration is performed for different number systems that include fixed-point
arithmetic, floating-point arithmetic, and posit arithmetic. While exploring,
error tracking is performed using the 2-norm matrix approach

4.3 Methodology
The following section provides detail on our methodology to explore precision for

different number systems, as depicted in Figure 4-2. In the first phase ( 1 ), we analyze
and instrument a part of an application for which the precision exploration needs to
be performed. In the next phase ( 2 ), we execute an exhaustive search to find the
appropriate precision based on the number system used. In this chapter, we make
use of fixed-point, floating-point, and posit number systems. During the exhaustive
design space exploration, continuous error tracking ( 3 ) is performed to measure the
extent of accuracy deviation compared to the IEEE floating-point arithmetic format.
Accuracy: In our experiments, for precision tuning, we consider the induced 2-norm
of a matrix [24] as our measure of the accuracy. A matrix norm is a vector norm in a
vector space. The induced 2-norm of an m×n matrix A is the supremum of the ratio
between the 2-norm of a vector Ax and the 2-norm of x, where x is an n-dimensional
vector. We calculate the relative norm or mean relative error (MRE) 𝜖i to indicate
how close the predicted value A′i is to the actual value Ai . MRE provides an unbiased
estimate of the error variance between two matrices.

𝜖i = ||A
′
i – Ai ||2
||Ai ||2

(4.1)

4.3.1 Evaluated Arbitrary Precision

As an alternative to the currently used IEEE single and double-precision floating-
point representation, we explore the precision tolerance of 3D stencil kernels using the
following number formats (see Figure 4-3):

1) Fixed-Point Arithmetic: A fixed-point consists of an integer and a fraction part
where total width could be any multiple of 2, based on the bit-width of the data
path. Compared to the floating-point format, fixed-point numbers simplify the logic



4.3. METHODOLOGY 45

                                        fractioninteger

exponent mantissa

+/-

+/-

regime exponent fraction

w

1 bit r1...rn bits e1,e2...es bits mantissa, if any

Fixed-point

Dynamic 
Floating-point

Posit

exponent mantissa IEEE Floating-point
1 bit 8 bits 23 bits

i bits (w-i) bits

e bits m bits
Arbitrary
Formats

1 bit

+/-

Figure 4-3: Arithmetic types used with widths indicated above each field. IEEE
single precision floating-point number is 32-bit where a positive sign bit is rep-
resented by a 0 and a negative by 1. Fixed-point has fixed integer and fraction
bits where w (total bits) could be any multiple of 2, based on the bitwidth of
the data path. Dynamic floating-point arithmetic uses arbitrary exponent and
mantissa bits. A posit number [165] is similar to floating-point with additional
bits for the regime part. It has es exponent bits, but depending upon the data
this could be omitted (same is valid for mantissa bits)

by fixing the radix point.
In an FPGA, the fixed-point format offers a more resource-efficient alternative to

the floating-point implementation. This efficiency is because floating-point support
often uses more than 100× as many gates compared to fixed-point support [136].

2) Dynamic Floating-Point Arithmetic: By lowering the precision of a floating-
point format, we could retain the advantages of floating-point arithmetic (e.g., higher
dynamic range) with a lower bit-width. Dynamic floating-point arithmetic uses an
arbitrary number of bits for the exponent and significand (or mantissa) parts of a
floating-point number.

3) Posit Arithmetic: Posit[165] borrows most of the components from the IEEE
754 floating-point scheme, such as the exponent and fraction (or mantissa) fields.
However, posit has an additional regime bit introduced to create a tapered accuracy,
which lets small exponents have more accuracy. One could choose to either represent
a large number by assigning more bits to the exponent field or opt for more decimal
precision by having more fraction bits.

Figure 4-3 shows the different datatypes explored in this chapter. While analyzing
these types, there are several things to take into account. Firstly, posit can provide the
highest dynamic range compared to the other number systems, and fixed-point offers
the lowest [71]. Additionally, floating-point numbers are susceptible to rounding errors
and could lead to an overflow or underflow [165]. We determine the precision bit-width
through bit accurate simulations for different bit-width configurations. While changing
bitwidth, we analyze the trend of the relative error.



46
CHAPTER 4. LOW PRECISION PROCESSING FOR HIGH ORDER STENCIL

COMPUTATIONS

4.4 Evaluation

We use IBM® POWER9 as the host system comprising of 16 cores, each of which
supports four-thread simultaneous multi-threading. Table 4.1 provides complete details
of our system parameters. To provide a full-scale analysis of stencil optimization
techniques, we set the grid size of all stencil kernels as 1280 × 1080 × 960, much
larger than the on-chip cache capacity of POWER9, with input data distribution as
a Gaussian function. The problem size dictates which input dataset would reside in
the cache; hence is an important parameter while measuring the system performance.
Note: in Chapter 3, we use a grid domain used by the COSMO weather prediction
model.

Table 4.1: System parameters and hardware configuration for the CPU and the
FPGA board

Host CPU 16-core IBM POWER9 AC922
@3.2 GHz, 4-way SMT

Cache-Hierarchy 32 KiB L1-I/D, 256 KiB L2, 10 MiB L3
System Memory 16x32GiB RDIMM DDR4 2666 MHz

DDR4-based
FPGA Board

Alpha Data ADM-PCIE-9V3
Xilinx Virtex Ultrascale+ XCVU3P-2
8GiB (DDR4) with PCIe Gen4 x8

For precision tuning of the fixed-point number system, we use the Xilinx fixed-point
library from the Vivado 2018.2 tool [483]. We use the C++ template-based FloatX
(Float eXtended) library 1 to explore arbitrary precision for floating-point arithmetic.
Software-based posit implementation is available as part of the ongoing efforts to
develop an ecosystem for posit evaluation2. All three libraries are provided as a C++
header format, which allows us to replace the data types in the source code of the
application and study the effect of low precision using the same software toolchain as
that of the application itself. We develop a highly optimized FPGA accelerator for all
the kernels to make a performance comparison between floating-point and fixed-point
number systems. We implement these designs on an Alpha-Data ADM-PCIE-9V3 [5]
card featuring the Xilinx Virtex Ultrascale+ XCVU3P-FFVC1517-2-i device.

4.4.1 Emulated Precision Tuning
The tuning process analyzes multiple configurations for each of the arithmetic

types considered. The tuner re-executes the program for each configuration and
1https://github.com/oprecomp/FloatX
2https://github.com/stillwater-sc/universal



4.4. EVALUATION 47

computes the error on its output values to provide a measure of the resultant accuracy.
Figure 4-4 shows the precision results for the considered workloads for three different
number systems. The accuracy is compared to the most ubiquitously used IEEE
single-precision floating number system.

For all the kernels, we can achieve full accuracy with much lower bits. Moreover,
as the error tolerance increases, we could use a lower number of total bits. Based
on this, we make three observations. First, in the case of a 7-point and 25-point
stencil, we could reduce bits by more than 50% for the considered three data types,
with a precision loss of only 1%. Second, elementary 3D stencil kernels (7-point and
25-point) could not exploit the high dynamic range offered by posit. Therefore, with
a lower bit-width floating-point arithmetic, we could achieve better results. Third,
the weather compound kernel comparatively needs a higher dynamic range; therefore,
with 0.1% tolerance in the accuracy, we could cut the number of bits to half compared
to the IEEE floating-point and move to a posit of (16,2). This observation motivates
the use of posit number format can be useful in the domain of weather prediction
modeling.

100 99.99 99.9 99 95 90

(a)

4

8

12

16

20

24

28

32

T
o
ta

l 
B

it
s

2
0

,4

1
8

,4

1
5

,4

1
2

,4

9
_4

8
,4

3
,1

4

3
,1

2

3
,9

3
,6

3
_4

3
,3

1
8

,0

1
6

,0

1
3

,0

1
0

,1

8
_1

7
,0

fixed(w,i)
floatx(e,m)
posit(n,es)

100 99.99 99.9 99 95 90

(b)

2
2

,7

2
1

,7

1
7

,7

1
4

,7

1
2

_7

1
1

,7

4
,1

4

4
,1

2

4
,9

4
,6

4
_4

4
,3

1
9

,1

1
7

,1

1
3

,1

1
1

,1

9
_2

8
,1

fixed(w,i)
floatx(e,m)
posit(n,es)

100 99.99 99.9 99 95 90

(c)

2
1

,5

1
9

,5

1
8

,5

1
6

,5

1
0

,5

1
0

,5

3
,1

8

3
,1

7

3
,1

4

3
,1

3

3
,8

3
,4

2
0

,2

1
9

,2

1
6

,2

1
6

,1

7
_1

5
,1

fixed(w,i)
floatx(e,m)
posit(n,es)

Figure 4-4: Total bits vs accuracy (percentage) for (a) 7-point, (b) 25-point,
and (c) horizontal diffusion compared to single-precision IEEE floating-point
representation. Notation fixed (w,i) defines a fixed number with total w bits
including i integer bits. With floatx, e refers to the exponent bits and m defines
the mantissa. In the case of the posit number system, n is the total number of
bits with es bits for the exponent part

4.4.2 Case Study for Current Multi-Core Systems and Arbi-
trary Precision Supported Hardware

We perform a case study to measure the capabilities of current state-of-the-art
hardware platforms. We tune the considered stencil kernels both for IBM POWER9
CPU and for a high-end FPGA platform. Our FPGA is coherently attached to our



48
CHAPTER 4. LOW PRECISION PROCESSING FOR HIGH ORDER STENCIL

COMPUTATIONS

host CPU through the CAPI2 link. For the FPGA and the POWER9 node, we use
the AMESTER3 tool to measure the active power consumption.

Our current FPGA devices only support floating-point and arbitrary fixed-point
arithmetic. Therefore, we compared hardware implementations across the stencil
benchmarks for floating-point single and half precision with fixed-point datatype
for the bit width that gave similar accuracy to the floating-point. Note, as current
state-of-the-art hardware devices do not support the posit data type, we did not
include it in our hardware comparison because the emulation of posit data type would
be expensive in an FPGA and would lead to unfair comparisons with other data types.
In Appendix B, we develop PreciseFPGA, an automated framework to obtain an
application-aware optimal fixed-point configuration without exhaustively searching
the entire design space.

In Figure 4-5a, we show a high-level overview of our integrated system. The FPGA
is connected to a server system, based on the IBM® POWER9 processor, using IBM®

coherent accelerator processor interface 2.0 (CAPI 2.0). The FPGA implementation
consists of accelerator function units (AFU) that interact with the power service layer
(PSL), which is the CAPI endpoint on the FPGA. The co-designed execution flow is
shown in Figure 4-5b. We provide the experimental results of tuning stencil kernels
for current CPU and FPGA-based systems.

LU LU

PE PE

LU LU

P9 Core P9 Core

CAPI

....

Processor Bus

CAPI 2.0

IBM 
Power9 

Memory ControllerPSL

BRAM

Host DRAM FPGA DRAM

BRAM

MC

PCIe
Gen4

AFU AFU

(a)

Host Data 
Preparation

FPGA 
execution

Host Data
Storage

CPU-FPGA co-design execution flow
98% stencil 

execution timeCAPI2.0

CAPI2.0

(b)

Figure 4-5: (a) CAPI 2-based accelerator platform with IBM® POWER9 (b)
FPGA is acting as a peer to the CPU by accessing the main memory through
a high-performance CAPI2 link, enabled by PSL. Data flow sequence from the
Host DRAM to the onboard FPGA memory. A software-defined API handles
offloading jobs to accelerators with an interrupt-based queuing mechanism that
allows minimal CPU usage (thus, power) during FPGA use

Figure 4-6 shows the roofline of the three stencil kernels (7-point, 25-point,
and hdiff) that we use in this study. By mapping both, arithmetic intensity of all
examined stencils and peak attainable GFLOP/sec (GOP/sec for fixed-point) on the
roofline of our heterogeneous system (CPU+FPGA), we make the following three
observations. First, we observe that compiler and tiling optimizations [515] lead to

3https://github.com/open-power/amester



4.4. EVALUATION 49

125.2× 119.4× and 90.4× speedup compared to non-optimized CPU implementations
for 7-point, 25-point, and hdiff, respectively. The memory bandwidth constrains
the performance of elementary stencils (7-point, 25-point) since the stencil data
for the 3D grid cannot be mapped to contiguous memory location leading to limited
cache locality. Although hdiff has a higher arithmetic intensity, its access patterns
are more complex because it applies a series of elementary stencil operations with
different stencil patterns.

10-1 100 101 102

Arithmetic Intensity [flop:byte]

10-1

100

101

102

103

At
ta
in
ab

le
 P
er
fo
rm

an
ce

 [G
(F
L)
OP

/s
ec

]

0.84

100.3

327.7 342.0
527.9

0.72

90.2

228.4 319.5
468.1

0.94

85.01

350.25 421.80
659.1

       
     D

RAM
 110

GBp
s BW

 on S
TREA

M
L3-ca

che

CAPI
2/PC

Ie4

486.4 GFLOP/s/CPU socket

0.97 TOP/s/AD9V3-FPGA

hd
iff
 fl
oa

t

25
-p
oi
nt

flo
at

7-
po

in
t

flo
at

Roofline for POWER9(8335-GTH, 16-cores, SMT4) and AD9V3 FPGA

25point,CPUbaseline
25point,CPUoptimized
25point,FPGAfloat
25point,FPGAhalf
25point,FPGAfixedQ14 7
7point,CPUbaseline
7point,CPUoptimized
7point,FPGAfloat
7point,FPGAhalf
7point,FPGAfixedQ16 4
hdiff,CPUbaseline
hdiff,CPUoptimized
hdiff,FPGAfloat
hdiff,FPGAhalf
hdiff,FPGAfixedQ11 5

Figure 4-6: Roofline [501] for POWER9 (1-socket) showing elementary stencil
(7-point and 25-point) and horizontal diffusion (hdiff) kernels for single-thread
baseline and 64-thread fully-optimized implementations. The plot shows also
the roofline of the FPGA with attained performance of our examined stencils
using different precision data types

Second, we observe that the floating-point FPGA implementations increase the
additional speedup to 2.5×, 3.3×, and 4.1× compared to the CPU-optimized imple-
mentation for 7-point, 25-point, and hdiff, respectively. By effectively using the
FPGA’s on-chip memory, the FPGA-based implementations are not constrained by
the DRAM memory bandwidth. However, the CAPI2/PCIe4 link offers an order of
magnitude less bandwidth than that of the host CPU’s DRAM. Since our platform
offers memory-coherent access of FPGA to the system memory, we build a pipelined
execution, where communication time for transferring data from host to FPGA mem-
ory is masked with the actual FPGA processing [112]. This technique allows us to
exploit FPGA processing capabilities completely.



50
CHAPTER 4. LOW PRECISION PROCESSING FOR HIGH ORDER STENCIL

COMPUTATIONS

Third, we have measured additional gains by replacing a single-precision floating-
point data type with a lower precision data type. Specifically, in the roofline of
Figure 4-6, we plot the performance of three stencils using half and fixed-point data
types. The specific bit-width for the integer and fractional part of the fixed point was
selected at 99% accuracy, i.e., Q14.7 for 25-point, Q16.4 for 7-point, and Q11.5 for
hdiff. Arithmetic intensity is improved for both half and fixed data types since the
bytes fetched from memory are half that of the single-precision floating-point (i.e., 2
bytes instead of 4 bytes). Since fixed-point implementations use fewer resources on
an FPGA than float and half, we were able to add more accelerators on the same
FPGA device, allowing us to measure 468.1, 527.9, and 659.1 GOPs/sec for 7-point,
25-point, and hdiff, respectively. These numbers are very close to the theoretical
peak performance of 0.97 TOPs/s offered by our FPGA device 4.

Table 4.2 shows the resource utilization for our examined stencil kernels on an
FPGA using different precision data types. In all the scenarios, going from single to
half-precision increases the performance with a corresponding reduction in the number
of resources. Further, moving to fixed-point arithmetic representation increases the
performance due to a decrease in the number of bytes loaded at the cost of LUT
utilization. However, the utilization of other FPGA resources is reduced. Figure 4-7
shows the achieved energy efficiency with different precision data types. As the
number of bits reduces, we see an increase in energy efficiency for all considered
kernels. Designs implemented in fixed-point will always be more efficient than their
equivalent in floating-point alternative because fixed-point implementations consume
fewer resources and less power (see Table 4.2). As these stencil kernels do not
require the high dynamic range achievable with floating-point, moving to fixed-point
implementations could provide better energy efficiency. In the case of hdiff, we see
a huge increase in energy efficiency on moving to a lower precision. This increase
is because hdiff is a compound kernel; therefore, each elementary stencil’s energy
improvement with lower precision leads to much higher cumulative gains.

4.5 Related Work
Floating-point representation is the most widely supported data type by current

hardware devices. Recently, in many application domains, there has been a significant
amount of research to explore error resilience across the complete stack of computer
architecture from application to device physics. A large body of literature [106, 124,
168, 181, 200, 307, 308] has analyzed the benefits of using lower precision fixed-point

4While the three stencils comprise different access patterns and acceleration kernels, the primary
operations, i.e., vectorized multiply-accumulate computation (MAC), which define the FPGA micro-
architecture, remain the same. Using vectorized MAC, we have calculate 0.97 TOPs/s theoretical
top performance for stencils for our AD9V3 FPGA.



4.5. RELATED WORK 51

Table 4.2: FPGA resource utilization and performance for the examined stencil
kernels on FPGA testbeds, with different precisions

Kernel Precision Accuracy (%) Utilization (%) Performance
(GLOP/s)

Energy
(mJ)BRAM DSP FF LUT

7-point float 100 38 35 18 29 228.4 4617.2
7-point half 99.95 25 24 15 28 319.5 2887.6
7-point fixed (20,4) 100 16 12 49 95 467.6 1832.3
7-point fixed (16,4) 99.96 12 12 47 92.5 468.1 1689.4
25-point float 100 42 62 36 44 327.7 1608.7
25-point half 99.06 32 43 32 43 342.1 1541.5
25-point fixed (22,7) 100 29 21 56 95 527.9 1510.3
25-point fixed (14,7) 99.05 19 21 55 91 528.9 1497.9
hdiff float 100 52 89 65 61 350.3 3010.5
hdiff half 98.02 44 84 35 57 421.8 2031.1
hdiff fixed (21,5) 100 24 45 77 76 653.9 1007.9
hdiff fixed (11,5) 97.92 14 35 69 71 659.1 997.9

Precision Types10

20

30

40

50

60

70

80

En
er

gy
 E

ffi
cie

nc
y 

(G
FL

OP
/s

ec
/W

at
t)

float
half

fixed(20,4) fixed(16,4)

float
half

fixed(22,7) fixed(14,7)

float

half

fixed(21,5) fixed(11,5)
7point
25point
HDIFF

Figure 4-7: Evaluated design points for different stencil kernels. The plot shows
energy efficiency (GFLOPS/Watt) with different precision implementations on
an Alpha-Data ADM-PCIE-9V3 [5] card featuring the Xilinx Virtex Ultrascale+
XCVU3P-FFVC1517

computation compared to floating-point for different application domains. With the
emergence of the posit number system [165], research into lower precision with these
alternate number systems is regaining attention. In neural-networks, Langroudi et
al. [248] demonstrate a minimum accuracy degradation by using a 7-bit posit format.
In another study, Klöwer et al. [239] show the applicability of posit in weather modeling.
However, they used a different weather prediction model than COSMO, which uses
different numerical solvers for predicting weather.

High-performance implementations of stencils on modern processors usually use
the IEEE single-precision or double-precision floating-point data types. There have
been various efforts to improve these kernels for different architectures using various
software-based optimization techniques. Datta et al. [104] optimized the 2D and
3D stencil for multicore architectures using several hardware adherent optimizations.
Similarly, Nguyen et al. [340] worked on algorithm optimization for CPU and GPU-



52
CHAPTER 4. LOW PRECISION PROCESSING FOR HIGH ORDER STENCIL

COMPUTATIONS

based systems. Gysi et al. [167] provided guidelines for optimizing complex kernels
for CPU–GPU systems using analytic models. Gan et al. [143] use a mixed-precision
approach for 13-point shallow water equation (SWE) stencils. The authors use fixed-
point representation for variables that require a lower precision, while floating point
precision for other variables. However, to the best of our knowledge, this thesis is
the first to study the precision tolerance for scientific 3D stencil kernels, including a
compound weather prediction stencil kernel, for a wide range of number systems, i.e.,
fixed-point arithmetic, floating-point arithmetic, and posit arithmetic.

4.6 Conclusion
Stencils are one of the most widely used computational kernels across various

real-world applications. This chapter analyzed the precision tolerance for different
3D stencil kernels using fixed-point, floating-point, and posit number systems. We
demonstrated by exhaustive precision exploration that these kernels have a margin
to move to a lower bit-width with minimal loss of accuracy using different number
formats.

Further, in a case study, we measured the performance of these kernels on a
state-of-the-art multi-core platform and designed lower bit-width-based accelerators
for all considered 3D stencil kernels on an FPGA platform. FPGA is the only device
that gives us the capability to implement arbitrary fixed-point precision data types.
Hence, we leveraged this capability to show the advantages of accelerating these kernels
with lower precision compared to the ubiquitous IEEE floating-point format. In the
future, we can use this analysis technique in an integrated design-flow to build efficient
systems for stencil-based applications. Another future direction would be to study
the effects of low precision processing not only for streaming applications, e.g., stencil
and convolution, where computation is done locally but also for iterative applications
where errors accumulate.



Chapter 5

NAPEL: Near-Memory
Computing Application
Performance Prediction via
Ensemble Learning

To harness the power of near-memory computing architectures, having a high-level
performance model can offer fast turnaround times in early design stages. This chapter
proposes an NMC model that combines technology parameters and application specific
characteristics to evaluate the performance of a workload. A statistical design of
experiment (DoE) methodology is first employed to select a set of representative
design points for simulation. These sampled points well represent the whole space
of possible input configurations. Then, ensemble learning is leveraged to develop a
model that can predict performance metrics for new unseen applications on these
novel architectures. Further, this model can act as a classifier to predict whether or
not should an application be offloaded to NMC cores.

5.1 Introduction
As discussed in Chapter 2, past works [11, 12, 37, 57, 58, 59, 182, 183, 234] show

that NMC architectures can be employed effectively for a wide range of applications,
including graph processing, databases, neural networks, bioinformatics. However, a
common challenge all such past works face is how to evaluate the performance and
energy consumption of the NMC architectures for different workloads systematically

The content of this chapter was published as “NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning” in DAC 2019.

53



54 CHAPTER 5. NAPEL

and accurately in a reasonable amount of time [330, 431]. In the early design stage,
system architects use simulation techniques (e.g., [11, 37, 59, 182, 235]) for architectural
performance and energy evaluation. However, this approach is extremely slow, because
a single simulation for a real-world application with a representative dataset typically
takes hours or even days. Specifically, the speed of a cycle-accurate simulator is in the
range of a few thousand instructions per second [405], which is orders of magnitude
slower than native execution.

Our goal is to enable fast early-stage design space exploration of NMC architec-
tures without having to rely on time-consuming simulations. To this end, we propose
the NMC Application performance and energy Prediction framework using Ensemble
machine Learning (NAPEL). The key idea is to use ensemble learning to build a model
that, once trained for a fraction of programs on a number of architecture configurations,
can predict the performance and energy consumption of different applications on
the same NMC architecture. The ensemble learning mechanism we use is random
forest (RF) [61]. NAPEL can make performance and energy predictions for an average
application on a specific architecture 220× faster than using simulation. Previous
ML-based approaches [69, 503, 505] perform extrapolations to predict, for example,
the performance of a known application for a bigger dataset. In contrast, NAPEL
can make predictions for previously-unseen applications, after being trained with data
from applications that are different from the applications that we want to predict.

NAPEL still needs to run simulations to gather training data that is required
to construct its predictive model. As discussed above, running simulations is very
time-consuming if we apply a brute-force approach to run all the application-input
configurations needed for training data. To alleviate this problem, we use a technique
called design of experiments (DoE) [336] to extract representative data with a small
number of experimental runs (between 11 and 31 for the evaluated applications).
Specifically, we employ a DoE variant called central composite design (CCD), which
allows us to explore the interactions and nonlinear effects between the application
input parameters and the output response (i.e., performance and energy consumption).

5.2 NAPEL
NAPEL is a performance and energy estimation framework that targets the early

stages of NMC system design. In this section, we describe the main components
of the framework. First, we give an overview of NAPEL training and prediction
(Section 5.2.1). Second, we describe the target NMC architecture we consider in
this chapter (Section 5.2.2). Third, we explain the code-instrumentation process for
the applications used to generate training datasets and for the applications under
performance and energy prediction (Section 5.2.3). Fourth, we describe the two most



5.2. NAPEL 55

important components of NAPEL training: the design of experiments methodology
(Section 5.2.4) and the ensemble machine learning (ML) technique (Section 5.2.5).

5.2.1 Overview
NAPEL is based on ensemble learning. Thus, it needs to be trained before it can

predict performance and energy consumption. Figure 5-1 depicts the key components
of NAPEL training and prediction.

Instruction 

Mix

Program 

Execution 

Traces

?Ensemble

Learning 

Algorithm

Training 

Dataset

Memory 

Behavior
ILP

Code 

Instrumentation

NMC
Prediction 

Model

Trace 

Simulation

Application

?LLVM Kernel Analyzer

Microarchitecture Simulation

?Hyper-parameter

Tuning

Instruction 
Mix

Memory 
Behavior

ILP

?LLVM Kernel Analyzer

Code 
Instrumentation

New 
Application

Model 
Generation

Performance/  
Energy

NAPEL Model Training

NAPEL Model Prediction

Instructions 
Per Cycle          

+ Hardware 
Features Validation

Application 
Features

Application 
Features

1

2

3

A
B

Figure 5-1: Overview of NAPEL training and prediction

Model Training. NAPEL training consists of three phases. The first phase ( 1 in
Figure 5-1) is an LLVM-based [249] kernel analysis phase (Section 5.2.3), which extracts
architecture-independent workload characteristics. First, we instrument applications
or parts of them that we use to gather data for model training. We consider the
instrumented codes for execution on NMC compute units with a specific architecture
configuration. Second, we characterize the instrumented codes in a microarchitecture-
independent manner by using a specialized plugin of the LLVM compiler framework [25].
This type of characterization excludes any hardware dependence and captures the
inherent characteristics of workloads.

In the second phase 2 , microarchitectural simulations are performed to gather
architectural responses for training. For the simulations, we use central composite
design (CCD) [300], a technique for the design of experiments (DoE) method [321].
With CCD, we can minimize the number of simulation experiments to gather training
data for NAPEL while ensuring good quality of the training data (Section 5.2.4). The
generated simulator responses along with application properties from the first phase
and the microarchitectural parameters form the input to our ML algorithm.



56 CHAPTER 5. NAPEL

In the third phase 3 , we train our ML algorithm (Section 5.2.5). During this
phase, we perform additional tuning of our ML algorithm’s hyper-parameters. Hyper-
parameters are sets of ML algorithm variables that can be tuned to optimize the
accuracy of the prediction model. We validate the prediction model against per-
formance and energy simulation results from the second phase. Once trained, the
framework can predict the performance and energy of a previously-unseen application
on a specific NMC architecture.

Model Prediction. NAPEL prediction has only two phases. The first phase ( A in
Figure 5-1) is the same LLVM-based kernel analysis phase as in NAPEL training. This
phase extracts architecture-independent features of the workload for which NAPEL
will predict the performance and energy consumption. The second phase B performs
the prediction by using the trained model. We feed the model with the architecture-
independent workload features and the model provides the performance and energy
estimations.

5.2.2 NMC Architecture

Figure 5-2 depicts the reference computing platform that we consider in this
chapter. It contains a host processor and an external memory equipped with NMC
compute units.

NMC	Subsystem
Host	CPU

Host
Processor

Cache
Hierarchy

3D
Stacked
Memory

NMC Cores

Application

Kernel

Kernel

Figure 5-2: Overview of a system with NMC capability. On the right, an
abstract view of application code with kernels that are offloaded to NMC

The NMC subsystem consists of a 3D-stacked memory [11, 146, 251, 252] with
processing elements (PEs) embedded in its logic layer. The memory is divided into
several vertical DRAM partitions, called vaults, each with its own DRAM controller
in the logic layer. In this chapter, we model NMC PEs as in-order, single-issue cores
with a private cache as proposed in previous work [11, 146], taking into account the
limited thermal and area budget in the logic layer. NAPEL can be extended to support
other types of general-purpose cores and accelerators by selecting the appropriate
architectural features (see Table 5.1) for training the NAPEL model.



5.2. NAPEL 57

5.2.3 Code Instrumentation and Analysis

In the first phase of NAPEL training and prediction, the programmer annotates
the region of the source code, called kernel (k), which is a candidate for offloading
to NMC (i.e., execution on NMC processing elements). Then, that specific region is
converted into an LLVM intermediate-representation (IR), which provides the basis
for performing hardware-independent kernel analysis. Hardware-independent profiling
enables us to generate an application profile p independently of the NMC design.

The application profile p(k, d) is obtained by executing the instrumented application
kernel k while processing a dataset d. p(k, d) is a vector where each parameter is a
statistic about an application feature f. Table 5.1 lists the main application features
we extract by using the LLVM-based PISA analysis tool [25]. We select these features
to analyze the memory access behavior of an application (data reuse distance, memory
traffic, memory footprint, etc.), which is key for assessing the suitability of NMC for
the application. Ultimately, the application profile p has 395 features, which includes
all the sub-features of each metric we consider. Such a large number of features
enables complex relationships to be identified between the analyzed application and
its performance and energy consumption on the underlying NMC architecture [300].

Table 5.1: Main application and architectural features

Application Feature Description
Instruction Mix Fraction of instruction types (integer, floating point,

memory read, memory write, etc.)
ILP Instruction-level parallelism on an ideal machine.
Data/Instruction reuse distance For a given distance 𝛿, probability of reusing one data

element/instruction (in a certain memory location)
before accessing 𝛿 other unique data elements/instruc-
tions (in different memory locations).

Memory traffic Percentage of memory reads/writes that need to ac-
cess the main memory, assuming a cache of size equal
to the maximum reuse distance.

Register traffic Average number of registers per instruction.
Memory footprint Total memory size used by the application.
NMC Arch. Features Description
Core type In-order
#PEs Total number of near-memory processing units
Core frequency Operating frequency of the core
Cache line size Total size of a cache line (bytes)
#cache-lines Number of cache lines
DRAM layers Number of stacked DRAM layers
Size of DRAM Total size of memory (bytes)
Cache access fraction Cache hit ratio
DRAM access fraction Cache miss ratio



58 CHAPTER 5. NAPEL

5.2.4 Central Composite Design

In the second phase of NAPEL training, we use the design of experiments (DoE)
method [321] as a way to minimize the number of experiments to train NAPEL without
sacrificing the amount and quality of the information gathered by the experiments.
DoE is a set of statistical techniques meant to locate a small set of points in a parameter
space with the goal of representing the whole parameter space. The traditional brute-
force approach to collecting training data is time-consuming: the sheer number of
experiments renders detailed simulations intractable. Thus, the DoE strategy to gather
a training dataset is a critical component of our model.

We apply the Box–Wilson central composite design (CCD) [300], the goal of
which is to minimize the uncertainty of a nonlinear polynomial model that accounts
for parameter interactions. While applying CCD, we treat the application input
dataset d as a parameter vector (e.g., dataset size, number of threads, etc.) and
each input configuration as a point in a multidimensional parameter space. For
example, application atax from the PolyBench benchmark suite [378] has two significant
parameters (dimension, threads) (see Table 5.2). In CCD, each input parameter in the
vector d can have one of five levels: minimum, low, central, high, maximum. First, we
select these levels for each parameter. For example, for atax, the levels of dimension
are (500, 1250, 1500, 2000, 2300). Second, we place in the parameter space a point
for each parameter combination (i.e., input configuration) with low and high levels
(the corners of the solid-line square in Figure 5-3). In the case of atax, the points
(dimension, threads) are (1250, 8), (1250, 32), (2000, 8), (2000, 32). Third, we draw
a multidimensional sphere (represented as a circle in Figure 5-3) that circumscribes
the initial square. This sphere generalizes the DoE to capture the nonlinearity in
the system. Fourth, we obtain additional points on the sphere by combining the
central level of each parameter with the maximum and minimum levels of the other
parameters. For atax, these points (dimension, threads) are (1500, 4), (1500, 64),
(500, 16), (2300, 16). Fifth, we include the central configuration, which is (1500, 16)
for atax.

y

x
Min Low Central High Max

Min

Low

Central

High

Max

Figure 5-3: Central composite
DoE for two parameters (x, y). For
example, for atax (x, y) are (di-
mension, threads)

We run these DoE-selected application-input configurations on different architec-
tural configurations to collect the training dataset. Table 5.2 lists the parameter
levels for the evaluated applications. We include a test configuration, which we use in
Section 5.3.4.



5.2. NAPEL 59

Table 5.2: Evaluated applications and their DoE parameters (“DoE param.”).
For each DoE parameter, we show its five levels (minimum, low, cen-
tral, high, maximum) and test input

Application DoE Parameter Levels
Name Description DoE

Param.
Min Low Central High Max Test

atax Matrix Transpose
and Vector Mult.

Dimensions
Threads

500
4

1250
8

1500
16

2000
32

2300
64

8000
32

bfs Breadth-first
Search

Nodes
Weights
Threads
Iterations

400k
1
1
30

800k
2
9
40

900k
4
16
65

1.2m
25
32
70

1.4m
49
64
80

1.0m
4
32
95

bp Back-propagation Layer Size
Seed
Threads
Iterations

800k
2
4
1

1m
4
8
3

2m
5
16
9

3.5m
10
32
16

4m
12
64
25

1.1m
5
32
9

chol Cholesky
Decomposition

Dimensions
Threads
Iterations

64
4
10

384
8
20

128
16
30

320
32
50

512
64
80

2000
32
60

gemv Vector Multiply
and Matrix
Addition

Dimensions
Threads
Iterations

500
4
50

750
8
60

1250
16
80

2000
32
100

2250
64
150

8000
32
60

gesu Scalar, Vector, and
Matrix Mult.

Dimensions
Threads
Iterations

500
4
10

750
8
20

1250
16
40

2000
32
50

2250
64
60

8000
32
50

gram Gram-Schmidt
Process

Dimensioni
Dimensionj
Threads

64
64
4

384
384
8

128
128
16

320
320
32

512
512
64

2000
2000
32

kme K-Means
Clustering

Data Size
Clusters
Threads
Iterations

100k
3
1
10

300k
5
9
20

700k
6
1
30

900k
7
32
40

1.2m
8
64
50

819k
5
32
30

lu LU Decomposition Dimensions
Threads
Iterations

196
4
98

256
8
128

320
16
256

420
32
420

512
64
512

2000
32
2000

mvt Matrix Vector
Product

Dimensions
Threads
Iterations

500
4
10

750
8
20

1250
16
30

2000
32
50

2250
64
60

2000
32
40

syrk Symmetric Rank-k
Operations

Dimensioni
Dimensionj
Threads

64
64
4

128
128
8

320
320
16

512
512
32

640
640
64

2000
2000
32

trmm Triangular Matrix
Multiply

Dimensioni
Dimensionj
Threads

196
196
4

256
256
8

320
320
16

420
420
32

512
512
64

2000
2000
32

5.2.5 Ensemble Machine Learning
The third phase of NAPEL training is the training of the ML algorithm. As we

retrieve hundreds of application features from the application analysis, we make use of
the random forest (RF) [61] algorithm, which embeds automatic procedures to screen



60 CHAPTER 5. NAPEL

many input features. RF is an ensemble ML algorithm, which, starting from a root
node, constructs a tree and iteratively grows the tree by associating it with a splitting
value for an input variable to generate two child nodes. Each node is associated with
a prediction of the target metric equal to the mean observed value in the training
dataset for the input subspace the node represents. This input subspace is randomly
sampled from the entire training dataset.

We employ RF to capture the intricacies of new NMC architectures by predicting
instructions per cycle (IPC) when executing an application near memory. Formally, we
predict IPC(p, a) ∼ IPC(k, d, a), where p is the hardware-independent application
profile representation of kernel k when processing input dataset d on an architecture
configuration a. The input data gathered to train our RF model has three parts:
(1) a hardware-independent application profile p(k, d), (2) an architectural design
configuration a, and (3) responses corresponding to each pair (p, a). To gather the
architectural responses, kernel k belonging to training set T with input dataset d is
executed on an architectural simulator, simulating an architecture configuration a.
This produces IPC(k, d, a) for that configuration and is used as a label while training
our RF algorithm.

We improve NAPEL training by tuning the algorithm’s hyper-parameters [369].
Hyper-parameter tuning can provide better performance estimates for some appli-
cations. First, we perform as many iterations of the cross-validation process as
hyper-parameter combinations. Second, we compare all the generated models by
evaluating them on the testing set, and select the best one.

After training our RF algorithm, we can predict the IPC of a kernel that is not
in the training set. The predicted IPC can be used for performance evaluation of
a kernel on an NMC system. The execution time ΠNMC of the kernel offloaded to
NMC can be calculated as ΠNMC = Ioffload

IPC .fcore
, where fcore is the frequency of the NMC

processing cores and Ioffload is the total number of offloaded instructions. Similarly,
we build another model for energy prediction where we use energy consumption as a
label when we train our RF algorithm.

5.3 Experimental Results

5.3.1 Experimental Setup

We consider different workloads from the PolyBench [378] and Rodinia [79] bench-
mark suites that cover a wide range of domains, such as image processing, machine
learning, graph processing, radio astronomy. First, we instrument the region of code
that is considered for offloading to NMC processing elements. Second, we apply
CCD to these workloads to select a small set of application input configurations that
represent the space of possible input configurations. Third, we carry out the LLVM-



5.3. EXPERIMENTAL RESULTS 61

based [249] microarchitecture-independent characterization to extract application
metrics (Table 5.1) by using the PISA analysis tool [25].

We evaluate host performance on a real IBM POWER9 system [188] and NMC
performance on a state-of-the-art simulator, Ramulator [235]. We extend Ramulator
with a 3D-stacked memory model to simulate the NMC processing elements [402].
Table 5.3 summarizes the system details used for the host system and the NMC system.
We collect dynamic execution traces of the instrumented code with a Pin tool. We
feed the acquired traces to Ramulator. We use the simulation results as training data
for our RF algorithm. Once trained, we use NAPEL to predict the performance and
energy consumption of previously-unseen applications.

Table 5.3: System parameters and configuration

Host CPU System
Configuration IBM® POWER9 AC922 @2.3 GHz, 16 cores (4-

way SMT), 32 KiB L1 cache, 256 KiB L2 cache,
10 MiB L3 cache, 16x32GiB RDIMM DDR4 2666
MHz

NMC System
Cores 32× single issue, in-order execution @ 1.25 GHz
L1-I/D 2-way, cache size = 2 cache lines, 64B per cache

line
DRAM Module 32 vaults, 8 stacked-layers, 256B row buffer; 4GB

total size; closed-row policy
Off-chip Link 16-bit full duplex high-speed serializer/deserial-

izer (SerDes) I/O link @ 15 Gbps [367]

5.3.2 Model Training and Prediction Time
Table 5.4 shows the time for performing training simulations (see “DoE run (mins)”)

with the selected DoE configurations (“#DoE conf.”) to gather training data. The
table also includes the time for training and tuning (“Train+Tune (mins)”) and the
prediction time (“Pred. (mins)”) for each application. Once the model is trained,
the DoE simulation time is amortized every time we predict performance and energy
consumption for a previously unseen application. Thus, quick exploration and large
prediction time savings compared to simulation are possible for a previously unseen
application.

For all the evaluated applications, we compare the prediction time using trained
NAPEL models with the prediction time using Ramulator simulations. Figure 5-4
shows NAPEL’s prediction speedup over Ramulator for 256 DoE configurations for all
the evaluated workloads. We observe that NAPEL is, on average, 220× (min. 33×,
max. 1039×) faster than simulation.



62 CHAPTER 5. NAPEL

Table 5.4: Number of DoE configurations (“#DoE conf”) for gathering train-
ing data (“DoE run (mins)”), NAPEL training time (“Train+Tune (mins)”),
including tuning, and NAPEL prediction time (“Pred. (mins)”).

Application Training/Prediction Time
Name #DoE conf. DoE run (mins) Train+Tune (mins) Pred. (mins)
atax 11 522 34.9 0.49
bfs 31 1084 34.2 0.48
bp 31 1073 43.8 0.47
chol 19 741 34.9 0.49
gemv 19 741 24.4 0.51
gesu 19 731 36.1 0.51
gram 19 773 36.5 0.52
kme 31 742 36.9 0.55
lu 19 633 37.9 0.51
mvt 19 955 38.0 0.54
syrk 19 928 35.7 0.51
trmm 19 898 37.6 0.48

0
200
400
600
800

1000
1200

N
AP

EL
's 

Pr
ed

ic
tio

n 
Sp

ee
du

p 
ov

er
 

Ra
m

ul
at

or

DoE configurations

256 DoE 
configurations 
for 12 evaluated 
applications

1 256

Figure 5-4: NAPEL’s predic-
tion speedup (in increasing
order) over Ramulator for
256 DoE configurations.

5.3.3 Accuracy Analysis

We analyze the accuracy of NAPEL for previously unseen applications by per-
forming cross-validation [369]. To evaluate the prediction accuracy for a particular
application, our training data comprises all the collected data (using an LLVM kernel
analyzer and a microarchitecture simulator) for all applications except the application
for which the prediction will be made. We repeat the same process to gather test
prediction results for all applications, yet every time we test for a particular application,
we do not include it in the training set. Therefore, when predicting performance and
energy consumption of an application on NMC, we do not use any data related to that
application. This makes the prediction more difficult because the ML algorithm has
no knowledge of the application to be predicted. Thus, the test set differs from the
training set as much as applications differ from each other. We evaluate the accuracy
of the proposed model in terms of relative error 𝜖i to indicate how close the predicted
value y′i is to the actual value yi . We calculate the mean relative error (MRE) for
each application with Equation 5.1.



5.3. EXPERIMENTAL RESULTS 63

MRE = 1
N

N∑︁
i=1

𝜖i = 1
N

N∑︁
i=1

|y′i – yi |
yi

(5.1)

Figure 5-5 shows NAPEL’s MRE for the workloads in Table 5.2. NAPEL’s
average MRE is 8.5% for performance predictions and 11.6% for energy-consumption
predictions. The highest error is for bfs, bp, and kmeans because these applications
exhibit quite different characteristics compared to the other evaluated applications. In
Figure 5-5, we also compare NAPEL with two other ML algorithms that can be used
to predict performance and energy consumption: an artificial neural network (ANN)
based on Ipek et al. [198] and a linear decision tree used by Guo et al. [163]. We
make the following three observations. First, NAPEL is 1.7× (1.4×) and 3.2× (3.5×)
more accurate in terms of performance (energy) prediction than the ANN and the
linear decision tree, respectively. Second, the linear decision tree is very inaccurate,
as shown by its high MRE. Decision trees are suitable mainly for linear regression, so
they cannot capture the nonlinearity present in NMC performance and energy. Third,
ANN is more accurate than the decision tree, but it is less accurate than NAPEL for
almost all workloads. ANN requires a much larger training dataset to reach NAPEL’s
accuracy. When running these experiments, we also observe that the ANN takes more
training time than NAPEL with hyper-parameter tuning (up to 5×).

4
0

.4
%

1
6

.3
%

1
1

.6
%

0

20

40

60

80

100

M
ea

n
 R

el
at

iv
e 

Er
ro

r 
(%

)

2
7

.2
%

1
4

.7
%

8
.5

%

0
10
20
30
40
50
60
70

M
ea

n
 R

el
at

iv
e 

Er
ro

r 
(%

)

Decision tree
ANN
NAPEL

(a) Performance prediction

(b) Energy prediction

Figure 5-5: Mean relative error for performance (a) and energy (b) predictions
using NAPEL vs. other methods.



64 CHAPTER 5. NAPEL

5.3.4 Use Case: NMC-Suitability Analysis
In this section, we use NAPEL to perform an NMC-suitability analysis, i.e., to

assess the potential benefit of offloading a workload to NMC. This analysis compares
the energy-delay product (EDP) of executing a workload on the NMC units, which
we obtain from NAPEL’s predicted NMC performance and energy consumption, to
the measured EDP of executing the workload on a host processor. We use EDP as
our major metric of reference in this analysis because both energy and performance
are critical criteria for evaluating NMC suitability.

