
GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis
Nika Mansouri Ghiasi (mnika@ethz.ch),  Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina,

Haiyu Mao, Nour Almadhoun Alserr,  Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Genome Sequence Analysis

• Read mapping: first key step in genome sequence analysis

1: Summary 2: Genome Sequence Analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the 
reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the 
degree of similarity (alignment score)

AAGCTTCCATGGGCCCAAATGGTT GCTTCCAGAATGAAATGGGCTTTC

• Calculating the alignment score requires computationally-
expensive approximate string matching (ASM) to account 
for differences between reads and the reference genome

Read Mapping
• There has been significant effort into improving read mapping

performance through efficient heuristics, hardware acceleration, and
accurate filters
• Problem: while these approaches address the computation overhead,

none of them alleviate the data movement overhead from storage
• Goal: improve the performance of genome sequence analysis by

effectively reducing unnecessary data movement from the storage system
• Idea: filter reads that do not require the expensive alignment

computation in the storage system to fundamentally reduce the data
movement overhead
• Challenges: 1) Read mapping workloads can exhibit different behavior
2) There are limited available hardware resources in the storage system
• GenStore: the first in-storage processing system designed for genome

sequence analysis to reduce both the computation/data movement
overhead
• Key Results: GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x – 29.2x) at low cost

• Genome sequence analysis is critical for many 
applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

• Genome sequencing machines extract smaller 
fragments of the original DNA sequence, known as 
reads

AAGCTTCCATG
GAAATGGGCTTT
CGCTTCCAGAAT
G

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC

3: Read Mapping Steps
1. Seeding: finds potential matching locations (seeds) in 
the reference.

GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400
… … … …

…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Reference Index

Generate k-mers from the read
Look up k-mers in an index of the reference genome
Mark the locations of k-mers in the reference as 
seeds.

❶

❶

❷
❸

❷

❸

2.  Chaining or Seed Filtering: prunes some 
seeds in the reference genome to which the 
reads would not align

…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…

3. Alignment: determines the exact 
differences between the read and the 
reference genome
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…

GCCCAAATGGTT

• Case study on a real-world genomic read dataset with various read 
mapping systems and various state-of-the-art SSD configurations

4: Motivation

The ideal in-storage filter significantly improves performance by 
reducing the computation and data movement overheads

Heuristics Accelerators Filters

Computation 
UnitCache

Main 
Memory

Data movement overhead 

Computation overhead✓

Storage
System

SSD Controller

CoreCoreCore

In-SSD DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1 ⋯

Host System

FTL

ACC

ACC

ACC GenStore
Metadata  

GenStore
FTL

Unfiltered data

• Key idea: Filter reads that do not require alignment inside the storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

5: GenStore

Filtering Opportunities

• High sequencing error rates or High genetic variation

Non-matching reads
Do not have potential matching locations, so they skip alignment

6: GenStore-EM Overview

• Low sequencing error rates combined with Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

• Efficient in-storage filter for reads with at least one exact match in 
the reference genome

• Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to the 
reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

7: GenStore-EM Design 8: GenStore-NM Overview

GCCCAAATGGTTRead-sized k-mer
GCC

CCC
…

Conventional k-mers

• Read-sized k-mers: to reduce the number of accesses per each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to the index

Sequential scan of the the index✓

✓
K-mer Loc.

AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted Read-Sized 
K-mer Index

Comparator

Read = K-mer

Next

Exact match à Filter the read

Next

• Efficient chaining-based in-storage filter to prune most of the non-matching reads
• Challenge: to perform chaining inside the SSD

Costly dynamic programming on many seeds in each read is particularly challenging for long reads

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small 
number of seeds

- Directly sends reads that require more complex chaining 
to the host system

Pr
ob
ab
ili
ty

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number	of	seeds	per	read

High	Alignment
Probability	

Al
ig
nm

en
t

Reads with a sufficiently large number of seeds are very likely to align to the reference

• Read-sized k-mer index takes up a large amount of space (126 
GB for human index) due to the larger number of unique k-mers

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted K-mer Index
Strong Hash Value

1
4
7

16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x 

9: Evaluation

Methodology Other Results
GenStore-EM: For a read set with 80% exactly-matching reads

0
50

100
150
200

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e 
[s

ec
]

0
2
4
6
8

10

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

With the Software Mapper With the Hardware Mapper

2.1× - 2.5× speedup 1.5× – 3.3× speedup

On average 3.92× energy reduction

292.
5x

2.
1x

2.
1x

3.
3x

1.
5x

2.
5x

Read Mappers
• Base: state-of-the-art software or hardware read 

mappers
- Minimap2 [Bioinformatics’18]: software mapper

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

• Effect of read set features on performance

• Performance benefit of an implementation 
of GenStore outside the SSD

•More detailed characterization of read 
mapping use cases

SSD Configurations

• SSD-L: with SATA3 interface 

• SSD-M: with PCIe Gen3 interface 

• SSD-H: with PCIe Gen4 interface

GenStore-NM: For a read set with 99.7% non-matching reads
With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup 6.8× – 19.2× speedup
On average 27.2× energy reduction

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e 
[s

ec
]

Lo
g 

sc
al

e

0.1

1

10

100

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

22
.4

29
x

27
.9
x

19
.2
x

6.
8x

6.
8x

mailto:mnika@ethz.ch

