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Genome Sequence Analysis

• Read mapping: first key step in genome sequence analysis

1: Summary 2: Genome Sequence Analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the 
reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the 
degree of similarity (alignment score)

AAGCTTCCATGGGCCCAAATGGTT GCTTCCAGAATGAAATGGGCTTTC

• Calculating the alignment score requires computationally-
expensive approximate string matching (ASM) to account 
for differences between reads and the reference genome

Read Mapping
• There has been significant effort into improving read mapping

performance through efficient heuristics, hardware acceleration, and
accurate filters
• Problem: while these approaches address the computation overhead,

none of them alleviate the data movement overhead from storage
• Goal: improve the performance of genome sequence analysis by

effectively reducing unnecessary data movement from the storage system
• Idea: filter reads that do not require the expensive alignment

computation in the storage system to fundamentally reduce the data
movement overhead
• Challenges: 1) Read mapping workloads can exhibit different behavior
2) There are limited available hardware resources in the storage system
• GenStore: the first in-storage processing system designed for genome

sequence analysis to reduce both the computation/data movement
overhead
• Key Results: GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x – 29.2x) at low cost

• Genome sequence analysis is critical for many 
applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

• Genome sequencing machines extract smaller 
fragments of the original DNA sequence, known as 
reads
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3: Read Mapping Steps
1. Seeding: finds potential matching locations (seeds) in 
the reference.

GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400
… … … …

…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Reference Index

Generate k-mers from the read
Look up k-mers in an index of the reference genome
Mark the locations of k-mers in the reference as 
seeds.
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2.  Chaining or Seed Filtering: prunes some 
seeds in the reference genome to which the 
reads would not align

…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…

3. Alignment: determines the exact 
differences between the read and the 
reference genome
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…

GCCCAAATGGTT

• Case study on a real-world genomic read dataset with various read 
mapping systems and various state-of-the-art SSD configurations

4: Motivation

The ideal in-storage filter significantly improves performance by 
reducing the computation and data movement overheads
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• Key idea: Filter reads that do not require alignment inside the storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

5: GenStore

Filtering Opportunities

• High sequencing error rates or High genetic variation

Non-matching reads
Do not have potential matching locations, so they skip alignment

6: GenStore-EM Overview

• Low sequencing error rates combined with Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

• Efficient in-storage filter for reads with at least one exact match in 
the reference genome

• Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to the 
reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

7: GenStore-EM Design 8: GenStore-NM Overview

GCCCAAATGGTTRead-sized k-mer
GCC

CCC
…

Conventional k-mers

• Read-sized k-mers: to reduce the number of accesses per each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to the index

Sequential scan of the the index✓

✓
K-mer Loc.

AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted Read-Sized 
K-mer Index

Comparator

Read = K-mer

Next

Exact match à Filter the read

Next

• Efficient chaining-based in-storage filter to prune most of the non-matching reads
• Challenge: to perform chaining inside the SSD

Costly dynamic programming on many seeds in each read is particularly challenging for long reads

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small 
number of seeds

- Directly sends reads that require more complex chaining 
to the host system
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Reads with a sufficiently large number of seeds are very likely to align to the reference

• Read-sized k-mer index takes up a large amount of space (126 
GB for human index) due to the larger number of unique k-mers

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted K-mer Index
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Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x 

9: Evaluation

Methodology Other Results
GenStore-EM: For a read set with 80% exactly-matching reads
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Read Mappers
• Base: state-of-the-art software or hardware read 

mappers
- Minimap2 [Bioinformatics’18]: software mapper

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

• Effect of read set features on performance

• Performance benefit of an implementation 
of GenStore outside the SSD

•More detailed characterization of read 
mapping use cases

SSD Configurations

• SSD-L: with SATA3 interface 

• SSD-M: with PCIe Gen3 interface 

• SSD-H: with PCIe Gen4 interface

GenStore-NM: For a read set with 99.7% non-matching reads
With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup 6.8× – 19.2× speedup
On average 27.2× energy reduction
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