In order to obtain EDP results for the host system, we use a POWER9 system
with 16 cores each supporting four-thread simultaneous multi-threading. We measure
power consumption by monitoring built-in power sensors on our host system via the
AMESTER1 tool. Figure 5-6 shows the execution time and energy consumption of
each workload on the POWER9. For the EDP results on the NMC system, we use
NAPEL with tuned hyper-parameters.

0

100

200

300

400

0

50

100

150

200

atax bfs bp
ch

ol
gemv

gesu
gram

km
e lu mvt

syrk
trm

m

Ex
ec

ut
io

n 
tim

e 
(m

s)

En
er

gy
 (m

J)

Energy (mJ)
Execution time (ms)

Figure 5-6: Execution time and energy on an IBM POWER9.

0
1
2
3
4
5
6

atax bfs bp
ch

ol
gem

v
gesu gram

km
e lu mvt

syrk
trm

m

ED
P 

Re
du

ct
io

n Actual
NAPEL

Figure 5-7: Estimated EDP reduction of offloading to NMC units versus execu-
tion on the baseline host CPU. “Actual” denotes the estimation with Ramulator.
“NAPEL” denotes NAPEL’s prediction results.

Figure 5-7 shows estimated EDP reduction when executing each application on
the NMC system compared to executing the same application on the host system
using the test dataset (see Table 5.2). For each application, we show two bars: (1)

1https://github.com/open-power/amester



5.4. RELATED WORK 65

NAPEL’s estimated EDP reduction, and (2) the estimated EDP reduction obtained
by simulating the application using the cycle-accurate Ramulator [235] (“Actual”).
We make five observations. First, NAPEL estimates the same workloads to be NMC
suitable as Ramulator does (i.e., workloads with EDP reduction greater than 1).
Second, the MRE of NAPEL’s EDP prediction is between 1.3% and 26.3% (14.1%
on average). Third, gemver, gesummv, lu, mvt, syrk, and trmm are not suitable for
NMC, since their EDP reduction is less than 1. These applications have enough data
locality to leverage the host cache hierarchy. Fourth, bfs, bp, cholesky, gramschmidt,
and kmeans are good fits for NMC. These applications are memory intensive and have
irregular memory access patterns, so the host execution suffers from expensive offchip
data movement. Fifth, atax benefits from the host cache hierarchy when performing
vector multiplication, which has high data locality. However, it also performs matrix
transposition, which is memory intensive. For atax-like workloads, the introduction
of a small cache or scratchpad memory in the NMC compute units (larger than the
128B L1 cache in Table 5.3) can be beneficial, such that the data locality of of the
application can still be exploited.

5.4 Related Work
The lack of evaluation tools is a critical challenge to the adoption of near-memory

computing (NMC) [330, 431]. The importance of architecture simulators is widely
acknowledged. However, simulators are generally very slow as they may take hours to
simulate even a single configuration [163, 405].

Recent works propose ML-based performance prediction methods for faster early-
stage design space exploration of different architectures. Table 5.5 lists recent works
(including NAPEL) that use different prediction techniques for several architectures.

Table 5.5: Related works in different domains

Name Approach Architecture DoE
Joseph et al. [211] Linear Regression CPU D-optimal Design
Ipek et al. [198] ANN CPU Variance Based

Sampling
Wu et al. [504] ANN GPU None
Guo et al. [163] Model Tree CPU None
Mariani et al. [300] Random Forest,

Genetic Algorithm
HPC D-optimal Design,

CCD
SemiBoost [263] ANN CPU Latin Hypercube

Sampling
NAPEL Random Forest NMC CCD

Joseph et al. [211] and Guo et al. [163] use linear regression models to predict
CPU performance. Linear models cannot accurately capture nonlinearity between
application and processor responses, as shown in Figure 5-5. Wu et al. [504] use an



66 CHAPTER 5. NAPEL

ANN for GPU performance prediction without applying the DoE technique. Unlike
NAPEL, this work uses traditional, time-consuming brute-force techniques to collect
the training dataset. In the HPC domain, Mariani et al. [300] predict the performance
of applications on cloud architectures using random forest and genetic algorithms,
which are trained using DoE techniques. Ipek et al. [198] use an ANN with variance-
based sampling for CPU performance prediction. Likewise, Li et al. [263] use an ANN
with Latin hypercube sampling for design-space exploration of multicore CPUs. To
our knowledge, NAPEL is the first performance and energy-prediction framework for
NMC architectures that uses machine-learning models. NAPEL can make accurate
predictions for previously unseen applications on NMC architectures.

5.5 Conclusion
We introduce NAPEL, the first high-level machine learning-based prediction

framework for fast and accurate early-stage performance and energy-consumption
estimation on NMC architectures. NAPEL avoids time-consuming simulations to
predict the performance and energy consumption of previously unseen applications on
various NMC architecture configurations. To achieve this, NAPEL relies on random
forest, an ensemble learning technique, to build its prediction models.

NAPEL is 220× faster than a state-of-the-art NMC simulator, with an accuracy
loss in performance (energy) prediction of only 8.5% (11.6%) compared to the simulator.
Compared to an artificial neural network, NAPEL is 1.7× (1.4×) more accurate in
performance (energy) prediction. NAPEL can accurately perform fast design-space
exploration for different applications and NMC architectures. We hope the NAPEL
approach enables faster development of NMC systems and inspires the development
of other alternatives to simulation for NMC performance and energy estimation.



Chapter 6

LEAPER: Modeling
FPGA-Based Systems via
Few-Shot Learning

Machine-learning-based models have recently gained traction as a way to overcome
the slow downstream implementation process of FPGAs by building models that
provide fast and accurate performance predictions. However, these models suffer from
two main limitations: (1) a model trained for a specific environment cannot predict
for a new, unknown environment; (2) training requires large amounts of data (features
extracted from FPGA synthesis and implementation reports), which is cost-inefficient
because of the time-consuming FPGA design cycle. In a cloud system, where getting
access to platforms is typically costly, error-prone, and sometimes infeasible, collecting
enough data is even more difficult. FPGA-based cloud environments are usually 2×
more expensive than CPU-only cloud environments. Therefore, before deploying a
cloud instance, a user cares whether the attained performance while using an FPGA
would justify the incurred cost (both in terms of designing an accelerator and deploying
in the cloud). To overcome these limitations, in this chapter, we propose LEAPER,
a transfer learning-based approach for FPGA-based systems that adapts an existing
ML-based model to a new, unknown environment.

6.1 Introduction
The need for energy-efficiency from edge to cloud computing has boosted the

widespread adoption of FPGAs. In cloud computing [16, 21, 63, 89, 379, 384], FPGA’s

A part of this chapter is published as “Modeling FPGA-Based Systems via Few-Shot Learning”
in FPGA 2021.

67



68 CHAPTER 6. LEAPER

flexibility is not just about being able to make use of reconfigurable hardware for
a diverse set of workloads [215]. Its flexibility can also be attributed to the cloud
deployment model that spans from on-premises clusters to compute, storage, and
networking capacity in public clouds and even out to the edge where AI and analytics
are being increasingly deployed because of latency and data movement issues [330].

An FPGA is highly configurable as its circuitry can be tailored to perform any
task [99, 223, 471, 472]. The large configuration space of FPGA and the complex
interactions among configuration options lead many developers to explore individual
optimization options in an ad-hoc manner. Moreover, FPGAs have infamously low
productivity due to the time-consuming FPGA implementation process [345]. A
common challenge that past works have faced is how to evaluate the performance of an
FPGA implementation in a reasonable amount of time [346]. Thus, the development
of efficient FPGA accelerators has required tremendous engineering effort due to the
complexity of the FPGA configuration space and difficulties in evaluating performance.
To overcome this problem, researchers have recently employed machine learning (ML)-
based models [101, 298, 346, 490] to estimate the performance of an FPGA-based
system quickly. These models are based, in turn, on traditional ML approaches.

Traditional ML models have four fundamental issues that can reduce the usability
for assessing FPGA performance, especially in a cloud environment. First, they are
trained for specific workloads, fixed hardware, and/or a set of inputs. Therefore, when
presented with a different feature-space distribution because of a new workload or
hardware, an ML model must be retrained from scratch. Otherwise, the model will
perform poorly because the trained model does not have a notion of the new, unknown
environment.1 Therefore, traditional ML-based models have limited re-usability.

Second, learning-based approaches, such as neural networks, require a considerable
number of samples to construct a useful prediction model. Collecting such a large
number of samples is often slow and time-consuming due to the very long FPGA
implementation cycle. Similarly, in settings such as cloud computing, where getting
access to platforms is typically costly, error-prone, and sometimes infeasible, the data
collection process is even more difficult.

Third, traditional machine learning with limited samples is prone to serious over-
fitting problems (i.e., when a model matches too closely to the training data) [102],
limiting model generalization. Fourth, it is impossible to construct one model for all
different scenarios as the interpretation of data changes over time. Thus, ML models
are prone to concept drift, where the accuracy of an ML-based model could degrade
due to a change in the statistical properties of a target variable (e.g., using a different
dataset for an application than the one used during the training of an ML-model) [468].

1In this chapter, we consider an application or hardware platform as an environment.



6.2. LEAPER 69

Our research aims to answer the following question: for an FPGA-based
system, can we leverage an ML-based performance model trained on a low-
end local system to predict the performance in a new, unknown, high-end
FPGA-based system?

As an answer to this question, we present LEAPER2, a transfer learning-based
model that predicts the performance of a new, unknown high-end FPGA-based system.
We train LEAPER on a low-end local system. LEAPER uses predictive modeling to
train an ML-based model and statistical techniques to collect representative training
data set efficiently. LEAPER uses transfer learning [359] to leverage a trained base
model (for a low-end system) and adapt it efficiently to an unknown target environment
(i.e., a high-end system) with a few samples from the target environment as possible.

Figure 6-1 demonstrates the traditional approach of building models and the
LEAPER transfer learning-based approach. Using the traditional approach, we would
need to create two separate prediction models, one for the low-end edge environment
and another for the high-end cloud environment, each one requiring a large number
of samples. In contrast, LEAPER provides the ability to reuse the prediction model
built on an inexpensive edge FPGA for performance prediction on a target cloud
environment 3 using only a few samples from the target environment. This allows
developers to avoid the slow downstream implementation process of FPGAs by
generating cheaper and faster performance models using transfer learning. This
paradigm is also referred to as few-shot learning [493]. The idea behind few-shot
learning is that, similar to humans, algorithms can learn from past experiences and
transfer the knowledge to accomplish previously-unknown tasks more efficiently. The
transferred models usually have high generality [493] and can overcome concept
drift [142].

6.2 LEAPER

LEAPER is a performance and resource estimation approach to transfer ML-
based models across different FPGA-based platforms. First, we give an overview of
LEAPER (Section 6.2.1). Second, we describe the two components of LEAPER that
are used to generate training datasets: (1) FPGA-based accelerator configuration
options and application features used for training our base model (Section 6.2.2), and
(2) the design of experiments (DoE) [321] methodology (Section 6.2.3). Third, we
briefly describe the base model training (Section 6.2.4). Fourth, we explain the key
component of LEAPER: the transfer learning technique (Section 6.2.5).

2We call our mechanism LEAPER because it allows us to hop or “leap” between machine learning
models.

3Note: LEAPER is not limited to a cloud environment.



70 CHAPTER 6. LEAPER

- Slow 
bitstream 
generation

- Expenive
- Not easily                 

accessible
- Noisy and 

Error-prone

Edge FPGA
- Fast 

bitstream 
generation

- Cheap
- Easily 

accessible

- Slow 
bitstream 
generation

- Expenive
- Not easily                 

accessible
- Noisy and 

Error-prone

Cloud FPGA

Few samples 
for training

LEAPER
Transfer 
Learning

ML model for 
low-end FPGA

ML model for 
high-end FPGA

f1

Configuration

ML model for 
low-end FPGA

Large amount 
of samples

ML model for 
high-end FPGA

Traditional 
Learning

Large amount 
of samples

Large amount 
of samples

f1

Configuration

f2

Configuration

f2

Configuration

Reuse

Figure 6-1: Comparison of traditional learning approach and LEAPER. Tradi-
tional learning methods are costly because they build models only for a specific
environment. LEAPER allows transfer of models from a low-cost edge FPGA,
where data collection is easier, to a high-cost cloud FPGA environment to build
cheaper and faster models.

6.2.1 Overview

Figure 6-2 depicts the key components of LEAPER. The upper part of the figure
describes the construction of the base model, while the lower part shows the phases
for the target model.
Base Model Building. LEAPER base model building consists of three phases. In
the first phase ( 1 in Figure 6-2), we employ Latin hypercube sampling (LHS) [263]
to select a small set of input configurations that well represent the entire space of
input configurations (clhs) to build a highly accurate base learner. We use LHS to
minimize the number of experiments needed to gather training data for LEAPER while
ensuring good quality training data (Section 6.2.3). In the second phase 2 , FPGA
implementations are made with a software-hardware co-design process. Once the
FPGA design has been implemented, the resulting FPGA-based accelerator is deployed
in a system with a host CPU. Then, we run the clhs configurations on this FPGA-based
system to gather responses for training our base model. The generated responses,
along with the applied configuration options (ref. Table 6.1), form the input to our
base ML algorithm. In the third phase 3 , we train our ML algorithm (Section 6.2.4)
using ensemble learning [355]. We divide our dataset into 10 equal subsamples during
cross-validation, of which 1 set is used for validation. Once trained, the framework can
predict the performance and resource usage on the base system (with a low-end FPGA)
of previously-unseen configurations, which are not part of the clhs configurations used
during training.
Target Model Building. To transfer the base model, which we built in the previous



6.2. LEAPER 71

Multi-Base
Learner 

Base 
Learner
Dataset

Design of Experiment

Model 
Generation

Base Model Building 
"Low-end"

Cross 
Validation

Feature 
Extraction

Few-Shot 
Learning 
Dataset

Source
Prediction 

Model

Base 
Performance

Target 
Prediction 

Model

?Ensemble
Transfer 
Learner

Target 
Performance

Target  
Evaluation 

Dataset

Target Model Building 
 "High-end" 

Model 
Generation

Accelerator generation
- software-hardware co-design
- Vivado HLS synthesis
- Vivado Implementation with place and route
- Bitstream generation

Accelerator 
Deployment

FPGA 
Implementation

Transfer Learning

Application

Feature 
Extraction

Accelerator 
Deployment

FPGA 
Implementation

Applicaion

3

2

1

A

B Reuse

Figure 6-2: Overview of LEAPER. Base Model Building: LEAPER builds ML
models that predict performance and resource usage for an application on an
FPGA. Target Model Building: with few-shot learning, LEAPER adapts base
models to a new, unknown environment, from which only a few labeled samples
are needed.

stage, to a target cloud environment, we introduce the few-shot learning target model
stage. In the first phase ( A in Figure 6-2) of the target model building, we repeat the
accelerator generation step to get a few samples. We perform this step to create our
few-shot transfer learning dataset (ctl), which is used to adapt the base model to the
target cloud environment. In the final phase B , we train our transfer learners (see
Section 6.2.5) to leverage the base model to perform predictions for a new, unknown
target environment (new application or hardware).

6.2.2 FPGA Configuration Options and Application Features

The ML feature vector used for training an ML model is composed of FPGA
configuration options (Table 6.1) and application features (Table 6.2). Table 6.1
describes commonly used HLS pragmas that belong to our FPGA configuration
options for both the base and the target environment and constitute part of our ML
feature vector. We select these HLS pragmas because they are used to optimize and
tune the performance of FPGA implementations [483].

Both loop pipelining (PL) and loop unrolling (U) can improve application per-
formance significantly. To enable simultaneous memory accesses, array partitioning
(PR) divides arrays into smaller memory units of arbitrary dimensions to map them
to different memory banks. This optimization produces considerable speedups but
consumes more resources. Inlining (I) ensures that a function is instantiated as dedi-
cated hardware. Dataflow (D) allows parallel execution of tasks, which is similar to
multi-threading in CPUs. In addition, burst read (R) and write (W) access to/from the



72 CHAPTER 6. LEAPER

Table 6.1: The FPGA configuration options used to train our ML-models.

Configuration Description
Pipelining (PL) Enabled/Disabled
Partitioning (PR) Block/Cyclic/Complete (Factor: 2n , 1 ≤ n ≤ 6))
Inlining (I) Enabled/Disabled function inlining
Dataflow (D) Task level pipelining
Read burst (R) Read data burst from the host
Write burst (W) Write data burst from the host
Unrolling (U) Unrolling factor (Factor: 2n , 1 ≤ n ≤ 6)
FPGA Frequency (F) Four-different frequency levels for the FPGA logic

host guarantee that the accelerator is not stalled for data. Moreover, FPGA frequency
(F) affects not only performance but also resource consumption. For instance, to meet
the FPGA timing requirements, the FPGA tool tries to insert registers between the
flip-flops, which increases the resource consumption.

In total, our configuration options for a particular application consist of up to
4,608 configurations. The actual configuration space of an application depends on
the specific application characteristics (see Table 6.3). For example, we include loop
unrolling in the configuration space when an application contains loops that can be
unrolled.

For each application kernel k processing a dataset d, we obtain an application
profile p(k, d). p(k, d) is a vector where each parameter is a statistic about an
application feature. Table 6.2 lists the main application features we extract by using
the LLVM-based PISA analysis tool [25]. We select these features to analyze the
behavior of an application (data reuse distance, memory traffic, memory footprint,
etc.). Ultimately, the application profile p has 395 features, which includes all the
sub-features of each metric we consider.

Table 6.2: Main application features extracted from LLVM.

Application Feature Description
Instruction Mix Fraction of instruction types (integer, floating point, memory

read, memory write, etc.)
ILP Instruction-level parallelism on an ideal machine.
Data/Instruction reuse
distance

For a given distance 𝛿, probability of reusing one data elemen-
t/instruction (in a certain memory location) before accessing 𝛿
other unique data elements/instructions (in different memory
locations).

Register traffic Average number of registers per instruction.
Memory footprint Total memory size used by the application.



6.2. LEAPER 73

6.2.3 Latin Hypercube Statistical Sampling
Running experiments to collect training data for all available optimization options

can be an extremely time-consuming process. For example, the configuration options
(CO) of only eight parameters with two possible values each entails 28 = 256 different
configuration inputs. If we spend 6 hours (e.g., FPGA downstream implementation
process on an ADM-PCIE-KU3 FPGA board [6]) to collect one training point, it
would take us ∼64 days to collect data for all configurations for just one application
on a single platform. This “brute-force” approach to collecting training data is too
time-consuming: the sheer number of experiments renders a detailed implementation
intractable.

To create a cost-effective model, we use the design of experiments (DoE) method-
ology [321] to minimize the number of experiments needed for training data collection
without sacrificing the amount and quality of the information gathered from the
experiments. DoE is a set of statistical techniques meant to locate a small set of
points in parameter space to represent the entire parameter space. In particular, we
make use of a type of DoE called Latin hypercube sampling (LHS) [263] because it
allows each of the critical parameters to be represented in a fully stratified manner
(i.e., dividing the configuration space into subgroup before further sampling), which
provides a better coverage [127].

LHS divides each parameter range into k intervals and takes only one sample from
each interval with equal probability, which is more efficient than a random approach
and more cost-effective than a “brute-force” approach. To apply LHS, we choose m
sample points, each from a specific interval, which together we refer to as clhs. Thus,
LHS guarantees effective space-filling, i.e., LHS spreads out points with the aim of
encouraging a diversity of data [263]. Figure 6-3 illustrates LHS with two parameters
x1 and x2 , which create an input space that is divided into equal-area intervals.

x1

x2

Figure 6-3: LHS with
2 parameters where the
input space is divided
into equal intervals and
9 non-overlapping sample
points are chosen.

6.2.4 Base Model Building
The third phase of LEAPER is the base learner training phase. Formally, in

a learning task, 𝒳 represents feature space with label 𝒴, where a machine learning
model is responsible for estimating a function f : 𝒳 → 𝒴. LEAPER predicts the



74 CHAPTER 6. LEAPER

execution time (resource consumption) 𝒴 for a tuple (p, k, c) that belongs to the ML
feature space 𝒳 , where p is an FPGA-based configuration option (see Section 6.2.2)
that runs an application characteristics k, with an optimization configuration vector c.

We use two base learners. Our base learners are non-linear algorithms that can
capture the intricacies of FPGA architectures by predicting the execution time or
resource consumption. Our first algorithm is the random forest (RF) [61]. RF consists
of an ensemble of learners where it aggregates the predictions of the weak learners
to select the best prediction. This technique is called bagging. We use RF to avoid
a complex feature-selection scheme since RF embeds automatic procedures that are
able to screen many input features [300], like the ones we selected in the previous
section. Starting from a root node, RF constructs a tree and iteratively grows the
tree by associating a node with a splitting value for an input feature to generate two
child nodes. Each node is associated with a prediction of the target metric, equal
to the observed mean value in the training dataset for the input subspace that the
node represents. Our second learner is gradient boosting [137], which consists of an
ensemble of learners. Gradient boosting aims to boost the accuracy of a weak learner
by using other learners to correct its predictions. Bagging reduces model variance
and boosting decreases errors [242]. Therefore, we use random forest and gradient
boosting together to increase the predictive power of our final base model.

The training dataset for our base model has two parts: (1) an optimization
configuration vector c, whose representation remains invariant across different envi-
ronments, and (2) the responses corresponding to each tuple (p, k, c). To gather
the architectural responses, we run each application k belonging to the training set
T with an input dataset d on an FPGA-based platform p, deploying a configuration
c. This way, we obtain the execution time for the tuple (p, k, d), which we can use
as a label (𝒴) for training our base learner for performance prediction. We build a
similar model to predict resource consumption, where we use the resource consump-
tion (𝜂{BRAM ,FF ,LUT ,DSP}) of the tuple (p, k, d) as a label when we train our base
learner for resource consumption. After training our base learners, we can predict the
execution time (resource usage) (f̂s : 𝒳s → 𝒴s) of tuples (p, k, d) that are not in the
training set. We use 10-fold cross-validation to validate our base learner’s performance,
whereby the data is divided into ten validation sets.

6.2.5 Cloud Model Building via Transfer Learner

The real strength of LEAPER comes from its ability to transfer trained FPGA
models. LEAPER defines a target environment 𝜏t as an environment for which we
wish to build a prediction model f̂t where, however, data collection is expensive, and
a source environment 𝜏s as an environment for which we can cheaply collect many
samples to build an ML model fs. In our case, 𝜏s is a low-cost edge FPGA, while 𝜏t is



6.2. LEAPER 75

a high-cost cloud FPGA. LEAPER then transfers the ML model for 𝜏s to 𝜏t .
Algorithm 2 presents LEAPER’s transfer learning approach. LEAPER trains

transfer learners (TL) that transform the source performance and utilization model fs
to the target model ft by using a few sample observations from both the source and
the target environments, which we refer to as ctl . This helps us to avoid measuring
all clhs from a cost-prohibitive target cloud environment. We select ctl from clhs
by applying a probability-based sampling technique called reservoir sampling [480].
Reservoir sampling assigns an equal probability of being selected to every element of
a population (i.e., clhs). By using the selected ctl , we generate a transfer model ĥt .
Finally, to build f̂t from fs we use ĥt that performs a non-linear transformation of the
predictions of fs. We use non-linear transfer learners because, based on our analysis
(Section 6.3.5), non-linear models can capture the nonlinearity present in the FPGA
performance and configuration options.

Algorithm 2 LEAPER’s transfer learning
1: Input:(1) Base learner (fs) i.e., trained low-end edge FPGA prediction model,
2: (2) Sub-sampled few-shot learning dataset ctl ⊂ clhs from the
3: base and the target model
4: Output: Target cloud FPGA model f̂t : 𝒳t → 𝒴t
5: Initialization: Maximum number of iterations M
6: while M ̸= 0 do
7: Normalize the feature vector
8: Train ensemble transfer learners (TL) with ctl
9: Find the candidate TL (f̂t):

10: ĥt : 𝒳tl → 𝒴tl that minimizes the error over the clhs – ctl
11: Compute the mean relative error:

12: 𝜖mre = 1
clhs–ctl

clhs–ctl∑︁
i=1

|yacc
t – ypred

t |
yacc

t
13: Use identified ĥt to transform predictions of fs:
14: f̂t=ĥt(fs) where fs : 𝒳s → 𝒴s
15: M ← M – 1

return f̂t

In transfer learning, a weak relationship between the base and the target envi-
ronment can decrease the predictive power for the target environment model. This
degradation is referred to as a negative transfer [202]. To avoid this, we use an ensem-
ble model trained on the transfer set (i.e., the few-shot learning dataset in Figure 6-2)
as our transfer learners (TLs). Our first TL is based on TrAdaBoost [102], a boosting
algorithm, which is a learning framework that fuses many weak learners into one strong
predictor by adjusting the weights of training instances. The motivation behind such
an approach is that by fusing many weak learners boosting can improve the overall



76 CHAPTER 6. LEAPER

predictions in areas where the previously grown learners did not perform well. We use
Gaussian process regression [393] as our second TL. It is a Bayesian non-parametric
algorithm that calculates the probability distribution over all the appropriate functions
that fit the data. To transfer a trained model, we train TrAdaBoost and Gaussian
progression, which are our candidate TLs. We choose the one that has minimum
transfer error (see Line 10).

6.3 Evaluation

We evaluate LEAPER using six benchmarks (see Table 6.3), which are hand-tuned
for FPGA execution covering several application domains, i.e., (1) image processing:
histogram calculation (hist) [156], and canny edge detection (cedd) [156]; (2) machine
learning: binary long short term memory (blstm) [112], digit recognition (digit) [538];
(3) databases: relational operation (select) [289]; and (4) data reorganization:
stream compaction (sc) [156]. These kernels are specified in C/C++ code that is
compiled to the FPGA target.

6.3.1 Hardware Platform and Tools

With high adoption of FPGAs in the cloud, various emerging CPU-FPGA platforms
with competing cache-coherent interconnect standards are being developed, such as
the IBM Coherent Accelerator Processor Interface (CAPI) [444], the Cache Coherent
Interconnect for Accelerators (CCIX) [49], the Ultra Path Interconnect (UPI) [196],
and the Compute Express Link (CXL) [421].

The benefits of employing such cache-coherent interconnect links for attaching
FPGAs to CPUs, as opposed to the traditional DMA-like communication protocols
(e.g., PCIe), are not only the ultra lower-latency and the higher bandwidth of the
communication, but most importantly, the ability of the accelerator to access the
entire memory space of the CPU coherently, without consuming excessive CPU cycles.
Traditionally, the host processor has a shared memory space across its cores with
coherent caches. Attached devices such as FPGAs, GPUs, network and storage
controllers are memory-mapped because of which they use a DMA to transfer data
between local and system memory across an interconnect such as PCIe. The attached
devices can not see the entire system memory but only a part of it. Communication
between the host processor and attached devices requires an inefficient software stack,
including user-space software, drivers, and kernel-space modules, in comparison to the
communication scheme between CPU cores using shared memory. Especially when
DRAM memory bandwidth becomes a constraint, requiring extra memory-to-memory
copies to move data from one address space to another is cumbersome [126]. This is



6.3. EVALUATION 77

the driving force of the industry to push for coherency and shared memory across
CPU cores and attached devices, like FPGAs. This way, the accelerators act as peers
to the processor cores.

Based on this upcoming trend, in this thesis, we adopt cache-coherent FPGA
accelerators, both for the low-end and the high-end systems. Specifically, we select a
low-end edge PYNQ-Z1 [385] as the source platform to build base learners. We use
the Accelerator Coherency Port (ACP) port [1] for attaching accelerators to the ARM
Cortex A9 CPU of PYNQ-Z1. In addition, we select a CAPI-based system as the
target platform that provides the most mature coherent accelerator-based ecosystem
with a production-ready cloud offering through Nimbix Cloud [342].

We make use of CAPI in a coarse-grained way since we offload the entire application
to the FPGA. In this case, CAPI ensures that the FPGA accelerators access the entire
CPU memory with the minimum number of memory copies between the host and the
FPGA, e.g., avoiding the intermediate buffer copies that a traditional PCIe-based
DMA invokes [90]. However, depending on the application, the CAPI protocol can
be employed in finer-grained algorithm-hardware co-design, like ExtraV [256], where
the authors aggressively utilize the fine-grained communication capability of CAPI to
boost graph analytics performance. Table 6.4 summarizes the system details of the
source and our on-premise research cloud environment as our target platform.

For accelerator implementation and deployment, we leverage CAPI-compatible
tools offered by Xilinx. In particular, we use the Xilinx SDSoC [411] design tool for
implementing the low-end system 𝜏s and the Vivado HLS [484] with IBM CAPI-SNAP
framework4 for the high-end system 𝜏t . The SNAP framework provides seamless
integration of an accelerator [72] and allows to exchange of control signals between
the host and the FPGA processing elements over the AXI lite interface [36]. On task
completion, the processing element notifies the host system via the AXI lite interface
and transfers back the results via CAPI-supported DMA transactions.

As derived from the indicative prices listed at the right column of Table 6.4, the
total cost of ownership (TCO) of a high-end system can be more than 100x of that
of the low-end one; thus, it can be prohibitive for a bare-metal deployment for many
users. Complementary, moving a workload to a cloud FPGA instance should offer
such a speedup that it compensates for the extra design time, effort, and cost of this
decision by the end-user. LEAPER helps a user to rapidly quantify such a decision by
experimenting with low-cost and broadly available FPGAs, like the PYNQ-Z1.

4https://github.com/open-power/snap



78 CHAPTER 6. LEAPER

Table 6.3: Evaluated applications; description including their major kernels
and the input dataset. For major kernels, we mention the optimization space
where × represents the optimization being applied to multiple loops or elements.
see Table 6.1 for description of the optimization options.

Application Domain Major Kernels Dataset Optimization space

blstm [112] Machine
learning

Hidden lay. fw
Hidden lay. back
Output layer

Fraktur OCR [525]
2×PL, 3×PR(2,4) I, 2×U
2×PL, I, 2×U
PL, I, U+D, R, W, F

cedd [156] Image
proc.

Gaussian filter
Sobel filter
Suppress. filter
Hysteresis filter

Frame-354×626
1000 frames

PL, PR(2,4), I, U
PL, PR(2,4), I, U
PL, PR(2,4), I, U
PL, I, U+D, R, W, F

digit [538] Machine
learning

Hamming dist.
KNN voting

MNIST
18000 train
2000 test

2×PL, 3×PR(2,4), I, 4×U
I+R,W,F

hist [156] Image
proc. Histogram avg. Input-1536×1024

Bins-256
PL, PR(all), I, D,
R, W, U, F

select [156] Data-
base Selection 1048576 inputs PL, I, D, R, W, F

sc [156] Data
reorg.

Count
Compact 1048576 inputs PL, I, D, R, W, U, F

6.3.2 Target Model Accuracy Analysis

LEAPER is used to transfer a trained model using few-shot learning to the 𝜏t ’s
optimization space. We then analyze the accuracy of the newly-built target model to
predict the performance and resource utilization of all the other configurations in 𝜏t .
We evaluate the accuracy of the transferred model in terms of the relative error 𝜖i to
indicate the proximity of the predicted value y′i to the actual value yi across N test
samples. The mean relative error (MRE) is calculated with Equation 6.1.

MRE = 1
N

N∑︁
i=1

𝜖i = 1
N

N∑︁
i=1

|y′i – yi |
yi

. (6.1)

Performance Model Transfer. Figure 6-4 shows LEAPER’s accuracy for transfer-
ring across different cloud platforms. We make the following four observations.

First, as we increase the number of labeled samples, the target model accuracy
increases. However, the accuracy saturates and, with 5-10 shots, we can achieve an
accuracy as high as 80 to 90%.

Second, compared to applications with multiple complex kernels (blstm, cedd,
digit), simpler kernels (hist, sc, select) can be more easily transferred using fewer
samples. Applications with multiple kernels have a larger optimization space. The
large optimization space leads to more complex interactions that have compounding
effects with other optimization options because we are modeling for multiple kernels



6.3. EVALUATION 79

65
70
75
80
85
90
95

100

0 5 10 15 20 25

Ac
cu

ra
cy

 (%
)

Number of labeled samples in the target environment

BLSTM (Base Learner: PYNQ-Z1)

AD9V3-CAPI2 NSA241-CAPI2
N250SP-CAPI2 ADMKU3-CAPI1

1 2
(a)

65
70
75
80
85
90
95

100

0 5 10 15 20 25

Ac
cu

ra
cy

 (%
)

Number of labeled samples in the target environment

CEDD (Base Learner: PYNQ-Z1)

AD9V3-CAPI2 NSA241-CAPI2
N250SP-CAPI2 ADMKU3-CAPI1

1 2
(b)

65
70
75
80
85
90
95

100

0 5 10 15 20 25

Ac
cu

ra
cy

 (%
)

Number of labeled samples in the target environment

DIGIT (Base Learner: PYNQ-Z1)

AD9V3-CAPI2 NSA241-CAPI2
N250SP-CAPI2 ADMKU3-CAPI1

1 2
(c)

65
70
75
80
85
90
95

100

0 5 10 15 20 25

Ac
cu

ra
cy

 (%
)

Number of labeled samples in the target environment

HIST (Base Learner: PYNQ-Z1)

AD9V3-CAPI2 NSA241-CAPI2
N250SP-CAPI2 ADMKU3-CAPI1

1 2
(d)

65
70
75
80
85
90
95

100

0 5 10 15 20 25

Ac
cu

ra
cy

 (%
)

Number of labeled samples in the target environment

SC (Base Learner: PYNQ-Z1)

AD9V3-CAPI2 NSA241-CAPI2
N250SP-CAPI2 ADMKU3-CAPI1

1 2
(e)

65
70
75
80
85
90
95

100

0 5 10 15 20 25
Ac

cu
ra

cy
 (%

)
Number of labeled samples in the target environment

SELECT (Base Learner: PYNQ-Z1)

AD9V3-CAPI2 NSA241-CAPI2
N250SP-CAPI2 ADMKU3-CAPI1

1 2
(f)

Figure 6-4: LEAPER’s accuracy for transferring base models across CAPI-
enabled cloud FPGA-based systems. The legends indicate the target platforms.
The base model was trained on a low-end PYNQ-Z1 board and, for each applica-
tion, we transfer this model to different high-end cloud FPGA-based platforms
using different samples (horizontal axis) from the target platform. Once trained
using few shot, the transferred model makes predictions for all other configura-
tions in the target platform.

rather than just a single kernel. Additionally, simple kernels such as sc and select have
been implemented using hls stream interfaces. Here rather than storing intermediate
data in local FPGA memories, we read streams of data, and hence certain complex
optimizations (like array partitioning) cannot be applied. This leads to a change in
the feature space of different environments.

Third, less severe changes are more amenable to transfer as the source, and target
models are more closely related, e.g., transferring to CAPI1 (PCIe Gen3 with ∼ 3.3
GB/s bandwidth) from low-end PYNQ with PCIe Gen2 ∼ 1.2 GB/s bandwidth
entails a smaller increment in bandwidth than moving to CAPI2, which offers R/W
bandwidth of ∼ 12.3 GB/s.

Fourth, change in the technology node from one FPGA to another has a lower
impact than changing the external bandwidth to a new interconnect standard on the
transferring process.

Figure 6-5 shows LEAPER’s accuracy for transferring ML models across different
applications. We make the following three observations. First, we make a similar
observation in the case of transferring models across different platforms: as we increase



80 CHAPTER 6. LEAPER

70
.3

88
.1

50
60
70
80
90

100

CEDD DIGITAL HIST SC SELECT gmean

Ac
cu

ra
cy

 (%
)

Target Model

Base Learner: BLSTM 1 2 5 10 15 20 25

(a)

64
.7

84
.1

50
60

70

80
90

100

BLSTM DIGITAL HIST SC SELECT gmean

Ac
cu

ra
cy

 (%
)

Target Model

Base Learner: CEDD 1 2 5 10 15 20 25

(b)

65
.3

86
.4

50
60

70

80
90

100

BLSTM CEDD HIST SC SELECT gmean

Ac
cu

ra
cy

 (%
)

Target Model

Base Learner: DIGITAL 1 2 5 10 15 20 25

(c)

69
.6

85
.6

50
60

70

80

90

100

BLSTM CEDD DIGIT SC SELECT gmean

Ac
cu

ra
cy

 (%
)

Target Model

Base Learner: HIST 1 2 5 10 15 20 25

(d)

71
.5 82

.5
50
60

70

80

90

100

BLSTM CEDD DIGIT HIST SELECT gmean

Ac
cu

ra
cy

 (%
)

Target Model

Base Learner: SC 1 2 5 10 15 20 25

(e)

69
.3

88
.1

50
60

70

80
90

100

BLSTM CEDD DIGIT HIST SC gmean
Ac

cu
ra

cy
 (%

)
Target Model

Base Learner: SELECT 1 2 5 10 15 20 25

(f)

Figure 6-5: LEAPER’s accuracy for transferring base models across various
applications. The legends indicate the number of samples. Each plot represents
a different application as a base learner. We transfer these base learners, trained
on the PYNQ-Z1 platform, by using invariant configuration features to build a
target application model.

the number of training samples, the mean relative error for most applications decreases.
Second, we notice that the most considerable improvement in accuracy occurs when
our sample size (ctl) is between 2 to 10. In most cases, the accuracy saturates after
20 samples. Third, in some cases, we see a decrease in accuracy when increasing the
number of samples. This result could be attributed to training with a small amount
of data, which can sometimes lead to overfitting [102].

We further explain our results by measuring the divergence of performance distri-
butions to quantify the statistical distance between the source and target models, see
Section 6.3.5. We also compare the average accuracy of predicting performance across
boards and applications using different TLs (see Table 6.5).

Resource Model Transfer. By using LEAPER, we can also train a resource
consumption model on a low-end source environment and transfer it to a high-end
cloud target environment. Figure 6-6 shows the accuracy of a target model trained by 5-
shot transfer learning for predicting a resource utilization vector 𝜂{BRAM ,FF ,LUT ,DSP}.
Note: the reported accuracy is for the transferred model, i.e., using a base model
(low-end FPGA) to predict a target model (high-end cloud FPGA) after few-shot
learning.



6.3. EVALUATION 81

Table 6.4: System parameters and configuration.

Low-end base system Indicative price
Embedded Board PYNQ-Z1 ZYNQ [385] XC7Z020-1CLG400C $1995

ARM Cortex-A9 processor @650MHz, dual-core
On-prem cloud target system with OpenStack[354] and KVM Hypervisor

Host Configuration IBM® POWER9 AC922 @2.3 GHz, 16 cores $55000-$750006

4-way SMT, 32 KiB L1 cache,256 KiB L2 cache,
10 MiB L3 cache, 16x32GiB RDIMM DDR4 2666 MHz 7

FPGA Description
Board FPGA Family Device Interface
ADM-PCIE-8K5 [3] Kintex UltraScale XCKU115-2 CAPI-1 N/A
ADM-PCIE-KU3 [6] Kintex UltraScale XCKU060-2 CAPI-1 N/A
Semptian NSA241 [344] Virtex UltraScale XCVU9P-2 CAPI-2 N/A
ADM-PCIE-9V3 [5] Virtex UltraScale XCVU3P-2 CAPI-2 N/A
N250SP [335] Kintex UltraScale KU15P-2 CAPI-2 N/A

6 https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/, Accessed 12 Jan. 2021.
7 https://www.microway.com/product/ibm-power-systems-ac922/, Accessed 12 Jan. 2021.
N/A8: Not available indicative price from an online store, but in the region of $2500-$5000 for our purchased
on-prem cards.

Table 6.5: Average accuracy (%) comparison of LEAPER with decision tree
(DT) and adaBoost (ADA) as TL for 5-shot transfer.

Environment DT ADA LEAPER
Across Board 77.7 83.2 89.8
Across Application 70.6 73.5 81.2

In Figure 6-6a, the horizontal axis depicts the target platform, while the base
learner is trained on a PYNQ-Z1 board. In the case of an application model transfer
(Figure 6-6b), the platform remains unchanged (PYNQ-Z1), while the base learner
application changes (horizontal axis). We make three observations. First, the resource
model shows low error rates for predicting BRAM and DSP. This is attributed to
the fact that the technological configuration of these resources remains relatively
unchanged across platforms (e.g., BRAM is implemented as 18 Kbits in both the
source and target platforms). Second, flip-flops and look-up-tables have comparably
higher error rates because the configuration of CLB9 slices varies with the transistor
technology and FPGA family. Third, Figure 6-6b shows the mean accuracy for
transferring different application-based models on a fixed FPGA board. We observe
relatively low accuracy for DSP consumption while transferring a base model trained
on hist. This low accuracy is because the hist FPGA implementation does not make
use of DSP units. However, all other applications utilize DSPs. Therefore, the ML
model trained on hist is not able to perform well in other transferred environments.

9A configurable logic block (CLB) is the fundamental component of an FPGA, made up of
look-up-tables (LUTs) and flip-flops (FF).



82 CHAPTER 6. LEAPER

0
10
20
30
40
50
60
70
80
90

100

AD9V3-CAPI2 NSA241-CAPI2 N250SP-CAPI2 ADMKU3-CAPI1 ADM8K5-CAPI1

Ac
cu

ra
cy

 (%
)

BRAMs FFs LUTs DSPs

(a)

0
10
20
30
40
50
60
70
80
90

100

BLSTM CEDD DIGIT HIST SC SELECT

Ac
cu

ra
cy

 (%
)

(b)

Figure 6-6: LEAPER’s average accuracy for transferring FPGA resource usage
models through 5-shot using (a) a base learner trained on a low-end PYNQ-Z1
to different high-end target FPGA boards (horizontal axis), and (b) different
applications as base learners (horizontal axis) to all the target applications, on
low-end PYNQ-Z1 board.

6.3.3 Target Cloud FPGA Model Building Cost

Table 6.6 shows the time for collecting (see “DoE run (hours)”) the 50 sampled
DoE configurations (clhs) that we use to gather training data. Please note that while
the process of synthesis and P&R of the high-end system’s FPGA, which is needed
to obtain the maximum operating clock frequency and the resources’ utilization, can
be carried out offline, most of the cloud providers are offering VMs with all the
appropriate software, IPs and licenses needed to generate an FPGA image ready to
be deployed at their cloud infrastructure (e.g., the Vivado AMI of AWS [482]). This
justifies the argument of the cost of the cloud environment for DoE runs. Specifically,
we use a Linux image with FPGA and SoC development tools, IPs, and licenses to
generate bitstreams for the selected Xilinx devices of Table 6.4 on the Nimbix cloud.

Table 6.6 also includes the execution time on the ADM-PCIE-KU3 cloud platform
(“Exec (msec)”) and the transfer time (“Transfer (msec)”) for each model. By using
transfer learning, the DoE runtime is amortized and, by using a few labeled samples
ctl (“5-shot (hours)”) from the target platform, we can transfer a previously trained
model and make predictions for all the other configurations for the target platform.
As a result, quick exploration and significant time savings (at least 10.2×) are possible
when transferring a model (i.e., “5-shot (hours)” + “Transfer (msec)”) as compared
to building a new model from scratch (i.e., “DoE run (hours)”) + “Exec (msec)”).
Note, LHS reduces training samples from 500+ to 50, while 5-shot transfer learning
further reduces this space to 5, so we achieve 100× effective speedup compared to a
traditional “brute-force” approach.

Table 6.7 mentions the performance and resource utilization for our considered



6.3. EVALUATION 83

Table 6.6: DoE time for gathering sampled data points for a single CPU-FPGA
platform (“DoE run (hours)”), DoE execution time on the deployed platform
(“Exec (ms)”), Estimated Cost on a cloud platform (“Est. Cost ($)”), time
for gathering 5 labeled samples (“5-shot (hours)”), LEAPER time including
the transfer time (“Transfer (msec)”), “Speedup” over building a new model
from scratch using just the DoE data (still more cost-efficient than traditional
“brute-force” training).

Application Transfer Time

Name DoE run
(hours)

Exec
(msec)

Est.Cost7

($)
5-shot
(hours)

Transfer
(msec)

Est.Cost7

($) Speedup

blstm 135 1245 168.7 13 55.6 16.2 10.4
cedd 124 2217 155.0 12 26.5 15.0 10.3
digit 122 873 152.5 12 58.8 14.9 10.2
hist 97 1104 121.2 9 17.1 11.3 10.8
sc 104 4018 130.0 10 27.9 12.4 10.4
select 106 3978 132.5 10 27.6 12.5 10.6

7The cost is estimated based on an enterprise online cost estimator [341], using a public-cloud system with configuration akin to our
on-prem system. Specifically, we have selected an n2 (8-core, 64GB RAM VM - 1.25$/h) for bitstream generation (x86) and an np8f1
instance (160-thread POWER8, 1TB RAM, ADM-PCIE-KU3 with CAPI-1 - 3$/h) for deployment.

applications both on a low-end system and a high-end cloud system. We use LEAPER
to obtain the performance and resource utilization for the high-end cloud configuration.

Table 6.7: Execution time and resource utilization for low-end base configura-
tion (PYNQ-Z1) and high-end cloud configuration, a Nimbix np8f1 instance
(POWER8, ADM-PCIE-KU3 with CAPI-1).

Application Config. Exec (msec) BRAM DSP FF LUT

blstm low-end 4200 80% 15% 24% 47%
high-end 1245 62% 8% 12% 21%

cedd low-end 10254 83% 37% 95% 97%
high-end 2217 56% 3% 75% 94%

digit low-end 2458 94% 33% 79% 85%
high-end 873 84% 12% 24% 75%

hist low-end 6173 94% 0% 11% 37%
high-end 1104 67% 0% 5% 30%

sc low-end 19306 82% 0.4% 12% 25%
high-end 4018 91% 0.1% 12% 23%

select low-end 18306 82% 0.4% 12% 25%
high-end 3918 91% 0.1% 12% 23%

6.3.4 Base Model Accuracy Analysis

We also evaluate the accuracy of our base model. The base model (Section 6.2.4)
is trained on our low-end edge PYNQ board using clhs configurations sampled using



84 CHAPTER 6. LEAPER

LHS. The base can predict performance (resource utilization) outside the base learner
dataset (DoE configurations) clhs (see Figure 6-2). To assess our base model, we use 30
previously unseen configurations that are not part of clhs on the base system, and we
evaluate the mean relative error for all 30 unseen configurations on all six applications.
Figure 6-7 shows LEAPER’s base model accuracy results.

We compare LEAPER to three other ML algorithms that are also trained using clhs
configurations to predict performance and resource consumption: XG-Boost (XGB)
based on Dai et al. [101], an artificial neural network (ANN) used by Makrani et
al. [298] and a traditional decision tree (DT). We make three observations. First, on
average, LEAPER is more accurate in terms of performance (resource utilization)
prediction than the other ML models. Second, XGBoost is more data-efficient than
ANNs [101] and can perform better than decision trees [437]. Third, ANN is more
accurate than the decision tree, but it is less accurate than LEAPER. This is because
ANN requires a much larger training dataset to reach LEAPER’s accuracy [263].

Exec. Time BRAMs DSPs Ffs LUTs

Ac
cu

ra
cy

 (%
)

60
65

70
75
80

85
90
95

100

LEAPER XGB ANN DT

Figure 6-7: Mean accuracy for performance and resource utilization predictions
using LEAPER’s base model vs. other methods: XGB (XGBoost), an artificial
neural network (ANN), and a decision tree (DT).

6.3.5 Why Does LEAPER Work?
To explain our transfer learning results, we analyze the degree of relatedness

between the source and target environments. We perform a correlation analysis
followed by a divergence analysis of the performance distributions of the environments.

Using the correlation analysis, we make the following four observations. First,
we see a high correlation of 0.76 to 0.97 between the source and target execution
time for different target hardware platforms, which indicates that the target model’s
performance behavior can easily be learned using the source environment. As the
linear correlation is not 1 for all platforms, the use of a nonlinear transfer model is



6.3. EVALUATION 85

substantiated. Second, as we increase the external bandwidth of the target platform
(i.e., CAPI1 to CAPI2), the correlation becomes lower because the hardware change
is much more severe, coming from a low-end FPGA with limited external bandwidth.
Third, compared to using a single transfer learner, an ensemble of learners can perform
more accurate and robust predictions (see Figure 6-4, Figure 6-5, and Figure 6-6).
Fourth, the correlation between applications on a single platform is lower (0.45 to 0.9)
because of the varying application characteristics and optimization space.

We measure the relatedness of the performance distributions of the source (P(𝜏s))
and the target applications (P(𝜏t)) because application-based environments exhibit
a low linear correlation. We employ the Jensen-Shannon Divergence (JSD) [273]
(see Table 6.8) to quantify the statistical distance between P(𝜏s) and P(𝜏t). The
lower the values of JSD, the more similar the target environment is to the source
(i.e., if DJSD(P(𝜏t)||P(𝜏s)) = 0 implies the distributions are identical, and 1 indicates
unrelated distributions). This analysis confirms the trend observed from transferring
application models (Figure 6-5), i.e., the more closely related the source and target
applications, the fewer samples are required to train our nonlinear transfer learners.
The measured distance between the tasks is proportional to the error of the target task.
As can be seen from Table 6.8 for many applications, transfer learning to build accurate
models is feasible since their JSD is limited. Similar trends are observed for the
resource utilization model.

Table 6.8: Jensen-Shannon Divergence (JSD) [273] between performance dis-
tributions of different applications. JSD measures statistical distance between
two probability distributions.

T
ar

ge
t

M
od

el

Base Learner
blstm cedd digit hist sc select

blstm 0.00 0.24 0.34 0.25 0.31 0.30
cedd 0.24 0.00 0.49 0.54 0.41 0.40
digit 0.34 0.49 0.00 0.25 0.21 0.21
hist 0.25 0.54 0.25 0.00 0.25 0.24
sc 0.30 0.40 0.21 0.24 0.00 0.05
select 0.30 0.41 0.21 0.25 0.05 0.00

6.3.6 Discussion and Limitations

Transfer to a new platform and application simultaneously. In supervised
learning, transferring both to a new platform and application at the same time would
lead to sub-optimal results (as observed in [28]). This is because we would perform
two-levels of the transfer. Moreover, the ML model needs to have some notion of the
target environment. Therefore, we explicitly exclude this option in this chapter.



86 CHAPTER 6. LEAPER

FPGA resource-constrained environments. During partial reconfiguration [46]
or in a multi-tenant environment [379], we are often constrained by limited re-
sources [461]. In such scenarios, resource management is more efficient to be controlled
by a middleware layer [474]. We do not assume such as a middleware. Therefore, our
analysis targets bare-metal systems. In the future, we aim to extend our work to such
scenarios as well.

LEAPER generality to other platforms. LEAPER, in essence, is a framework
for building and then transferring models from a small edge platform to any new,
unknown FPGA-based environment. We demonstrated our approach using the cloud
as our target environment because cloud systems often use expensive, high-end FPGAs,
e.g., Amazon AWS F1 cloud [21], Alibaba Elastic cloud with FPGAs [16], etc. Thus,
we can achieve tangible gains in terms of cost, efficiency, and performance.

Effect of FPGA resource saturation. An FPGA gives us the flexibility to map
operations to different resources. For example, we can map a multiplication operation
either to a CLB or a DSP slice. The deciding factor is the operand width (as shown in
Appendix B). If the operand width is smaller than the DSP slice width, the operation
is mapped to a CLB else to a DSP unit. An ML-model can be trained to learn such
relations. However, we avoid it in our current chapter.

6.4 Related Work

Transfer Learning. Recently, transfer learning [44, 81, 359] has gained traction to
decrease the cost of learning by transferring knowledge. Valov et al. [475] investigated
the transfer of application models across different CPU-based environments using
linear transformations. Jamshidi et al. [202] demonstrated the applicability of using
nonlinear models to transfer CPU-based performance models. The works above influ-
enced the design of LEAPER. In contrast, we focus on FPGA-based systems, where we
tailor the hardware circuitry to an application by leveraging the large high-dimensional
optimization space and has very low productivity due to the time-consuming down-
stream implementation process. Moreover, we use an ensemble of transfer learners
that transfers accurate models to a target environment via few-shot learning.

ML-based FPGA Modeling. Recent works propose ML-based methods to overcome
the issue of low productivity with FPGAs. O’Neal et al. [346] use CPU performance
counters to train several ML-based models to predict FPGA performance and power
consumption. Makrani et al. [298] trained an ANN to predict application speedup
across different FPGAs. Dai et al. [101] use ML to predict post-implementation



6.5. CONCLUSION 87

resource utilization from pre-implementation results. However, these solutions become
largely impractical once the platform, the application, or even the size of the workload
changes. LEAPER proposes to reuse previously built models on a low-end source
environment to accelerate the learning of ML models on a high-end target environ-
ment through transfer learning. Unlike LEAPER, past works [536] apply traditional,
time-consuming brute-force techniques to collect training dataset. These techniques
quickly become intractable when the number of optimization parameters increases
due to the curse of dimensionality [48].

Analytical FPGA Modeling. Analytic models abstract low-level system de-
tails and provide quick performance estimates at the cost of accuracy. These ap-
proaches [91, 532, 535] analyze dataflow graphs and apply mathematical equations
to approximate resource usage or performance after the HLS pre-implementation
phase. These approaches enable quick early-stage design studies, however, analyt-
ical models cannot model the intricacies of the complete FPGA implementation
process [101]. Therefore, these approaches provide crude estimates of the actual
performance. Moreover, these models require expert knowledge to form mathematical
equations. In contrast, LEAPER does not require expert knowledge to construct
equations. LEAPER learns from the data, taking into account the complete down-
stream implementation process, and provides the capability to transfer models from
an edge-FPGA to a high-end cloud FPGA environment.

LEAPER is the first method to deal with transfer learning on FPGAs, which are in-
famous for low productivity due to the time-consuming mapping process. LEAPER not
only allows us to predict performance for different configurations (Figure 6-2 “Base
model building” stage) but also provides the ability to transfer the models (Figure 6-2
“Target model building - Few-shot learning” stage). LEAPER is orthogonal to previous
approaches (ML and non-ML) as it also provides the ability to “transfer” models in
milli-seconds (ref. Table 6.6). Additionally, in this chapter, we leverage the design
of experiment techniques to reduce the training overhead dramatically and still build
accurate models.

6.5 Conclusion

We introduce LEAPER, the first transfer learning-based approach for FPGA-based
systems. LEAPER combines statistical techniques and transfer learning to minimize
the ML training data collection overhead. It overcomes the inefficiency of traditional
ML-based methods by accurately transferring an existing ML model built on an
inexpensive, low-end FPGA platform to a new, unknown, high-end environment.



88 CHAPTER 6. LEAPER

The experimental results show that we can develop cheaper (with 5-shot), faster
(up to 10×), and highly accurate (on average 85%) models to predict performance
and resource consumption in a new, unknown target cloud environment. We believe
that LEAPER would open up new avenues for research on FPGA-based systems from
edge to cloud computing, and hopefully, inspires the development of other alternatives
to traditional ML-based models.



Chapter 7

Sibyl: Adaptive and
Extensible Data Placement
in Hybrid Storage Systems
Using Online Reinforcement
Learning

Hybrid storage systems (HSS) use multiple different storage devices to provide high
and scalable storage capacity at high performance. Data placement across different
devices is critical to maximize the benefits of such a hybrid system. Recent research
proposes various techniques that aim to accurately identify performance-critical data
to place it in a “best-fit” storage device. Unfortunately, most of these techniques are
rigid, which (1) limits their adaptivity to perform well for a wide range of workloads
and storage device configurations, and (2) makes it difficult for designers to extend
these techniques to different storage system configurations (e.g., with a different
number or different types of storage devices) than the configuration they are designed
for. Our goal is to design a new data placement technique for hybrid storage systems
that overcomes these issues and provides: (1) adaptivity, by continuously learning
from and adapting to the workload and the storage device characteristics, and (2)
easy extensibility to a wide range of workloads and HSS configurations.

We introduce Sibyl, the first technique that uses reinforcement learning for data
placement in hybrid storage systems. Sibyl observes different features of the running
workload as well as the storage devices to make system-aware data placement decisions.
For every decision it makes, Sibyl receives a reward from the system that it uses to

89



90 CHAPTER 7. SIBYL

evaluate the long-term performance impact of its decision and continuously optimizes
its data placement policy online.

We implement Sibyl on real systems with various HSS configurations, including
dual- and tri-hybrid storage systems, and extensively compare it against four previously
proposed data placement techniques (both heuristic- and machine learning-based)
over a wide range of workloads. Our results show that Sibyl provides 21.6%/19.9%
performance improvement in a performance-oriented/cost-oriented HSS configuration
compared to the best previous data placement technique. Our evaluation using an
HSS configuration with three different storage devices shows that Sibyl outperforms
the state-of-the-art data placement policy by 23.9%-48.2%, while significantly reducing
the system architect’s burden in designing a data placement mechanism that can
simultaneously incorporate three storage devices. We show that Sibyl achieves 80%
of the performance of an oracle policy that has complete knowledge of future access
patterns while incurring a very modest storage overhead of only 124.4 KiB.

7.1 Introduction

Hybrid storage systems (HSS) take advantage of both fast-yet-small storage devices
and large-yet-slow storage devices to deliver high storage capacity at low latency [27,
39, 40, 55, 62, 70, 74, 76, 82, 84, 100, 115, 130, 184, 229, 230, 238, 244, 253, 258, 267,
270, 274, 283, 284, 287, 288, 291, 312, 343, 347, 349, 356, 396, 408, 409, 439, 441,
453, 456, 489, 511, 517, 518, 520, 530, 531, 540]. The key challenge in designing a
high-performance and cost-effective hybrid storage system is to accurately identify
the performance-criticality of application data and place data in the “best-fit” storage
device [343].

Past works [80, 83, 117, 122, 162, 186, 189, 268, 293, 295, 303, 361, 389, 398, 403,
423, 446, 476, 492, 506, 507, 508, 516, 528, 533] propose many different data placement
techniques to improve the performance of an HSS. We identify two major shortcomings
of prior proposals that significantly limit their performance: lack of (1) adaptivity to
workload changes and the storage device characteristics, and (2) extensibility.
(1a) Lack of adaptivity to workload changes. To guide data placement, past
techniques consider only a limited number of workload characteristics [80, 122, 162,
268, 293, 294, 303, 322, 446, 476, 492]. Designers statically tune the parameters values
for all considered workloads at design time based on empirical analysis and designer
experience, and expect those statically-fixed values to be equally effective for a wide
range of dynamic workload demands and system configurations seen in the real world.
As a result, such data placement techniques cannot easily adapt to a wide range of
dynamic workload demands and significantly underperform when compared to an
oracle technique that has complete knowledge of future storage access patterns (up to



7.1. INTRODUCTION 91

41.1% lower performance, ref. Section 7.3).
(1b) Lack of adaptivity to changes in device types and configurations. Most
prior HSS data placement techniques (e.g., [80, 117, 122, 162, 268, 293, 303, 398, 446,
476, 492]) do not adapt well to changes in the underlying storage device characteristics
(e.g., changes in the level of asymmetry in the read/write latencies, or the number
and types of storage devices). As a result, existing techniques cannot effectively take
into account the cost of data movement between storage devices while making data
placement decisions. This lack of adaptivity leads to highly inefficient data placement
policies, especially in HSSs with significantly-different device access latencies than
what prior techniques were designed for (as shown in Section 7.3).
(2) Lack of extensibility. A large number of prior data placement techniques (e.g.,
[80, 122, 162, 268, 293, 303, 446, 492]) are typically designed for an HSS that consists
of only two storage devices. As modern HSSs already incorporate more than two types
of storage devices [303, 304, 398], system architects need to put significant effort into
extending prior techniques to accommodate more than two devices. We observe that
a state-of-the-art heuristic-based data placement technique optimized for an HSS with
two storage devices [304] often leads to suboptimal performance in an HSS with three
storage devices (up to 48.2% lower performance, ref. Section 7.8.7).

Our goal is to develop a new, efficient, and high-performance data placement
mechanism for hybrid storage systems that provides (1) adaptivity, by continuously
learning from and adapting to the workload and storage device characteristics, and
(2) easy extensibility to a wide range of workloads and HSS configurations.

Key ideas. To this end, we propose Sibyl, a reinforcement
learning-based data placement technique for hybrid storage systems.1 Reinforce-
ment learning (RL) [450] is a goal-oriented decision-making process in which an
autonomous agent learns to take optimal actions that maximize a reward function by
interacting with an environment. The key idea of Sibyl is to design the data placement
module in hybrid storage systems as a reinforcement learning agent that autonomously
learns and adapts to the best-fit data placement policy for the running workload and
the current hybrid storage system configuration. For every storage page access, Sibyl
observes different features from the running workload and the underlying storage
system (e.g., access count of the current request, remaining capacity in the fast storage,
etc.). It uses the features as state information to take a data placement action (i.e.,
which device to place the page into). For every action, Sibyl receives a delayed reward
from the system in terms of per-request latency. This reward encapsulates the internal
device characteristics of an HSS (such as read/write latencies, latency of garbage
collection, queuing delays, error handling latencies, and write buffer state). Sibyl
uses this reward to estimate the long-term impact of its action (i.e., data placement

1In Greek mythology, Sibyl is an oracle who makes accurate prophecies [500].



92 CHAPTER 7. SIBYL

decision) on the overall application performance and continuously optimizes its data
placement policy online to maximize the long-term benefit (i.e., reward) of its actions.

Benefits. Formulating the data placement module as an RL agent enables a human
designer to specify only what performance objective the data placement module should
target, rather than designing and implementing a new data placement policy that
requires explicit specification of how to achieve the performance objective. The use of
RL not only enables the data placement module to autonomously learn the “best-fit”
data placement strategy for a wide range of workloads and hybrid storage system
configurations but also significantly reduces the burden of a human designer in finding
a good data placement policy.

Challenges. While RL provides a promising alternative to existing data placement
techniques, we identify two main challenges in applying RL to data placement in an
HSS.
(1) Problem formulation. The RL agent’s effectiveness depends on how the data
placement problem is cast as a reinforcement learning-based task. Two key issues arise
when formulating HSS data placement as an RL problem: (1) taking into account the
latency asymmetry within and across storage devices, and (2) deciding which actions
to reward and penalize (also known as the credit assignment problem [317]). First,
we need to make the agent aware of the asymmetry in read and write latencies of
each storage device and the differences in latencies across multiple storage devices.
Real-world storage devices could have dynamic latency variations due to their complex
hardware and software components (e.g., internal caching, garbage collection, error
handling, multi-level cell reading, etc.) [64, 65, 66, 67, 98, 159, 213, 362]. Second, if the
fast storage is running out of free space, there might be evictions in the background
from the fast storage to the slow storage.

As a result, when we reward the agent, not only there is a variable and delayed
reward, but it is also hard to properly assign credit or blame to different decisions.
(2) Implementation overhead. A workload could have hundreds of thousands
of pages of storage data, making it challenging to efficiently handle the large data
footprint with a low design overhead for the learning agent.

To address the first challenge, we use two main techniques. First, we design a
reward structure in terms of request latency, which allows Sibyl to learn the workload
and storage device characteristics when continuously and frequently interacting with
a hybrid storage system. We add a negative penalty to the reward structure in case of
eviction, which helps with handling the credit assignment problem and encourages
the agent to place only performance-critical pages in the fast storage. Second, we
perform thorough hyper-parameter tuning to find parameter values that work well
for a wide variety of workloads. To address the second challenge, we use two main
techniques. First, we divide states into a small number of bins that reduce the



7.1. INTRODUCTION 93

state space, which directly affects the implementation overhead. Second, instead
of adopting a traditional table-based RL approach (e.g., [197]) to store the agent’s
state-action information (collected by interacting with an HSS), which can easily
introduce significant performance overheads in the presence of a large state/action
space, we use a simple feed-forward neural network [526] with only two hidden layers
of 20 and 30 nodes, respectively.

Key results. We evaluate Sibyl using two different dual-HSS configurations and
two different tri-HSS configurations. We use fourteen diverse storage traces from
Microsoft Research Cambridge (MSRC) [324] collected on real enterprise servers. We
evaluate Sibyl on workloads from FileBench [455] on which it has never been trained.
We compare Sibyl to four state-of-the-art data placement techniques. We demonstrate
four key results. First, Sibyl provides 21.6%/19.9% performance improvement in a
performance-oriented/ cost-oriented HSS configuration compared to the best previous
data placement technique. Second, Sibyl outperforms the best-performing supervised
learning-based technique on workloads it has never been trained on by 46.1% and 54.6%,
on average, in performance-oriented and cost-oriented HSS configurations, respectively.
Third, Sibyl provides 23.9%-48.2% higher performance in tri-hybrid storage systems
than a state-of-the-art heuristic-based data placement technique demonstrating that
Sibyl is easily extensible and alleviates the designer’s burden in finding sophisticated
data placement mechanisms for new and complex HSS configurations. Fourth, Sibyl’s
performance benefits come with a low storage implementation overhead of only 124.4
KiB.

This work makes the following major contributions:
• We show on real hybrid storage systems (HSSs) that prior state-of-the-art HSS

data placement mechanisms fall short of the oracle placement due to: lack of
(1) adaptivity to workload changes and storage device characteristics, and (2)
extensibility.

• We propose Sibyl, a new self-optimizing mechanism that uses reinforcement learning
to make data placement decisions in hybrid storage systems. Sibyl dynamically
learns, using both multiple workload features and system-level feedback information,
how to continuously adapt its policy to improve its long-term performance for a
workload.

• We conduct an in-depth evaluation of Sibyl on real systems with various HSS
configurations, showing that it outperforms four state-of-the-art techniques over a
wide variety of applications with a low implementation overhead.

• We provide an in-depth explanation of Sibyl’s actions that show that Sibyl performs
dynamic data placement decisions by learning changes in the level of asymmetry in
the read/write latencies and the number and types of storage devices.

• We freely open-source Sibyl to aid future research in data placement for storage



94 CHAPTER 7. SIBYL

systems [95].

7.2 Background

7.2.1 Hybrid Storage Systems (HSSs)

Figure 7-1 depicts a typical HSS consisting of a fast-yet-small storage device (e.g.,
[190, 404]) and a large-yet-slow storage device (e.g., [2, 191, 192, 412]). Traditional
hybrid storage systems [80, 131, 313] were designed with a smaller NAND flash-based
SSD and a larger HDD. Nowadays, hybrid storage systems come with emerging
NVM devices (e.g., [92, 224, 232, 466]) coupled with slower high-density NAND flash
devices [254, 303, 348, 350]. The storage management layer can be implemented either
as system software running on the host system or as the firmware of a hybrid storage
device (e.g., flash translation layer (FTL) in flash-based SSDs [64, 141]), depending
on the configuration of the HSS. In this chapter, we demonstrate and implement our
ideas in the storage management layer of the operating system (OS), but they can
be easily implemented in firmware as well. The storage management layer in the OS
orchestrates host I/O requests across heterogeneous devices, which are connected via
an NVM Express (NVMe) [125] or SATA [158] interface. The storage management
layer provides the operating system with a unified logical address space (like the
multiple device driver (md) kernel module in Linux [277]). As illustrated in Figure 7-1,
the unified logical address space is divided into a number of logical pages (e.g., 4 KiB
pages). The pages in the logical address space are assigned to an application. The
storage management layer translates a read/write performed on a logical page into a
read/write operation on a target storage device based on the data placement policy. In
addition, the storage management layer manages data migration between the storage
devices in an HSS. When data currently stored in the slow storage device is moved to
the fast storage device, it is called promotion. Promotion is usually performed when a
page in the slow storage device is accessed frequently. Data is moved from the fast
storage device to the slow storage device during an eviction. Eviction typically occurs
when the data in the fast storage device is infrequently accessed or when the fast
storage device becomes full.

The performance of a hybrid storage system highly depends on the ability of
the storage management layer (Figure 7-1) to effectively manage diverse devices and
workloads [303, 398]. This diversity presents a challenge for system architects when
they design an intelligent data placement policy. A desirable policy has to effectively
utilize the low latency characteristics of the fast device while making optimal use of
its small capacity and should provide easy extensibility to a wide range of workloads
and HSS configurations.



7.3. MOTIVATION 95

Figure 7-1: Overview of a hybrid storage system

7.3 Motivation

To assess the effectiveness of existing HSS data placement techniques under diverse
workloads and hybrid storage configurations, we evaluate state-of-the-art heuristic-
based (CDE [303] and HPS [310]) and supervised learning-based (Archivist [398])
techniques. We also implement an RNN-based data placement technique (RNN-HSS),
adapted from hybrid main memory [117]. To evaluate the effect of underlying storage
device technologies, we use three different storage devices: high-end (H) [190], middle-
end (M) [192], and low-end (L) [412], configured into two different hybrid storage
configurations: a performance-oriented HSS (H&M ) and a cost-oriented HSS (H&L).
Table 7.3 provides details of our system and devices. We restrict the fast storage
capacity to 10% of the working set size of a workload, which ensures eviction of data
from fast storage to slow storage when fast storage capacity is full.

CDE [303] allocates hot or random write requests in the faster storage, whereas
cold and sequential write requests are evicted to the slower device. HPS [310] uses the
access count of pages to periodically migrate cold pages to the slower storage device.
Archivist [398] uses a neural network classifier to predict the target device for data
placement. RNN-HSS, adapted from [117], is a supervised learning-based mechanism
that exploits recurrent neural networks (RNN) to predict the hotness of a page and
place hot pages in fast storage. We compare the above policies with three extreme
baselines: (1) Slow-Only, where all data resides in the slow storage device (i.e., there is
no fast storage device), (2) Fast-Only, where all data resides in the fast storage device,
and (3) Oracle [310], which exploits complete knowledge of future I/O-access patterns
to perform data placement and to select victim data blocks for eviction from the fast
device.

We identify two major shortcomings of the state-of-the-art baseline data place-



96 CHAPTER 7. SIBYL

ment techniques: lack of (1) adaptivity to workload changes and the storage device
characteristics, and (2) extensibility.
(1a) Lack of adaptivity to workload changes. Figure 7-2 shows the average
request latency of all policies, normalized to Fast-Only, under two different hybrid
storage configurations. We make the following three observations. First, all the
baseline techniques are only effective under specific workloads, showing significantly
lower performance than Oracle in most workloads. CDE, HPS, Archivist, and RNN-
HSS achieve comparable performance to Oracle for specific workloads (e.g., hm_1 for
HPS in H&M, usr_0 for CDE in H&L, hm_1 for Archivist in H&M, and RNN-HSS in
proj_2 for CDE in H&L ). Second, the baselines show a large average performance loss
of 41.1% (32.6%), 37.2% (55.5%), 39.7% (66.7%), and 34.4% (47.6%) compared to
Oracle’s performance, under the H&M (H&L) hybrid storage configuration, respectively.
Third, in H&M , the baseline techniques provide a performance improvement of only
1.4%, 7.4%, 3.5%, and 11.3% compared to Slow-Only.

hm
_1
prn

_1
pro

j_2
prx

y_1 usr
_0

wd
ev_

2
AV

G

(a) H&M HSS configuration

0
1
2
3
4

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy

hm
_1
prn

_1
pro

j_2
prx

y_1 usr
_0

wd
ev_

2
AV

G

(b) H&L HSS configuration

0

50

100

Slow-Only CDE HPS Archivist RNN-HSS Oracle

Figure 7-2: Average request latency normalized to Fast-Only policy

We conclude that all four baselines consider only a limited number of workload
characteristics to construct a data placement technique, which leads to a significant
performance gap compared to the Oracle policy. Thus, there is no single policy that
works well for all the workloads.

To further analyze the characteristics of our evaluated workloads, we plot the
average hotness (y-axis) and randomness (x-axis) in Figure 7-3. We provide details
on these workloads in Table 7.4. In these workload traces, each storage request is
labeled with a timestamp that indicates the time when the request was issued from
the processor core. Therefore, the time interval between two consecutive I/O requests
represents the time the core has spent computing. We quantify a workload’s hotness
(or coldness) using the average access count, which is the average of the access counts
of all pages in a workload; the higher (lower) the average access count, the hotter
(colder) the workload. We quantify a workload’s randomness using the average request



7.3. MOTIVATION 97

size in the workload; the higher (lower) the average request size, the more sequential
(random) the workload. From Figure 7-3, we make the following two observations.
First, the average hotness and randomness vary widely between workloads. Second,
we observe that each of our evaluated workloads exhibits highly dynamic behavior
throughout its execution. For example, in Figure 7-4, we show the execution timeline
of rsrch_0, which depicts the accessed addresses and request sizes. We conclude
that an efficient policy needs to incorporate continuous adaptation to highly dynamic
changes in workload behavior.

1

4

16

64

256

0 10 20 30 40 50

Av
er

ag
e 

ac
ce

ss
 c

ou
nt

Average request size [KiB]

SequentialRandom

Hot

Cold

proj_0

src1_0

proj_2

stg_1web_1

usr_0

prn_1proj_3

wdev_2

rsrch_0
hm_1

prxy_0 prxy_1

mds_0

Figure 7-3: Ran-
domness and
hotness charac-
teristics of real-
world MSRC
workloads [324]

2
4
6
8

10

Lo
gi

ca
l

Ad
dr

es
s 

[1
08

]

0 1 2 3 4 5 6 7
Time (sec)

0

10

Re
qu

es
t

Si
ze

Figure 7-4: Timeline of
accessed logical addresses
and request sizes during
the execution of rsrch_0
workload

(1b) Lack of adaptivity to changes in device types and configurations. There
are a wide variety and number of storage devices [2, 85, 92, 170, 190, 191, 192, 193, 224,
232, 254, 303, 314, 348, 350, 404, 412, 466] that can be used to configure an HSS. The
underlying storage technology used in an HSS significantly influences the effectiveness
of a data placement policy. We demonstrate this with an example observation from
Figure 7-2. In the H&M configuration (Figure 7-2(a)), we observe that for certain
workloads (hm_1 and prn_1), both CDE and HPS provide rather low performance even
compared to Slow-Only. Similarly, Archivist and RNN-HSS provide lower performance
for hm_1 and proj_2 in H&M compared to Slow-Only. While in the H&L configuration
(Figure 7-2(b)), we observe that CDE, HPS, Archivist, and RNN-HSS result in lower
latency than Slow-Only for the respective workloads. Thus, we conclude that both
heuristic-based and learning-based data placement policies lead to poor performance



98 CHAPTER 7. SIBYL

due to their inability to holistically take into account the device characteristics. The
high diversity in device characteristics makes it very difficult for a system architect to
design a generic data-placement technique that is suitable for all HSS configurations.
(2) Lack of extensibility. As modern HSSs already incorporate more than two types
of storage devices [303, 304, 312, 398], system architects need to put significant effort
into extending prior data placement techniques to accommodate more than two devices.
In Section 7.8.7, we evaluate the effectiveness of a state-of-the-art heuristic-based
policy [304] for different tri-HSS configurations, comprising of three different storage
devices. This policy is based on the CDE [303] policy that divides pages into hot, cold,
and frozen data and allocates these pages to H, M, and L devices, respectively. A
system architect needs to statically define the hotness values and explicitly handle the
eviction and promotion between the three devices during design-time. Through our
evaluation in Section 7.8.7, we conclude that such a heuristic-based policy (1) lacks
extensibility, thereby increasing the system architect’s effort, and (2) leads to lower
performance when compared to an RL-based solution (up to 48.2% lower).

Our empirical study shows that the state-of-the-art heuristic- and learning-
based data placement techniques are rigid and far from optimal, which
strongly motivates us to develop a new data placement technique to achieve signifi-
cantly higher performance than existing policies. The new technique should provide
(1) adaptivity to better capture the features and dynamic changes in I/O-access pat-
terns and storage device characteristics, and (2) easy extensibility to a wide range
of workloads and HSS configurations. Our goal is to develop such a technique using
reinforcement learning.

7.4 Reinforcement Learning

7.4.1 Background

Reinforcement learning (RL) [450] is a class of machine learning (ML) algorithms
that involve an agent learning to achieve an objective by interacting with its environ-
ment, as shown in Figure 7-5. The agent starts from an initial representation of its
environment in the form of an initial state2 s0 ∈ S , where S is the set of all possible
states. Then, at each time step t, the agent performs an action at ∈ A in state st (A
represents the set of possible actions) and moves to the next state st+1. The agent
receives a numerical reward rt+1 ∈ R, which could be immediate or delayed in time, for
action at that changes the environment state from st to st+1. The sequence of states
and actions starting from an initial state to the final state is called an episode. The
agent makes decisions and receives corresponding rewards while trying to maximize

2State is a representation of an environment using different features.



7.4. REINFORCEMENT LEARNING 99

the accumulated reward, as opposed to maximizing the reward for only each action.
In this way, the agent can optimize for the long-term impact of its decisions.

Figure 7-5: Main components of general RL

The policy 𝜋 governs an agent’s action in a state. The agent’s goal is to find the
optimal policy that maximizes the cumulative reward3 collected from the environment
over time. The agent finds an optimal policy 𝜋* by calculating the optimal action-value
function (Q*), also known as the Q-value of the state-action pair, where Q(S , A)
represents the expected cumulative reward by taking an action A in a given state S.

Traditional RL methods (e.g., [50, 197, 401, 496, 497]) use a tabular approach with
a lookup table to store the Q-values associated with each state-action pair. These
approaches can lead to high storage and computation overhead for environments
with a large number of states and actions. To overcome this issue, value function
approximation was proposed. [269, 319, 426, 427]. Value function approximation
replaces the lookup table with a supervised-learning model [41, 269, 319, 426, 427,
451], which provides the capability to generalize over a large number of state-action
pairs with a low storage and computation overhead.

7.4.2 Why Is RL a Good Fit for Data Placement in Hybrid
Storage Systems?

We choose RL for data placement in HSS due to the following advantages com-
pared to heuristic-based (e.g., [303, 310]) and supervised learning-based (e.g., [398])
techniques.
(1) Adaptivity. As discussed in Section 7.1 and Section 7.3, a data placement tech-
nique should have the ability to adapt to changing workload demands and underlying
device characteristics. This adaptivity requirement of data placement makes RL a
good fit to model data placement. The RL agent works autonomously in an HSS using
the provided state features and reward to make data placement decisions without any
human intervention.

3The total cumulative reward is also known as the return [450].



100 CHAPTER 7. SIBYL

(2) Online learning. Unlike an offline learning-based approach, an RL agent uses
an online learning approach. Online learning allows an RL agent to continuously
adapt its decision-making policy using system-level feedback and specialize to the
current workload and system configuration.
(3) Extensibility. RL provides the ability to easily extend a mechanism with a
small effort required to implement the extension. As shown in Section 7.8.7, unlike
heuristic-based mechanisms, RL can be easily extended to different types and number
of storage devices. Such extensibility reduces the system architect’s burden in designing
sophisticated data placement mechanisms.
(4) Design Ease. With RL, the designer of the HSS does not need to specify a data
placement policy. They need to specify what to optimize (via reward function) but
not how to optimize it.
(5) Implementation Ease. RL provides ease of implementation that requires
a small computation overhead. As shown in Section 7.8, function approximation-
based RL techniques can generalize over all the possible state-action pairs by using a
simple feed-forward neural network to provide high performance at low implementation
overhead (compared to sophisticated RNN-based mechanisms).

7.5 Sibyl: RL Formulation
Figure 7-6 shows our formulation of data placement as an RL problem. We design

Sibyl as an RL agent that learns to perform accurate and system-aware data placement
decisions by interacting with the hybrid storage system. With every storage request,
Sibyl observes multiple workload and system-level features as a state to make a data
placement decision. After every action, Sibyl receives a reward in terms of the served
request latency that takes into account the data placement decision and internal
storage system state. Sibyl’s goal is to find an optimal data placement policy that
maximizes overall performance for the running workload and the current system
configuration. To reach its performance goal, Sibyl needs to minimize the average
request latency of the running workload by maximizing the use of the fast storage
device while avoiding the eviction penalty due to non-performance critical pages.
Reward. After every data placement decision at time-step4 t, Sibyl gets a reward
from the environment at time-step t + 1 that acts as a feedback to Sibyl’s previous
action. To achieve Sibyl’s performance goal, we craft the reward function R as follows:

R =

⎧⎪⎪⎨⎪⎪⎩
1
Lt

if no eviction of a page from the
fast storage to the slow storage

max(0, 1
Lt

– Rp) in case of eviction
(7.1)

4In HSS, a time-step is defined as a new storage request.



7.5. SIBYL: RL FORMULATION 101

Figure 7-6: Formulating data placement as an RL problem

where Lt and Rp represent the last served request latency and eviction penalty,
respectively. If the fast storage is running out of free space, there might be evictions
in the background from the fast storage to the slow storage. Therefore, we add an
eviction penalty (Rp) to guide Sibyl to place only performance-critical pages in the
fast storage. We empirically select Rp to be equal to 0.001×Le (Le is the time spent
in evicting pages from the fast storage to the slow storage), which prevents the agent
from aggressively placing all requests into the fast storage device.

Lt (request latency) is the time taken to service the last read or write I/O request
from the OS. Request latency can faithfully capture the status of the hybrid storage
system, as it significantly varies depending on the request type, device type, and the
internal state and characteristics of the device (e.g., such as read/write latencies, the
latency of garbage collection, queuing delays, and error handling latencies). Intuitively,
if Lt is low (high), i.e., if the agent serves a storage request from the fast (slow) device,
the agent receives a high (low) reward. However, if there is an eviction, we penalize
the agent so as to encourage the agent to place only performance-critical pages in the
fast storage device. We need the eviction penalty to be large enough to discourage
the agent from evicting and small enough not to deviate the learned policy too much
on a placement decision that leads to higher latency.
State. At each time-step t, the state features for a particular read/write request are
collected in an observation vector. We perform feature selection [237] to determine
the best state features to include in Sibyl’s observation vector.

We use a limited number of features due to two reasons. First, a limited feature set
allows us to reduce the implementation overhead of our mechanism (see 7.10). Second,
we empirically observe that our RL agent is more sensitive to the reward structure
than to the number of features in the observation vector. Specifically, using the request
latency as a reward provides indirect feedback on the internal timing characteristics
and the current state (e.g., queueing delays, buffer dependencies, effects of garbage
collection, read/write latencies, write buffer state, and error handling latencies) of
the hybrid storage system. Our observation aligns with a recent study [428] that
argues that the reward is the most critical component in RL to find an optimal



102 CHAPTER 7. SIBYL

decision-making policy.
In our implementation of Sibyl, the observation vector is a 6-dimensional tuple:

Ot = (sizet , typet , intrt , cntt , capt , currt). (7.2)

Table 7.1 lists our six selected features. We quantize the representation of each state
into a small number of bins to reduce the storage overhead of state representation.
These features can be captured in the block layer of the storage system and stored in
a separate metadata table (7.10). sizet represents the size of the current request in
terms of the number of pages associated with it. It indicates whether the incoming
request is sequential or random. typet (request type) differentiates between read and
write requests, important for data placement decisions since storage devices have
asymmetric read and write latencies. intrt (access interval) and cntt (access count)
represent the temporal and spatial reuse characteristics of the currently requested
page, respectively. Access interval is defined as the number of page accesses between
two references to the same page. Access count is defined as the total number of
accesses to the page. These metrics provide insight into the dynamic behavior of the
currently requested page.5 capt is a global counter that tracks the remaining capacity
in the fast storage device, which is an important feature since our agent’s goal is to
maximize the use of the limited fast storage capacity while avoiding evictions from the
fast storage device. By including this feature, the agent can learn to avoid the eviction
penalty (i.e., learn to restrain itself from placing in fast storage non-performance
critical pages that would lead to evictions). currt is the current placement of the
requested page. Since every data placement decision affects the decision for future
requests, currt guides Sibyl to perform past-aware decisions.

Table 7.1: State features used by Sibyl

Feature Description # of bins Encoding (bits)
sizet Size of the requested page (in pages) 8 8
typet Type of the current request (read/write) 2 4
intrt Access interval of the requested page 64 8
cntt Access count of the requested page 64 8
capt Remaining capacity in the fast storage device 8 8
currt Current placement of the requested page (fast/slow) 2 4

Action. At each time-step t, in a given state, Sibyl selects an action (at in Figure 7-6)
from all possible actions. In a hybrid storage system with two devices, possible actions
are: placing data in (1) the fast storage device or (2) the slow storage device. This is
easily extensible to N storage devices, where N ≥ 3.

5We did not use the reuse distance as a locality metric due to its high computation overhead
during online profiling [537].



7.6. SIBYL: DESIGN 103

Figure 7-7: Overview of Sibyl

Figure 7-8: Training network design using as input the state features from
Table 7.1. The inference network is identical except it is used only for inference

7.6 Sibyl: Design

We implement Sibyl in the storage management layer of the host system’s operating
system. Figure 7-7 shows a high-level overview of Sibyl. Sibyl is composed of two
parts, each implemented as a separate thread, that run in parallel (1) the RL decision
thread, where Sibyl decides the data placement 4 of the current storage request while
collecting information 7 about its decisions 4 and their effects 6 in an experience
buffer 5 , and (2) the RL training thread, where Sibyl uses the collected experiences6

8 to update its decision-making policy online 9 . Sibyl continuously learns from its

6Experience is a representation of a transition from one time step to another, in terms of
⟨State, Action, Reward, NextState⟩.



104 CHAPTER 7. SIBYL

past decisions and their impact. Our two-threaded implementation avoids that the
learning (i.e., training) interrupts or delays data placement decisions for incoming
requests. To enable the parallel execution of the two threads, we duplicate the neural
network that is used to make data placement decisions. While one network (called the
inference network 2 ) is deployed (i.e., makes decisions) the second network (called
the training network 9 ), is trained in the background. The inference network is used
only for inference, while the training network is used only for training. Therefore,
Sibyl does not perform a separate training step for the inference network and instead
periodically copies the training network weights to the inference network 10.

For every new storage request to the HSS, Sibyl uses the state information 1 to
make a data placement decision 4 . The inference network predicts the Q-value for
each available action given the state information. Sibyl policy 3 selects the action
with the maximum Q-value or, with a low probability, a random action for exploration
and performs the data placement.

7.6.1 Sibyl Data Placement Algorithm
Algorithm 3 describes how Sibyl performs data placement for an HSS. Initially,

the experience buffer is allocated to hold eEB entries (line 1), and the training
and the inference network weights are initialized to random values (lines 2 and 3).
When a storage request is received (line 4), Sibyl policy ( 3 Figure 7-7) either (1)
randomly selects an action with 𝜖 probability (lines 6-7) to perform exploration in
an HSS environment, or (2) selects the action that maximizes the Q-value, based on
information stored in the inference network (lines 8-9). After performing the selected
action (line 10), Sibyl collects its reward, whose value depends on whether an eviction
is needed from fast storage (lines 11-14). The generated experience is stored in the
experience buffer (line 15). Once the experience buffer has eEB entries (line 16), Sibyl
trains the training network. During training, the training network samples a batch
of experiences from the experience buffer (line 17) and updates its weights using
stochastic gradient descent (SGD) [60] (line 18). Sibyl does not perform a separate
training step for the inference network. Instead, the training network weights are
copied to the inference network (line 19), which removes the training of the inference
network from the critical path of decision-making.

7.6.2 Detailed Design of Sibyl

RL Decision Thread

In this thread, Sibyl makes data placement decisions while storing experiences
in an experience buffer. Sibyl extracts the observation vector 1 from the attributes
of the incoming request and the current system state (e.g., access count, remaining



7.6. SIBYL: DESIGN 105

Algorithm 3 Sibyl’s reinforcement learning-based data placement algorithm
1: Intialize: the experience buffer EB to capacity eEB
2: Intialize: the training network with random weights 𝜃
3: Intialize: the inference network with random weights 𝜃
4: Intialize: the observation vector Ot=O(s1) with storage request s1={reqt}, and host and storage

features
5: for all storage requests do
6: if (rand() < 𝜖) then ◁ with probability 𝜖, perform exploration
7: random action at
8: else ◁ with probability 1-𝜖, perform exploitation
9: at = argmaxaQt(a) ◁ select action with the highest Qt value from inference network

10: execute at ◁ place the requested page to fast or slow storage
11: if no eviction then
12: rt ← 1

Lt
◁ reward, given no eviction of a page from fast to slow storage

13: else
14: rt ← max(0, 1

Lt
-Rp) ◁ reward with an eviction penalty in case of an eviction

15: store experience (Ot , at , rt , O(t + 1)) in EB
16: if (num requests in EB ==eEB) then ◁ train training network when EB is full
17: sample random batches of experiences from EB, which are in format (Oj , aj , rj , O(j + 1)) ◁ where

Oj represents an observation at a time instant j from EB
18: Perform stochastic gradient descent ◁ update the training network weights
19: 𝜃 ← 𝜃 ◁ copy the training network weights to the inference network

capacity in the fast storage) and uses the inference network 2 to predict the Q-values
for each possible action with the given state vector. While making data placement
decisions, Sibyl balances the random exploration of the environment (to find a better
policy without getting stuck at a suboptimal one) with the exploitation of its current
policy (to maximize its reward based on the current inference network weights).
Sibyl policy. For every storage request, Sibyl policy selects the action that leads
to the highest long-term reward 6 . We use a Categorical Deep Q-Network (also
known as C51) [47] to update Q(s, a). C51’s objective is to learn the distribution of
Q-values, whereas other variants of Deep Q-Networks [41, 269, 319, 426, 427, 451] aim
to approximate a single value for Q(s, a). This distribution helps Sibyl to capture
more information from the environment to make better data placement decisions [174].

For tracking the state, we divide each feature into a small number of bins to reduce
the state space (see Section 7.5), which directly affects the implementation overhead
of Sibyl. We select the number of bins (Table 7.1) based on empirical sensitivity
analysis. Our state representation uses a more relaxed encoding of 40 bits (than using
only 20 bits for the observation vector) to allow for future extensions (e.g., features
with more bins). Similarly, we use a relaxed 4-bit encoding for the action to allow
extensibility to a different number of storage devices. For the reward structure, we
use a half-precision floating-point (16-bit) representation.
Experience buffer. Sibyl stores experiences it collects while interacting with the
HSS in an experience buffer [320]. The experience buffer is allocated in the host main
memory (DRAM). To minimize its design overhead, we deduplicate data in the stored
experiences. To improve the training quality, we perform batch training where each
batch consists of randomly sampled experiences. This technique of randomly sampling
experiences from the experience buffer is called experience replay [320].



106 CHAPTER 7. SIBYL

Figure 7-9 shows the effect of different experience buffer sizes on Sibyl’s performance
in the H&M configuration. We observe that Sibyl’s performance saturates at 1000
entries, which we select as the experience buffer size. Since the size of our state
representation is 40 bits, to store a single experience tuple, we need 40-bit+4-bit+16-
bit+40-bit, i.e., 100 bits. In total, for 1000 experiences, the experience buffer requires
100 KiB in the host DRAM.

1 10 10
0

10
00

10
00
0

10
00
00

Experience Buffer Size

0
5

10
15
20

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Figure 7-9: Effect of different experience buffer sizes on the average request
latency (normalized to Fast-Only)

Exploration vs. exploitation. An RL agent needs to explore the environment to
improve its policy to maximize its long-term reward beyond local maxima [450]. At
the same time, the agent needs to exploit what it has already experienced so that it
can take advantage of its learning so far. To balance exploration and exploitation, we
use the 𝜖-greedy policy [462]: the best-known action based on the agent’s experience is
selected with (1-𝜖) probability, and otherwise, i.e., with 𝜖 probability, another action is
chosen randomly. Exploration allows Sibyl to experience states it may not otherwise
get into [450] and thus avoid missing higher long-term rewards. To perform exploration,
Sibyl randomly chooses to place data to the fast or the slow storage device, so that it
can get more information about the HSS and the workload. Based on the received
reward, Sibyl updates its training network. Such exploration helps Sibyl to avoid
making suboptimal data placement decisions in the long run.

RL Training Thread

This thread uses a batch of collected experiences 8 from the experience buffer
to train the training network 9 . The updated weights of the training network are
transferred to the inference network after every 1000 requests 10.
Training and inference networks. The training and inference network allows the
parallel execution of decision and training threads. We use an identical neural network
structure for the training and inference networks. A deep neural network can be
prohibitive due to the long time it requires for training and convergence, preventing
Sibyl to adapt to new state-action pairs in a timely manner. Based on experiments, we



7.6. SIBYL: DESIGN 107

find that a simple feed-forward network [45] with only two hidden layers [107] provides
good performance for Sibyl’s data placement task. Figure 7-8 shows the structure
of our training network.7 The network takes the observation vector Ot as its input
and produces a probability distribution of Q-values as its output. Before feeding the
data to the network, we preprocess the data by normalizing and casting the data to
low precision data types, which allows us to reduce memory in the experience buffer.
Next, we apply two fully-connected hidden layers of 20 and 30 neurons, respectively.
We select these neurons based on our extensive design space exploration with different
numbers of hidden layers and neurons per layer. After the two hidden layers, we
have an output layer of 2 neurons, one for each action. Sibyl policy 3 selects the
action with the maximum Q-value. All fully-connected layers use the swish activation
function [390], a non-monotonic function that outperforms ReLU [8].

During the training of the training network, the inference network’s weights are
fixed. After every 1000 requests, the weights of the training network are copied to
the inference network, which removes the training of the inference network from the
critical path. We set the number of requests to 1000 based on our empirical evaluation
of the experience buffer size (Figure 7-9). Each training step is composed of 8 batches
of experiences from an experience buffer of 1000 experiences with a batch size of
128. We perform the training on the host CPU rather than on a dedicated hardware
accelerator because (1) the network size is small and the weights perfectly fit in on-chip
caches of the CPU in our evaluated system, and (2) to avoid continuous weight transfer
overhead between the host CPU and the accelerator over the external interface.
Hyper-parameter tuning. We improve Sibyl’s accuracy by tuning its hyper-
parameters. Hyper-parameters are sets of RL algorithm variables that can be tuned
to optimize the accuracy of the RL agent [358, 437]. For hyper-parameter tuning, we
perform cross-validation [29] using different hyper-parameter values. During cross-
validation, we randomly select one workload for hyper-parameter tuning and use
the other thirteen workloads for validation. On the selected workload, we use differ-
ent hyper-parameter configurations that we choose using the design of experiments
(DoE) [321]. DoE allows us to minimize the number of experiments needed to find
the best hyper-parameter values without sacrificing the quality of the information
gathered by the experiments. Unlike traditional supervised learning methods, we do
not train Sibyl offline using a training dataset before deploying it for data placement.
All training happens online in Sibyl. For every evaluated workload, Sibyl starts with
no prior knowledge and gradually learns to make data placement decisions online
by interacting with the hybrid storage system. Sibyl needs only one-time offline
hyper-parameter tuning.

Table 7.2 shows the hyper-parameters considered in Sibyl’s design as well as their

7The inference network is identical in shape to the training network.



108 CHAPTER 7. SIBYL

chosen values after the tuning process. The discount factor (𝛾) determines the balance
between the immediate and future rewards. At 𝛾=0 (𝛾=1), Sibyl gives importance
only to the immediate (long-term) reward. The learning rate (𝛼) determines the rate
at which neural network weights are updated. A lower 𝛼 makes small updates to
the neural network weights, which could take more training iterations to converge to
an optimal policy. While a higher 𝛼 results in large updates to the neural network
weights, which could cause the model to converge too quickly to a suboptimal solution.
The exploration rate (𝜖) balances exploration and exploitation for Sibyl. We also
explore different batch sizes (i.e., the number of samples processed in each training
iteration) and experience buffer sizes to train our training network.

Table 7.2: Hyper-parameters considered for tuning

Hyper-parameter Design Space Chosen Value
Discount factor (𝛾) 0-1 0.9
Learning rate (𝛼) 1e–5 – 1e0 1e–4
Exploration rate (𝜖) 0-1 0.001
Batch size 64-256 128
Experience buffer size (eEB) 10-10000 1000

7.7 Evaluation Methodology
Evaluation setup. We evaluate Sibyl using real systems with various HSS configura-
tions. The HSS devices appear as a single flat block device that exposes one contiguous
logical block address space to the OS, as depicted in Figure 7-1. We implement a
lightweight custom block driver interface that manages the I/O requests to storage
devices. Table 7.3 provides our system details, including the characteristics of the
three storage devices we use. To analyze the sensitivity of our approach to different
device characteristics, we evaluate two different hybrid storage configurations (1)
performance-oriented HSS: high-end device (H) [190] and middle-end device (M) [192],
and (2) cost-oriented HSS: high-end device (H) [190] and low-end device (L) [412].
We also evaluate two tri-hybrid HSS configurations consisting of (1) H&M&L and (2)
H&M&LSSD devices. We run the Linux Mint 20.1 operating system [276] with the
Ext3 file system [469]. We use the TF-Agents API [161] to develop Sibyl. We evaluate
Sibyl using two different metrics: (1) average request latency, i.e., average of the
latencies of all storage read/write requests in a workload, and (2) request throughput
(IOPS), i.e., throughput of all storage requests in a workload in terms of completed
I/O operations per second.
Baselines. We compare Sibyl against two state-of-the-art heuristic-based HSS



7.7. EVALUATION METHODOLOGY 109

Table 7.3: Host system and storage devices used in hybrid storage configurations

Host System
AMD Ryzen 7 2700G [22], 8-cores@3.5 GHz,
8×64/32 KiB L1-I/D, 4 MiB L2, 8 MiB L3,
16 GiB RDIMM DDR4 2666 MHz

Storage Devices Characteristics
H: Intel Optane SSD P4800X [190] 375 GB, PCIe 3.0 NVMe, SLC, R/W: 2.4/2 GB/s,

random R/W: 550000/500000 IOPS
M: Intel SSD D3-S4510 [192] 1.92 TB, SATA TLC (3D), R/W: 550/510 MB/s,

random R/W: 895000/21000 IOPS
L: Seagate HDD ST1000DM010 [412] 1 TB, SATA 6Gb/s 7200 RPM

Max. Sustained Transfer Rate: 210 MB/s
LSSD : ADATA SU630 SSD [2] 960 GB, SATA 6 Gb/s, TLC,

Max R/W: 520/450 MB/s
HSS Configurations Fast Device Slow Device
H&M (Performance-oriented) high-end (H) middle-end (M)
H&L (Cost-oriented) high-end (H) low-end (L)

data placement techniques, (1) cold data eviction (CDE) [303] and (2) history-based
page selection (HPS) [310], (3) a state-of-the-art supervised learning-based technique
(Archivist) [398], and (4) a recurrent neural network (RNN)-based data placement
technique (RNN-HSS), adapted from Kleio [117], a data placement technique for hybrid
memory systems. RNN-HSS provides a state-of-the-art ML-based data placement
baseline. We compare the above policies with three extreme baselines: (1) Slow-Only,
where all data resides in the slow storage (i.e., there is no fast storage), (2) Fast-Only,
where all data resides in the fast storage, and (3) Oracle [310], which exploits complete
knowledge of future I/O-access patterns to perform data placement and to select
victim data blocks for eviction from the fast device.

Workloads. We use fourteen different block-I/O traces from the MSRC benchmark
suite [324] that are collected from real enterprise server workloads. We carefully select
the fourteen traces to have distinct I/O-access patterns, as shown in Table 7.4, in order
to study a diverse set of workloads with different randomness and hotness properties
(see Figure 7-3). We quantify a workload’s randomness using the average request
size of the workload; the higher (lower) the average request size, the more sequential
(random) the workload. The average access count provides the average of the access
counts of all pages in a workload; the higher (lower) the average access count, the
hotter (colder) the workload. Table 7.4 also shows the number of unique requests in a
workload. To demonstrate Sibyl’s ability to generalize and provide performance gains
across unseen traces, i.e., traces that are not used to tune the hyper-parameters of
Sibyl, we evaluate Sibyl using four additional workloads from FileBench [455].



110 CHAPTER 7. SIBYL

Table 7.4: Characteristics of 14 evaluated workloads

Workload Write Read Avg. request Avg. access No. of unique
% % size count requests

hm_1 4.7% 95.3% 15.2 44.5 6265
mds_0 88.1% 11.9% 9.6 3.5 31933
prn_1 24.7% 75.3% 20.0 2.6 6891
proj_0 87.5% 12.5% 38.0 48.3 1381
proj_2 12.4% 87.6% 42.4 2.9 27967
proj_3 5.2% 94.8% 9.6 3.6 19397
prxy_0 96.9% 3.1% 7.2 95.7 525
prxy_1 34.5% 65.5% 12.8 150.1 6845
rsrch_0 90.7% 9.3% 9.2 34.7 5504
src1_0 43.6% 56.4% 43.2 12.7 13640
stg_1 36.3% 63.7% 40.8 1.1 3787
usr_0 59.6% 40.4% 22.8 19.7 2138
wdev_2 99.9% 0.1% 8.0 17.7 4270
web_1 45.9% 54.1% 29.6 1.2 6095

7.8 Results

7.8.1 Performance Analysis

Figure 7-10 compares the average request latency of Sibyl against the baseline
policies for H&M (Figure 7-10(a)) and H&L (Figure 7-10(b)) HSS configurations.
All values are normalized to Fast-Only. We make five major observations. First,
Sibyl consistently outperforms all the baselines for all the workloads in H&L and
all but two workloads in H&M . In the H&M HSS configuration (Figure 7-10(a)),
where the latency difference between two devices is relatively smaller than H&L, Sibyl
improves average performance by 28.1%, 23.2%, 36.1%, and 21.6% over CDE, HPS,
Archivist, and RNN-HSS, respectively. In the H&L HSS configuration (Figure 7-10(b)),
where there is a large difference between the latencies of the two storage devices,
Sibyl improves performance by 19.9%, 45.9%, 68.8%, and 34.1% over CDE, HPS,
Archivist and RNN-HSS, respectively. We observe that the larger the latency gap
between HSS devices, the higher the expected benefits of avoiding the eviction penalty
by placing only performance-critical pages in the fast storage. Second, in the H&M HSS
configuration, CDE and HPS are ineffective for certain workloads (hm_1, prn_1, proj_2,
proj_3, and src1_0) even when compared to Slow-Only. In contrast, Sibyl consistently
and significantly outperforms Slow-Only for all workloads because it can learn the
small latency difference between the two storage devices in H&M and dynamically
adapts its data placement decisions, which is difficult for CDE and HPS due to their
inability to holistically take into account the underlying device characteristics. Third,
Sibyl provides slightly lower performance than other baselines in only two workloads:
Slow-Only, HPS, Archivist, and RNN-HSS for hm_1 and CDE and HPS for prxy_0 in
the H&M HSS configuration. We observe that such workloads are write-intensive
and have many random requests (in terms of both access pattern and request size).
Therefore, such workloads would benefit from more frequent retraining of Sibyl’s



7.8. RESULTS 111

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0
1
2
3
4
5

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(a) H&M HSS configuration

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0

50

100

150

200

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(b) H&L HSS configuration

Figure 7-10: Average request latency under two different hybrid storage config-
urations (normalized to Fast-Only)
training network. We experimentally show in Section 7.8.3 that using a lower learning
rate during the training of the training network helps to improve Sibyl’s performance
for such workloads. Fourth, Sibyl achieves, on average, 80% of the performance of
the Oracle, which has complete knowledge of future access patterns, across H&M and
H&L. Fifth, RNN-HSS provides higher performance than heuristic-based policies (2.1%
and 8.9% than CDE and HPS, respectively, in H&M and 9.8% than HPS in H&L),
but Sibyl outperforms it by 27.9%. Unlike Sibyl, the two machine learning-based
policies, Archivist and RNN-HSS, do not consider any system-level feedback, which
leads to their suboptimal performance.

Figure 7-11 compares the request throughput (IOPS) of Sibyl against other baseline
policies. We make two observations. First, in the H&M (H&L) HSS configuration
(Figure 7-11), Sibyl improves throughput by 32.6% (22.8%), 21.9% (49.1%), 54.2%
(86.9%), and 22.7% (41.9%) over CDE, HPS, Archivist, and RNN-HSS, respectively.
Second, Sibyl provides slightly lower performance than Slow-Only, CDE, HPS, Archivist,
and RNN-HSS for only hm_1 in H&M HSS configuration. We draw similar observations
for throughput results as we did for latency results (Figure 7-10) because as Sibyl
considers the request size in state features and request latency in the reward, it also
indirectly captures throughput (size/latency).

We conclude that Sibyl consistently provides higher performance than all five base-
lines and significantly improves both average request latency and request throughput.



112 CHAPTER 7. SIBYL

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
ize

d 
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(a) H&M HSS configuration

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.00

0.05

0.10

0.15

0.20

No
rm

al
ize

d 
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

0.2
3

0.8
5

0.7
7

0.8
1

0.7
8

0.9
6

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(b) H&L HSS configuration

Figure 7-11: Request throughput (IOPS) under two different hybrid storage
configurations (normalized to Fast-Only)

7.8.2 Performance on Unseen Workloads

To demonstrate Sibyl’s ability to generalize and provide performance gains across
unseen workloads that are not used to tune the hyper-parameters of the data placement
policy of Sibyl, we evaluate Sibyl using four additional workloads from FileBench [455].
No data placement policy we evaluate, including Sibyl, is tuned on these workloads.

Figure 7-12 shows the performance of these unseen workloads. We observe the
following observations. First, in H&M (H&L) HSS configuration, Sibyl outperforms
RNN-HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), respectively. Second,
Sibyl may misplace some pages during the online adaptation period, but it provides
significant performance benefits over existing ML-based data placement techniques.
We conclude that Sibyl provides high performance benefits on unseen workloads for
which it has not been tuned.

7.8.3 Performance on Mixed Workloads

We evaluate mixing two or more workloads at the same time while randomly
varying their relative start times. Table 7.5 describes the characteristics of these mixed
workloads. These workloads are truly independent of each other, potentially creating
more evictions from the fast storage device than a single workload. Such a scenario



7.8. RESULTS 113

file
se

rve
r

ntrx
_rw

oltp
_rw

va
rm

ail AVG
0
1
2
3
4
5

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy (a) H&M

file
se

rve
r

ntrx
_rw

oltp
_rw

va
rm

ail AVG
0

25
50
75

100
125 (b) H&L

Slow-Only Archivist RNN-HSS Sibyl Oracle

Figure 7-12: Average request latency on unseen workloads (normalized to Fast-
Only) under two HSS configurations
(1) leads to unpredictable execution where requests arrive at different, unpredictable
timesteps, (2) mimics distributed workloads, and (3) further tests the ability of Sibyl
to dynamically adapt its decision-making policy.

Figure 7-13 shows average request latency for mixed workloads. We use two
different settings for Sibyl: (a) SibylDef , where we use our default hyper-parameters
(Section 7.6.2), and (b) SibylOpt , where we optimize the hyper-parameters for these
mixed workloads and use a lower learning rate (𝛼) of 1e–5. A lower learning rate
performs smaller updates to the training network’s weights in each training iteration,
thus requiring more training to converge to an optimal solution.

Table 7.5: Characteristics of mixed workloads

Mix Workloads Description
mix1 prxy_0 [324] and ntrx_rw [455] Both prxy_0 and

ntrx_rw are write-intensive
mix2 rsrch_0 [324] and oltp_rw [455] rsrch_0 is write-intensive and

oltp_rw is read-intensive
mix3 proj_3 [324] and YCSB_C [96] Both proj_3 and

YCSB_C are read-intensive

mix4 src1_0 [324] and fileserver [455]
Both src1_0 and
fileserver have nearly equal
numbers of reads and writes

mix5 prxy_0 [324], oltp_rw [455] and
fileserver [455]

prxy_0 is write-intensive,
oltp_rw is read-intensive, and
fileserver has nearly equal
numbers of reads and writes

mix6 src1_0 [324], YCSB_C [96] and
fileserver [455]

src1_0 and fileserver have
nearly equal numbers
of reads and writes while
YCSB_C is read-intensive

We make two observations. First, SibylDef consistently outperforms CDE, HPS,
Archivist, and RNN-HSS by 27.9%, 12.2%, 12.1%, and 12.9%, respectively, in the H&M
HSS configuration and 9.4%, 21.3%, 19.4%, and 17.1%, respectively, in H&L HSS
configuration. Second, with a lower learning rate and optimized hyper-parameters,



114 CHAPTER 7. SIBYL

mix1
mix2

mix3
mix4

mix5
mix6

AVG
0
1
2
3
4
5

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy

(a) H&M

mix1
mix2

mix3
mix4

mix5
mix6

AVG
0

25
50
75

100
125

(b) H&L

Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Figure 7-13: Average request latency on mixed workloads (normalized to Fast-
Only) and two HSS configurations
SibylOpt provides 5.2% (9.3%) higher average performance for H&M (H&L) HSS
configuration than SibylDef . Third, for mix_1, HPS provides comparable performance
to SibylDef in H&M, and CDE provides slightly better performance in H&L. As discussed
in Section 7.8.1, prxy_0 is write-intensive and has random requests (with an average
request size of 7.2) within every 1000 requests, which is the experience buffer size
to train the training network. Such a workload requires more frequent retraining of
Sibyl’s training network to achieve higher performance. We conclude that Sibyl can
effectively adapt its data placement policy online to highly dynamic workloads.

7.8.4 Performance with Different Features

Figure 7-14 compares the use of some of the most useful features for the state
of Sibyl in our H&L HSS configuration. All represents using all the six features in
Table 7.1. Sibyl autonomously decides which features are important to maximize the
performance of the running workload.

hm
_1

prn
_1

pro
j_2

prx
y_1 usr

_0

wd
ev_

2
AV

G
0

50
100
150

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy rt ft rt+ ft rt+ ft+mt rt+ ft+pt All

Figure 7-14: Average request latency when using different features (see Ta-
ble 7.1) for the state space of Sibyl in the H&L HSS configuration (normalized
to Fast-Only)

We make two key observations from Figure 7-14. First, Sibyl consistently achieves



7.8. RESULTS 115

the lowest latency (up to 43.6% lower) by using all the features mentioned in Table 7.1
(All in Figure 7-14). Second, by using the same features as in baseline heuristic-based
policies, Sibyl is able to perform better data placement decisions. For example, rt
and ft configurations of Sibyl (in Figure 7-14) use only one feature, just like CDE and
HPS do. These two Sibyl configurations outperform CDE and HPS policies by 4.9%
and 5.5%, respectively (ref. Figure 7-10(b)). Using the same features as a heuristic-
based policy, Sibyl autonomously finds a higher-performance dynamic policy that can
maximize the reward function, which heuristic-based policies cannot possibly do. We
conclude that Sibyl uses a richer set of features that can capture multiple aspects of a
storage request to make better data placement decisions than a heuristic-based policy.
RL reduces the design burden on system architects, as Sibyl autonomously learns
to use the provided features to achieve the highest cumulative reward. In contrast,
traditional heuristic-based policies use features to make rigid data placement decisions
without any system-level feedback, and thus they underperform compared to Sibyl.

7.8.5 Performance with Different Hyper-Parameters

Figures 7-15(a), 7-15(b), and 7-15(c) show the effect of three critical hyper-
parameters (discount factor, learning rate, and exploration rate) on Sibyl’s throughput
in H&M HSS configuration. Figure 7-15(a) shows that Sibyl’s throughput drops
sharply at 𝛾 = 0. At 𝛾 = 0, Sibyl gives importance only to the immediate reward and
not at all to the long-term reward, leading to lower performance. We use 𝛾 = 0.9,
where Sibyl is more forward-looking, giving enough weight to long-term rewards.
Figure 7-15(b) shows that at a learning rate of 𝛼 = 1e–4, Sibyl provides the best
performance. The learning rate determines the rate at which training network weights
are updated. Both too slow and too fast updates are detrimental for adaptive learning
and stable exploitation of a learned policy, respectively. Third, Figure 7-15(c) shows
that the performance of Sibyl drops sharply if it performs exploration too frequently
(i.e., 𝜖 = 1e–1) and thus does not sufficiently exploit its learned policy. Sibyl achieves
the highest performance improvements for 1e–5 ≤ 𝜖 ≤ 1e–2.

7.8.6 Sensitivity to Fast Storage Capacity

Figure 7-16 shows the average request latency of Sibyl and baseline policies as
we vary the available capacity in the fast storage. The x-axis denotes a range of
fast storage device sizes available for data placement and represented in terms of
percentages of the entire fast storage device capacity, where 100% represents the size
where all pages of a workload can fit in the fast storage.

We make two observations. First, for all fast storage sizes, Sibyl performs better
than the baseline heuristic- and supervised learning-based policies for both H&M and



116 CHAPTER 7. SIBYL

0 0.1 0.5 0.9 0.95 1
Discount Factor (γ)

0.40
0.45
0.50
0.55
0.60
0.65

No
rm

al
ize

d 
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

(a)

1. e
−5

1. e
−4

1. e
−3

1. e
−2

1. e
−1

Learning Rate (α)

0.40
0.45
0.50
0.55
0.60
0.65

No
rm

al
ize

d 
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

(b)

1. e
−5

1. e
−4

1. e
−3

1. e
−2

1. e
−1

1. e
0

Exploration Rate (ε)

0.40
0.45
0.50
0.55
0.60
0.65

No
rm

al
ize

d 
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

(c)

Figure 7-15: Sensitivity of Sibyl throughput to: (a) the discount factor (𝛾), (b)
the learning rate (𝛼), (c) the exploration rate (𝜖), averaged across 14 workloads
(normalized to Fast-Only)
H&L HSS configurations. Even when the fast storage size is as small as 1%, Sibyl
outperforms CDE, HPS, Archivist, RNN-HSS by 47.2% (11.5%), 17.3% (58.9%), 12.3%
(110.1%), 21.7% (50.2%), respectively, in H&M (H&L) . Second, at a larger (smaller)
fast storage device size, the performance approaches that of the Fast-Only (Slow-Only)
policy, except for Archivist. Archivist classifies pages as hot or cold at the beginning
of an epoch and does not change its placement decision throughout the execution
of that epoch. It does not perform any promotion or eviction of data. We observe
that Archivist often mispredicts the target device for a request and classifies the same
number of requests for the fast and slow storage device under different fast storage
sizes.

As we vary the size of the fast storage device, a dynamically adaptable data
placement policy is required, which considers features from both the running workload
and the underlying storage system. We conclude that Sibyl can provide scalability by
dynamically and effectively adapting its policy to the available storage size to achieve
high performance.

7.8.7 Tri-Hybrid Storage Systems

We evaluate two different tri-HSS configurations, H&M&L and H&M&LSSD (Ta-
ble 7.3), implemented as a single flat block device. The H&M&LSSD configuration



7.8. RESULTS 117

0%
0.5% 1% 2% 4%

10%
20%

40%
80%

90%
100%

Available capacity in
fast storage

1

2

3

4
No

rm
al

ize
d 

Av
er

ag
e

Re
qu

es
t L

at
en

cy

(a) H&M

0%
0.5% 1% 2% 4%

10%
20%

40%
80%

90%
100%

Available capacity in
fast storage

0
20
40
60
80

100
120

(b) H&L

CDE HPS Archivist RNN-HSS Sibyl Oracle

Figure 7-16: Average request latency for various fast storage device sizes (nor-
malized to Fast-Only)
has a low-end SSD (LSSD), whose performance is lower than the H and M devices
but higher than the L device. We restrict the available capacity of H and M to 5%
and 10%, respectively, of the working set size of a given workload. This ensures data
eviction from H and M devices once they are full. We compare the performance of
Sibyl on a tri-hybrid system with a state-of-the-art heuristic-based policy [303, 304]
that divides data into hot, cold, and frozen and places them respectively into H, M,
and L devices.8 Figure 7-17 shows the performance of the heuristic-based and Sibyl
data placement policies.

We observe that Sibyl outperforms the heuristic-based policy by, on average, 43.5%
(48.2%) and 23.9% (25.2%) for H&M&L (H&M&LSSD). This is because Sibyl is
much more dynamic and adaptive to the storage system configuration due to its
RL-based decision-making than the baseline heuristic-based policy, which is rigid in
its decision-making. To extend Sibyl for three storage devices, we had to only (1)
add a new action in Sibyl’s action space, and (2) add the remaining capacity in the
M device as a state feature. We conclude that Sibyl provides ease of extensibility to
new storage system configurations, which reduces the system architect’s burden in
designing sophisticated data placement mechanisms.

8CDE, HPS, Archivist, and RNN-HSS do not consider more than two devices and are not easily
adaptable to a tri-hybrid HSS.



118 CHAPTER 7. SIBYL

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 avg
0

25

50

75

100

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Heuristic-Tri-Hybrid Sibyl-Tri-Hybrid

(a) H&M&L configuration

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 avg
0

5

10

No
rm

al
ize

d 
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Heuristic-Tri-Hybrid Sibyl-Tri-Hybrid

(b) H&M&LSSD configuration

Figure 7-17: Average request latency for the tri-hybrid HSS (normalized to
Fast-Only)

7.9 Explainability Analysis
We perform an explainability analysis to understand our results further and

explain Sibyl’s decisions. We extract Sibyl’s actions for different workloads under
H&M and H&L HSS configurations and analyze the page placements for each
workload. Figure 7-18 shows Sibyl’s preference for the fast storage device over the
slow storage device, measured as the ratio of the number of fast storage placements
to the sum of the number of placements in both fast and slow storage devices (i.e.,
Preference= #fast placements

#fast+#slow placements).

hm
_1
md

s_0 prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1

usr
_0

wd
ev_

2
we

b_1
0.00

0.25

0.50

0.75

1.00

Pr
ef

er
en

ce
 fo

r
Fa

st
 S

to
ra

ge

H&M
H&L

Figure 7-18: Sibyl’s preference for the fast storage device under different HSS
configurations



7.9. EXPLAINABILITY ANALYSIS 119

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.0

0.2

0.4

Ev
ict

io
n 

Fr
ac

tio
n

CDE HPS Archivist RNN-HSS Sibyl

(a) H&M HSS configuration

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.0
0.2
0.4
0.6
0.8

Ev
ict

io
n 

Fr
ac

tio
n

0.9

CDE HPS Archivist RNN-HSS Sibyl

(b) H&L HSS configuration

Figure 7-19: Comparison of evictions from the fast storage to the slow storage
(normalized to the total number of storage requests)

We make the following four observations. First, in the H&L configuration, where
the latency difference is large between the two storage devices, Sibyl prefers to place
more data in the fast storage device. Sibyl learns that despite the eviction penalty,
the benefit of serving more requests from the fast storage device is significant. On the
other hand, in the H&M device configuration, where the latency difference between
two devices is smaller compared to H&L, Sibyl places only performance-critical pages
in the faster storage device to avoid the eviction penalty.

Second, in the H&M configuration, Sibyl shows less preference to place pages from
mds_0, prn_1, proj_2, proj_3, src1_0, stg_1, and web_1 in the fast storage device.
These workloads are cold and sequential (Table 7.4) and thus are less suitable for the
fast storage device. Therefore, for such workloads, Sibyl shows more preference for the
slow storage device. In contrast, for hot and random workloads (prxy_0 and prxy_1),
Sibyl shows more preference to place pages in the fast storage device.

Third, for rsrch_0, wdev_2, and web_1, Sibyl places ≤40% of pages in the fast
storage device. Such requests have random access patterns, while pages with cold and
sequential accesses are placed in the slow storage.

Fourth, in the H&L setting, Sibyl shows more preference to place requests in the fast
storage device, except for proj_2 and src1_0 workloads. We observe that these two
workloads are highly random with a low average access count (Table 7.4). Therefore,



120 CHAPTER 7. SIBYL

aggressive placement in the fast storage is not beneficial for long-term performance.
We also measure the number of evictions (as a fraction of all storage requests)

that occur while using Sibyl and other baseline policies, as shown in Figure 7-19. We
make two observations. First, in the H&M HSS configuration, Sibyl leads to 68.4%,
43.2%, 19.7%, and 29.3% fewer evictions from the fast storage than CDE, HPS, and
RNN-HSS, respectively. Second, CDE places more data in the fast storage, which leads
to a large number of evictions in both HSS configurations. However, if the latency
difference between the two devices is large (e.g., H&L configuration), CDE provides
higher performance than other baseline policies (see Figure 7-10(b)). Therefore, in
the H&L HSS configuration, we observe that Sibyl follows a similar policy, leading to
more evictions compared to other baselines.

7.10 Overhead Analysis

7.10.1 Inference and Training Latencies

The input layer of the training and inference networks consists of six neurons, equal
to the number of features listed in Table 7.1. Each feature is normalized to transform
the value range of different features to a common scale. The size of one state entry
is 40 bits (32 bits for state features and 8 bits for the counter used for tracking the
remaining capacity in the fast storage device). We make use of two hidden layers with
20 and 30 neurons each. The final output layer has neurons equivalent to our action
space, i.e., two for dual-HSS configurations and three for the tri-HSS configurations.
Inference latency. Our inference network has 52 inference neurons (20+30+2) with
780 weights (6×20+20×30+30×2). As a result, Sibyl requires 780 MAC operations
per inference (1×6×20+1×20×30 +1×30×2). On our evaluated CPU, we can perform
these operations in ∼10ns, which is several orders of magnitude smaller than the I/O
read latency of even a high-end SSD (∼10us) [190, 404]. Sibyl’s inference computation
can also be performed in the SSD controller.
Training latency. For each training step, Sibyl needs to compute 1,597,440 MAC
operations, where each batch requires 128×6×20+ 128×20×30+128×30×2 MAC
operations. This computation takes ∼2us on our evaluated CPU. This training latency
does not affect the benefits of Sibyl because (1) training occurs asynchronously with
inference, and (2) training latency is ∼5× smaller than the I/O read latency of even a
high-end SSD.
We conclude that Sibyl’s performance benefits come at small latency overheads that
are easily realizable in existing CPUs.



7.11. DISCUSSION 121

7.10.2 Area Overhead
Storage cost. We use a half-precision floating-point format for the weights of the
training and the inference networks. With 780 16-bit weights, each neural network
requires 12.2 KiB of memory. Since we use the same network architecture for the two
networks, we need 24.4 KiB of memory. In total, with an experience buffer of 100
KiB (Section 7.6.2), Sibyl requires 124.4 KiB of DRAM overhead, which is negligible
compared to the memory size of modern computing systems.
Metadata cost. HSSs need to maintain the address mapping information for the
underlying storage devices [467]. Sibyl requires 40 bits to store state information (i.e.,
the per-page state features; see Table 7.1). This overhead is ∼0.1% of the total storage
capacity when using a 4-KiB data placement granularity (5-byte per 4-KiB data).
We conclude that Sibyl has a very modest cost in terms of storage capacity overhead
in main memory (DRAM).

7.11 Discussion
Cost of generality. We identify two main limitations of using RL for data placement.
First, currently, RL is largely a black-box policy. Our explainability analysis (Section
7.9) tries to provide intuition into Sibyl’s internal mechanism. However, providing
rigorous explainability to reinforcement learning-based mechanisms is an active field
of research [214, 279, 296, 383, 414, 477], a problem that is beyond the scope of this
paper. Perfectly finding worst-case workloads against an RL policy is, therefore, very
difficult, in fact, impossible, given the state-of-the-art in reinforcement learning. There
are many dynamic decisions that the agent performs, which cannot be easily explained
or modeled in human-understandable terms. Second, Sibyl requires engineering effort
to (1) thoroughly tune the RL hyper-parameters, and (2) implement and integrate
Sibyl components into the host OS’s storage management layer. This second limitation
is not specific to Sibyl and applies to any ML-based storage management technique.
As quantified in Section 7.10, Sibyl’s storage and latency overheads are small.
Sibyl’s implications. Sibyl (1) provides performance improvements on a wide variety
of workloads and system configurations (our evaluations in Section 7.8 show that
Sibyl outperforms all evaluated state-of-the-art data placement policies under all
system configurations), (2) provides extensibility by reducing the designer burden
when extending data placement policies to multiple devices and different storage
configurations, and (3) enables reducing the fast storage device size by taking better
advantage of the fast-yet-small storage device and large-yet-slow storage device to
deliver high storage capacity at low latency.
Adding more features and optimization objectives. An RL-based approach
simplifies adding new features (such as bandwidth utilization) in the RL state and



122 CHAPTER 7. SIBYL

optimization objectives (such as endurance) using the RL reward function. This
flexibility allows an RL-based mechanism to self-optimize and adapt its decision-
making policy to achieve an objective without the designer explicitly defining how
to achieve it. We demonstrate and evaluate example implementations of Sibyl using
a reward scheme that is a function of request latency and eviction latency. We find
that request latency in the reward structure best encapsulates system conditions
since latency could vary for each storage request based on complex system conditions.
To optimize for a different device-level objective, one needs to define a new reward
function with appropriate state features, e.g., to optimize for endurance, one might use
the number of writes to an endurance-critical device in the reward function. Another
interesting research direction would be to perform multi-objective optimization, e.g.,
optimizing for both performance and energy. We leave the study of different objectives
and features to future work.
Necessity of the reward. RL training is highly dependent upon the quality of
the reward function and state features. Using an incorrect reward or improper state
features could lead to severe performance degradation. Creating the right reward is
a human-driven effort that could benefit from design insights. We tried two other
reward structures to achieve our objective to improve system performance:
• Hit rate of the fast storage device: Maximizing the hit rate of the fast storage

device is another potentially plausible objective. However, if we use the hit rate
as a reward, Sibyl (1) tries to aggressively place data in the fast storage device,
which leads to unnecessary evictions, and (2) cannot capture the asymmetry in
the latencies present in modern storage devices (e.g., due to read/write latencies,
latency of garbage collection, queuing delays, error handling latencies, and write
buffer state).

• High negative reward for eviction: We also tried a negative reward for eviction
and a zero reward in other cases. We observe that such a reward structure provides
suboptimal performance because Sibyl places more pages in the slow device to
avoid evictions. Thus, with such a reward structure, Sibyl is not able to effectively
utilize the fast storage.

We conclude that our chosen reward structure works well for a wide variety of
workloads Section 7.8, as reinforced by our generality studies using unseen workloads
in Section 7.8.2.
Managing hybrid main memory using RL. The key idea of Sibyl can be adapted
for managing hybrid main memory architectures. However, managing data placement
at different levels of the memory hierarchy has its own set of challenges [9, 10, 152, 171,
266, 272, 299, 311, 312, 366, 373, 388, 397, 524] that Sibyl would need to adapt to, such
as the low latency decision-making and control requirements in main memory. Even
with the use of hybrid main memories, many systems continue to benefit from using



7.12. RELATED WORK 123

hybrid storage devices due to much lower cost-per-bit of storage, which accommodates
increasingly larger datasets. Therefore, we focus on hybrid storage systems and leave
it to future work to study RL to manage hybrid main memories.

7.12 Related Work

To our knowledge, this is the first work to propose a reinforcement learning-based
data placement technique for hybrid storage systems. Sibyl can continuously learn
from and adapt to the running application and the storage configuration and device
characteristics. We briefly discuss closely-related prior works that propose data
management techniques for hybrid memory/storage systems and RL-based system
optimizations.
Heuristic-based data placement. Many prior works [9, 10, 62, 80, 93, 118, 122,
131, 162, 171, 189, 236, 244, 266, 268, 274, 282, 292, 293, 294, 303, 304, 312, 366,
391, 403, 446, 453, 476, 488, 492, 508, 519, 528] propose heuristic-based techniques to
perform data placement. These techniques rely on statically-chosen design features
that usually favor certain workloads and/or device characteristics, leading to relatively
rigid policies. In Section 7.3 and Section 7.8, we show that Sibyl outperforms two
state-of-the-art works, CDE [303] and HPS [310].
ML-based data placement. Several works [83, 117, 398, 413, 422] propose ML-
based techniques for data placement in hybrid memory/storage systems. These works
1) are based on supervised learning techniques that require frequent and very costly
retraining to adapt to changing workload and device characteristics, and 2) have not
been evaluated on a real system. We evaluate RNN-HSS, which is inspired by the state-
of-the-art data placement technique in hybrid main memory [117]. It uses sophisticated
recurrent neural networks (RNNs) for data placement and shows promising results
compared to heuristic-based techniques. However, it has two major limitations that
make it impractical or difficult to implement: it (1) trains an RNN for each page, which
leads to large computation, storage, and training time overheads, and (2) requires
offline application profiling. Our evaluation (ref. Section 7.8.1) shows that Sibyl
outperforms two state-of-the-art ML-based data placement techniques, RNN-HSS [117]
and Archivist [398], across a wide variety of workloads.
RL-based techniques in storage systems. Recent works (e.g., [217, 218, 281, 491,
523]) propose the use of RL-based approaches for managing different aspects of storage
systems. These works cater to use cases and objectives that are very different from
Sibyl’s. Specifically, Liu et al. [281] (1) propose data placement in cloud systems and
not hybrid storage systems, (2) consider devices with unlimited capacity, sidestepping
the capacity limitations, (3) emulate a data center network rather than use a real
system for design and evaluation, and (4) focus only on data-analytics workloads.



124 CHAPTER 7. SIBYL

Yoo et al. [523] do not focus on data placement; they instead deal with dynamic storage
resizing based on workload characteristics using a trace-based simulator. Wang et
al. [491] (1) focus on cloud systems to predict the data storage consumption, and (2)
do not consider hybrid storage systems. Sibyl is the first RL-based mechanism for
data placement in hybrid storage systems.
RL-based system optimizations. Past works [50, 133, 197, 201, 275, 278, 302,
318, 325, 328, 368, 370, 521, 534] propose RL-based methods for various system
optimizations, such as memory scheduling [197, 325], data prefetching [50, 370], cache
replacement [278], and network-on-chip arbitration [275, 521]. Along with Sibyl,
designed for efficient data placement in hybrid storage systems, this body of work
demonstrates that RL is a promising approach to designing high-performance, and
highly-adaptive self-optimizing computing systems.

7.13 Conclusion
We introduce Sibyl, the first reinforcement learning-based mechanism for data

placement in hybrid storage systems. Our extensive real-system evaluation demon-
strates that Sibyl provides adaptivity and extensibility by continuously learning from
and autonomously adapting to the workload characteristics, storage configuration
and device characteristics, and system-level feedback to maximize the overall long-
term performance of a hybrid storage system. We interpret Sibyl’s policy through
our explainability analysis and conclude that Sibyl provides an effective and robust
approach to data placement in current and future hybrid storage systems. We hope
that Sibyl and our open-sourced implementation of it [95] inspire future work and
ideas in self-optimizing storage and memory systems.



Chapter 8

Conclusions and Future
Directions

In this dissertation, the goal was twofold. First, overcome the data movement
bottleneck by following a data-centric approach of bringing processing close to the
memory and ensure that system components are not overwhelmed by data; thus,
enabling high-performance in an energy-efficient way. Second, leverage the enormous
amount of data to devise computer architecture mechanisms that can assist us in
architectural decisions or optimizations. To this end, the dissertation presented five
contributions to effectively handle and leverage the vast amount of data for future
computing systems. Table 8.1 shows nine architectural methods that we use across
our five contributions.
A data-centric architecture: In Chapter 3, we designed NERO, a data-centric
accelerator for a real-world weather prediction application. NERO overcomes the
memory bottleneck of weather prediction stencil kernels by exploiting near-memory
computation capability on specialized field-programmable gate array (FPGA) acceler-
ators with high-bandwidth memory (HBM) that are attached to the host CPU. Our
experimental results showed that NERO outperforms a 16 core POWER9 system by
4.2× and 8.3× when running two different compound stencil kernels. NERO reduces
the energy consumption by 22× and 29× for the same two kernels over the POWER9
system with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt. We
concluded that employing near-memory acceleration solutions for weather prediction
modeling is promising as a means to achieve both high performance and high energy
efficiency.
Precision tolerance and alternate number system: In Chapter 4, we explored
the applicability of different number formats and searched for the appropriate bit-width
for complex stencil kernels, which are one of the most widely used scientific kernels.
Further, we leveraged the arbitrary fixed-point precision capabilities of an FPGA to

125



126 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

Table 8.1: We highlight across five contributions nine different methods (con-
cepts) used in this dissertation to achieve the thesis statement of handling data
well. We make use of two guiding principles: (1) data-centric (DC) is bringing
processing closer to where data resides and ensuring that data does not over-
whelm system components; (2) data-driven (DD) is leveraging data to perform
architectural decisions or predictions.

CONTRIBUTIONS
METHODS NERO [434] Low Precision [436] NAPEL [437] LEAPER [433] Sibyl [438]

Specialization (DC) FPGA-based
accelerator

Implementation on
an FPGA for fixed-
point and floating-
point representation

FPGA-based
accelerator

Revisit memory
hierarchy (DC)

Scratchpad-based
hybrid memory

Tiered hybrid
storage system

Reducing copies
between host and
accelerator (DC)

Shared memory
space Quantize data

Dataflow
architecture (DC) Task pipelining

Near-memory
computing (DC)

Processing near-
high-bandwidth
memory

Processing near-
3D stacked memory

Reducing memory
footprint (DC)

Single and half
floating-point
precision

Different number
representations–
posit, fixed-point,
and floating-point

Static ML (DD)
Learns application
performance and
energy consumption

Learns resource
utilization and
performance
models

Speed up design
space exploration
(DD)

Auto-tuning
for data transfer
window size

Supervised ML,
Design of
experiment

Few-shot
learning

Design of
experiment

Dynamic ML (DD) Reinforcement
Learning

Goal
Overcome memory
bottleneck of
weather prediction
application

Investigate
computationally
cheaper number
representations

Quick performance
and energy
estimates of new
applications

Quick area and
performance
estimates on
new high-end
FPGA-based
platforms

Efficient and
high performance
data placement
mechanism

demonstrate these kernels’ achievable performance on state-of-the-art hardware that
includes IBM POWER9 CPU with an FPGA board connected via CAPI interface.
Thus, this chapter filled the gap between current hardware capabilities and future
systems for stencil-based scientific applications.
Data-driven alternative to system simulation: In Chapter 5, we proposed
NAPEL, a machine learning-based application performance and energy prediction
framework for data-centric architectures. NAPEL uses ensemble learning to build
a model that, once trained for a fraction of programs on a number of architecture
configurations, can predict the performance and energy consumption of different ap-
plications. Our inexpensive performance model can provide, on average, an additional
10× reduction in performance evaluation time with an error rate lower than 15%
compared to a computationally-intensive state-of-the-art NMC simulator.
Data-driven modeling of FPGA-based systems: In Chapter 6, we presented
LEAPER, the first use of few-shot learning to transfer FPGA-based computing models
across different hardware platforms and applications. Experimental results showed that



8.1. OUTLOOK AND FUTURE DIRECTIONS 127

our approach delivers, on average, 85% accuracy when we use our transferred model
for prediction in a cloud environment with 5-shot learning and reduces design-space
exploration time by 10×, from days to only a few hours. These machine learning-based
mechanisms follow data-driven techniques by using the vast amount of data to provide
fast and accurate performance prediction results.
Data-driven mechanism for data-placement in hybrid storage systems: In
Chapter 7, we proposed Sibyl, a reinforcement learning (RL)-based data-placement
technique for a hybrid storage system (HSS). Sibyl observes different features of the
running workload as well as the storage devices to make system-aware data placement
decisions. For every decision it makes, Sibyl receives a reward from the system that it
uses to evaluate the long-term performance impact of its decision and continuously
optimizes its data placement policy online. Our real system evaluation results show that
Sibyl provides 21.6%/19.9% performance improvement in a performance-oriented/cost-
oriented HSS configuration compared to the best previous data placement technique.
Our evaluation using an HSS configuration with three different storage devices shows
that Sibyl outperforms the state-of-the-art data placement policy by 23.9%-48.2%,
while significantly reducing the system architect’s burden in designing a data placement
mechanism that can simultaneously incorporate three storage devices. We show
that Sibyl achieves 80% of the performance of an oracle policy that has complete
knowledge of future access patterns while incurring a very modest storage overhead of
only 124.4 KiB.

We conclude that the mechanisms proposed by this dissertation provide promis-
ing solutions to handle data well by following a data-centric approach and further
demonstrates the importance of leveraging data to devise data-driven policies.

8.1 Outlook and Future Directions

Throughout this dissertation, we considered data as a paramount resource and
provided various mechanisms to effectively handle and leverage the vast amount of
data. We identify topics for future research both in data-centric computing and
data-driven optimization techniques.

8.1.1 Data-Centric Computing

In data-centric computing, we ensure that our computing systems are not over-
whelmed by data. There are two different approaches to enable data-centric computing.
First, near-memory computing (NMC) [11, 12, 68, 132, 145, 155, 182, 183, 225, 334,
434] adds processing capabilities close to the existing memory architectures. Second,
computation-in memory (CIM) [7, 77, 144, 264, 265, 399, 416, 417, 419] exploits the



128 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

memory architecture and intrinsic properties of emerging technologies to perform
operations using memory itself. We identify the following key topics for future research
that we regard as essential to unlock the full potential of data-centric computing.
Architecture: It is unclear which emerging memory technology best supports data-
centric computing; for example, much research is going into new 3D stacked DRAM and
non-volatile memories such as PCM and ReRAM. The future of these new technologies
relies heavily on advancements in endurance, reliability, cost, and density. Moreover,
these memories have different memory attributes, such as latency, bandwidth, cost,
and energy consumption. We believe a hybrid approach of complementing two different
technologies, as we show in Chapter 7, can revolutionize our current systems. Huang et
al. [386] evaluate one such architecture that tightly integrates CPU, DRAM, and
a flash-based NVM to meet the memory needs of big data applications, i.e., larger
capacity, smaller delay, and wider bandwidth. Processing near-heterogeneous memories
is a new research topic with high potential (could provide the best of both worlds),
and in the future, we expect much interest in this direction. Further, we see a trend
towards processing near caches [7, 120], and we expect more works in this direction.
The right level of cache where to place the processing unit would be an interesting
future direction.

The interplay of NMC units with the emerging interconnects standards like
CXL [421], CCIX [23], and CAPI [444] could be vital in improving the performance
and energy efficiency of big data workloads running on NMC enabled servers. More
quantitative exploration is required for interconnecting networks between the near-
memory compute units and between the host and near-memory compute systems.
Besides the design of the near-memory computing device itself, the integration of
such architectures into the overall computing system and how multiple near-memory
computing devices can work together to scale to larger data volumes are critical
challenges to solve.
Software: Most of the evaluated architectures focus on the compute aspect. Few
architectures focus on providing coherency and virtual memory support. As highlighted
in Section 2.3, lack of coherency and virtual memory support makes programming
difficult and obstructs the adoption of the NMC paradigm. At the application level,
algorithms need to provide code and data co-location for efficient processing. For
example, in NMC, algorithms should prevent excessive movement of data between
vaults (as in 3D stacked memory, see Figure 2-1) and across different memory modules.
Whenever it is not possible to avoid an inter-vault data transfer, we should provide
light-weight data migration mechanisms.
Tool support and benchmarks: The field requires a generic set of open-source
tools and techniques for these novel systems. Often researchers have to spend a
significant amount of time and effort in building the needed simulation environment.



8.1. OUTLOOK AND FUTURE DIRECTIONS 129

Application characterization tools should add support for static and dynamic decision
support for offloading processing and data to near-memory systems. NMC-specific
metrics are required to assist in the offloading decision to assess whether an application
is suitable for these architectures. These tools could provide region-of-interest (or
hotspots) in an application that should be offloaded to an NMC system. Besides, a
standard benchmark set is missing to gauge different architectural proposals in this
domain.

8.1.2 Data-Driven System Optimization

We are seeing an enormous amount of data being generated in different applications
domains. Rather than discarding the available data, our machines should leverage this
data to understand inherent characteristics or patterns to make better architectural
decisions or predictions. To this end, machine learning-based approaches provide
an attractive tool that can assist our computer architecture in various aspects. In
this dissertation, we use this tool for performance and energy prediction to reduce
the time for simulation overhead (Chapter 5), resource and application performance
prediction to overcome the disadvantages of the slow FPGA downstream mapping
process (Chapter 6), effective data-placement (Chapter 7), and perform design space
exploration for the fixed-point precision (Appendix B). These mechanisms are likely
just the beginning of a paradigm shift in computer architecture design and use. Below
we highlight some aspects of computer architecture where data-driven mechanisms
can greatly assist us.
Architecture: Past works have demonstrated the applicability of using supervised
learning-based techniques in hardware such as prefetching [271], branch prediction [208],
and cache replacement [424]. However, hardware feasibility is one of the fundamental
challenges in the adoption of these techniques. In the future, we need to make these
approaches hardware friendly with low cost and area overhead by using techniques
such as pruning, quantization, model compression, etc.
Software: The operating system is a ripe place to use ML-based approaches as
software-based mechanisms can tolerate higher latency and implementation overhead
than latency-critical aspects of computer architecture such as prefetching and cache-
replacement. We can apply modern ML techniques, such as deep reinforcement
learning and natural language processing, on problems like software caching, task
scheduling, power management, virtual memory management, etc.
Explainability: Explainability is providing an explanation of the internal mech-
anisms of a machine learning model that led the model to a certain prediction or
decision. The machine learning community has started to look into the explainability
to understand these models’ inner workings. However, we still use these tools as mere
black-box models in the computer architecture community without making them as



130 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

white-box models. Explainability can lead to certain insights that have been unknown
to our current community, and learn from it to develop better human-driven policies.
Since implementing ML algorithms in the hardware can be costly, leveraging insights
from ML algorithms can help us better optimize our computing systems.

We hope that the ideas, analyses, methods, and techniques presented in this
dissertation will enable the development of energy-efficient data-intensive computing
systems and drive the exploration of new mechanisms to improve the performance
and energy efficiency of future computing systems.



Appendix A

Review of Near-Memory
Data-Centric Architectures

In the past, many near-memory computing (NMC) architectures have been pro-
posed and/or designed. This appendix summarizes a large selection of NMC architec-
tures that are either targeting main memory (Appendix A.1) or storage class memory
(Appendix A.2). We couple different memory technologies with three broad classes of
processing units: programmable unit, fixed-functional unit, and reconfigurable unit.
The classification and evaluation metrics are detailed in Section 2.2.

A.1 Processing Near-Main Memory
Processing near-main memory can allow us to reduce the data movement bottleneck

by circumventing memory-package pin-count limitations. We describe some of the
notable architectures that process close to main memory. All solutions discussed in
this section are summarized in Table 2.2.

A.1.1 Programmable Unit
NDC (2014) Pugsley et al. [382] focus on Map-Reduce workloads, characterized

by localized memory accesses and embarrassing parallelism. The architecture consists
of a central multi-core processor connected in a daisy-chain configuration with multiple
3D-stacked memories. Each memory houses many ARM cores that can perform efficient
memory operations without hitting the memory wall. However, they were not able to
fully exploit the high internal bandwidth provided by HMC. The NMC processing
units need careful redesigning to saturate the available bandwidth.

TOP-PIM (2014) Zhang et al. [527] propose an architecture that consists of
an accelerated processing unit (APU) coupled with 3D-stacked memory. Each APU

131



132 APPENDIX A.

consists of a GPU and a CPU on the same silicon die. The authors focus on providing
code portability with ease-of-programmability. The kernels analyzed span from graph
processing to fluid and structural dynamics. However, the authors use traditional
coherence mechanisms based on restricted memory regions that restrict data placement
restriction.

AMC (2015) Nair et al. [334] develop an architecture called active memory cube
(AMC), which is built upon the HMC-based memory. They add several processing
elements to the vault of HMC, which they refer to it as lanes. Each lane has a
computational unit, a dedicated register file, and a load/store unit that performs
read and write operations to a dedicated part of AMC memory. The host processor
coordinates the communication between AMCs. However, such an approach requires
low communication overhead to avoid performance degradation and undoing benefits
of processing near-memory.

PIM-enabled (2015) Ahn et al. [12] leverage an existing programming model so
that the conventional architectures can exploit the NMC concept without changing
the programming interface. They add compute-capable commands and specialized
instructions to trigger the NMC computation. NMC processing units are composed
of computation logic (e.g., adders) and an SRAM operand buffer. The authors place
these processing units in the logic layer of an HMC-based memory. Offloading at
the instruction level, however, could lead to significant overhead. In addition, the
proposed solution requires substantial changes on the application side, hence reducing
application readiness and can be a hurdle for wide adoption.

TESSERACT (2015) Ahn et al. [11] focus on graph processing applications.
Their architecture consists of a host processor connected to an HMC-based memory.
Each HMC vault has an out-of-order processor mapped to it. These cores can see
only their local data partition, but they can communicate with each other using a
message-passing protocol. The host processor has access to the entire address space
of the HMC. The authors also use prefetching of data to exploit the high available
memory bandwidth in their systems. However, the performance benefits largely depend
upon the efficient distribution of graphs to the vaults in HMC-based memory, which
the authors do not consider in this work.

TOM (2016) Hsieh et al. [182] propose an NMC architecture consisting of a
host GPU interconnected to multiple 3D-stacked memories with small, light-weight
GPU cores. They develop a compiler framework that automatically identifies possible
offloading candidates. Code blocks are marked as beneficial to be offloaded by the
compiler if the saving in memory bandwidth during the offloading execution is higher
than the cost to initiate and complete the offload. A runtime system takes the final
decision as to where to execute a block. Furthermore, the framework uses a mapping
scheme that ensures data and code co-location. The cost function proposed for code



A.1. PROCESSING NEAR-MAIN MEMORY 133

offloading makes use of static analysis to estimate the bandwidth saving. However,
static analysis may fail on code with indirect memory accesses.

Pattnaik1 (2016) Pattnaik et al. [365], similar to [182], develop an NMC-assisted
GPU architecture. An affinity prediction model decides where to executed a kernel
while a scheduling mechanism tries to minimize the application execution time. The
scheduling mechanism can overrule the decision made by the affinity prediction model.
The author proposes to invalidate the L2 cache of the host GPU after each kernel
execution to keep memory consistency between the host GPU and the near-memory
cores. However, their affinity prediction model is trained for a specific set of applications
and architecture that would have low prediction performance for a new, unknown
application or architecture.

MONDRIAN (2017) Drumond et al. [105] demonstrate that a hardware/soft-
ware co-design approach is required to achieve efficiency and performance for NMC
systems. In particular, they show that the current optimization of data-analytic
algorithms heavily relies on random memory accesses while the NMC system prefers
sequential memory accesses to saturate the huge bandwidth available. Based on this
observation, the authors propose an architecture that consists of a mesh of HMC with
tightly connected ARM cores in the logic layer.

MCN (2018) Alian et al. [15] use a light-weight near-memory processing unit
in the buffered DRAM DIMM. The memory channel network (MCN) processor runs
an OS with network software layers essential for running a distributed computing
framework. The most striking feature of MCN is that the authors demonstrate
unified near-data processing across various nodes using ConTutto FPGA [445] with
IBM POWER8. However, supporting the entire TCP/IP stack on the near-memory
accelerator requires a complex accelerator design. Current trends in the industry,
however, are pushing for a simplified accelerator design shifting the complexity on the
host core’s side [444]).

DNN-PIM (2018) Liu et al. [280] propose heterogeneous NMC architecture for
the training of deep neural network (NN) models. The logic layer of 3D-stacked
memory comprises programmable ARM cores and large fixed-function units (adders
and multipliers). They extend the OpenCL programming model to accommodate the
NMC heterogeneity. Both fixed-function NMC and programmable NMC appear as
distinct compute devices. A runtime system dynamically maps and schedules NN
kernels on a heterogeneous NMC system based on online profiling of NN kernels.

Boroumand1 (2018) Boroumand et al. [57] evaluate NMC architectures for
Google workloads. They observe that: (1) many Google workloads spend a considerable
amount of energy on data movement; (2) simple functions are responsible for a
significant fraction of data movement. Based on their observations, they propose two

1Architecture has no name, first author’s name is shown.



134 APPENDIX A.

NMC architectures, one with a general-purpose processing core and the other with a
fixed-function accelerator coupled with HBM-based memory. While accelerating the
Google workloads, the authors take into account the low area and power budget in
consumer devices. They evaluate the benefits of the proposed NMC architectures.

FIMDRAM (2021) Kwon et al. [247] make the following two observations.
First, ML has become a driving factor in the advancement of various technologies.
Second, the improvements in DRAM bandwidth could only be delivered with a
significant increase in power consumption. Based on the above observations, the
authors’ goal is to develop an energy-efficient DRAM architecture for ML-based
workloads that can deliver high bandwidth with low power consumption. To this
end, the authors design an NMC architecture with 16-way floating-point16 (FP16)
programmable compute units with an access granularity as the host processor, which
simplifies various system-level aspects such as address mapping and interleaving. The
experimental results demonstrate that FIMDRAM can provide 2× performance and
70% less energy consumption than a GPU+HBM implementation for DeepSpeech2
workload. FIMDRAM shows promising results for ML-based workloads, however, the
efficacy for other data-intensive workloads such as weather prediction, genomics, and
databases is still an open question.

A.1.2 Fixed-Function Unit

JAFAR (2015) Xi et al. [510] embed an accelerator in a DRAM module to
implement database select operations. The key idea is to use the near-memory
accelerator to scan and filter data directly in the memory while only the relevant
data will be moved to the host CPU. Thus, having a significant reduction in data
movement. The authors suggest using memory-mapped registers to read and write via
application program interface (API) function calls to control the accelerator. Even
though JAFAR shows promising potential in database applications, its evaluation
is quite limited as it can handle only filtering operations. More complex operations
fundamental for the database domain such as sorting, indexing and compression are
not considered.

IMPICA (2016) Hsieh et al. [183] accelerate pointer chasing operations, ubiqui-
tous in data structures. They propose adding specialized units that decouple address
generation from memory accesses in the logic layer of 3D-stacked memory. These units
traverse through the linked data structure in memory and return only the final node
found to the host CPU. They also propose to completely decouple the page table of
IMPICA from the host CPU to avoid virtual memory-related issues. The memory
coherence is assured by demarking different memory zones for the accelerators and the
host CPU. This design provides a state-of-the-art technique for address translation in
NMC for pointer chasing.



A.1. PROCESSING NEAR-MAIN MEMORY 135

Vermij1 (2017) Vermij et al. [478] propose a system for sorting algorithms where
phases having high temporal locality are executed on the host CPU, while algorithm
phases with poor temporal locality are executed on an NMC device. The architecture
proposed consists of a memory technology-agnostic controller located at the host CPU
side and a memory-specific controller tightly coupled with the NMC system. The
NMC accelerators are placed in the memory-specific controllers and are assisted by an
NMC manager. The NMC manager also supports cache coherency, virtual memory
management, and communications with the host processor.

GraphPIM (2017) Nai et al. [332] map graph workloads in the HMC by exploiting
its inherent atomic2 functionality. As they focus on atomics, they can offload at
instruction granularity. Notably, they do not introduce new instructions for NMC and
use the host instruction set to map to NMC atomics through an uncacheable memory
region. Similar to [12], offloading at instruction granularity can have significant
overhead. Besides, the mapping to NMC atomics instruction requires the graph
framework to allocate data on particular memory regions via custom malloc. This
custom allocation requires changes on the application side, reducing the application
readiness.

GRIM-Filter (2018) Kim et al. [234] develop a seed location filter for the read
mapping stage of the genomics pipeline that exploits the high memory bandwidth and
near-memory processing capabilities of 3D-stacked DRAM to improve the performance
of DNA read mappers. The authors demonstrate a 5.6× –6.4× lower false-negative
rate with end-to-end performance improvement of 1.8× –3.7× over a state-of-the-art
DNA read mapper. GRIM-Filter targets only the short reads (i.e., segments on the
order of several hundred base pairs long), while accelerating long reads is an important
problem [377].

RecNMP (2020) Ke et al. [225] overcome the memory bottleneck of personalized
recommendation systems. A personalized recommendation is a fundamental part of
services like a search engine, social network, etc. After characterizing production-
recommendation models, the authors observe that the recommendation model’s sparse
embedding step leads to a memory bottleneck. To this end, the authors propose
RecNMC, which uses light-weight processing cores to accelerate embedding operations
in the DIMM of existing standard DRAM. RecNMP accelerates the shows 9.8×
memory latency speedup and 45.9% memory energy savings.

GenASM (2020) Cali et al. [68] accelerate the approximate string matching
(ASM) step of genome analysis. ASM is a computationally-expensive step as it
usually uses dynamic programming (DP)-based algorithms. The authors modify the
underlying ASM algorithm to increase its parallelism and reduce its memory footprint

2An atomic instruction such as compare-and-set is an indivisible instruction where the CPU is
not interrupted when performing such operations.



136 APPENDIX A.

significantly. Their accelerator design follows a systolic-array-based architecture that
they place in the logic layer of HMC-based memory. The authors demonstrate the
flexibility of their accelerator design in accelerating multiple steps of genome analysis.

NATSA (2020) Fernandez et al. [132] design a near-memory accelerator for time
series analysis. Specifically, the authors implement a matrix profile algorithm that has
a low arithmetic intensity and operates on a large amount of data. As a result, this
algorithm is memory-bound and performs poorly on multi-core systems. NATSA’s
processing element consists of floating-point arithmetic units that they place next to
HBM-based 3D stacked memory. NATSA improves performance by 9.9× on average
and reduces energy by 19.4× on average over a multi-core implementation. However,
it considers HBM as a stand-alone unit without a host-system. Such a scenario leads
to practical concerns such as processing orchestration and data-mapping.

A.1.3 Reconfigurable Unit

Gokhale1 (2015) Gokhale et al. [154] propose to place a data rearrangement
engine (DRE) in the logic layer of the HMC to accelerate data accesses while still
performing the computation on the host CPU. The authors target cache unfriendly
applications with high memory latency due to irregular access patterns, e.g., sparse
matrix multiplication. Each of the DRE engines consists of a scratchpad, a simple
controller processor, and a data mover. To make use of the DRE units, the authors
develop an API that supports several operations. Each operation is issued by the
main application running on the host and served by a control program loaded by the
OS on each DRE engine. Similar to [365], the authors propose to invalidate the CPU
caches after each fill and drain operation to keep memory consistency between the
near-memory processors and the main CPU. This approach can introduce a significant
overhead. Furthermore, the synchronization mechanism between the CPU and the
near-memory processors is based on polling. Therefore, the CPU wastes clock cycles
waiting for the near-memory accelerator to complete its operations. On the other
hand, a light-weight synchronization mechanism based on interrupts could be a more
efficient alternative.

HRL (2015) Gao et al. [145] propose a reconfigurable logic architecture called
heterogeneous reconfigurable logic (HRL) that consists of three main blocks: fine-
grained configurable logic blocks (CLBs) for control unit, coarse-grained functional
units (FUs) for basic arithmetic and logic operations, and output multiplexer blocks
(OMBs) for branch support. Each memory module follows HMC like technology
and houses multiple HRL devices in the logic layer. The central host processor is
responsible for data partition and synchronization between NMC units. As in the case
of [527], to avoid consistency issues and virtual-to-physical translation, the authors
propose a memory-mapped non-cacheable memory region that puts restrictions on



A.2. PROCESSING NEAR-STORAGE CLASS MEMORY 137

data placement.
NDA (2015) Farmahini et al. [129] propose three different NMC architectures

using coarse-grained reconfigurable arrays (CGRA) on commodity DRAM modules.
This proposal requires minimal change to the DRAM architecture. However, program-
mers should identify which code would run close to memory. This dependence leads
to increased programmer effort for demarking compute-intensive code for execution.
Also, it does not support direct communication between NMC stacks.

A.2 Processing Near-Storage Class Memory

NAND flash-based non-volatile memories (NVM) are trying to fill the latency
gap between DRAMs and disks are termed as storage-class memories (SCM) [333].
SCM, like NVRAM, is even touted as a future replacement for DRAM [392]. Moving
computation in SCM has some of the similar benefits to DRAM concerning savings
in bandwidth, power, latency, and energy but also because of the higher density it
allows to work on much larger data-sets as compared to DRAM [387].

A.2.1 Programmable Unit

XSD (2013) Cho et al. [88] propose a solid-state drive (SSD)-based architecture
that integrates graphics processing unit (GPU) close to the memory. They provide an
API based on the MapReduce framework that allows users to express parallelism in
their application and exploit the parallelism provided by the embedded GPU. They
develop a performance model to tune the SSD design. The experimental results show
that the proposed XSD is approximately 25× faster than an SSD model incorporating a
high-performance embedded CPU. However, the host CPU instruction set architecture
(ISA) needs to be modified to launch the computation on the GPU embedded inside
the SSD.

WILLOW (2014) Seshadri et al. [415] propose a system that has programmable
processing units referred to as storage processor units (SPUs). Each SPU runs a small
operating system (OS) that maintains and enforces security. On the host-side, the
Willow driver creates and manages a set of objects that allow the OS and applications
to communicate with SPUs. The programmable functionality is provided in the form
of SSD Apps. Willow enables programmers to augment and extend SSD semantics
with application-specific features without compromising file system protection. The
programming model based on remote procedure call (RPC) supports the concurrent
execution of multiple SSD Apps and trusted code execution. However, it neither
supports dynamic memory allocation nor allows users to load their tasks to run on
the SSD dynamically.



138 APPENDIX A.

SUMMARIZER (2017) Koo et al. [241] design APIs that can be used by the
host application to offload filtering tasks to the inherent ARM-based cores inside an
SSD processor. This approach reduces the amount of data transferred to the host
and allows the host processor to work on the filtered result. They evaluate static and
dynamic strategies for dividing the work between the host and SSD processor. However,
sharing the SSD controller processor for user applications and SSD firmware can lead
to performance degradation due to interference between I/O tasks and in-storage
compute tasks.

CompStor (2018) Torabzadehkashi et al. [463] propose an architecture that
consists of NVMe over PCIe SSD and FPGA-based SSD controller coupled with
in-storage processing subsystem (ISPS) based on the quad-core ARM A53 processor.
They modify the SSD controller hardware and software to provide high bandwidth
and low latency data path between ISPS and the flash media interface. Fully isolated
control and data paths ensure concurrent data processing and storage functionality
without degradation in either one’s performance. The architecture supports porting a
Linux operating system. However, homogeneous processing cores in the SSD are not
sufficient to meet the requirement of complex modern applications [464].

A.2.2 Fixed-Function Unit

Smart SSD (2013) Kang et al. [219] implement the Smart SSD features in the
firmware of a Samsung SSD and modify the Hadoop core and MapReduce framework
to use task-lets as a map or a reduce function. To evaluate the prototype, they used a
micro-benchmark and log analysis application on both the device and the host. Their
SmartSSD is able to outperform host-side processing drastically by utilizing internal
application parallelism. Likewise, Do et al. [363] extend Microsoft SQL Server to
offload database operations onto a Samsung Smart SSD. The selection and aggregation
operators are compiled into the firmware of the SSD. Quero et al. [387] modify the
Flash Translation Layer (FTL) abstraction and implement an indexing algorithm
based on the B++tree data structure to support sorting directly in the SSD. The
approach of modifying the SSD firmware to support the processing of certain functions
is fairly limited and can not support the wide variety of workloads [464].

ProPRAM (2015) Wang et al. [494] observe that NVM is often supporting built-
in logic like for data comparison, write or flip-n-write module. Therefore, the authors
propose to exploit the existing resources inside NVM-based memory chips to accelerate
the simple non-compute intensive functions in emerging big data applications. They
expose the peripheral logic to the application stack through ISA extension. Like [219,
363, 387], this approach cannot support the diverse workload requirements.

BISCUIT (2016) Gu et al. [160] present a near-memory computing framework
that allows programmers to write a data-intensive application to run in a distributed



A.2. PROCESSING NEAR-STORAGE CLASS MEMORY 139

manner on the host and the NMC-capable storage system. The storage hardware
incorporates a pattern matcher IP designed for NMC. The authors evaluate their
approach by accelerating MySQL-based application. However, the NMC system acts
as a slave to the host CPU, and all data is controlled by the host CPU. Therefore,
this architecture needs to manage communications messages from the host effectively.

A.2.3 Reconfigurable Unit
BlueDBM (2015) Jun et al. [212] present a flash-based platform, called BlueDBM,

built of flash storage devices augmented with an application-specific FPGA-based
in-storage processor. The data-sets are stored in the flash array and are read by the
FPGA accelerators. Each accelerator implements a variety of application-specific
distance comparators used in the high-dimensional nearest-neighbor search algorithms.
They also use the same architecture exploration platform for graph analytics. However,
the platform does not support dynamic task loading, similar to [415], and has limited
OS-level flexibility.

CARIBOU (2017) Zsolt et al. [199] enable key-value store interface over TCP/IP
socket to the storage node comprising of an FPGA connected to DRAM/NVRAM.
They implement selection operators in the FPGA, which are parameterizable at
runtime, both for structured and unstructured data, to reduce data movement and
avoid the negative impact of near-data processing on the data retrieval rate. Like [212],
Caribou does not have OS-level flexibility, e.g., the file-system is not supported
transparently.



140 APPENDIX A.



Appendix B

PreciseFPGA: Low Precision
Accelerator Search for FPGA

In Chapter 4, we demonstrate the benefits of using lower precision datatypes on an
FPGA. However, determining the optimal fixed-point precision in terms of accuracy
and power on an FPGA is challenging because of the following two reasons: (1) the
design space of choices makes it infeasible to perform an exhaustive manual-tuning;
and (2) FPGAs have a slow downstream mapping process. To this end, this appendix
presents PreciseFPGA, our preliminary work on building an automated solution
for fixed-point precision evaluation for FPGA-based devices, which overcomes the
aforementioned issues.

B.1 Introduction
Fixed-point data types have been used for energy-efficient computing in various

applications [111, 164, 166]. For a fixed-point configuration, the impact on accuracy,
throughput, power, and resource utilization depends largely on its chosen configuration.
A random selection of a fixed-point configuration can have a detrimental effect on the
accuracy without significant gains in terms of area and power. Therefore, application-
aware fixed-point configuration selection is critical to obtain an optimal solution in
terms of resource/power consumption without compromising the accuracy.

An FPGA allows us to implement any arbitrary precision fixed-point configuration.
However, the number of precision options leads to a very large design space that
is infeasible to explore exhaustively on an FPGA because of its time-consuming
design cycle. Recently, FPGA designers have started to adopt high-level synthesis
(HLS) [481] to increase productivity with reduced time-to-market. HLS converts a
C/C++ program into register-transfer logic (RTL) that is further synthesized and
mapped to a target FPGA. This complete downstream process can take several hours

141



142 APPENDIX B. PRECISEFPGA

for a single design point [101]. Hence, it is impossible to enumerate all possible
fixed-point precision choices and exhaustively search for the optimal design that offers
low resource consumption while considering the hardware mapping constraints.

Our key idea is to develop an automated framework to obtain an application-
aware optimal fixed-point configuration without exhaustively searching the entire
design space while taking into account the mapping constraints of an FPGA. To
this end, we propose PreciseFPGA - a resource and power estimation framework for
arbitrary fixed-point data precision. PreciseFPGA requires HLS C-Synthesis results
from only two fixed-point configurations (see Section B.3.3) to provide a Pareto-optimal
post-implementation solution with respect to power and error. PreciseFPGA uses
these two C-Synthesis utilization reports to obtain the relation between the operation-
width of FPGA components and the fixed-point configuration. The extracted relation
is extrapolated to obtain operation-width for all possible configurations. Compared
to previous works [91, 221, 297, 346, 535], PreciseFPGA provides the following key
capability. PreciseFPGA is aware of the effect of FPGA-resource saturation, e.g., in
case if we saturate digital signal processing (DSP) units then our framework would
map operands to a lookup table (LUT), which makes our approach more practical.
We demonstrate our approach by quantizing weights of a neural network (NN)-based
accelerator.

B.2 Motivation

In fixed-point representation (see Section 4.3), the feasible fixed-point configuration
< x, y > for bit-width ≤ N can be represented by Equation B.1, where x is the
total bitwidth including y integer bits. In general, the total number of fixed-point
configurations can be given by Equation B.2.

x ≤ N ∀x ∈ [2, N ] ∀y ∈ [1, x – 1] (B.1)

S = N (N – 1)
2 (B.2)

As we are interested in reduced precision fixed-point configurations, we restrict the
maximum bitwidth to the default bitwidth of our baseline single-precision floating-
point representation, i.e., 32-bit. An exhaustive search to obtain an optimal fixed-
point configuration requires post-implementation resource and power estimates for all
possible configurations. Therefore, with a bitwidth of 32, we would need 496 FPGA
downstream mapping runs (using Equation B.2) to complete an exhaustive search.
We have discussed different number systems, which include fixed-point, floating-point,
and posit, in Chapter 4.

To motivate the need for PreciseFPGA, we perform three experiments to study



B.2. MOTIVATION 143

the behavior of an NN model with different fixed-point precision configurations.

B.2.1 Effect on Power Consumption

Figure B-1 shows the power consumption of the LeNet-5 [250, 339] convolutional
neural network (CNN) model using different bitwidth. We analyze the impact on the
post-implementation power consumption using all possible fixed-point configurations
( ). We use Equation B.1 to enumerate all possible fixed-point configuration options.
We draw two conclusions from Figure B-1. First, the power consumption increases
with increasing bitwidth. Second, the maximum power consumption is given by
floating-point ( ) with a bitwidth of 32.

5 10 15 20 25 30

200

500

Po
w

er
 (

m
W

at
t)

Floating-point
Pareto-optimal fixed point <14,2>

Bitwidth

600

400

300

Fixed-point

Figure B-1: Power consumption with change in bitwidth for LeNet-5 [250, 339].

B.2.2 Effect on Inference Accuracy

We also studied the impact of different fixed-point configurations on inference
accuracy compared to our baseline 32-bit floating-point by following the approach in
Section 4.3. We use the percentage accuracy drop of a fixed-point configuration with
respect to floating-point implementation as an error metric. We calculated the error for
all possible 496 fixed-point configurations using the C-simulation results. We plot the
maximum (�) and the minimum ( ) error (%) of the fixed-point configurations with
respect to bitwidth in Figure B-2. We draw two conclusions from Figure B-2. First,
increasing the bitwidth only does not reduce the error. To find the right bitwidth,
we need to find both the appropriate integer and the fractional part. Second,



144 APPENDIX B. PRECISEFPGA

increasing the bitwidth beyond a certain point does not significantly improve accuracy
but drastically increases the power consumption. For LeNet-5, we found the optimum
bitwidth, in terms of power consumption and accuracy, at < 14, 2 >.

Bitwidth

80

100

120
E
rr

or
 (

%
)

<
2
,1
>

<
2
,1
>

<
3
,2
>

<
3
,1
>

<
4
,3
>

<
4
,1
>

<
5
,4
>

<
5
,1
>

<
6
,5
>

<
6
,2
>

<
7
,6
>

<
7
,2
>

<
8
,7
>

<
9
,8
>

<9,2>

<
1
0
,9
>

<10,2>

<
1
1
,1

0
>

<11,2>
<

1
2
,1

1
>

<12,2>
<

1
3
,1

2
>

<13,2>

<
1
4
,1

3
>

<
14

,2
>

<
1
5
,1

4
>

<
15

,2
>

<
1
6
,1

5
>

<
16

,2
>

<
1
7
,1

6
>

<
17

,3
>

<
1
8
,1

7
>

<
18

,2
>

<
1
9
,1

8
>

<
1
9
,2
>

<
2
0
,1

9
>

<
20

,2
>

<
2
1
,2

0
>

<
21

,2
>

<
2
2
,2

1
>

<
2
2
,2
>

<
2
3
,2

2
>

<
2
3
,2
>

<
2
4
,2

3
>

<
2
4
,2
>

<
2
5
,2

4
>

<
2
5
,2
>

<
2
6
,2

5
>

<
2
6
,2
>

<
2
7
,2

6
>

<
2
7
,3
>

<
2
8
,2

7
>

<
2
8
,4
>

<
2
9
,2

8
>

<
2
9
,5
>

<
3
0
,2

9
>

<
3
0
,2
>

<
3
1
,3

0
>

<
3
1
,3
>

<
3
2
,3

1
>

<
3
2
,4
>

Minimum Error
Maximum Error60

40

20

0

5 10 15 20 25 30

Figure B-2: Error in the inference accuracy of LeNet-5 [250, 339]. To find the
optimum bitwidth that minimizes the error without a drastic increase in power
consumption, we need to determine both the integer and the fractional part
of a fixed-point configuration.

B.2.3 Design Space Exploration Time
While designing an efficient FPGA-based implementation, our goal is to find a

Pareto-optimal configuration with respect to power and accuracy. The Pareto-Optimal
configuration can vary according to the power budgets and accuracy requirements
of a model. In Figure B-1, we observe that the optimal configuration is obtained at
< 14, 2 > (�), and using a bitwidth beyond 14 does not add much to the accuracy (see
Figure B-2) but increases the power consumption linearly. This Pareto-optimal point
enables ∼55% savings in terms of power with only a 4% loss in accuracy compared to
a full-precision floating-point implementation.

However, to achieve this Pareto-optimal design point, we have to perform an
exhaustive search for all design options. In the case of LeNet-5 architecture, it
took us nearly five days to get the post-implementation results for all possible 496
configurations. This runtime is impractical, and it prohibits us from an effective design-
space exploration. Therefore, we require a fast and accurate framework to explore
the optimum fixed-point configuration that does not require post-implementation
results for all possible configurations. This motivated us to create PreciseFPGA, which



B.3. PRECISEFPGA 145

can predict the post-implementation resource and power consumption for fixed-point
configurations using only C-Synthesis results of two fixed-point configurations.

B.3 PreciseFPGA
PreciseFPGA is a resource and power estimation framework for fixed-point preci-

sion arithmetic targeting Xilinx HLS [481] designs. PreciseFPGA uses two realistic
assumptions. First, the change in precision does not affect the control path, which
means the number of operations in the application is not varied with the change in
precision. Second, the operand-width associated with the precision arithmetic changes
linearly with the change in the fixed-point configuration. In this section, we describe
the main components of PreciseFPGA. First, we give an overview (Section B.3.1) of
our framework. Second, we mention the HLS-based features that vary with change in
fixed-point configuration (Section B.3.2). Third, we describe the two most important
blocks of PreciseFPGA: (1) function detector and feature predictor (Section B.3.3)
and (2) resource and power predictor (Section B.3.4).

Function Detector
f

1
(x,y), f

2
(x,y),........, f

n
(x,y)

Feature Predictor
f

1
(2,1), f

2
(2,1),........, f

n
(2,1)

f
1
(3,1), f

2
(3,1),........, f

n
(3,1)

f
1
(32,31), f

2
(32,31),........, f

n
(32,31)

C-Synthesis

Arbitrary
Precision

CNN application in C++
<x

1
,y

1
>

Reports, HDL files

Feature Extractor
DSP, Memory, Registers,
Expressions, Multiplexer

Resource Predictor
DSP

<2,1> 
BRAM

<2,1> 
FF

<2,1>
 LUT

<2,1>
DSP

<3,1> 
BRAM

<3,1> 
FF

<3,1>
 LUT

<3,1>
DSP

<32,31> 
BRAM

<32,31> 
FF

<32,31>
 LUT

<32,31>

C-Synthesis

Arbitrary
Precision

CNN application in C++
<x

1
,y

1
>

Reports, HDL files

Feature Extractor
DSP, Memory, Registers,
Expressions, Multiplexer

C-Simulation

Arbitrary
Precision

CNN application in C++
<x

i
,y

i
>

Error Metrics
E

<2,1>
,E

<3,1>
,..........,E

<32,31>

Power Predictor 
P

<2,1>
,P

<3,1>
,........,P

<32,31>

496 times ~ 1 hour

2

3

5
4

6
Error

Po
w

er

1 7

8

Figure B-3: Overiew of PreciseFPGA.

B.3.1 Overview
The C-Synthesis results of a C++ application obtained for two fixed-point precision

configurations ( 1 in Figure B-3) are fed through a feature extractor block ( 2 in Figure
B-3). We extract all resource and timing-based features from the synthesis and the
implementation reports. The function detector ( 3 in Figure B-3) uses the features
extracted from the feature extractor to calculate offsets x̂, ŷ, and x̂ – ŷ of each instance 1

1Instance refers to the functions or operators in a design.



146 APPENDIX B. PRECISEFPGA

for each of the two fixed-point configurations. We compare the calculated offsets of the
two configurations to find a common offset function. This common function represents
the relation of bitwidth with an instance.

The feature predictor block ( 4 in Figure B-3) uses the identified common functions
to generate the feature values for all instances of all possible fixed-point configurations
< xi , yi >. The resource predictor block ( 5 in Figure B-3) uses the features generated
from the feature predictor to predict the post-implementation resource utilization for
all possible fixed-point configurations. The power predictor block ( 6 in Figure B-3)
uses the resource estimates obtained from the resource predictor to obtain the post-
implementation power prediction using a regression model called the Support Vector
Regression (SVR)[448]. The power predictor output along with the C-Simulation
( 7 in Figure B-3) is used to obtain a Pareto-optimal fixed-point configuration ( 8 in
Figure B-3) with respect to power and error in an inference task. We further explain
the above steps in the following sections.

B.3.2 HLS-based Features

The Xilinx HLS tool transforms a C/C++ specification into a register transfer
level (RTL) implementation using a C-Synthesis step. Our framework uses the reports
and the RTL source code (generated in the C-Synthesis step of the FPGA design
cycle) to predict the post-implementation resource and power consumption.

We mention the important components of the HLS report in Table-B.1. A C-
Synthesis report captures the variables mapped to FPGA resources under five main
categories (“Comp”). First, Memory represents instances mapped to block RAM
(BRAM) or slice logic (i.e., FF and LUT) and is reported along with its three
features, i.e., depth or words, width or bits, and banks. The bank depends on the
memory ports. Second, Expression (Expr) represents the variables responsible
for logical and arithmetic operations and lists their operand widths and operation
type. Third, Multiplexer (MUX) includes the selector instances with the number
of inputs and input bitwidth. Fourth, DSP describes multiply-accumulate (MAC)
and multiplication (MUL) operation instances above a certain operand-width that
are mapped to DSP slices. The operand-width of a DSP instance is extracted from
the respective RTL source code generated from the C-Synthesis step. Fifth, Register
(Reg) is implemented using flip-flop and stores the results of a look-up table.

Precision dependent features: The features expected to change with change in
precision type are marked with 3 and others with 7 in the Status column of Table-B.1.
For example, as mentioned above, for the Memory component, HLS reports define
memory in terms of depth, width, and banks. A change in the fixed-point precision
would affect the memory width only because the depth depends on the array size
and banks depend on the access type (i.e., a single-port or a double-port). Thus, the



B.3. PRECISEFPGA 147

Table B.1: Components and their features extracted from the C-Synthesis re-
port.

Comp Feature1 Feature2 Feature3 Status FF LUT BRAM DSP
Memory depth width bank 7, 3, 7 3 3 3 7

Expr op1 width op2 width op type 3, 3, 7 7 3 7 3

MUX ip size bits total bits 7, 3, 3 7 3 7 7

DSP op1 width op2 width op3 width 3, 3, 3 3 3 7 3

Reg variable bits const bits N/A 3, 7, 7 3 7 7 7

Status has 7 for depth and bank, and 3 for width. In FPGA, we can use BRAM or
LUT and FF to implement the memory component. Thus, these components have a
3 while DSP is marked with 7 as we cannot use DSP to implement a memory.

B.3.3 Function Detector and Feature Predictor

We require C-Synthesis reports of only two fixed-point configurations (for example
< x1, y1 > and < x2, y2 >) to determine if a feature is fixed or varies with a change in
precision. As mentioned before, an instance that is a part of the control-flow, such as
loop count, is expected to remain constant, whereas an instance involving fixed-point
operands would change with a change in data width precision.

The features extracted for an application with precision configurations < x1, y1 >

and < x2, y2 > are given as an input to the function detector block ( 3 in Figure B-3).
The function detector uses two steps. In the first step, the offset between the feature
value2 and bitwidth, integer, and fraction part of a fixed-point representation for
both < x1, y1 > and < x2, y2 > configurations is calculated separately. This offset
captures the relation between feature value and different components of the number
representation, i.e., bitwidth, integer, and fraction. The calculated offsets are
mentioned under columns x̂, ŷ, and x̂ – ŷ for each of the two configurations. We obtain
these offsets by subtracting bitwidth, integer, and fraction part of a fixed-point
representation from the obtained Value of an instance’s feature, respectively.

To understand the relationship between an instance of an application and the
bitwidth, integer, and fraction part of a fixed-point representation, we need to
ensure that the two chosen fixed-point configurations follow the conditions given by
Equation B.3

x1 ̸= x2 and y1 ̸= y2 and (x1 – y1) ̸= (x2 – y2) (B.3)

In the second step, the offsets obtained in the first step for two different fixed-point
precision configurations are compared to find a common matching offset function,
which we refer to it as function detected. In the case of a match, the function detected

2Value refers to HLS reported output of an instance’s feature, which belongs to a specific component
(see Table B.1) i.e, memory, expression, multiplexer, DSP, or register.



148 APPENDIX B. PRECISEFPGA

is replaced by the common offset function plus the offset’s calculated value. In case
there is no match, the function detected is replaced with 1, which implies that an
instance’s feature is independent of the chosen data-width and, therefore, remains
constant for all the fixed-point configurations.

Example: In Table B.2 we explain the above step using the instances captured
from the HLS C-Synthesis report for < 17, 8 > and < 16, 10 > fixed-point configura-
tions for LeNet-5. We report the values achieved by HLS for different features under
the Value column for each precision. In the case of the Expression component with
instance name out_V _d0, we have two features, op1-width and op2-width. First, we
calculate the offsets for each feature of the Expression component. For each fixed-point
precision configuration, we mention the calculated offsets under x̂, ŷ, and x̂ – ŷ. Second,
we compare the offsets obtained for the two fixed-point precision configurations to
find a common function. In the case of op1-width, the offsets obtained for < x1, y1 >

are different than the offsets obtained for < x2, y2 >. However, for op2-width, x̂
with a value of -1 is common between the offsets of the two precision configurations.
Thus, the function detected for op1-width and op2-width features are 1 and x̂ – 1,
respectively.

Table B.2: Example of an HLS C-Synthesis report with outputs from function-
detector and feature-predictor.

Comp Instance
Name

Feature
Name

<x=17, y=8> <x=16, y=10> Function
Detected

Feature Predicted
Value x̂ ŷ x̂ – ŷ Value x̂ ŷ x̂ – ŷ <2,1> <3,1> <3,2> <4,1> <4,2> <4,3>

Memory C2_weights_V_0_U width 9 -8 +1 0 6 -10 -4 0 x̂ – ŷ 1 2 1 3 2 1

Exr out_V_d0 op1 width 1 -16 -7 -8 1 -15 -9 -5 1 1 1 1 1 1 1
op2 width 16 -1 +8 +7 15 -1 +5 +9 x̂-1 1 2 2 3 3 3

MUX p_Val2_40_reg bits 17 0 +9 +8 16 0 +6 +10 x̂ 2 3 3 4 4 4

DSP nnet_mac_muladd op1 width 16 -1 +8 +7 15 -1 +5 +9 x̂-1 1 2 2 3 3 3
op2 width 10 -7 +2 +1 7 -9 -3 +1 x̂ – ŷ +1 2 3 2 4 3 2

Reg C2_weights_V_0_reg bits 9 -8 +1 0 6 -10 -4 0 x̂ – ŷ 1 2 1 3 2 1

In the feature prediction phase, we use the function detected to find the value of an
instance’s feature for all possible fixed-point precision configurations. In Table B.2, we
demonstrate the feature prediction for six different fixed-point configurations (<2,1>,
<3,1>, <3,2>, <4,1>, <4,2>, and <4,3>). For each of these configurations, to obtain
the feature value of an instance, we replace <x,y> values of a configuration into the
function detected.

B.3.4 Resource and Power Predictor

The resource predictor step uses the feature values generated from the feature
predictor ( 4 in Figure B-3) to predict the post-implementation DSP, BRAM, FF,
and LUT resource utilization for all possible fixed-point configurations. For each
FPGA resource type, we employ a different estimation technique based on the feature
complexity.



B.4. EVALUATION 149

BRAM: Our target Xilinx FPGA board [440] has block RAM resources that store up
to 36-Kbits of data and can be configured as either two independent 18-Kbits RAM
or one 36-Kbit RAM. Each 18-Kb block RAM can be configured as a 16K x 1, 8K
x2 , 4K x 4, 2K x 9, 1K x 18 or 512 x 36 in dual-port mode. For a given memory
instance with width, depth, and banks, our BRAM resource predictor finds the possible
BRAM utilization for all possible combinations of the configuration. The BRAM
configuration requiring the lowest cascade depth and the lowest BRAM utilization
is selected. This process is repeated for all the BRAM instances for the particular
fixed-point configuration. Total BRAM count is obtained as the sum over all the
BRAM instances.
FF and LUT: FF and LUT estimates vary non-linearly with the feature values.
Therefore, for the prediction of the FF and LUT, we use SVR (Support Vector
Machine) [448], which is a simple non-linear machine learning algorithm, to map HLS
estimates to post-implementation FF and LUT count. We use the calculated FF, and
LUT estimates from the feature predictor step as features to train our SVM model.
DSP: As discussed in Section B.3.2, MAC and MUL operations above a certain
threshold are mapped to the dedicated DSP slices on an FPGA. This threshold value
is extracted from the RTL generated in the C-Synthesis step of the HLS design cycle.
There is a linear mapping between the number DSP slices a particular MAC, or
MUL operation requires and the operand-width. Therefore, we use operand-width to
estimate post-implementation DSP utilization.

Power Prediction: The power prediction step ( 6 in Figure B-3) uses the resource
estimates obtained from the resource predictor to obtain the post-implementation
power prediction for a certain fixed-point configuration. We again use a simple
SVM [448] model for power prediction because of the non-linearity between the
resource utilization and power consumption. We train a separate SVM-based model
for each FPGA resource type, i.e., BRAM, FF, LUT, and DSP.

B.4 Evaluation

We evaluate our proposed method with LeNet-5 [250, 339]-based CNN architecture.
A CNN model consists of a combination of convolution layers, activation layers, fully-
connected layers, and pooling layers [14]. We vary the number of layers and dimensions
of each layer of a CNN model to obtain 8 different NN architectures that have an
impact on all the FPGA resource types, i.e., FF, LUT, BRAM, and DSP. Table-B.3
shows the number of parameters of each CNN model used in our evaluation. We
use the Xilinx Vivado HLS 2019.1 [481] tool to implement CNN designs targeted for
the Zynq-7z020 [440] edge FPGA-based device. To predict the post-implementation
resources and power utilization of a particular model, we use that specific model as



150 APPENDIX B. PRECISEFPGA

the test set and exclude that model from the training and validation set. From the
remaining set of 7 models, we randomly choose 6 models for training and 1 model for
validation.

B.4.1 Resource and Power Prediction
For each model, we obtain C-Synthesis results for only two fixed-point config-

urations. We feed these results to our PreciseFPGA framework and obtain power
prediction results for all the possible configurations of a model.

In Table B.3, we mention the total runtime and error results. The time taken
to predict power and resource utilization for all possible fixed-point configurations
using PreciseFPGA and Xilinx HLS [481] are mentioned under the columns Total
Runtime (PreciseFPGA) and Total Runtime (HLS), respectively. Total time taken by
PreciseFPGA consists of the prediction time of making predictions for all possible
fixed-point configurations (496 configurations) and runtime for C-Synthesis [483] for
two distinct precision configurations. We calculate the speedup in time obtained using
PreciseFPGA instead of the exhaustive search (using the HLS tool) in the column
Total Runtime (Speedup). We also mention the average prediction error for resources
(FF, BRAM, LUT, and DSP) and power estimates. We calculate the prediction error
by averaging the relative error with respect to HLS post-implementation estimates.

We achieve an average prediction error of 4.40%, 4.30%, 4.04%, and 4.21% for FF,
LUT, BRAM, and DSP, respectively. We observe PreciseFPGA is, on average, 674×
faster than an exhaustive search using HLS. For power prediction, we achieve an error
of less than 4% for all the considered models.

Table B.3: Model runtime and resource prediction results.

Total Runtime (hrs) Average Relative Prediction Error (%)Model # Parameters HLS PreciseFPGA Speedup FF LUT BRAM DSP Power
1 16278 223 0.205 1087 3.93 4.93 3.18 4.73 2.71
2 42704 107 0.213 502 4.26 3.96 2.83 4.99 3.07
3 14758 103 0.204 505 4.65 4.24 5.44 2.89 2.63
4 14822 115 0.219 525 4.42 3.80 5.91 3.25 2.42
5 9222 111 0.221 502 3.54 4.19 6.53 3.43 2.64
6 36004 132 0.227 581 4.04 4.19 2.84 4.95 3.41
7 24114 119 0.232 512 6.07 4.14 2.75 4.52 3.68
8 16498 239 0.203 1177 4.24 4.92 2.89 4.92 3.72

Average 673.8 4.40 4.30 4.04 4.21 3.03

B.4.2 Pareto Curve Generation
We use the MNIST [459] dataset to obtain the error in a CNN model’s inference

task under test while using 32-bit floating-point baseline and 496 possible fixed-point



B.4. EVALUATION 151

configurations. Figure B-4 shows the plot for the predicted power using PreciseFPGA
and the relative error for each model. For the prediction error, we calculate the change
in relative accuracy of fixed-point implementation compared to the baseline floating-
point implementation. The power consumption estimated by PreciseFPGA and HLS
tool is shown as Predicted and Actual, respectively. We also show the performance of
baseline 32-bit floating-point (Float) as well as 16-bit floating point (Half ) in the plot.
The figure also highlights the entire search space (496 configurations) using the points
labeled as All.

200

300

400

500

600

Po
w

er
 (

m
W

)

< 7,2><17,2>

< 32,6>

Model 1

200

300

400

500

600

700

< 8,6>
< 16,1>

< 32,4>

Model 2

100

200

300

400

500

< 10,9>
< 14,1>

< 32,18>

Model 3

200

300

400

500

< 7,6>
< 14,1>

< 32,5>

Model 4

0 50 100

200

300

400

500

Po
w

er
 (

m
W

)

< 3,2>< 13,1>

< 32,20>

Model 5

0 50 100

200

300

400

500

600

700

< 4,3>

< 18,1>

< 32,1>

Model 6

0 50 100

200

300

400

500

600

< 5,4>
< 16,1>

< 32,17>

Model 7

0 50 100

200

300

400

500

600

< 5,1>
< 15,2>

< 32,4>

Model 8

Relative Error (%)
Actual

Predicted

All

Float

Half

Highest Error

Optimal
Max. Power 
Consumption

Figure B-4: Pareto-Optimal plot of power vs relative error for 8 different archi-
tectures of LeNeT-5-based [250, 339] CNN model.

From the Pareto curve, we make three observations. First, the Predicted Power
faithfully follows the trend of the Actual Power. Second, after attaining optimal
configuration, in terms of power consumption and error, an increase in bitwidth
does not improve the error but drastically increases the power consumption. Third,
the optimal configuration enables greater saving in power consumption than the
floating-point implementation and higher bitwidth fixed-point configurations.



152 APPENDIX B. PRECISEFPGA

B.5 Related Work

In this section, we discuss related work that makes use of prediction and analytic-
based techniques to overcome the productivity issue with FPGAs.
ML-based. HLSPredict [346] estimates pre-implementation resource utilization
using program-counters (PC) available in off-the-shelf CPU-based processors. As
the PC of a processor is used, arbitrary precision cannot be evaluated using this
method. Additionally, pre-implementation resource estimation deviates dramatically
compared to post-implementation results [101]. Works such as [101], Pyramid[297],
and Minerva [128] predict post-implementation resource utilization using an ML
framework. However, these frameworks require C-Synthesis [483] run results for all
possible fixed-point configurations, which is a time-consuming process.
Analytic-based. Frameworks such as Lin-Analyzer [535] and HLSCope+ [91] predict
performance metrics for applications using an analytic-based approach. These works
do not take into the effect of different fixed-point precision configurations. FINN [135]
targets quantized NNs to generate dataflow style architectures for the network. How-
ever, these frameworks do not predict post-implementation resource utilization or
power prediction for all possible fixed-point configurations.

ApproxFPGAs [380] is an ML framework that analyzes ASIC-based approximate
circuits (ACs) to determine a set of Pareto-optimal FPGA-based designs with respect
to power and performance. This framework is specialized only for ASIC-based ACs.
Hence, it cannot be generalized for other applications. Additionally, this framework
does not predict post-implementation DSP, BRAM, LUT, and FF utilization.

Compared to PreciseFPGA, none of the above frameworks incorporates the resource
bound of a particular FPGA device. For example, if BRAM or DSP is exhausted, how
can it be mapped to the slice logic is a question not answered by those frameworks.
Hence, to our knowledge, PreciseFPGA is the only framework that: (1) predicts
post-implementation power and resource utilization for all fixed-point configurations
with only two C-Synthesis [483] run results, and (2) PreciseFPGA takes into account
the heterogeneity of FPGA by mapping the logic to other possible components when
any of the components is exhausted.

B.6 Conclusion

In this appendix, we propose PreciseFPGA, a resource and power predic-
tion framework for the exploration of fixed-point representation on an FPGA.
PreciseFPGA uses high-level synthesis results for only two fixed-point configura-
tions to predict the post-implementation power and resource utilization for all pos-
sible fixed-point configurations. While predicting the post-implementation results,



B.6. CONCLUSION 153

PreciseFPGA takes into account the effect of resource saturation and provides a
Pareto-optimal configuration in terms of power consumption and error. We show that
PreciseFPGA can provide accurate estimates of resource utilization and power con-
sumption with up to three orders of magnitude reduction in design space exploration
time. In the future, we aim to extend PreciseFPGA to quantize the activations of a
neural network and further examine our approach for other application domains.



154 APPENDIX B. PRECISEFPGA



Appendix C

Other Works of the Author

In addition to the works presented in this thesis, I have also contributed to several
other research works done in collaboration with students and researchers at ETH,
IBM, CMU, and TUe. In this section, I briefly overview these works.

In a recent work [430], we demonstrate the capability of a data-centric near-HBM
FPGA-based accelerator for pre-alignment filtering step in genome analysis. Compared
to our previous work on weather prediction, we see that genome analysis is even more
memory-bounded and can significantly benefit from near-memory acceleration. We
map the pre-alignment filtering algorithm to an HBM-based FPGA architecture
and create a heterogeneous memory hierarchy using on-chip URAM, BRAM, and
on-package HBM. We perform in-depth scalability analysis for both HBM and DDR4-
based FPGA boards and show the memory bottleneck of the pre-alignment phase of
genome analysis on a state-of-the-art IBM POWER9 system. Our analysis shows that
our HBM-based pre-alignment filtering design provides a 20.1× higher speedup and
115× higher energy efficiency than a 16 cores IBM POWER9 system.

Casper [110] designs a near-cache accelerator that improves the performance and
energy efficiency of stencil computations by eliminating the need to transfer data to the
processor for computation while minimizing the unnecessary data movement within
the cache hierarchy as well. To this end, we propose Casper, a novel hardware/software
codesign approach specifically targeted at stencil computations. We minimize data
movement by placing a set of stencil processing units (SPUs) near the last-level cache
(LLC) of a traditional CPU architecture and provide novel mechanisms to introduce
data mapping changes and support unaligned loads needed for high-performance
stencil computations. Computation is mapped to SPU so that each SPU operates on
the data that is located in the closest LLC slice. Thus, we can reduce the overall data
access latency and energy consumption while matching the compute performance to
the peak bandwidth of the LLC.

In our work [394], we propose a highly efficient and flexible interconnect network

155



156 APPENDIX C.

capable of running the entire COSMO model on a CGRA-based accelerator. The
central part of the COSMO model (called dynamical core or dycore) performs ∼80
compound stencil computations. Our algorithm is able to route the connections in the
weather stencil kernels while reducing the delay of the longest wire segment. Further,
we propose a post routing optimization to improve the placement of the weather stencil
kernels’ operations in the COSMO CGRA-based accelerator to improve the routing
results with minimum time complexity. Our evaluation shows that the proposed
techniques achieve 50% lower delay and 12% lower power than a baseline CGRA
switch box-interconnect network.

TDO-CIM [473] proposes a compiler for computation-in memory (CIM). Compu-
tation in-memory is a promising non-von Neumann approach aiming at completely
diminishing the data transfer to and from the memory subsystem. In recent years,
several CIM-based architectures have been proposed. However, the compiler support
for such architectures is still lagging. In this work, we close this gap by proposing an
end-to-end compilation flow for CIM based on the LLVM compiler infrastructure. Our
compiler automatically and transparently invokes a CIM accelerator without any user
intervention. Therefore, enabling legacy code to exploit CIM-based acceleration. We
develop a light-weight run-time library for data allocation, transfer, and execution of
computational tasks on a CIM device. We evaluate our approach using an open-source
simulation environment based on the Gem5-simulator, where we model a host CPU
connected to a CIM accelerator.

Agile auto-tuning [114] explores the possibility of automatically guiding the auto-
tuning of an overlay architecture for different transprecision settings by leveraging
knowledge from hardware experience. By adopting the concept of agile development,
we built a pipeline of engineering tasks that support the auto-tuning process. Instead
of eliminating the overlay hardware design space with pruning techniques, we propose
a technique that builds a prediction model to quantify the impact of a hardware design
choice towards an optimization goal. We show that the features with the highest
impact differ for different precisions.



Bibliography

[1] Accelerator Coherency Port, Cortex-A9 MPCore Technical Reference Manual,
Arm Ltd., https: // developer. arm. com/ documentation/ ddi0407/ e/
snoop-control-unit/ accelerator-coherency-port , Accessed: 2021-01-
05.

[2] ADATA, ADATA Ultimate Series: SU630, https: // shop. adata. com/
adata-ultimate-series-su630-960gb-sata-iii-internal-2-5-solid-
state-drive/ .

[3] ADM-PCIE-8K5-High-Performance Data Processing, https: // www. alpha-
data. com/ dcp/ products. php? product= adm-pcie-8k5 .

[4] ADM-PCIE-9H7-High-Speed Communications Hub, https: // www. alpha-
data. com/ dcp/ products. php? product= adm-pcie-9h7 .

[5] ADM-PCIE-9V3-High-Performance Network Accelerator, https : / / www .
alpha-data. com/ dcp/ products. php? product= adm-pcie-9v3 .

[6] ADM-PCIE-KU3-High-Performance Data Processing, https: // www. alpha-
data. com/ dcp/ products. php? product= adm-pcie-ku3 .

[7] Aga, S., Jeloka, S., Subramaniyan, A., Narayanasamy, S., Blaauw, D., and
Das, R., “Compute caches,” in HPCA, 2017.

[8] Agarap, A. F., “Deep Learning using Rectified Linear Units (ReLU),” in arXiv,
2018.

[9] Agarwal, N., Nellans, D., Stephenson, M., O’Connor, M., and Keckler, S. W.,
“Page Placement Strategies for GPUs within Heterogeneous Memory Systems,”
in ASPLOS, 2015.

[10] Agarwal, N. and Wenisch, T. F., “Thermostat: Application-Transparent Page
Management for Two-Tiered Main Memory,” in ASPLOS, 2017.

[11] Ahn, J., Hong, S., Yoo, S., Mutlu, O., and Choi, K., “A scalable processing-in-
memory accelerator for parallel graph processing,” in ISCA, 2015.

[12] Ahn, J., Yoo, S., Mutlu, O., and Choi, K., “Pim-enabled instructions: A low-
overhead, locality-aware processing-in-memory architecture,” in ISCA, 2015.

[13] Akin, B., Franchetti, F., and Hoe, J. C., “Data Reorganization in Memory
Using 3D-stacked DRAM,” 2015.

[14] Albawi, S., Mohammed, T. A., and Al-Zawi, S., “Understanding of a convolu-
tional neural network,” in ICET, 2017.

[15] Alian, M., Min, S. W., Asgharimoghaddam, H., Dhar, A., Wang, D. K., Roewer,
T., McPadden, A., O’Halloran, O., Chen, D., Xiong, J., Kim, D., Hwu, W.,
and Kim, N. S., “Application-transparent near-memory processing architecture
with memory channel network,” in MICRO, 2018.

[16] Alibaba cloud, www. alibabacloud. com .

157

https://developer.arm.com/documentation/ddi0407/e/snoop-control-unit/accelerator-coherency-port
https://developer.arm.com/documentation/ddi0407/e/snoop-control-unit/accelerator-coherency-port
https://shop.adata.com/adata-ultimate-series-su630-960gb-sata-iii-internal-2-5-solid-state-drive/
https://shop.adata.com/adata-ultimate-series-su630-960gb-sata-iii-internal-2-5-solid-state-drive/
https://shop.adata.com/adata-ultimate-series-su630-960gb-sata-iii-internal-2-5-solid-state-drive/
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-8k5
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-8k5
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9h7
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9h7
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-ku3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-ku3
www.alibabacloud.com


158 BIBLIOGRAPHY

[17] Alser, M., Hassan, H., Kumar, A., Mutlu, O., and Alkan, C., “Shouji: A fast
and efficient pre-alignment filter for sequence alignment,” in Bioinformatics,
2019.

[18] Alser, M., Hassan, H., Xin, H., Ergin, O., Mutlu, O., and Alkan, C., “Gate-
Keeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping,” in Bioinformatics, 2017.

[19] Alser, M., Shahroodi, T., Gomez-Luna, J., Alkan, C., and Mutlu, O., “SneakyS-
nake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs,
GPUs, and FPGAs,” in arXiv, 2019.

[20] Alves, M. A. Z., Villavieja, C., Diener, M., Moreira, F. B., and Navaux, P. O. A.,
“Sinuca: A validated micro-architecture simulator,” in HPCC, 2015.

[21] Amazon Web Services. AWS FPGA Developer AMI, https: // aws. amazon.
com/ ec2/ instance-types/ f1 .

[22] AMD, AMD Ryzen™ 7 PRO 2700 Processor, https: // www. amd. com/ en/
products/ cpu/ amd-ryzen-7-2700 .

[23] “An Introduction to CCIX White Paper,” in CCIX Consortium Inc.
[24] anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J.,

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.,
LAPACK Users’ guide. Siam, 1999.

[25] Anghel, a., Vasilescu, L. M., Mariani, G., Jongerius, R., and Dittmann, G.,
“An instrumentation approach for hardware-agnostic software characterization,”
in IJPP, 2016.

[26] Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J.,
O’Reilly, U.-M., and Amarasinghe, S., “OpenTuner: An Extensible Framework
for Program Autotuning,” in PACT, 2014.

[27] Appuswamy, R., Moolenbroek, D. C. van, and Tanenbaum, a. S., “Cache, Cache
Everywhere, Flushing All Hits Down the Sink: On Exclusivity in Multilevel,
Hybrid Caches,” in MSST, 2013.

[28] Ardalani, N., Lestourgeon, C., Sankaralingam, K., and Zhu, X., “Cross-
architecture performance prediction (XAPP) using CPU code to predict GPU
performance,” in ISCA, 2015.

[29] Arlot, S. and Celisse, A., “A Survey of Cross-Validation Procedures for Model
Selection,” SS, 2010.

[30] Armejach, A., Caminal, H., Cebrian, J. M., González-Alberquilla, R., Adeniyi-
Jones, C., Valero, M., Casas, M., and Moretó, M., “Stencil Codes on a Vector
Length Agnostic Architecture,” in PACT, 2018.

[31] Asghari-Moghaddam, H., Son, Y. H., Ahn, J. H., and Kim, N. S., “Chameleon:
Versatile and Practical Near-DRAM Acceleration Architecture for Large Mem-
ory Systems,” in MICRO, 2016.

[32] Ausavarungnirun, R., Landgraf, J., Miller, V., Ghose, S., Gandhi, J., Rossbach,
C. J., and Mutlu, O., “Mosaic: A gpu memory manager with application-
transparent support for multiple page sizes,” in MICRO, 2017.

[33] Awan, A. J., “Performance characterization and optimization of in-memory
data analytics on a scale-up server,” Ph.D. dissertation, KTH and UPC, 2017.

[34] Awan, A. J., Ohara, M., Ayguadé, E., Ishizaki, K., Brorsson, M., and Vlassov,
V., “Identifying the Potential of Near Data Processing for Apache Spark,” in
MEMSYS, 2017.

https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types/f1
https://www.amd.com/en/products/cpu/amd-ryzen-7-2700
https://www.amd.com/en/products/cpu/amd-ryzen-7-2700


BIBLIOGRAPHY 159

[35] AXI High Bandwidth Memory Controller v1.0, https: // www. xilinx. com/
support/ documentation/ ip_ documentation/ hbm/ v1_ 0/ pg276-axi-
hbm. pdf .

[36] AXI Reference Guide, https : / / www . xilinx . com / support /
documentation / ip _ documentation / ug761 _ axi _ reference _ guide .
pdf .

[37] Azarkhish, E., Rossi, D., Loi, I., and Benini, L., “Design and Evaluation of a
Processing-in-Memory Architecture for the Smart Memory Cube,” in ARCS,
2016.

[38] Babarinsa, O. O. and Idreos, S., “JAFAR: Near-Data Processing for Databases,”
in SIGMOD, 2015.

[39] Baek, S. H. and Park, K.-W., “A Fully Persistent and Consistent Read/Write
Cache Using Flash-Based General SSDs for Desktop Workloads,” in ICEIS,
2016.

[40] Bailey, K. A., Hornyack, P., Ceze, L., Gribble, S. D., and Levy, H. M., “Exploring
Storage Class Memory with Key Value Stores,” in SOSP, 2013.

[41] Baird, L., “Residual Algorithms: Reinforcement Learning with Function Ap-
proximation,” in ML, 1995.

[42] Barr, T. W., Cox, A. L., and Rixner, S., “Translation caching: Skip, don’t walk
(the page table),” in ISCA, 2010.

[43] Barr, T. W., Cox, A. L., and Rixner, S., “SpecTLB: A Mechanism for Specula-
tive Address Translation,” in ISCA, 2011.

[44] Baumann, U., Huang, Y.-Y., Gläser, C., Herman, M., Banzhaf, H., and Zöllner,
J. M., “Classifying road intersections using transfer-learning on a deep neural
network,” in ITSC, 2018.

[45] Bebis, G. and Georgiopoulos, M., “Feed-forward Neural Networks,” in IEEE
Potentials, 1994.

[46] Beckhoff, C., Koch, D., and Torresen, J., “Go ahead: A partial reconfiguration
framework,” in FCCM, 2012.

[47] Bellemare, M. G., Dabney, W., and Munos, R., “A distributional perspective
on reinforcement learning,” in arXiv, 2017.

[48] Bellman, R., “Dynamic programming,” in Science, 1966.
[49] Benton, B., “CCIX, Gen-Z, OpenCAPI: Overview and Comparison,” in OFA,

2017.
[50] Bera, R., Kanellopoulos, K., Nori, A., Shahroodi, T., Subramoney, S., and

Mutlu, O., “Pythia: A Customizable Hardware Prefetching Framework Using
Online Reinforcement Learning,” in MICRO, 2021.

[51] Bhargava, R., Serebrin, B., Spadini, F., and Manne, S., “Accelerating two-
dimensional page walks for virtualized systems,” in ASPLOS, 2008.

[52] Bhatia, E., Chacon, G., Pugsley, S., Teran, E., Gratz, P. V., and Jiménez, D. A.,
“Perceptron-based prefetch filtering,” in ISCA, 2019.

[53] Bhattacharjee, A., “Large-reach memory management unit caches,” in MICRO,
2013.

[54] Bianco, M., Diamanti, T., Fuhrer, O., Gysi, T., Lapillonne, X., Osuna, C., and
Schulthess, T., “A GPU Capable Version of the COSMO Weather Model,” in
ISC, 2013.

[55] Bisson, T. and Brandt, S. A., “Reducing Hybrid Disk Write Latency with
Flash-Backed I/O Requests,” in MASCOTS, 2007.

https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf


160 BIBLIOGRAPHY

[56] Bonaventura, L., “A Semi-implicit Semi-Lagrangian Scheme using the Height
Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric
Flows,” in JCP, 2000.

[57] Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., Thakur, R.,
Kim, D., Kuusela, A., Knies, A., Ranganathan, P., and Mutlu, O., “Google
Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” in
ASPLOS, 2018.

[58] Boroumand, A., Ghose, S., Patel, M., Hassan, H., Lucia, B., Ausavarungnirun,
R., Hsieh, K., Hajinazar, N., Malladi, K. T., Zheng, H., and Mutlu, O., “CoNDA:
Efficient Cache Coherence Support for Near-Data Accelerators,” in ISCA, 2019.

[59] Boroumand, A., Ghose, S., Patel, M., Hassan, H., Lucia, B., Hsieh, K., Malladi,
K. T., Zheng, H., and Mutlu, O., “LazyPIM: An Efficient Cache Coherence
Mechanism for Processing-in-Memory,” in CAL, 2016.

[60] Bottou, L., “Stochastic Learning,” in LNAI, 2003.
[61] Breiman, L., “Random forests,” in ML, 2001.
[62] Bu, K., Wang, M., Nie, H., Huang, W., and Li, B., “The Optimization of the

Hierarchical Storage System Based on the Hybrid SSD Technology,” in ISDEA,
2012.

[63] Byma, S., Steffan, J. G., Bannazadeh, H., Garcia, A. L., and Chow, P., “Fpgas
in the cloud: Booting virtualized hardware accelerators with openstack,” in
FCCM, 2014.

[64] Cai, Y., Ghose, S., Haratsch, E. F., Luo, Y., and Mutlu, O., “Error Characteri-
zation, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,”
in Proc. IEEE, 2017.

[65] Cai, Y., Ghose, S., Haratsch, E. F., Luo, Y., and Mutlu, O., “Reliability Issues
in Flash-Memory-Based Solid-State Drives: Experimental Analysis, Mitigation,
Recovery,” in Inside Solid State Drives (SSDs), 2018.

[66] Cai, Y., Luo, Y., Haratsch, E. F., Mai, K., and Mutlu, O., “Data Retention in
MLC Nand Flash Memory: Characterization, Optimization, and Recovery,” in
HPCA, 2015.

[67] Cai, Y., Yalcin, G., Mutlu, O., Haratsch, E. F., Unsal, O., Cristal, A., and Mai,
K., “Neighbor-Cell Assisted Error Correction for MLC Nand Flash Memories,”
in SIGMETRICS, 2014.

[68] Cali, D. S., Kalsi, G. S., Bingöl, Z., Firtina, C., Subramanian, L., Kim, J. S.,
Ausavarungnirun, R., Alser, M., Gomez-Luna, J., Boroumand, A., Norion, A.,
Scibisz, A., Subramoneyon, S., Alkan, C., Ghose, S., and Mutlu, O., “Genasm: A
high-performance, low-power approximate string matching acceleration frame-
work for genome sequence analysis,” in MICRO, 2020.

[69] Calotoiu, A., Hoefler, T., Poke, M., and Wolf, F., “Using automated performance
modeling to find scalability bugs in complex codes,” in SC, 2013.

[70] Canim, M., Mihaila, G. A., Bhattacharjee, B., Ross, K. A., and Lang, C. A.,
“SSD Bufferpool Extensions for Database Systems,” in VLDB, 2010.

[71] Carmichael, Z., Langroudi, H. F., Khazanov, C., Lillie, J., Gustafson, J. L.,
and Kudithipudi, D., “Deep Positron: A deep neural network using the posit
number system,” in arXiv, 2018.

[72] Castellane, A. and Mesnet, B., “Enabling Fast and Highly Effective FPGA
Design Process Using the CAPI SNAP Framework,” in HPC, M. Weiland,
G. Juckeland, S. Alam, and H. Jagode, Eds., 2019.



BIBLIOGRAPHY 161

[73] Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H., Fowers, J., Haselman,
M., Heil, S., Humphrey, M., Kaur, P., Kim, J., Lo, D., Massengill, T., Ovtcharov,
K., Papamichael, M., Woods, L., Lanka, S., Chiou, D., and Burger, D., “A
cloud-scale acceleration architecture,” in MICRO, 2016.

[74] Chai, Y., Du, Z., Qin, X., and Bader, D. A., “WEC: Improving Durability of
SSD Cache Drives by Caching Write-Efficient Data,” in TC, 2015.

[75] Chandra, R., Devine, S., Verghese, B., Gupta, A., and Rosenblum, M., “Schedul-
ing and page migration for multiprocessor compute servers,” in ASPLOS, 1994.

[76] Chang, H.-P., Liao, S.-Y., Chang, D.-W., and Chen, G.-W., “Profit Data
Caching and Hybrid Disk-Aware Completely Fair Queuing Scheduling Algo-
rithms for Hybrid Disks,” in SPE, 2015.

[77] Chang, K. K., Nair, P. J., Lee, D., Ghose, S., Qureshi, M. K., and Mutlu,
O., “Low-cost inter-linked subarrays (LISA): Enabling fast inter-subarray data
movement in DRAM,” in HPCA, 2016.

[78] Chang, L.-W., Gómez-Luna, J., El Hajj, I., Huang, S., Chen, D., and Hwu,
W.-m., “Collaborative Computing for Heterogeneous Integrated Systems,” in
ICPE, 2017.

[79] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and
Skadron, K., “Rodinia: A benchmark suite for heterogeneous computing,” in
IISWC, 2009.

[80] Chen, F., Koufaty, D. A., and Zhang, X., “Hystor: Making the best use of solid
state drives in high performance storage systems,” in SC, 2011.

[81] Chen, H., Zhang, W., and Jiang, G., “Experience transfer for the configuration
tuning in large-scale computing systems,” in TKDE, 2010.

[82] Chen, X., Chen, W., Lu, Z., Long, P., Yang, S., and Wang, Z., “A Duplication-
Aware SSD-Based Cache Architecture for Primary Storage in Virtualization
Environment,” in ISJ, 2015.

[83] Cheng, P., Lu, Y., Du, Y., Chen, Z., and Liu, Y., “Optimizing data placement
on hierarchical storage architecture via machine learning,” in NPC, 2019.

[84] Cheng, Y., Chen, W., Wang, Z., Yu, X., and Xiang, Y., “AMC: An Adaptive
Multi-Level Cache Algorithm in Hybrid Storage Systems,” in CCPE, 2015.

[85] Cheong, W., Yoon, C., Woo, S., Han, K., Kim, D., Lee, C., Choi, Y., Kim, S.,
Kang, D., Yu, G., Kim, J., Park, J., Song, K.-W., Park, K.-T., Cho, S., Oh, H.,
Lee, D. D., Choi, J.-H., and Jeong, J., “A flash memory controller for 15𝜇s
ultra-low-latency ssd using high-speed 3d nand flash with 3𝜇s read time,” in
ISSCC, 2018.

[86] Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie,
Y., “PRIME: A Novel Processing-in-memory Architecture for Neural Network
Computation in ReRAM-based Main Memory,” 2016.

[87] Chi, Y., Cong, J., Wei, P., and Zhou, P., “SODA: Stencil with Optimized
Dataflow Architecture,” in ICCAD, 2018.

[88] Cho, B. Y., Jeong, W. S., Oh, D., and Ro, W. W., “XSD: Accelerating MapRe-
duce by Harnessing the GPU inside an SSD,” in WoNDP, 2013.

[89] Choi, Y.-K., Cong, J., Fang, Z., Hao, Y., Reinman, G., and Wei, P., “In-depth
analysis on microarchitectures of modern heterogeneous cpu-fpga platforms,”
in TRETS, 2019.

[90] Choi, Y.-k., Cong, J., Fang, Z., Hao, Y., Reinman, G., and Wei, P., “A quanti-
tative analysis on microarchitectures of modern cpu-fpga platforms,” in DAC,
2016.



162 BIBLIOGRAPHY

[91] Choi, Y.-k., Zhang, P., Li, P., and Cong, J., “Hlscope+: Fast and accurate
performance estimation for fpga hls,” in ICCAD, 2017.

[92] Choi, Y., Song, I., Park, M.-H., Chung, H., Chang, S., Cho, B., Kim, J., Oh, Y.,
Kwon, D., Sunwoo, J., et al., “A 20nm 1.8V 8Gb PRAM with 40MB/s Program
Bandwidth,” in ISSCC, 2012.

[93] Chou, C., Jaleel, A., and Qureshi, M. K., “BATMAN: Maximizing Bandwidth
Utilization of Hybrid Memory Systems,” Citeseer, 2015.

[94] Christen, M., Schenk, O., and Burkhart, H., “PATUS: A Code Generation and
Autotuning Framework for Parallel Iterative Stencil Computations on Modern
Microarchitectures,” in IPDPS, 2011.

[95] CMU-SAFARI, Sibyl, https: // github. com/ CMU-SAFARI/ Sibyl .
[96] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R.,

“Benchmarking Cloud Serving Systems with YCSB,” in SOCC, 2010.
[97] Cox, G. and Bhattacharjee, A., “Efficient address translation for architectures

with multiple page sizes,” in ASPLOS, 2017.
[98] Cui, J., Zhang, Y., Wu, W., Yang, J., Wang, Y., and Huang, J., “DLV: Exploit-

ing Device Level Latency Variations for Performance Improvement on Flash
Memory Storage Systems,” in TCAD, 2017.

[99] Dai, G., Huang, T., Chi, Y., Xu, N., Wang, Y., and Yang, H., “Foregraph:
Exploring large-scale graph processing on multi-FPGA architecture,” in FPGA,
2017.

[100] Dai, N., Chai, Y., Liang, Y., and Wang, C., “ETD-Cache: An Expiration-
Time Driven Cache Scheme to Make SSD-Based Read Cache Endurable and
Cost-Efficient,” in CF, 2015.

[101] Dai, S., Zhou, Y., Zhang, H., Ustun, E., Young, E. F., and Zhang, Z., “Fast
and Accurate Estimation of Quality of Results in High-Level Synthesis with
Machine Learning,” in FCCM, 2018.

[102] Dai, W., Yang, Q., Xue, G.-R., and Yu, Y., “Boosting for transfer learning,” in
ICML, 2007.

[103] Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., and Yelick, K., “Op-
timization and Performance Modeling of Stencil Computations on Modern
Microprocessors,” in SIAM review, 2009.

[104] Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., and Yelick, K., “Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures,” in SC, 2008.

[105] De Oliveira, D. L., Paulo, M., Daglis, A., Mirzadeh, N., Ustiugov, D., Picorel
Obando, J., Falsafi, B., Grot, B., and Pnevmatikatos, D., “The Mondrian Data
Engine,” in ISCA, 2017.

[106] De Sa, C., Feldman, M., Ré, C., and Olukotun, K., “Understanding and
optimizing asynchronous low-precision stochastic gradient descent,” in ISCA,
2017.

[107] De Villiers, J. and Barnard, E., “Backpropagation Neural Nets with One and
Two Hidden Layers,” in IEEE Trans. Neural Netw. Learn. Sys, 1993.

[108] Deering, M. F., Schlapp, S. A., and Lavelle, M. G., “FBRAM: A New form of
Memory Optimized for 3D Graphics,” in SIGGRAPH, 1994.

[109] Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc,
A. R., “Design of Ion-implanted MOSFET’s with Very Small Physical Dimen-
sions,” in JSSC, 1974.

https://github.com/CMU-SAFARI/Sibyl


BIBLIOGRAPHY 163

[110] Denzler, A., Hajinazar, N., Singh, G., Oliveira, G. F., Bera, R., Gomez-Luna, J.,
and Mutlu, O., “Casper: Near-cache Stencil Computation,” in Under Submis-
sion.

[111] Dettmers, T., “8-bit approximations for parallelism in deep learning,” in ICLR,
2016.

[112] Diamantopoulos, D., Giefers, H., and Hagleitner, C., “EcTALK: Energy efficient
coherent transprecision accelerators—the bidirectional long short-term memory
neural network case,” in COOL CHIPS, 2018.

[113] Diamantopoulos, D. and Hagleitner, C., “A System-Level Transprecision FPGA
Accelerator for BLSTM Using On-chip Memory Reshaping,” in FPT, 2018.

[114] Diamantopoulos, D., Ringlein, B., Purandare, M., Singh, G., and Hagleitner,
C., “Agile Autotuning of a Transprecision Tensor Accelerator Overlay for TVM
Compiler Stack,” in FPL, 2020.

[115] Do, J., Zhang, D., Patel, J. M., DeWitt, D. J., Naughton, J. F., and Halverson,
A., “Turbocharging DBMS Buffer Pool Using SSDs,” in SIGMOD, 2011.

[116] Doms, G. and Schättler, U., “The Nonhydrostatic Limited-Area Model LM
(Lokal-model) of the DWD. Part I: Scientific Documentation,” in DWD, GB
forschung und Entwicklung, 1999.

[117] Doudali, T. D., Blagodurov, S., Vishnu, A., Gurumurthi, S., and Gavrilovska,
A., “Kleio: A hybrid memory page scheduler with machine intelligence,” in
HPDC, 2019.

[118] Doudali, T. D., Zahka, D., and Gavrilovska, A., “Cori: Dancing to the Right
Beat of Periodic Data Movements over Hybrid Memory Systems,” in IPDPS,
2021.

[119] Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., Ngadiuba,
J., Pierini, M., Rivera, R., Tran, N., and Wu, Z., “Fast inference of deep neural
networks in FPGAs for particle physics,” in JINST, 2018.

[120] Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester, D.,
Blaaauw, D., and Das, R., “Neural cache: Bit-serial in-cache acceleration of
deep neural networks,” in ISCA, 2018.

[121] Elliott, D. G., Snelgrove, W. M., and Stumm, M., “Computational Ram: A
Memory-SIMD Hybrid and its Application to DSP,” in CICC, 1992.

[122] Elnably, A., Wang, H., Gulati, A., and Varman, P. J., “Efficient qos for multi-
tiered storage systems.,” in HotStorage, 2012.

[123] Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., and Burger, D.,
“Dark Silicon and The End of Multicore Scaling,” in MICRO, 2012.

[124] Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D., “Neural acceleration
for general-purpose approximate programs,” in MICRO, 2012.

[125] Express, N., Everything You Need to Know About the NVMe 2.0 Specifications
and New Technical Proposals, https://nvmexpress.org/.

[126] Fang, J., Mulder, Y. T. B., Hidders, J., Lee, J., and Hofstee, H. P., “In-memory
database acceleration on fpgas: A survey,” 2020.

[127] Fang, K.-T., Ma, C.-X., and Winker, P., “Centered l2-discrepancy of random
sampling and latin hypercube design, and construction of uniform designs,” in
Math. Comp., 2002.

[128] Farahmand, F., Ferozpuri, A., Diehl, W., and Gaj, K., “Minerva: Automated
hardware optimization tool,” in ReConFig, 2017.

https://nvmexpress.org/


164 BIBLIOGRAPHY

[129] Farmahini-Farahani, A., Ahn, J. H., Morrow, K., and Kim, N. S., “NDA: Near-
DRAM Acceleration Architecture Leveraging Commodity DRAM Devices and
Standard Memory Modules,” in HPCA, 2015.

[130] Felter, W., Hylick, A., and Carter, J., “Reliability-Aware Energy Management
for Hybrid Storage Systems,” in MSST, 2011.

[131] Feng, Z., Feng, Z., Wang, X., Rao, G., Wei, Y., and Li, Z., “HDStore: An
SSD/HDD hybrid distributed storage scheme for large-scale data,” in WAIM,
2014.

[132] Fernandez, I., Quislant, R., Gutiérrez, E., Plata, O., Giannoula, C., Alser, M.,
Gómez-Luna, J., and Mutlu, O., “NATSA: A Near-Data Processing Accelerator
for Time Series Analysis,” in ICCD, 2020.

[133] Fettes, Q., Clark, M., Bunescu, R., Karanth, A., and Louri, A., “Dynamic
voltage and frequency scaling in nocs with supervised and reinforcement learning
techniques,” in TC, 2018.

[134] Fine Licht, J. de, Blott, M., and Hoefler, T., “Designing scalable FPGA archi-
tectures using high-level synthesis,” in PPoPP, 2018.

[135] FINN, https: // xilinx. github. io/ finn/ .
[136] Finnerty, A. and Ratigner, H., “Reduce power and cost by converting from

floating point to fixed point,” in WP491 (v1. 0), 2017.
[137] Friedman, J. H., “Greedy function approximation: A gradient boosting machine,”

in Ann. Stat., 2001.
[138] Frigo, P., Vannacc, E., Hassan, H., Van Der Veen, V., Mutlu, O., Giuffrida, C.,

Bos, H., and Razavi, K., “Trrespass: Exploiting the many sides of target row
refresh,” in SP, 2020.

[139] Fujifilm develops technology to deliver the world’s highest magnetic tape storage
capacity1 of 580TB using Strontium Ferrite magnetic particles, https: // www.
fujifilm. com/ us/ en/ news/ data-storage/ srfe_ 580tb .

[140] Gaide, B., Gaitonde, D., Ravishankar, C., and Bauer, T., “Xilinx adaptive
compute acceleration platform: Versaltm architecture,” in FPGA, 2019.

[141] Gal, E. and Toledo, S., “Algorithms and Data Structures for Flash Memories,”
in CSUR, 2005.

[142] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A., “A
survey on concept drift adaptation,” in CSUR, 2014.

[143] Gan, L., Fu, H., Luk, W., Yang, C., Xue, W., Huang, X., Zhang, Y., and Yang,
G., “Accelerating solvers for global atmospheric equations through mixed-
precision dataflow engine,” in FPL, 2013.

[144] Gao, F., Tziantzioulis, G., and Wentzlaff, D., “ComputeDRAM: In-memory
compute using off-the-shelf drams,” in MICRO, 2019.

[145] Gao, M. and Kozyrakis, C., “HRL: Efficient and Flexible Reconfigurable Logic
for Near-Data Processing,” in HPCA, 2016.

[146] Gao, M., Ayers, G., and Kozyrakis, C., “Practical Near-Data Processing for
In-Memory Analytics Frameworks,” in PACT, 2015.

[147] Ghose, S., Boroumand, A., Kim, J. S., Gómez-Luna, J., and Mutlu, O.,
“Processing-in-memory: A workload-driven perspective,” in IBM JRD, 2019.

[148] Ghose, S., Hsieh, K., Boroumand, A., Ausavarungnirun, R., and Mutlu, O.,
“Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions,” in arXiv, 2018.

https://xilinx.github.io/finn/
https://www.fujifilm.com/us/en/news/data-storage/srfe_580tb
https://www.fujifilm.com/us/en/news/data-storage/srfe_580tb


BIBLIOGRAPHY 165

[149] Ghose, S., Li, T., Hajinazar, N., Cali, D. S., and Mutlu, O., “Demystifying
Complex Workload-DRAM Interactions: An Experimental Study,” in POMACS,
2019.

[150] Ghose, S., Yaglikçi, A. G., Gupta, R., Lee, D., Kudrolli, K., Liu, W. X., Hassan,
H., Chang, K. K., Chatterjee, N., Agrawal, A., et al., “What Your DRAM
Power Models Are Not Telling You: Lessons From A Detailed Experimental
Study,” in SIGMETRICS, 2018.

[151] Giefers, H., Polig, R., and Hagleitner, C., “Accelerating arithmetic kernels with
coherent attached FPGA coprocessors,” in DATE, 2015.

[152] Goglin, B., “Exposing the Locality of Heterogeneous Memory Architectures to
HPC Applications,” in MEMSYS, 2016.

[153] Gokhale, M., Holmes, B., and Iobst, K., “Processing in Memory: The Terasys
Massively Parallel PIM Array,” in Computer, 1995.

[154] Gokhale, M., Lloyd, S., and Hajas, C., “Near Memory Data Structure Rear-
rangement,” in MEMSYS, 2015.

[155] Gomez-Luna, J., El Hajj, I., Fernandez, I., Giannoula, C., Oliveira, G. F.,
and Mutlu, O., “Benchmarking a New Paradigm: Understanding a Modern
Processing-in-Memory Architecture,” in SIGMETRICS, 2021.

[156] Gómez-Luna, J., El Hajj, I., Chang, L.-W., García-Floreszx, V., De Gonzalo,
S. G., Jablin, T. B., Pena, A. J., and Hwu, W.-m., “Chai: Collaborative
Heterogeneous Applications for Integrated-architectures,” in ISPASS, 2017.

[157] González, J. and González, A., “Speculative Execution via Address Prediction
and Data Prefetching,” in ICS, 1997.

[158] Group, S. A. W., Serial ATA: High Speed Serialized AT Attachment, https:
//web.archive.org/web/20161009182351/http://www.ece.umd.edu/
courses/enee759h.S2003/references/serialata10a.pdf.

[159] Grupp, L. M., Caulfield, A. M., Coburn, J., Swanson, S., Yaakobi, E., Siegel,
P. H., and Wolf, J. K., “Characterizing Flash Memory: Anomalies, Observations,
and Applications,” in MICRO, 2009.

[160] Gu, B., Yoon, a. S., Bae, D.-H., Jo, I., Lee, J., Yoon, J., Kang, J.-U., Kwon,
M., Yoon, C., Cho, S., Jeong, J., and Chang, D., “Biscuit: A Framework for
Near-data Processing of Big Data Workloads,” in ISCA, 2016.

[161] Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E., Fishman,
S., Wang, K., Gonina, E., Wu, N., Kokiopoulou, E., Sbaiz, L., Smith, J.,
Bartók, G., Berent, J., Harris, C., Vanhoucke, V., and Brevdo, E., TF-Agents:
A Library for Reinforcement Learning in TensorFlow, https: // github. com/
tensorflow/ agents , 2018.

[162] Guerra, J., Pucha, H., Glider, J. S., Belluomini, W., and Rangaswami, R.,
“Cost effective storage using extent based dynamic tiering.,” in FAST, 2011.

[163] Guo, Q., Chen, T., Chen, Y., Li, L., and Hu, W., “Microarchitectural design
space exploration made fast,” in MICPRO, 2013.

[164] Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P., “Deep learning
with limited numerical precision,” in ICML, 2015.

[165] Gustafson, J. L. and Yonemoto, I. T., “Beating floating point at its own game:
Posit arithmetic,” in SFI, 2017.

[166] Gysel, P., Motamedi, M., and Ghiasi, S., “Hardware-oriented approximation of
convolutional neural networks,” in CVPR, 2016.

https://web.archive.org/web/20161009182351/http://www.ece.umd.edu/courses/enee759h.S2003/references/serialata10a.pdf
https://web.archive.org/web/20161009182351/http://www.ece.umd.edu/courses/enee759h.S2003/references/serialata10a.pdf
https://web.archive.org/web/20161009182351/http://www.ece.umd.edu/courses/enee759h.S2003/references/serialata10a.pdf
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents


166 BIBLIOGRAPHY

[167] Gysi, T., Grosser, T., and Hoefler, T., “MODESTO: Data-centric Analytic
Optimization of Complex Stencil Programs on Heterogeneous Architectures,”
in SC, 2015.

[168] Ha, V.-P. and Sentieys, O., “Leveraging Bayesian Optimization to Speed Up
Automatic Precision Tuning,” in DATE, 2021.

[169] Hadidi, R., Nai, L., Kim, H., and Kim, H., “CAIRO: A Compiler-Assisted
Technique for Enabling Instruction-Level Offloading of Processing-In-Memory,”
in TACO, 2017.

[170] Hady, F. T., Foong, A., Veal, B., and Williams, D., “Platform storage perfor-
mance with 3D XPoint technology,” 2017.

[171] Ham, T. J., Chelepalli, B. K., Xue, N., and Lee, B. C., “Disintegrated Control
for Energy-Efficient and Heterogeneous Memory Systems,” in HPCA, 2013.

[172] Hamdioui, S., Xie, L., Nguyen, H. A. D., Taouil, M., Bertels, K., Corporaal, H.,
Jiao, H., Catthoor, F., Wouters, D., Eike, L., and Lunteren, J. van, “Memristor
Based Computation-in-memory Architecture for Data-Intensive Applications,”
in DATE, 2015.

[173] Hardavellas, N., “The rise and fall of dark silicon,” in USENIX, 2012.
[174] Harrold, D. J., Cao, J., and Fan, Z., “Data-Driven Battery Operation for Energy

Arbitrage Using Rainbow Deep Reinforcement Learning,” in Energy, 2021.
[175] Hashemi, M., Ebrahimi, E., Mutlu, O., Patt, Y. N., et al., “Accelerating

Dependent Cache Misses with an Enhanced Memory Controller,” in ISCA,
2016.

[176] Hashemi, M., Mutlu, O., and Patt, Y. N., “Continuous Runahead: Transparent
Hardware Acceleration for Memory Intensive Workloads,” in MICRO, 2016.

[177] Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J., and
Sadayappan, P., “Data Layout Transformation for Stencil Computations on
Short-Vector SIMD Architectures,” in CC, 2011.

[178] Hermosilla, T., Bermejo, E., Balaguer, A., and Ruiz, L. A., “Non-linear fourth-
order image interpolation for subpixel edge detection and localization,” in
IMAVIS, 2008.

[179] High Bandwidth Memory (HBM) DRAM (JESD235), https: // www. jedec.
org/ document_ search? search_ api_ views_ fulltext= jesd235 .

[180] High Bandwidth Memory (HBM) DRAM, https: // www. jedec. org/ sites/
default/ files/ JESD235B-HBM_ Ballout. zip .

[181] Higham, N. J. and Pranesh, S., “Simulating low precision floating-point arith-
metic,” in SIAM, 2019.

[182] Hsieh, K., Ebrahimi, E., Kim, G., Chatterjee, N., O’Connor, M., Vijaykumar,
N., Mutlu, O., and Keckler, S. W., “Transparent Offloading and Mapping
(TOM): Enabling Programmer-Transparent Near-Data Processing in GPU
Systems,” in ISCA, 2016.

[183] Hsieh, K., Khan, S., Vijaykumar, N., Chang, K. K., Boroumand, A., Ghose,
S., and Mutlu, O., “Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation,” in ICCD, 2016.

[184] Huang, S., Wei, Q., Feng, D., Chen, J., and Chen, C., “Improving Flash-Based
Disk Cache with Lazy Adaptive Replacement,” in TOS, 2016.

[185] Huang, S., Chang, L.-W., El Hajj, I., Garcia de Gonzalo, S., Gómez-Luna, J.,
Chalamalasetti, S. R., El-Hadedy, M., Milojicic, D., Mutlu, O., Chen, D., and
Hwu, W.-m., “Analysis and Modeling of Collaborative Execution Strategies
for Heterogeneous CPU-FPGA Architectures,” in ICPE, 2019.

https://www.jedec.org/document_search?search_api_views_fulltext=jesd235
https://www.jedec.org/document_search?search_api_views_fulltext=jesd235
https://www.jedec.org/sites/default/files/JESD235B-HBM_Ballout.zip
https://www.jedec.org/sites/default/files/JESD235B-HBM_Ballout.zip


BIBLIOGRAPHY 167

[186] Hui, J., Ge, X., Huang, X., Liu, Y., and Ran, Q., “E-HASH: An Energy-Efficient
Hybrid Storage System Composed of One SSD and Multiple HDDs,” in ICSI,
2012.

[187] Huynh, H., Wang, Z. J., and Vincent, P. E., “High-order methods for computa-
tional fluid dynamics: A brief review of compact differential formulations on
unstructured grids,” in Computers & fluids, 2014.

[188] IBM, Ibm power9 cpu, https: // www. ibm. com/ it- infrastructure/
power/ power9 .

[189] Iliadis, I., Jelitto, J., Kim, Y., Sarafijanovic, S., and Venkatesan, V., “ExaPlan:
Queueing-Based Data Placement and Provisioning for Large Tiered Storage
Systems,” in MASCOTS, 2015.

[190] Intel, Intel Optane SSD DC P4801X Series, https: // ark. intel. com/
content/ www/ us/ en/ ark/ products/ 149365/ intel-optane-ssd-dc-
p4801x-series-100gb-2-5in-pcie-x4-3d-xpoint. html .

[191] Intel, Intel SSD 660p Series, https: // www. intel. com/ content/ www/ us/
en/ products/ docs/ memory-storage/ solid-state-drives/ consumer-
ssds/ 660p-series-brief. html .

[192] Intel, Intel SSD D3-S4510 Series, https: // www. intel. com/ content/
www/ us/ en/ products/ memory-storage/ solid-state-drives/ data-
center- ssds/ d3- series/ d3- s4510- series/ d3- s4510- 1- 92tb- 2-
5inch-3d2. html .

[193] Intel, Intel SSD DC P4610 Series, https: // ark. intel. com/ content/
www/ us/ en/ ark/ products/ 140103/ intel-ssd-dc-p4610-series-1-
6tb-2-5in-pcie-3-1-x4-3d2-tlc. html .

[194] Intel Stratix 10 MX FPGAs, https: // www. intel. com/ content/ www/ us/
en/ products/ programmable/ sip/ stratix-10-mx. html .

[195] Intel Vtune Amplifier XE. [Online]. Available: http://software.intel.com/
en-us/node/544393.

[196] Intel® Xeon® Processor Scalable Family Technical Overview, Intel Corpora-
tion, https: // software. intel. com/ content/ www/ us/ en/ develop/
articles / intel - xeon - processor - scalable - family - technical -
overview. html , Accessed: 2021-02-05.

[197] Ipek, E., Mutlu, O., Martínez, J. F., and Caruana, R., “Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach,” in ISCA, 2008.

[198] Ïpek, E., McKee, S. A., Caruana, R., Supinski, B. R. de, and Schulz, M.,
“Efficiently exploring architectural design spaces via predictive modeling,” in
ASPLOS, 2006.

[199] István, Z., Sidler, D., and Alonso, G., “Caribou: Intelligent Distributed Storage,”
in VLDB, 2017.

[200] Iwata, A., Yoshida, Y., Matsuda, S., Sato, Y., and Suzumura, N., “An artificial
neural network accelerator using general purpose 24 bits floating point digital
signal processors,” in IJCNN, 1989.

[201] Jain, R., Panda, P. R., and Subramoney, S., “Machine Learned Machines:
Adaptive Co-optimization of Caches, Cores, and On-chip Network,” in DATE,
2016.

[202] Jamshidi, P., Velez, M., Kästner, C., Siegmund, N., and Kawthekar, P., “Trans-
fer Learning for Improving Model Predictions in Highly Configurable Software,”
in SEAMS, 2017.

https://www.ibm.com/it-infrastructure/power/power9
https://www.ibm.com/it-infrastructure/power/power9
https://ark.intel.com/content/www/us/en/ark/products/149365/intel-optane-ssd-dc-p4801x-series-100gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/149365/intel-optane-ssd-dc-p4801x-series-100gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/149365/intel-optane-ssd-dc-p4801x-series-100gb-2-5in-pcie-x4-3d-xpoint.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/660p-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/660p-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/660p-series-brief.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://www.intel.com/content/www/us/en/products/programmable/sip/stratix-10-mx.html
https://www.intel.com/content/www/us/en/products/programmable/sip/stratix-10-mx.html
http://software.intel.com/en-us/node/544393
http://software.intel.com/en-us/node/544393
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html


168 BIBLIOGRAPHY

[203] Jeon, D. I. and Chung, K. S., “CasHMC: A Cycle-Accurate Simulator for
Hybrid Memory Cube,” in CAL, 2017.

[204] Jiang, J., Wang, Z., Liu, X., Gómez-Luna, J., Guan, N., Deng, Q., Zhang, W.,
and Mutlu, O., “Boyi: A Systematic Framework for Automatically Deciding
the Right Execution Model of OpenCL Applications on FPGAs,” in FPGA,
2020.

[205] Jiménez, D. A., “Fast path-based neural branch prediction,” in MICRO, 2003.
[206] Jiménez, D. A., “Piecewise linear branch prediction,” in ISCA, 2005.
[207] Jiménez, D. A., “An optimized scaled neural branch predictor,” in ICCD, 2011.
[208] Jiménez, D. A. and Lin, C., “Dynamic branch prediction with perceptrons,” in

HPCA, 2001.
[209] Jongerius, R., Wijnholds, S., Nijboer, R., and Corporaal, H., “An End-to-End

Computing Model for the Square Kilometre Array,” in Computer, 2014.
[210] Jongerius, R., Anghel, a., Dittmann, G., Mariani, G., Vermij, E., and Corporaal,

H., “Analytic Multi-Core Processor Model for Fast Design-Space Exploration,”
in TC, 2017.

[211] Joseph, P., Vaswani, K., and Thazhuthaveetil, M. J., “Construction and use of
linear regression models for processor performance analysis,” in HPCA, 2006.

[212] Jun, S., Liu, M., Lee, S., Hicks, J., Ankcorn, J., King, M., Xu, S., and Arvind,
“BlueDBM: An Appliance for Big Data analytics,” in ISCA, 2015.

[213] Jung, M., Wilson, E. H., Donofrio, D., Shalf, J., and Kandemir, M. T., “Nand-
FlashSim: Intrinsic Latency Variation Aware Nand Flash Memory System
Modeling and Simulation at Microarchitecture Level,” in MSST, 2012.

[214] Juozapaitis, Z., Koul, A., Fern, A., Erwig, M., and Doshi-Velez, F., “Explainable
Reinforcement Learning via Reward Decomposition,” in IJCAI-ECAI, 2019.

[215] Kachris, C., Falsafi, B., and Soudris, D., Hardware Accelerators in Data Centers.
Springer, 2018.

[216] Kang, M., Keel, M.-S., Shanbhag, N. R., Eilert, S., and Curewitz, K., “An
energy-efficient VLSI architecture for pattern recognition via deep embedding
of computation in SRAM,” in ICASSP, 2014.

[217] Kang, W., Shin, D., and Yoo, S., “Reinforcement learning-assisted garbage
collection to mitigate long-tail latency in ssd,” in TECS, 2017.

[218] Kang, W. and Yoo, S., “Dynamic Management of Key States for Reinforcement
Learning-assisted Garbage Collection to Reduce Long Tail Latency in SSD,” in
DAC, 2018.

[219] Kang, Y., Kee, Y.-s., Miller, E. L., and Park, C., “Enabling Cost-effective Data
Processing with Smart SSD,” in MSST, 2013.

[220] Kang, Y., Huang, W., Yoo, S.-M., Keen, D., Ge, Z., Lam, V., Pattnaik, P., and
Torrellas, J., “FlexRAM: Toward an Advanced Intelligent Memory System,” in
ICCD, 1999.

[221] Kao, S.-C., Jeong, G., and Krishna, T., “Confuciux: Autonomous hardware
resource assignment for dnn accelerators using reinforcement learning,” in
MICRO, 2020.

[222] Kara, K., Alistarh, D., Alonso, G., Mutlu, O., and Zhang, C., “FPGA-
accelerated Dense Linear Machine Learning: A Precision-Convergence Trade-
off,” in FCCM, 2017.

[223] Kara, K., Eguro, K., Zhang, C., and Alonso, G., “ColumnML: Column-Store
Machine Learning with On-The-Fly Data Transformation,” in VLDB, 2018.



BIBLIOGRAPHY 169

[224] Kawahara, A., Azuma, R., Ikeda, Y., Kawai, K., Katoh, Y., Hayakawa, Y.,
Tsuji, K., Yoneda, S., Himeno, A., Shimakawa, K., et al., “An 8Mb Multi-
Layered Cross-Point ReRAM Macro with 443MB/s Write Throughput,” in
ISSCC, 2012.

[225] Ke, L., Gupta, U., Cho, B. Y., Brooks, D., Chandra, V., Diril, U., Firoozshahian,
A., Hazelwood, K., Jia, B., Lee, H. S., Li, M., Maher, B., Mudigere, D., Naumov,
M., Schatz, M., Smelyanskiy, M., Wang, X., Reagen, B., Wu, C., Hempstead,
M., and Zhang, X., “RecNMP: Accelerating Personalized Recommendation
with Near-Memory Processing,” in ISCA, 2020.

[226] Keeton, K., Patterson, D. A., and Hellerstein, J. M., “A Case for Intelligent
Disks (IDISKs),” in SIGMOD, 1998.

[227] Kehler, S., Hanesiak, J., Curry, M., Sills, D., and Taylor, N., “High Resolution
Deterministic Prediction System (HRDPS) Simulations of Manitoba Lake
Breezes,” in Atmosphere-Ocean, 2016.

[228] Kelm, J. H., Johnson, M. R., Lumetta, S. S., and Patel, S. J., “WayPoint:
Scaling Coherence to 1000-Core Architectures,” in PACT, 2010.

[229] Kgil, T. and Mudge, T., “FlashCache: A Nand Flash Memory File Cache for
Low Power Web Servers,” in CASES, 2006.

[230] Kgil, T., Roberts, D., and Mudge, T., “Improving Nand Flash Based Disk
Caches,” in ISCA, 2008.

[231] Kim, D., Kung, J., Chai, S., Yalamanchili, S., and Mukhopadhyay, S., “Neu-
rocube: A Programmable Digital Neuromorphic Architecture with High-Density
3D Memory,” 2016.

[232] Kim, H., Seshadri, S., Dickey, C. L., and Chiu, L., “Evaluating Phase Change
Memory for Enterprise Storage Systems: A Study of Caching and Tiering
Approaches,” in FAST, 2014.

[233] Kim, J., Oh, C. S., Lee, H., Lee, D., Hwang, H. R., Hwang, S., Na, B., Moon, J.,
Kim, J., Park, H., Ryu, J., Park, K., Kang, S. K., Kim, S., Kim, H., Bang, J.,
Cho, H., Jang, M., Han, C., LeeLee, J., Choi, J. S., and Jun, Y., “A 1.2 V
12.8 GB/s 2 Gb Mobile Wide-I/O DRAM with 4×128 I/Os Using TSV Based
Stacking,” 2012.

[234] Kim, J. S., Cali, D. S., Xin, H., Lee, D., Ghose, S., Alser, M., Hassan, H.,
Ergin, O., Alkan, C., and Mutlu, O., “GRIM-Filter: Fast seed location filtering
in DNA read mapping using processing-in-memory technologies,” in BMC
Genomics, 2018.

[235] Kim, Y., Yang, W., and Mutlu, O., “Ramulator: A fast and extensible dram
simulator,” in CAL, 2016.

[236] Kim, Y., Gupta, A., Urgaonkar, B., Berman, P., and Sivasubramaniam, A.,
“HybridStore: A Cost-Efficient, High-Performance Storage System Combining
SSDs and HDDs,” in MASCOTS, 2011.

[237] Kira, K. and Rendell, L. A., “A Practical Approach to Feature Selection,” in
ML, 1992.

[238] Klonatos, Y., Makatos, T., Marazakis, M., Flouris, M. D., and Bilas, A., “Azor:
Using Two-Level Block Selection to Improve SSD-Based I/O Caches,” in NAS,
2011.

[239] Klöwer, M., Düben, P. D., and Palmer, T. N., “Posits as an alternative to
floats for weather and climate models,” in CoNGA, 2019.

[240] Kogge, P. M., “EXECUBE-A New Architecture for Scaleable MPPs,” in ICPP,
1994.



170 BIBLIOGRAPHY

[241] Koo, G., Matam, K. K., I, T., Narra, H. V. K. G., Li, J., Tseng, H.-W.,
Swanson, S., and Annavaram, M., “Summarizer: Trading Communication with
Computing Near Storage,” in MICRO, 2017.

[242] Kotsiantis, S. and Pintelas, P., “Combining bagging and boosting,” IJCIS,
2004.

[243] Kozyrakis, C. E., Perissakis, S., Patterson, D., anderson, T., Asanovic, K.,
Cardwell, N., Fromm, R., Golbus, J., Gribstad, B., Keeton, K., Thomas, R.,
Treuhaft, N., and Yelick, K., “Scalable Processors in the Billion-Transistor Era:
IRAM,” in Computer, 1997.

[244] Krish, K., Wadhwa, B., Iqbal, M. S., Rafique, M. M., and Butt, A. R., “On
Efficient Hierarchical Storage for Big Data Processing,” in CCGrid, 2016.

[245] Krzysztof Rojek, M. R. and Paropkari, V. R., “CFD Acceleration with FPGA,”
in H2RC, 2019.

[246] Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E. G.,
Kolodny, A., and Weiser, U. C., “Magic—memristor-aided logic,” TC: Express
Briefs, 2014.

[247] Kwon, Y.-C., Han Lee, S., Lee, J., Kwon, S.-H., Min Ryu, J., Son, J.-P., O,
S., Yu, H.-S., Lee, H., Young Kim, S., Cho, Y., Guk Kim, J., Choi, J., Shin,
H.-S., Kim, J., Phuah, B., Kim, H., Jun Song, M., Choi, A., Kim, D., Kim, S.,
Kim, E.-B., Wang, D., Kang, S., Ro, Y., Seo, S., Song, J., Youn, J., Sohn, K.,
and Sung Kim, N., “A 20nm 6GB Function-In-Memory DRAM, Based on
HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level
Parallelism, for Machine Learning Applications,” in ISSCC, 2021.

[248] Langroudi, S. H. F., Pandit, T., and Kudithipudi, D., “Deep learning inference
on embedded devices: Fixed-point vs posit,” in EMC2, 2018.

[249] Lattner, C. and Adve, V., “Llvm: A compilation framework for lifelong program
analysis & transformation,” in CGO, 2004.

[250] LeCun, Y., “Lenet-5, convolutional neural networks,” in http: // yann. lecun.
com/ exdb/ lenet , 2015.

[251] Lee, D. U., Kim, K. W., Kim, K. W., Kim, H., Kim, J. Y., Park, Y. J., Kim,
J. H., Kim, D. S., Park, H. B., Shin, J. W., Cho, J. H., Kwon, K. H., Kim,
M. J., Lee, J., Park, K. W., Chung, B., and Hong, S., “25.2 A 1.2V 8Gb
8-Channel 128GB/s High-Bandwidth Memory (HBM) Stacked DRAM with
Effective Microbump I/O Test Methods Using 29nm Process and TSV,” in
ISSCC, 2014.

[252] Lee, D., Ghose, S., Pekhimenko, G., Khan, S., and Mutlu, O., “Simultaneous
Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,”
in TACO, 2016.

[253] Lee, D., Min, C., and Eom, Y. I., “Effective SSD Caching for High-Performance
Home Cloud Server,” in ICCE, 2015.

[254] Lee, H. G., “High-performance nand and pram hybrid storage design for
consumer electronics,” 2010.

[255] Lee, J., Ahn, J. H., and Choi, K., “Buffered Compares: Excavating the Hidden
Parallelism Inside DRAM Architectures with Lightweight Logic,” in DATE,
2016.

[256] Lee, J., Kim, H., Yoo, S., Choi, K., Hofstee, H. P., Nam, G.-J., Nutter, M. R.,
and Jamsek, D., “ExtraV: Boosting Graph Processing Near Storage with a
Coherent Accelerator,” in VLDB, 2017.

http://yann. lecun. com/exdb/lenet
http://yann. lecun. com/exdb/lenet


BIBLIOGRAPHY 171

[257] Lee, J. H., Sim, J., and Kim, H., “BSSync: Processing Near Memory for Machine
Learning Workloads with Bounded Staleness Consistency Models,” in PACT,
2015.

[258] Lee, S., Won, Y., and Hong, S., “Mining-Based File Caching in a Hybrid Storage
System,” in JISE, 2014.

[259] Lee, S., Kang, S.-h., Lee, J., Kim, H., Lee, E., Seo, S., Yoon, H., Lee, S., Lim,
K., Shin, H., Kim, J., O, S., Iyer, A., Wang, D., Sohn, K., and Sung Kim, N.,
“Hardware Architecture and Software Stack for FIM Based on Commercial
DRAM Technology,” in ISCA, 2021.

[260] Lee, V. T., Mazumdar, A., Mundo, C. C. del, Alaghi, A., Ceze, L., and Oskin,
M., “Application Codesign of Near-Data Processing for Similarity Search,” in
IPDPS, 2018.

[261] Leidel, J. D. and Chen, Y., “HMC-Sim-2.0: A Simulation Platform for Exploring
Custom Memory Cube Operations,” in IPDPSW, 2016.

[262] Levy, Y., Bruck, J., Cassuto, Y., Friedman, E. G., Kolodny, A., Yaakobi, E.,
and Kvatinsky, S., “Logic operations in memory using a memristive akers array,”
in Microelectronics Journal, 2014.

[263] Li, D., Yao, S., and Wang, Y., “Processor design space exploration via statistical
sampling and semi-supervised ensemble learning,” in IEEE Access, 2018.

[264] Li, S., Niu, D., Malladi, K. T., Zheng, H., Brennan, B., and Xie, Y., “Drisa: A
dram-based reconfigurable in-situ accelerator,” in MICRO, 2017.

[265] Li, S., Xu, C., Zou, Q., Zhao, J., Lu, Y., and Xie, Y., “Pinatubo: A Processing-
in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-volatile
Memories,” in DAC, 2016.

[266] Li, Y., Ghose, S., Choi, J., Sun, J., Wang, H., and Mutlu, O., “Utility-Based
Hybrid Memory Management,” in CLUSTER, 2017.

[267] Li, Y., Guo, L., Supratak, A., and Guo, Y., “Enabling Performance as a Service
for a Cloud Storage System,” in CLOUD, 2014.

[268] Li, Z., “Greendm: A versatile tiering hybrid drive for the trade-off evaluation
of performance, energy, and endurance,” Ph.D. dissertation, The Graduate
School, Stony Brook University: Stony Brook, NY., 2014.

[269] Liang, S. and Srikant, R., “Why Deep Neural Networks for Function Approxi-
mation?” In arXiv, 2016.

[270] Liang, Y., Chai, Y., Bao, N., Chen, H., and Liu, Y., “Elastic Queue: A Univer-
sal SSD Lifetime Extension Plug-in for Cache Replacement Algorithms,” in
SYSTOR, 2016.

[271] Liao, S.-w., Hung, T.-H., Nguyen, D., Chou, C., Tu, C., and Zhou, H., “Machine
learning-based prefetch optimization for data center applications,” in SC, 2009.

[272] Lin, F. X. and Liu, X., “memif: Towards Programming Heterogeneous Memory
Asynchronously,” in ASPLOS, 2016.

[273] Lin, J., “Divergence measures based on the Shannon entropy,” in IEEE Trans.
Inf. Theory, IEEE, 1991.

[274] Lin, L., Zhu, Y., Yue, J., Cai, Z., and Segee, B., “Hot Random Off-Loading: A
Hybrid Storage System with Dynamic Data Migration,” in MASCOTS, 2011.

[275] Lin, T.-R., Penney, D., Pedram, M., and Chen, L., “A Deep Reinforcement
Learning Framework for Architectural Exploration: A Routerless NoC Case
Study,” in HPCA, 2020.

[276] (). “Linux Mint 20.1 “Ulyssa”, https://linuxmint.com/edition.php?id=
284.”

https://linuxmint.com/edition.php?id=284
https://linuxmint.com/edition.php?id=284


172 BIBLIOGRAPHY

[277] Linux source code (v5.10.16). [Online]. Available: https://elixir.bootlin.
com/linux/latest/source.

[278] Liu, E. Z., Hashemi, M., Swersky, K., Ranganathan, P., and Ahn, J., “An
imitation learning approach for cache replacement,” in arXiv, 2020.

[279] Liu, G., Schulte, O., Zhu, W., and Li, Q., “Toward Interpretable Deep Rein-
forcement Learning with Linear Model u-Trees,” in ECML PKDD, 2018.

[280] Liu, J., Zhao, H., Ogleari, M. A., Li, D., and Zhao, J., “Processing-in-Memory
for Energy-efficient Neural Network Training: A Heterogeneous Approach,” in
MICRO, 2018.

[281] Liu, K., Peng, J., Wang, J., Yu, B., Liao, Z., Huang, Z., and Pan, J., “A learning-
based data placement framework for low latency in data center networks,” IEEE,
2019.

[282] Liu, L., Yang, S., Peng, L., and Li, X., “Hierarchical Hybrid Memory Manage-
ment in OS for Tiered Memory Systems,” in TPDS, 2019.

[283] Liu, Y., Huang, J., Xie, C., and Cao, Q., “RAF: A Random Access First Cache
Management to Improve SSD-Based Disk Cache,” in NAS, 2010.

[284] Liu, Y., Ge, X., Huang, X., and Du, D. H., “MOLAR: A Cost-Efficient, High-
Performance SSD-Based Hybrid Storage Cache,” in CLUSTER, 2013.

[285] Liu, Z., Calciu, I., Herlihy, M., and Mutlu, O., “Concurrent Data Structures
for Near-Memory Computing,” in SPAA, 2017.

[286] Loh, G., Jayasena, N., Oskin, M., Nutter, M., Roberts, D., Meswani, M., Zhang,
D., and Ignatowski, M., “A Processing in Memory Taxonomy and a Case for
Studying Fixed-Function PIM,” in WoNDP, 2013.

[287] Lu, N., Choi, I.-S., Ko, S.-H., and Kim, S.-D., “A PRAM Based Block Updating
Management for Hybrid Solid State Disk,” in ELEX, 2012.

[288] Lu, Z.-W. and Zhou, G., “Design and Implementation of Hybrid Shingled
Recording RAID System,” in PiCom, 2016.

[289] Luna, J. G. G., Chang, L.-W., Sung, I.-J., Hwu, W.-M., and Guil, N., “In-place
data sliding algorithms for many-core architectures,” in ICPP, 2015.

[290] Lunteren, J. van, Luijten, R., Diamantopoulos, D., Auernhammer, F., Ha-
gleitner, C., Chelini, L., Corda, S., and Singh, G., “Coherently Attached
Programmable Near-Memory Acceleration Platform and its application to
Stencil Processing,” in DATE, 2019.

[291] Luo, D., Wan, J., Zhu, Y., Zhao, N., Li, F., and Xie, C., “Design and Imple-
mentation of a Hybrid Shingled Write Disk System,” in TPDS, 2015.

[292] Luo, Y., Jin, P., and Wan, S., “Optimal Data Placement for Data-Centric
Algorithms on NVM-Based Hybrid Memory,” in DSAA, 2020.

[293] Lv, Y., Chen, X., Sun, G., and Cui, B., “A probabilistic data replacement
strategy for flash-based hybrid storage system,” in APWeb, 2013.

[294] Lv, Y., Cui, B., Chen, X., and Li, J., “Hotness-Aware Buffer Management for
Flash-Based Hybrid Storage Systems,” in CIKM, 2013.

[295] Ma, S., Chen, H., Shen, Y., Lu, H., Wei, B., and He, P., “Providing Hybrid
Block Storage for Virtual Machines using Object-based Storage,” in ICPADS,
2014.

[296] Madumal, P., Miller, T., Sonenberg, L., and Vetere, F., “Explainable Reinforce-
ment Learning Through a Causal Lens,” in AAAI, 2020.

[297] Makrani, H. M., Farahmand, F., Sayadi, H., Bondi, S., Dinakarrao, S. M. P.,
Homayoun, H., and Rafatirad, S., “Pyramid: Machine learning framework to

https://elixir.bootlin.com/linux/latest/source
https://elixir.bootlin.com/linux/latest/source


BIBLIOGRAPHY 173

estimate the optimal timing and resource usage of a high-level synthesis design,”
in FPL, 2019.

[298] Makrani, H. M., Sayadi, H., Mohsenin, T., Rafatirad, S., Sasan, A., and
Homayoun, H., “XPPE: Cross-Platform Performance Estimation of Hardware
Accelerators Using Machine Learning,” in ASP-DAC, 2019.

[299] Malladi, K. T., Kang, U., Awasthi, M., and Zheng, H., “DRAMScale: Mecha-
nisms to Increase DRAM Capacity,” in MEMSYS, 2016.

[300] Mariani, G., Anghel, a., Jongerius, R., and Dittmann, G., “Predicting Cloud
Performance for HPC Applications: A User-Oriented Approach,” in CCGRID,
2017.

[301] Märtin, C., “Post-dennard scaling and the final years of moore’s law con-
sequences for the evolution of multicore-architectures,” in Technical Report
Informatik und Interaktive Systeme, 2014.

[302] Martinez, J. F. and Ipek, E., “Dynamic multicore resource management: A
machine learning approach,” in MICRO, 2009.

[303] Matsui, C., Sun, C., and Takeuchi, K., “Design of hybrid ssds with storage
class memory and nand flash memory,” in IEEE, 2017.

[304] Matsui, C., Yamada, T., Sugiyama, Y., Yamaga, Y., and Takeuchi, K., “Tri-
Hybrid SSD with Storage Class Memory (SCM) and MLC/TLC Nand Flash
Memories,” Proc. IEEE, 2017.

[305] Mayhew, D. and Krishnan, V., “PCI Express and Advanced Switching: Evolu-
tionary Path to Building Next Generation Interconnects,” in HOTI, 2003.

[306] McKinley, K. S., Carr, S., and Tseng, C.-W., “Improving data locality with
loop transformations,” TOPLAS, 1996.

[307] Menard, D. and Sentieys, O., “A methodology for evaluating the precision of
fixed-point systems,” in ICASSP, 2002.

[308] Menard, D. and Sentieys, O., “Automatic evaluation of the accuracy of fixed-
point algorithms,” in DATE, 2002.

[309] Meng, J. and Skadron, K., “A Performance Study for Iterative Stencil Loops
on GPUs with Ghost Zone Optimizations,” in IJPP, 2011.

[310] Meswani, M. R., Blagodurov, S., Roberts, D., Slice, J., Ignatowski, M., and Loh,
G. H., “Heterogeneous memory architectures: A hw/sw approach for mixing
die-stacked and off-package memories,” in HPCA, 2015.

[311] Meza, J., Chang, J., Yoon, H., Mutlu, O., and Ranganathan, P., “Enabling
Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM Cache
Management,” in IEEE CAL, 2012.

[312] Meza, J., Luo, Y., Khan, S., Zhao, J., Xie, Y., and Mutlu, O., “A Case for
Efficient Hardware/Software Cooperative Management of Storage and Memory,”
in WEED, 2013.

[313] Micheloni, R., Crippa, L., and Picca, M., “Hybrid storage systems,” in Inside
Solid State Drives (SSDs), 2018.

[314] Micron, 3d xpoint technology. [Online]. Available: https://www.micron.com/
products/advanced-solutions/3d-xpoint-technology.

[315] Micron, Micron announces shift in high-performance memory roadmap strategy.
[Online]. Available: https://www.micron.com/about/blog/2018/august/
micron - announces - shift - in - high - performance - memory - roadmap -
strategy.

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/about/blog/2018/august/micron-announces-shift-in-high-performance-memory-roadmap-strategy
https://www.micron.com/about/blog/2018/august/micron-announces-shift-in-high-performance-memory-roadmap-strategy
https://www.micron.com/about/blog/2018/august/micron-announces-shift-in-high-performance-memory-roadmap-strategy


174 BIBLIOGRAPHY

[316] Microsoft, Deploy ml models to field-programmable gate arrays (fpgas) with
azure machine learning, https: // docs. microsoft. com/ en-us/ azure/
machine-learning/ how-to-deploy-fpga-web-service .

[317] Minsky, M., “Steps Toward Artificial Intelligence,” in Proc. IRE, 1961.
[318] Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori, E., Wang, S., Lee,

Y.-J., Johnson, E., Pathak, O., Bae, S., et al., “Chip Placement with Deep
Reinforcement Learning,” Nature, 2021.

[319] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M., “Playing Atari with Deep Reinforcement Learning,” in
NIPS, 2013.

[320] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, a. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, a. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D., “Human-level control through deep reinforcement
learning,” in Nature, 2015.

[321] Montgomery, D. C., “Design and analysis of experiments,” 2017.
[322] Montgomery, D., “Extent Migration for Tiered Storage Architecture,” in

USPTO, 2014.
[323] Morad, A., Yavits, L., and Ginosar, R., “GP-SIMD Processing-in-Memory,”

2015.
[324] MSR Cambridge Traces., http: // iotta. snia. org/ traces/ 388 .
[325] Mukundan, J. and Martinez, J. F., “Morse: Multi-objective reconfigurable

self-optimizing memory scheduler,” in HPCA, 2012.
[326] Mutlu, O., “The RowHammer Problem and Other Issues We May Face As

Memory Becomes Denser,” in DATE, 2017.
[327] Mutlu, O., “Intelligent architectures for intelligent machines,” in VLSI-DAT,

2020.
[328] Mutlu, O., “Intelligent architectures for intelligent computing systems,” in

DATE, 2021.
[329] Mutlu, O., Ghose, S., Gómez-Luna, J., and Ausavarungnirun, R., “Enabling

Practical Processing in and near Memory for Data-Intensive Computing,” in
DAC, 2019.

[330] Mutlu, O., Ghose, S., Gómez-Luna, J., and Ausavarungnirun, R., “Processing
data where it makes sense: Enabling in-memory computation,” in MICPRO,
2019.

[331] Mutlu, O., Ghose, S., Gómez-Luna, J., and Ausavarungnirun, R., “A modern
primer on processing in memory,” in arXiv, 2020.

[332] Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., and Kim, H., “GraphPIM:
Enabling Instruction-Level PIM Offloading in Graph Computing Frameworks,”
in HPCA, 2017.

[333] Nair, R., “Evolution of Memory Architecture,” in IEEE, 2015.
[334] Nair, R., Antao, S. F., Bertolli, C., Bose, P., Brunheroto, J. R., Chen, T., Cher,

C. .-., Costa, C. H. A., Doi, J., Evangelinos, C., Fleischer, B. M., Fox, T. W.,
Gallo, D. S., Grinberg, L., Gunnels, J. A., Jacob, A. C., Jacob, P., Jacobson,
H. M., Karkhanis, T., Kim, C., Moreno, J. H., O’Brien, J. K., Ohmacht, M.,
Park, Y., Prener, D. A., Rosenburg, B. S., Ryu, K. D., Sallenave, O., Serrano,
M. J., Siegl, P. D. M., Sugavanam, K., and Sura, Z., “Active Memory Cube: A
Processing-in-Memory Architecture for Exascale Systems,” in IBM JRD, 2015.

[335] Nallatech 250SP, http: // www. nallatech. com/ 250sp .

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
http://iotta.snia.org/traces/388
http://www.nallatech.com/250sp 


BIBLIOGRAPHY 175

[336] Natrella, M., “Nist/sematech e-handbook of statistical methods,” 2010.
[337] Navarro, F. C., Mohsen, H., Yan, C., Li, S., Gu, M., Meyerson, W., and Gerstein,

M., “Genomics and data science: An application within an umbrella,” in BMC,
2019.

[338] Neale, R. B., Chen, C.-C., Gettelman, a., Lauritzen, P. H., Park, S., Williamson,
D. L., Conley, a. J., Garcia, R., Kinnison, D., Lamarque, J.-F., Mills, M., and
Tilmes, S., “Description of the NCAR Community Atmosphere Model (CAM
5.0),” in NCAR Tech. Note, 2010.

[339] Neural Network with HLS, https : / / github . com / karthisugumar /
CSE237C_ FinalProject_ ksugumar_ iameerud .

[340] Nguyen, A., Satish, N., Chhugani, J., Kim, C., and Dubey, P., “3.5-D blocking
optimization for stencil computations on modern CPUs and GPUs,” in SC,
2010.

[341] Nimbix Cloud Price Calculator. [Online]. Available: https://www.nimbix.
net/cloud-price-calculator.

[342] Nimbix Cloud, https: // www. nimbix. net , Accessed: 2020-06-13.
[343] Niu, J., Xu, J., and Xie, L., “Hybrid storage systems: A survey of architectures

and algorithms,” in IEEE Access, 2018.
[344] NSA.241 FPGA accelerator card, http: // www. semptian. com/ proinfo/

126. html .
[345] O’Neal, K. and Brisk, P., “Predictive modeling for cpu, gpu, and fpga perfor-

mance and power consumption: A survey,” in VLSI, 2018.
[346] O’Neal, K., Liu, M., Tang, H., Kalantar, A., DeRenard, K., and Brisk, P.,

“HLSPredict: Cross Platform Performance Prediction for FPGA High-Level
Synthesis,” in ICCAD, 2018.

[347] Oh, Y., Choi, J., Lee, D., and Noh, S. H., “Caching Less for Better Performance:
Balancing Cache Size and Update Cost of Flash Memory Cache in Hybrid
Storage Systems,” in FAST, 2012.

[348] Oh, Y., Lee, E., Choi, J., Lee, D., and Noh, S. H., “Hybrid solid state drives
for improved performance and enhanced lifetime,” in MSST, 2013.

[349] Oh, Y., Lee, E., Hyun, C., Choi, J., Lee, D., and Noh, S. H., “Enabling
Cost-Effective Flash Based Caching with an Array of Commodity SSDs,” in
Middleware, 2015.

[350] Okamoto, S., Sun, C., Hachiya, S., Yamada, T., Saito, Y., Iwasaki, T. O., and
Takeuchi, K., “Application driven scm and nand flash hybrid ssd design for
data-centric computing system,” in IMW, 2015.

[351] Oliveira, G. F., Santos, P. C., Alves, M. A., and Carro, L., “A generic processing
in memory cycle accurate simulator under hybrid memory cube architecture,”
in SAMOS, 2017.

[352] Oliveira, G. F. de, Gómez-Luna, J., Orosa, L., Ghose, S., Vijaykumar, N.,
Fernandez, I., Sadrosadati, M., and Mutlu, O., “A New Methodology and
Open-Source Benchmark Suite for Evaluating Data Movement Bottlenecks: A
Near-Data Processing Case Study,” in SIGMETRICS, 2021.

[353] OpenPOWER Work Groups, https : / / openpowerfoundation . org /
technical/ working-groups .

[354] Openstack, https: // www. openstack. org .
[355] Opitz, D. and Maclin, R., “Popular ensemble methods: An empirical study,”

in JAIR, 1999.

https://github.com/karthisugumar/CSE237C_FinalProject_ksugumar_iameerud
https://github.com/karthisugumar/CSE237C_FinalProject_ksugumar_iameerud
https://www.nimbix.net/cloud-price-calculator
https://www.nimbix.net/cloud-price-calculator
https://www.nimbix.net
http://www.semptian.com/proinfo/126.html
http://www.semptian.com/proinfo/126.html
https://openpowerfoundation.org/technical/working-groups
https://openpowerfoundation.org/technical/working-groups
https://www.openstack.org


176 BIBLIOGRAPHY

[356] Ou, J., Shu, J., Lu, Y., Yi, L., and Wang, W., “EDM: An Endurance-Aware
Data Migration Scheme for Load Balancing in SSD Storage Clusters,” in IPDPS,
2014.

[357] Özişik, M. N., Orlande, H. R., Colaço, M. J., and Cotta, R. M., Finite difference
methods in heat transfer. CRC press, 2017.

[358] Paine, T. L., Paduraru, C., Michi, a., Gulcehre, C., Zolna, K., Novikov, A., Wang,
Z., and Freitas, N. de, “Hyperparameter Selection for Offline Reinforcement
Learning,” in arXiv, 2020.

[359] Pan, S. J. and Yang, Q., “A survey on transfer learning,” in TKDE, 2009.
[360] Papadopoulou, M.-M., Tong, X., Seznec, A., and Moshovos, A., “Prediction-

based superpage-friendly tlb designs,” in HPCA, 2015.
[361] Park, D. and Du, D. H., “Hot Data Identification for Flash-based Storage

Systems Using Multiple Bloom Filters,” in MSST, 2011.
[362] Park, J., Kim, M., Chun, M., Orosa, L., Kim, J., and Mutlu, O., “Reducing

Solid-State Drive Read Latency by Optimizing Read-Retry,” in ASPLOS, 2021.
[363] Park, K., Kee, Y.-S., Patel, J. M., Do, J., Park, C., and Dewitt, D. J., “Query

Processing on Smart SSDs,” in ICMD, 2014.
[364] Patterson, D., anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis,

C., Thomas, R., and Yelick, K., “A Case for Intelligent RAM,” in MICRO,
1997.

[365] Pattnaik, A., Tang, X., Jog, A., Kayiran, O., Mishra, A. K., Kandemir, M. T.,
Mutlu, O., and Das, C. R., “Scheduling Techniques for GPU Architectures
with Processing-in-Memory Capabilities,” in PACT, 2016.

[366] Pavlovic, M., Puzovic, N., and Ramirez, A., “Data Placement in HPC Archi-
tectures with Heterogeneous Off-Chip Memory,” in ICCD, 2013.

[367] Pawlowski, J. T., “Hybrid Memory Cube (HMC),” in HCS, 2011.
[368] PD, S. M., Yu, H., Huang, H., and Xu, D., “A Q-Learning Based Self-Adaptive

I/O Communication for 2.5D Integrated Many-Core Microprocessor and Mem-
ory,” in TOC, 2015.

[369] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., and Vanderplas, J.,
“Scikit-learn: Machine learning in Python,” in JMLR, 2011.

[370] Peled, L., Mannor, S., Weiser, U., and Etsion, Y., “Semantic Locality and
Context-based Prefetching Using Reinforcement Learning,” in ISCA, 2015.

[371] Peled, L., Weiser, U., and Etsion, Y., “A neural network prefetcher for arbitrary
memory access patterns,” in TACO, 2019.

[372] Pellauer, M., Adler, M., Kinsy, M., Parashar, A., and Emer, J., “HAsim: FPGA-
based high-detail multicore simulation using time-division multiplexing,” in
HPCA, 2011.

[373] Pena, A. J. and Balaji, P., “Toward the Efficient Use of Multiple Explicitly
Managed Memory Subsystems,” in CLUSTER, 2014.

[374] Penney, D. D. and Chen, L., “A survey of machine learning applied to computer
architecture design,” in arXiv, 2019.

[375] Perf: Linux profiling with performance counters. [Online]. Available: https:
//perf.wiki.kernel.org/index.php/Main_Page.

[376] Pohl, C., Sattler, K.-U., and Graefe, G., “Joins on high-bandwidth memory: A
new level in the memory hierarchy,” in VLDB, Springer, 2019.

[377] Pollard, M. O., Gurdasani, D., Mentzer, A. J., Porter, T., and Sandhu, M. S.,
“Long reads: their purpose and place,” Hum. Mol. Genet., 2018.

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page


BIBLIOGRAPHY 177

[378] Pouchet, L.-N., “Polybench: The polyhedral benchmark suite,” in http://www.cs.
ucla.edu/pouchet/software/polybench, 2012.

[379] Pourhabibi, A., Gupta, S., Kassir, H., Sutherland, M., Tian, Z., Drumond, M. P.,
Falsafi, B., and Koch, C., “Optimus prime: Accelerating data transformation
in servers,” in ASPLOS, 2020.

[380] Prabakaran, B. S., Mrazek, V., Vasicek, Z., Sekanina, L., and Shafique, M.,
“Approxfpgas: Embracing asic-based approximate arithmetic components for
fpga-based systems,” in DAC, 2020.

[381] Prasad, A. S., Singh, G., Ferreira, J. D., Gomez-Luna, J., and Mutlu, O.,
“Precise-NN: Constrained Neural Network Accelerator Search for FPGA,” in
Under Submission.

[382] Pugsley, S. H., Jestes, J., Zhang, H., Balasubramonian, R., Srinivasan, V.,
Buyuktosunoglu, A., Davis, A., and Li, F., “NDC: Analyzing the Impact of
3D-Stacked Memory+Logic Devices on MapReduce Workloads,” in ISPASS,
2014.

[383] Puiutta, E. and Veith, E., “Explainable Reinforcement Learning: A Survey,”
in CD-MAKE, 2020.

[384] Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constantinides, K.,
Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G. P., Gray, J., Haselman, M.,
Hauck, S., Heil, S., Hormati, A., Kim, J., Lanka, S., Larus, J., Peterson, E.,
Pope, S., Smith, A., Thong, J., Xiao, P. Y., and Burger, D., “A reconfigurable
fabric for accelerating large-scale datacenter services,” in ISCA, 2014.

[385] PYNQ-Z1: Python Productivity for Zynq-7000 ARM/FPGA SoC, https:
// www. xilinx. com/ products/ boards-and-kits/ 1-hydd4z. html .

[386] Qian, C., Huang, L., Xie, P., Xiao, N., and Wang, Z., “A Study on Non-Volatile
3D Stacked Memory for Big Data Applications,” in ICA3PP, 2015.

[387] Quero, L. C., Lee, Y.-S., and Kim, J.-S., “Self-Sorting SSD: Producing Sorted
Data Inside Active SSDs,” in MSST, 2015.

[388] Qureshi, M. K., Srinivasan, V., and Rivers, J. A., “Scalable High Performance
Main Memory System Using Phase-Change Memory Technology,” in ISCA,
2009.

[389] Raghavan, A., Chandra, A., and Weissman, J. B., “Tiera: Towards Flexible
Multi-Tiered Cloud Storage Instances,” in Middleware, 2014.

[390] Ramachandran, P., Zoph, B., and Le, Q. V., “Searching for activation functions,”
in arXiv, 2017.

[391] Ramos, L. E., Gorbatov, E., and Bianchini, R., “Page Placement in Hybrid
Memory Systems,” in ICS, 2011.

[392] Ranganathan, P., “From Microprocessors to Nanostores: Rethinking Data-
Centric Systems,” in Computer, 2011.

[393] Rasmussen, C. E., “Gaussian processes in machine learning,” in MLSS, 2003.
[394] Ravi, K., Luijten, R., Singh, G., Vadivel, K., Mutlu, O., and Corporaal, H.,

“Efficient Interconnect Design for a Data-centric Weather/Climate Prediction
Accelerator,” in Under Submission.

[395] Reddi, V. J., Settle, A., Connors, D. A., and Cohn, R. S., “Pin: A binary
instrumentation tool for computer architecture research and education,” in
ISCA, 2004.

[396] Reinsel, D. and Rydning, J., “Breaking the 15K-rpm HDD Performance Barrier
with Solid State Hybrid Drives,” in IDC, 2013.

https://www.xilinx.com/products/boards-and-kits/1-hydd4z.html 
https://www.xilinx.com/products/boards-and-kits/1-hydd4z.html 


178 BIBLIOGRAPHY

[397] Ren, J., Zhao, J., Khan, S., Choi, J., Wu, Y., and Mutlu, O., “ThyNVM: En-
abling Software-Transparent Crash Consistency in Persistent Memory Systems,”
in MICRO, 2015.

[398] Ren, J., Chen, X., Tan, Y., Liu, D., Duan, M., Liang, L., and Qiao, L., “Archivist:
A machine learning assisted data placement mechanism for hybrid storage
systems,” in ICCD, 2019.

[399] Rezaei, S. H. S., Modarressi, M., Ausavarungnirun, R., Sadrosadati, M., Mutlu,
O., and Daneshtalab, M., “NoM: Network-on-Memory for Inter-Bank Data
Transfer in Highly-Banked Memories,” in CAL, 2020.

[400] Riedel, E., Gibson, G. A., and Faloutsos, C., “Active Storage for Large-Scale
Data Mining and Multimedia,” in VLDB, 1998.

[401] Rummery, G. A. and Niranjan, M., On-line Q-Learning Using Connectionist
Systems. Citeseer, 1994.

[402] SAFARI Research Group, Ramulator For Processing-In-Memory, https://
github.com/CMU-SAFARI/ramulator-pim/.

[403] Salkhordeh, R., Asadi, H., and Ebrahimi, S., “Operating System Level Data
Tiering Using Online Workload Characterization,” in JSC, 2015.

[404] Samsung, Ultra-low latency with samsung z-nand ssd, https: // www. samsung.
com/ semiconductor/ global. semi. static/ Ultra-Low_ Latency_ with_
Samsung_ Z-Nand_ SSD-0. pdf .

[405] Sanchez, D. and Kozyrakis, C., “Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems,” in ISCA, 2013.

[406] Sano, K., Hatsuda, Y., and Yamamoto, S., “Multi-FPGA Accelerator for
Scalable Stencil Computation with Constant Memory Bandwidth,” in TPDS,
2014.

[407] Santos, P. C., Oliveira, G. F., Tomé, D. G., Alves, M. A., Almeida, E. C., and
Carro, L., “Operand Size Reconfiguration for Big Data Processing in Memory,”
in DATE, 2017.

[408] Saxena, M. and Swift, M. M., “Design and Prototype of a Solid-State Cache,”
in TOS, 2014.

[409] Saxena, M., Swift, M. M., and Zhang, Y., “FlashTier: A Lightweight, Consistent
and Durable Storage Cache,” in EuroSys, 2012.

[410] Schär, C., Fuhrer, O., Arteaga, a., Ban, N., Charpilloz, C., Di Girolamo, S.,
Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti,
D., Rudishli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S.,
and Wernli, H., “Kilometer-scale climate models: Prospects and challenges,” in
BAMS, 2020.

[411] SDSoc Development envrionment, https: // www. xilinx. com/ products/
design-tools/ software-zone/ sdsoc. html .

[412] Seagate, Seagate Barracuda Datasheet, https: // www. seagate. com/ www-
content/ datasheets/ pdfs/ 3- 5- barracuda- 3tbDS1900- 10- 1710US-
en_ US. pdf .

[413] Sen, S. and Imam, N., “Machine Learning Based Design Space Exploration for
Hybrid Main-Memory Design,” in MEMSYS, 2019.

[414] Sequeira, P. and Gervasio, M., “Interestingness Elements for Explainable Rein-
forcement Learning: Understanding Agents’ Capabilities and Limitations,” in
AI, 2020.

[415] Seshadri, S., Gahagan, M., Bhaskaran, S., Bunker, T., De, A., Jin, Y., Liu, Y.,
and Swanson, S., “Willow: A User-programmable SSD,” in OSDI, 2014.

https://github.com/CMU-SAFARI/ramulator-pim/
https://github.com/CMU-SAFARI/ramulator-pim/
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-Nand_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-Nand_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-Nand_SSD-0.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.seagate.com/www-content/datasheets/pdfs/3-5-barracuda-3tbDS1900-10-1710US-en_US.pdf
https://www.seagate.com/www-content/datasheets/pdfs/3-5-barracuda-3tbDS1900-10-1710US-en_US.pdf
https://www.seagate.com/www-content/datasheets/pdfs/3-5-barracuda-3tbDS1900-10-1710US-en_US.pdf


BIBLIOGRAPHY 179

[416] Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko,
G., Luo, Y., Mutlu, O., Gibbons, P. B., Kozuch, M. A., and Mowry, T. C.,
“Rowclone: Fast and energy-efficient in-dram bulk data copy and initialization,”
in MICRO, 2013.

[417] Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., Kozuch,
M. A., Mutlu, O., Gibbons, P. B., and Mowry, T. C., “Ambit: In-memory
accelerator for bulk bitwise operations using commodity dram technology,” in
MICRO, 2017.

[418] Seshadri, V., Mullins, T., Boroumand, A., Mutlu, O., Gibbons, P. B., Kozuch,
M. A., and Mowry, T. C., “Gather-Scatter DRAM: In-DRAM Address Transla-
tion to Improve the Spatial Locality of Non-unit Strided Accesses,” in MICRO,
2015.

[419] Seshadri, V. and Mutlu, O., “In-dram bulk bitwise execution engine,” in arXiv,
2019.

[420] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P.,
Hu, M., Williams, R. S., and Srikumar, V., “Isaac: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars,” in ISCA, 2016.

[421] Sharma, D. D., “Compute Express Link,” in CXL Consortium White Paper.
[422] Shetti, M., Li, B., and Du, D., “Machine learning-based adaptive migration

algorithm for hybrid storage systems,” in TOS, 2019.
[423] Shi, H., Arumugam, R. V., Foh, C. H., and Khaing, K. K., “Optimal Disk

Storage Allocation for Multitier Storage System,” in TMAG, 2013.
[424] Shi, Z., Huang, X., Jain, A., and Lin, C., “Applying deep learning to the cache

replacement problem,” in MICRO, 2019.
[425] Siegl, P., Buchty, R., and Berekovic, M., “Data-Centric Computing Frontiers:

A Survey On Processing-In-Memory,” in MEMSYS, 2016.
[426] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,

G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.,
“Mastering the Game of Go with Deep Neural Networks and Tree Search,” in
Nature, 2016.

[427] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al., “Mastering the Game of Go
without Human Knowledge,” in Nature, 2017.

[428] Silver, D., Singh, S., Precup, D., and Sutton, R. S., “Reward is Enough,” AI,
2021.

[429] Simon, W. a., Qureshi, Y. M., Rios, M., Levisse, A., Zapater, M., and Atienza,
D., “BLADE: An in-Cache Computing Architecture for Edge Devices,” in TC,
2020.

[430] Singh, G., Alser, M., Senol Cali, D., Diamantopoulos, D., Gomez-Luna, J.,
Corporaal, H., and Mutlu, O., “FPGA-based Near-Memory Acceleration of
Modern Data-Intensive Applications,” in Under Submission.

[431] Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., Corporaal,
H., and Boonstra, A.-J., “A Review of Near-Memory Computing Architectures:
Opportunities and Challenges,” in DSD, 2018.

[432] Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., Corporaal,
H., and Boonstra, A.-J., “Near-Memory Computing: Past, Present, and Future,”
2019.



180 BIBLIOGRAPHY

[433] Singh, G., Diamantopoulos, D., Hagleitner, C., Gomez-Luna, J., Stuijk, S.,
Corporaal, H., and Mutlu, O., “Modeling FPGA-Based Systems via Few-Shot
Learning,” in FPGA, 2021.

[434] Singh, G., Diamantopoulos, D., Hagleitner, C., Gomez-Luna, J., Stuijk, S.,
Mutlu, O., and Corporaal, H., “NERO: A Near High-Bandwidth Memory
Stencil Accelerator for Weather Prediction Modeling,” in FPL, 2020.

[435] Singh, G., Diamantopoulos, D., Hagleitner, C., Stuijk, S., and Corporaal,
H., “NARMADA: Near-Memory Horizontal Diffusion Accelerator for Scalable
Stencil Computations,” in FPL, 2019.

[436] Singh, G., Diamantopoulos, D., Stuijk, S., Hagleitner, C., and Corporaal, H.,
“Low Precision Processing for High Order Stencil Computations,” in Springer
LNCS, 2019.

[437] Singh, G., Gómez-Luna, J., Mariani, G., Oliveira, G. F., Corda, S., Stuijk, S.,
Mutlu, O., and Corporaal, H., “NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning,” in DAC, 2019.

[438] Singh, G., Nadig, R., Park, J., Bera, R., Hajinazar, N., Novo, D., Gómez-Luna,
J., Stuijk, S., Corporaal, H., and Mutlu, O., “Sibyl: Adaptive and Extensi-
ble Data Placement in Hybrid Storage Systems Using Online Reinforcement
Learning,” in Under Submission.

[439] Smullen, C. W., Coffman, J., and Gurumurthi, S., “Accelerating Enterprise
Solid-State Disks with Non-Volatile Merge Caching,” in IGSC, 2010.

[440] SoCs with Hardware and Software Programmability, https: // www. xilinx.
com/ products/ silicon-devices/ soc/ zynq-7000. html .

[441] Srinivasan, M., Saab, P., and Tkachenko, V., “Flashcache,” in Facebook, 2010.
[442] Stone, H. S., “A Logic-in-Memory Computer,” in TC, 1970.
[443] Strzodka, R., Shaheen, M., Pajak, D., and Seidel, H.-P., “Cache Oblivious

Parallelograms in Iterative Stencil Computations,” in ICS, 2010.
[444] Stuecheli, J., Starke, W. J., Irish, J. D., Arimilli, L. B., Dreps, D., Blaner,

B., Wollbrink, C., and Allison, B., “IBM POWER9 Opens up a New Era of
Acceleration Enablement: OpenCAPI,” in IBM JRD, 2018.

[445] Sukhwani, B., Roewer, T., Haymes, C. L., Kim, K., McPadden, A. J., Dreps,
D. M., Sanner, D., Lunteren, J. V., and Asaad, S., “Contutto – a novel fpga-
based prototyping platform enabling innovation in the memory subsystem of a
server class processor,” in MICRO, 2017.

[446] Sun, C., Miyaji, K., Johguchi, K., and Takeuchi, K., “A high performance and
energy-efficient cold data eviction algorithm for 3d-tsv hybrid reram/mlc nand
ssd,” in CAS, 2013.

[447] Sundararajan, P., “High performance computing using fpgas,” Citeseer, Tech.
Rep., 2010.

[448] Support Vector Regressio, https: // link. springer. com/ chapter/ 10.
1007/ 978-1-4302-5990-9_ 4 .

[449] Sura, Z., Jacob, A., Chen, T., Rosenburg, B., Sallenave, O., Bertolli, C.,
Antao, S., Brunheroto, J., Park, Y., O’Brien, K., and Nair, R., “Data Access
Optimization in a Processing-in-memory System,” in CF, 2015.

[450] Sutton, R. S. and Barto, a. G., Reinforcement learning: An introduction. 2018.
[451] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y., “Policy gradient

methods for reinforcement learning with function approximation,” in NIPS,
1999.

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://link.springer.com/chapter/10.1007/978-1-4302-5990-9_4
https://link.springer.com/chapter/10.1007/978-1-4302-5990-9_4


BIBLIOGRAPHY 181

[452] Szustak, L., Rojek, K., and Gepner, P., “Using Intel Xeon Phi Coprocessor to
Accelerate Computations in MPDATA Algorithm,” in PPAM, 2013.

[453] Tai, J., Sheng, B., Yao, Y., and Mi, N., “SLA-Aware Data Migration in a
Shared Hybrid Storage Cluster,” in CC, 2015.

[454] Tang, Y., Chowdhury, R. A., Kuszmaul, B. C., Luk, C.-K., and Leiserson, C. E.,
“The Pochoir Stencil Compiler,” in SPAA, 2011.

[455] Tarasov, V., Zadok, E., and Shepler, S., Filebench: A Flexible Framework for
File System Benchmarking, 2016.

[456] Tarihi, M., Asadi, H., Haghdoost, A., Arjomand, M., and Sarbazi-Azad, H., “A
Hybrid Non-Volatile Cache Design for Solid-State Drives Using Comprehensive
I/O Characterization,” in TC, 2015.

[457] Teran, E., Wang, Z., and Jiménez, D. A., “Perceptron learning for reuse
prediction,” in MICRO, 2016.

[458] Thaler, F., Moosbrugger, S., Osuna, C., Bianco, M., Vogt, H., Afanasyev, A.,
Mosimann, L., Fuhrer, O., Schulthess, T. C., and Hoefler, T., “Porting the
COSMO Weather Model to Manycore CPUs,” in PASC, 2019.

[459] The MNIST Database of Handwritten Digits, http: // yann. lecun. com/
exdb/ mnist/ .

[460] Thomas, L., “Elliptic Problems in Linear Differential Equations over a Network,”
in Watson Sci. Comput. Lab. Rept., Columbia University, 1949.

[461] Ting, H.-Y., Giyahchi, T., Sani, A. A., and Bozorgzadeh, E., “Dynamic sharing
in multi-accelerators of neural networks on an fpga edge device,” in ASAP,
2020.

[462] Tokic, M. and Palm, G., “Value-difference based exploration: Adaptive control
between epsilon-greedy and softmax,” in AAAI, 2011.

[463] Torabzadehkashi, M., Rezaei, S., Alves, V., and Bagherzadeh, N., “CompStor:
An In-storage Computation Platform for Scalable Distributed Processing,” in
IPDPSW, 2018.

[464] Torabzadehkashi, M., Rezaei, S., Heydarigorji, A., Bobarshad, H., Alves, V.,
and Bagherzadeh, N., “Catalina: In-Storage Processing Acceleration for Scalable
Big Data Analytics,” in PDP, 2019.

[465] Tsai, P. A., Beckmann, N., and Sanchez, D., “Jenga: Software-defined cache
hierarchies,” in ISCA, 2017.

[466] Tsuchida, K., Inaba, T., Fujita, K., Ueda, Y., Shimizu, T., Asao, Y., Kajiyama,
T., Iwayama, M., Sugiura, K., Ikegawa, S., et al., “A 64Mb MRAM with
Clamped-Reference and Adequate-Reference Schemes,” in ISSCC, 2010.

[467] Tsukada, S., Takayashiki, H., Sato, M., Komatsu, K., and Kobayashi, H., “A
Metadata Prefetching Mechanism for Hybrid Memory Architectures,” in COOL
CHIPS, 2021.

[468] Tsymbal, A., The Problem of Concept Drift: Definitions and Related Work.
2004.

[469] Tweedie, S. C. et al., “Journaling the Linux ext2fs Filesystem,” in The Fourth
Annual Linux Expo, 1998.

[470] UltraScale Architecture Memory Resources, https: // www. xilinx. com/
support / documentation / user _ guides / ug573 - ultrascale - memory -
resources. pdf .

[471] Umuroglu, Y., Akhauri, Y., Fraser, N. J., and Blott, M., “Logicnets: Co-designed
neural networks and circuits for extreme-throughput applications,” in arXiv,
2020.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf


182 BIBLIOGRAPHY

[472] Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P., Jahre, M.,
and Vissers, K., “Finn: A framework for fast, scalable binarized neural network
inference,” in FPGA, 2017.

[473] Vadivel, K., Chelini, L., BanaGozar, A., Singh, G., Corda, S., Jordans, R.,
and Corporaal, H., “TDO-CIM: Transparent Detection and Offloading for
Computation In-Memory,” in DATE, 2020.

[474] Vaishnav, A., Pham, K. D., Powell, J., and Koch, D., “Fos: A modular fpga
operating system for dynamic workloads,” in arXiv, 2020.

[475] Valov, P., Petkovich, J.-C., Guo, J., Fischmeister, S., and Czarnecki, K., “Trans-
ferring Performance Prediction Models Across Different Hardware Platforms,”
in ICPE.

[476] Vasilakis, E., Papaefstathiou, V., Trancoso, P., and Sourdis, I., “Hybrid2:
Combining caching and migration in hybrid memory systems,” in HPCA, 2020.

[477] Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri, S., “Programmati-
cally Interpretable Reinforcement Learning,” in ICML, 2018.

[478] Vermij, E., Fiorin, L., Hagleitner, C., and Bertels, K., “Sorting Big Data on
Heterogeneous Near-data Processing Systems,” in CF, 2017.

[479] Virtex UltraScale+, https : / / www . xilinx . com / products / silicon -
devices/ fpga/ virtex-ultrascale-plus. html .

[480] Vitter, J. S., “Random sampling with a reservoir,” in TOMS, 1985.
[481] Vivado 2020.1 - High-Level Synthesis (C based), https://www.xilinx.com/

support/documentation-navigation/design-hubs/dh0012-vivado-high-
level-synthesis-hub.html.

[482] Vivado 2020.2 Developer AMI, https: // aws. amazon. com/ marketplace/
pp/ xilinx-vivado-20202-developer-ami/ b08pvvmhnq , Accessed: 2021-
02-01.

[483] Vivado Design Suite User Guide High-Level Synthesis, https: // www. xilinx.
com / support / documentation / sw _ manuals / xilinx2018 _ 3 / ug902 -
vivado-high-level-synthesis. pdf .

[484] Vivado High-Level Synthesis, https : / / www . xilinx . com / products /
design-tools/ vivado/ integration/ esl-design. html .

[485] Volkov, V. and Demmel, J. W., “Benchmarking gpus to tune dense linear
algebra,” in SC, 2008.

[486] Wahib, M. and Maruyama, N., “Scalable Kernel Fusion for Memory-Bound
GPU Applications,” in SC, 2014.

[487] Waidyasooriya, H. M., Takei, Y., Tatsumi, S., and Hariyama, M., “OpenCL-
Based FPGA-Platform for Stencil Computation and Its Optimization Method-
ology,” 2017.

[488] Wang, C., Cui, H., Cao, T., Zigman, J., Volos, H., Mutlu, O., Lv, F., Feng,
X., and Xu, G. H., “Panthera: Holistic Memory Management for Big Data
Processing over Hybrid Memories,” in PLDI, 2019.

[489] Wang, C., Wang, D., Chai, Y., Wang, C., and Sun, D., “Larger, Cheaper, but
Faster: SSD-SMR Hybrid Storage Boosted by a New SMR-Oriented Cache
Framework,” in MSST, 2017.

[490] Wang, E., Davis, J. J., Cheung, P. Y., and Constantinides, G., “Lutnet: Learning
fpga configurations for highly efficient neural network inference,” TC, 2020.

[491] Wang, H., Shen, H., Liu, Q., Zheng, K., and Xu, J., “A Reinforcement Learning
Based System for Minimizing Cloud Storage Service Cost,” in ICPP, 2020.

https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://aws.amazon.com/marketplace/pp/xilinx-vivado-20202-developer-ami/b08pvvmhnq
https://aws.amazon.com/marketplace/pp/xilinx-vivado-20202-developer-ami/b08pvvmhnq
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html


BIBLIOGRAPHY 183

[492] Wang, H. and Varman, P., “Balancing fairness and efficiency in tiered storage
systems with bottleneck-aware allocation,” in FAST, 2014.

[493] Wang, Y. and Yao, Q., “Few-shot learning: A survey,” in CoRR, 2019.
[494] Wang, Y., Han, Y., Zhang, L., Li, H., and Li, X., “ProPRAM: Exploiting the

Transparent Logic Resources in Non-Volatile Memory for Near Data Comput-
ing,” in DAC, 2015.

[495] Wang, Z., Huang, H., Zhang, J., and Alonso, G., “Shuhai: Benchmarking High
Bandwidth Memory on FPGAs,” in FCCM, 2020.

[496] Watkins, C. J. and Dayan, P., “Q-learning,” in ML, 1992.
[497] Watkins, C. J. C. H., “Learning From Delayed Rewards,” Ph.D. dissertation,

1989.
[498] Wei, M., Snir, M., Torrellas, J., and Tremaine, R. B., “A Near-Memory Processor

for Vector, Streaming and Bit manipulation Workloads,” in PAC2, 2005.
[499] Wenzel, L., Schmid, R., Martin, B., Plauth, M., Eberhardt, F., and Polze,

a., “Getting Started with CAPI SNAP: Hardware Development for Software
Engineers,” in Euro-Par, 2018.

[500] Wikipedia, Sibyl, https: // en. wikipedia. org/ wiki/ Sibyl .
[501] Williams, S., Waterman, a., and Patterson, D., “Roofline: An Insightful Visual

Performance Model for Multicore architectures,” in CACM, 2009.
[502] Wolf, M. E. and Lam, M. S., “A data locality optimizing algorithm,” in PLDI,

1991.
[503] Wong, A., Rexachs, D., and Luque, E., “Parallel application signature for

performance analysis and prediction,” in IEEE TPDS, 2015.
[504] Wu, G., Greathouse, J. L., Lyashevsky, A., Jayasena, N., and Chiou, D., “Gpgpu

performance and power estimation using machine learning,” in HPCA, 2015.
[505] Wu, X. and Mueller, F., “Scalaextrap: Trace-based communication extrapolation

for SPMD programs,” in PPoPP, 2011.
[506] Wu, X. and Reddy, A. N., “Managing Storage Space in a Flash and Disk Hybrid

Storage System,” in MASCOTS, 2009.
[507] Wu, X. and Reddy, A. N., “Exploiting Concurrency to Improve Latency and

throughput in a Hybrid Storage System,” in MASCOTS, 2010.
[508] Wu, X. and Reddy, A. N., “Data Organization in a Hybrid Storage System,”

in ICNC, 2012.
[509] Wulf, W. A. and McKee, S. A., “Hitting the Memory Wall: Implications of the

Obvious,” in SIGARCH Comput. Archit. News, 1995.
[510] Xi, S. L., Babarinsa, O., Athanassoulis, M., and Idreos, S., “Beyond the Wall:

Near-Data Processing for Databases,” in DaMoN, 2015.
[511] Xiao, W., Dong, H., Ma, L., Liu, Z., and Zhang, Q., “HS-BAS: A Hybrid

Storage System Based on Band Awareness of Shingled Write Disk,” in ICCD,
2016.

[512] Xiao, Y., Nazarian, S., and Bogdan, P., “Prometheus: Processing-in-Memory
Heterogeneous Architecture Design from a Multi-Layer Network Theoretic
Strategy,” in DATE, 2018.

[513] Xilinx VCU1525, https: // www. xilinx. com/ products/ boards- and-
kits/ vcu1525-a. html .

[514] Xilinx Virtex Ultrascale+, https: // www. xilinx. com/ products/ silicon-
devices/ fpga/ virtex-ultrascale-plus. html .

https://en.wikipedia.org/wiki/Sibyl
https://www.xilinx.com/products/boards-and-kits/ vcu1525-a.html
https://www.xilinx.com/products/boards-and-kits/ vcu1525-a.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html


184 BIBLIOGRAPHY

[515] Xu, J., Fu, H., Shi, W., Gan, L., Li, Y., Luk, W., and Yang, G., “Performance
Tuning and Analysis for Stencil-Based Applications on POWER8 Processor,”
in TACO, 2018.

[516] Xue, J., Yan, F., Riska, A., and Smirni, E., “Storage Workload Isolation via
Tier Warming,” in ICAC, 2014.

[517] Yadgar, G., Factor, M., Li, K., and Schuster, A., “Management of Multilevel,
Multiclient Cache Hierarchies with Application Hints,” in TOCS, 2011.

[518] Yang, J., Plasson, N., Gillis, G., Talagala, N., Sundararaman, S., and Wood, R.,
“HEC: Improving Endurance of High Performance Flash-Based Cache Devices,”
in SYSTOR, 2013.

[519] Yang, Z., Hoseinzadeh, M., andrews, A., Mayers, C., Evans, D. T., Bolt, R. T.,
Bhimani, J., Mi, N., and Swanson, S., “AutoTiering: Automatic Data Placement
Manager in Multi-Tier All-Flash Datacenter,” in IPCCC, 2017.

[520] Ye, F., Chen, J., Fang, X., Li, J., and Feng, D., “A Regional Popularity-Aware
Cache Replacement Algorithm to Improve the Performance and Lifetime of
SSD-Based Disk Cache,” in NAS, 2015.

[521] Yin, J., Eckert, Y., Che, S., Oskin, M., and Loh, G., “Toward more efficient
noc arbitration: A deep reinforcement learning approach,” in AIDArc, 2018.

[522] Yitbarek, Salessawi Ferede and Yang, Tao and Das, Reetuparna and Austin,
Todd, “Exploring Specialized Near-memory Processing for Data Intensive
Operations,” in DATE, 2016.

[523] Yoo, S. and Shin, D., “Reinforcement Learning-Based SLC Cache Technique
for Enhancing SSD Write Performance,” in USENIX HotStorage, 2020.

[524] Yoon, H., Meza, J., Ausavarungnirun, R., Harding, R. A., and Mutlu, O., “Row
Buffer Locality Aware Caching Policies for Hybrid Memories,” in ICCD, 2012.

[525] Yousefi, M. R., Soheili, M. R., Breuel, T. M., Kabir, E., and Stricker, D.,
“Binarization-free ocr for historical documents using LSTM networks,” in
ICDAR, 2015.

[526] Zell, a., Simulation Neuronaler Netze. Addison-Wesley Bonn, 1994.
[527] Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J. L., Xu, L., and

Ignatowski, M., “TOP-PIM: Throughput-Oriented Programmable Processing
in Memory,” in HPDC, 2014.

[528] Zhang, G., Chiu, L., Dickey, C., Liu, L., Muench, P., and Seshadri, S., “Auto-
mated Lookahead Data Migration in SSD-enabled Multi-tiered Storage Sys-
tems,” in MSST, 2010.

[529] Zhang, J. A., Marks, F. D., Sippel, J. A., Rogers, R. F., Zhang, X., Gopalakr-
ishnan, S. G., Zhang, Z., and Tallapragada, V., “Evaluating the Impact of
Improvement in the Horizontal Diffusion Parameterization on Hurricane Pre-
diction in the Operational Hurricane Weather Research and Forecast (HWRF)
Model,” in Weather and forecasting, 2018.

[530] Zhang, Z., Kim, Y., Ma, X., Shipman, G., and Zhou, Y., “Multi-level Hybrid
Cache: Impact and Feasibility,” in ORNL Tech. Rep, 2012.

[531] Zhao, D., Qiao, K., and Raicu, I., “Towards Cost-Effective and High-
Performance Caching Middleware for Distributed Systems,” in IJBDI, 2016.

[532] Zhao, J., Feng, L., Sinha, S., Zhang, W., Liang, Y., and He, B., “COMBA: A
comprehensive model-based analysis framework for high level synthesis of real
applications,” in ICCAD, 2017.

[533] Zhao, X., Li, Z., and Zeng, L., “FDTM: Block Level Data Migration Policy in
Tiered Storage System,” in NPC, 2010.



BIBLIOGRAPHY 185

[534] Zheng, H. and Louri, A., “Agile: A Learning-Enabled Power and Performance-
Efficient Network-On-Chip Design,” in TETCI, 2020.

[535] Zhong, G., Prakash, A., Liang, Y., Mitra, T., and Niar, S., “Lin-analyzer: A
high-level performance analysis tool for FPGA-based accelerators,” in DAC,
2016.

[536] Zhong, G., Prakash, A., Wang, S., Liang, Y., Mitra, T., and Niar, S., “Design
space exploration of FPGA-based accelerators with multi-level parallelism,” in
DATE, 2017.

[537] Zhong, Y., Shen, X., and Ding, C., “Program Locality Analysis Using Reuse
Distance,” in TOPLAS, 2009.

[538] Zhou, Y., Gupta, U., Dai, S., Zhao, R., Srivastava, N., Jin, H., Featherston, J.,
Lai, Y.-H., Liu, G., Velasquez, G. A., Wang, W., and Zhang, Z., “Rosetta:
A realistic high-level synthesis benchmark suite for software programmable
FPGAs,” in FPGA, 2018.

[539] Zhu, M., Zhuo, Y., Wang, C., Chen, W., and Xie, Y., “Performance Evaluation
and Optimization of HBM-Enabled GPU for Data-intensive Applications,” in
VLSI, 2018.

[540] Zong, Z., Fares, R., Romoser, B., and Wood, J., “FastStor: Data-Mining-Based
Multilayer Prefetching for Hybrid Storage Systems,” in CC, 2014.



186 BIBLIOGRAPHY



List of Publications

First Author:

[1] Singh, G., Diamantopoulos, D., Hagleitner, C., Gomez-Luna, J., Stuijk, S.,
Mutlu, O., and Corporaal, H., “NERO: A Near High-Bandwidth Memory
Stencil Accelerator for Weather Prediction Modeling,” in FPL, 2020 (Best
Paper Award Nominee).

[2] Singh, G., Gómez-Luna, J., Mariani, G., Oliveira, G. F., Corda, S., Stuijk, S.,
Mutlu, O., and Corporaal, H., “NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning,” in DAC, 2019.

[3] Singh, G., Diamantopoulos, D., Stuijk, S., Hagleitner, C., and Corporaal, H.,
“Low Precision Processing for High Order Stencil Computations,” in Springer
LNCS, 2019.

[4] Singh, G., Diamantopoulos, D., Hagleitner, C., Stuijk, S., and Corporaal,
H., “NARMADA: Near-Memory Horizontal Diffusion Accelerator for Scalable
Stencil Computations,” in FPL, 2019.

[5] Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., Corpo-
raal, H., and Boonstra, A.-J., “Near-Memory Computing: Past, Present, and
Future,” in Journal MICPRO, 2019.

[6] Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., Corpo-
raal, H., and Boonstra, A.-J., “A Review of Near-Memory Computing Archi-
tectures: Opportunities and Challenges,” in DSD, 2018.

Co-Author:

[1] Vadivel, K., Chelini, L., BanaGozar, A., Singh, G., Corda, S., Jordans, R.,
and Corporaal, H., “TDO-CIM: Transparent Detection and Offloading for
Computation In-Memory,” in DATE, 2020.

[2] Diamantopoulos, D., Ringlein, B., Purandare, M., Singh, G., and Hagleitner,
C., “Agile Autotuning of a Transprecision Tensor Accelerator Overlay for TVM
Compiler Stack,” in FPL, 2020.

[3] Lunteren, J. van, Luijten, R., Diamantopoulos, D., Auernhammer, F., Ha-
gleitner, C., Chelini, L., Corda, S., and Singh, G., “Coherently Attached
Programmable Near-Memory Acceleration Platform and Its Application to
Stencil Processing,” in DATE, 2019.

[4] Corda, S., Singh, G., Awan, A. J., Jordans, R., and Corporaal, H., “Platform
Independent Software Analysis for Near Memory Computing,” in DSD, 2019.

187



188 LIST OF PUBLICATIONS

[5] Corda, S., Singh, G., Awan, A. J., Jordans, R., and Corporaal, H., “Memory
and Parallelism Analysis Using a Platform-Independent Approach,” in SCOPES,
2019.

Poster:

[1] Singh, G., Diamantopoulos, D., Hagleitner, C., Gomez-Luna, J., Stuijk, S.,
Corporaal, H., and Mutlu, O., “Modeling FPGA-Based Systems via Few-Shot
Learning,” in FPGA, 2021.

[2] Singh, G., Diamantopoulos, D., Hagleitner, C., Stuijk, S., and Corporaal,
H., “Scaling Stencil Computation on OpenPOWER Near-Memory Computing
Architecture,” in ISC, 2019.

Patent:

[1] Luijten, R. P., Singh, G., and VandeVondele, J., CGRA Accelerator for
Weather/Climate Dynamics Simulation, P201909001US01.



Curriculum Vitae

Gagandeep was born in Chandigarh, India, in 1992. He received a joint M.Sc.
degree with distinction in Integrated Circuit Design from Technische Universität
München (TUM), Germany, and Nanyang Technological University (NTU), Singapore
in 2017. He joined Eindhoven University of Technology, Netherlands, in 2017 to
pursue a Ph.D. degree as a part of the Marie Sklodowska-Curie EID (Ph.D.) Program
under the supervision of Prof. Henk Corporaal. From June 2018 to January 2020,
he was a Predoctoral Researcher at IBM Research Zurich, Switzerland, in the group
of Dr. Christoph Hagleitner. Since January 2020, he has been an Academic Guest
in Prof. Onur Mutlu’s group at ETH Zurich, Switzerland. He is passionate about
FPGA design, computer architecture, and applied machine learning with skills in both
hardware and software design.

189


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem and Thesis Statement
	1.1.1 Data-Centric dblackComputing
	1.1.2 Data-Driven System Optimization

	1.2 Overview of Our Approach
	1.3 Contributions
	1.4 Dissertation Structure

	2 Near-Memory Computing
	2.1 Background and Related Work
	2.2 Classification and Evaluation
	2.3 Challenges of Near-Memory Computing
	2.3.1 Performance Evaluation Tools and Benchmarks
	2.3.2 Virtual Memory Support
	2.3.3 Memory Coherency
	2.3.4 Task Scheduling
	2.3.5 Data Mapping

	2.4 Conclusion

	3 NERO: A Near-High Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling 
	3.1 Introduction
	3.2 Background
	3.2.1 Representative COSMO Stencils
	3.2.2 CAPI SNAP Framework

	3.3 Design Methodology
	3.3.1 NERO, A Near HBM Weather Prediction Accelerator
	3.3.2 NERO Application Framework

	3.4 Results
	3.4.1 System Integration
	3.4.2 Evaluation
	3.4.3 Energy Analysis
	3.4.4 FPGA Resource Utilization

	3.5 Related Work
	3.6 Conclusion

	4 Low Precision Processing for High Order Stencil Computations
	4.1 Introduction
	4.2 Background
	4.2.1 Stencil Benchmark
	4.2.2 Precision Optimization

	4.3 Methodology
	4.3.1 Evaluated Arbitrary Precision

	4.4 Evaluation
	4.4.1 Emulated Precision Tuning
	4.4.2 Case Study for Current Multi-Core Systems and Arbitrary Precision Supported Hardware

	4.5 Related Work
	4.6 Conclusion

	5 NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning 
	5.1 Introduction
	5.2 NAPEL
	5.2.1 Overview
	5.2.2 NMC Architecture
	5.2.3 Code Instrumentation and Analysis
	5.2.4 Central Composite Design
	5.2.5 Ensemble Machine Learning

	5.3 Experimental Results
	5.3.1 Experimental Setup
	5.3.2 Model Training and Prediction Time
	5.3.3 Accuracy Analysis
	5.3.4 Use Case: NMC-Suitability Analysis

	5.4 Related Work
	5.5 Conclusion

	6 LEAPER: Modeling Cloud FPGA-based Systems via Few-Shot Learning 
	6.1 Introduction
	6.2 LEAPER
	6.2.1 Overview
	6.2.2 FPGA Configuration Options and Application Features
	6.2.3 Latin Hypercube Statistical Sampling
	6.2.4 Base Model Building
	6.2.5 Cloud Model Building via Transfer Learner

	6.3 Evaluation
	6.3.1 Hardware Platform and Tools
	6.3.2 Target Model Accuracy Analysis
	6.3.3 Target Cloud FPGA Model Building Cost
	6.3.4 Base Model Accuracy Analysis
	6.3.5 Why Does LEAPER Work?
	6.3.6 Discussion and Limitations

	6.4 Related Work
	6.5 Conclusion

	7 Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning 
	7.1 Introduction
	7.2 Background
	7.2.1 Hybrid Storage Systems (HSSs)

	7.3 Motivation
	7.4 Reinforcement Learning
	7.4.1 Background
	7.4.2 Why Is RL a Good Fit for Data Placement in Hybrid Storage Systems?

	7.5 Sibyl: RL Formulation
	7.6 Sibyl: Design
	7.6.1 Sibyl Data Placement Algorithm
	7.6.2 blackDetailed Design of Sibyl

	7.7 Evaluation Methodology
	7.8 Results
	7.8.1 Performance Analysis
	7.8.2 Performance on Unseen Workloads
	7.8.3 Performance on Mixed Workloads
	7.8.4 Performance with Different Features
	7.8.5 Performance with Different Hyper-Parameters
	7.8.6 Sensitivity to Fast Storage Capacity
	7.8.7 Tri-Hybrid Storage Systems

	7.9 Explainability Analysis
	7.10 Overhead Analysis
	7.10.1 Inference and Training Latencies
	7.10.2 Area Overhead

	7.11 Discussion
	7.12 Related Work
	7.13 Conclusion

	8 Conclusions and Future Directions
	8.1 Outlook and Future Directions
	8.1.1 Data-Centric Computing
	8.1.2 Data-Driven System Optimization


	A Review of Near-Memory Data-Centric Architectures 
	A.1 Processing Near-Main Memory
	A.1.1 Programmable Unit
	A.1.2 Fixed-Function Unit
	A.1.3 Reconfigurable Unit

	A.2 Processing Near-Storage Class Memory
	A.2.1 Programmable Unit
	A.2.2 Fixed-Function Unit
	A.2.3 Reconfigurable Unit


	B PreciseFPGA: Low Precision Accelerator Search for FPGA 
	B.1 Introduction
	B.2 Motivation
	B.2.1 Effect on Power Consumption
	B.2.2 Effect on Inference Accuracy
	B.2.3 Design Space Exploration Time

	B.3 PreciseFPGA
	B.3.1 Overview
	B.3.2 HLS-based Features
	B.3.3 Function Detector and Feature Predictor
	B.3.4 Resource and Power Predictor

	B.4 Evaluation
	B.4.1 Resource and Power Prediction
	B.4.2 Pareto Curve Generation

	B.5 Related Work
	B.6 Conclusion

	C Other Works of the Author 
	Bibliography
	List of Publications
	Curriculum Vitae

