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Data	Movement	Bottlenecks	(1/2)

DRAMCPUCPUCPU
L2L1

L3L2L1 L2L1 L2L1CPU

Data	Movement

Data	movement	bottlenecks	happen	because	of:
- Not	enough	data	locality	→	ineffective	use	of	the	cache	hierarchy
- Not	enough	memory	bandwidth
- High	average	memory	access	time	

Off-Chip	Link
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- AbundantDRAM	bandwidth

- Shorter average	memory	
access	time			

Data	Movement	Bottlenecks	(2/2)
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Compute-Centric	Architecture

Off-Chip	Link

DRAM
CPUCPUCPU
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Off-Chip	Link

Memory-Centric	Architecture

Processing-in-Memory	(PIM)

…
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Processing-near-bank

DRAM	BankDRAM
(e.g.,	3D-Stacked	Memory)

Vault
Controller

PHY Processing-
near-vault

DRAM	Vault

Processing-in-Memory:	Taxonomy	

Twomain	approaches	for	Processing-in-Memory:
1 Processing-near-Memory:	PIM logic	is	added	to	

the	same	die	as	memory	or	to	the	logic	layer of	3D-stacked	memory

2 Processing-using-Memory:	uses	the	operational	principles	of	
memory	cells to	perform	computation

Processing-
using-DRAM

…

…
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Processing-in-Memory:	Challenges

The	lack	of	tools and	system	support for	
PIM	architectures	limit	the	adoption of	PIM	system

To	fully	support PIM	systems,	we	need to	develop:
1 Workload	characterization	methodologies	and	

benchmark	suites	targeting	PIM	architectures

2 Frameworks that	can	facilitate	the	implementation	of	
complex	operations	and	algorithms	using	PIM	primitives

3 Compiler	support	and	compiler	optimizations	
targeting	PIM	architectures

4 Operating	system	support	for	PIM-aware	virtual	memory,	
memory	management,	data	allocation	and	mapping

5 Efficient	data	coherence	and	consistency mechanisms
7



In	this	Work

The	lack	of	tools and	system	support for	
PIM	architectures	limit	the	adoption of	PIM	system

To	fully	supportt	PIM	systems,	we	need to	develop:

3 Compiler	support	and	compiler	optimizations	
targeting	PIM	architectures

4 Operating	system	support	for	PIM-aware	virtual	memory,	
memory	management,	data	allocation	and	mapping

5 Efficient	data	coherence	and	consistency mechanisms

1 Workload	characterization	methodologies	and	
benchmark	suites	targeting	PIM	architectures

2 Frameworks that	can	facilitate	the	implementation	of	
complex	operations	and	algorithms	using	PIM	primitives
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Identifying	Memory	Bottlenecks
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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The	Problem
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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No	available	methodology	can	comprehensively:

−		identify data	movement	bottlenecks

− correlate	them	with	the	most	suitable	
data	movement	mitigation	mechanism
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• Our	Goal:	develop	a	methodology	to:
− methodically	identify	sources	of	data	movement	
bottlenecks

− comprehensively	compare	compute- and	memory-
centric	data	movement	mitigation	techniques

Our	Goal

12



1.	Introduction

Methodology	Overview
2.	Identifying	Memory	Bottlenecks

Application	Profiling	
Locality-Based	Clustering	
Memory	Bottleneck	Analysis	
DAMOV	Benchmark	Suite	

3.	Enabling	Complex	Operations	using	DRAM
SIMDRAM	Framework
System	Integration
Evaluation	

Outline

13



Key	Approach
• New	workload	characterization	methodology	to	analyze:

- data	movement	bottlenecks
- suitability	of	different	data	movement	mitigation	mechanisms

• Two	main	profiling	strategies:	

Architecture-independent	profiling:

characterizes	the	memory	behavior	independently
of	the	underlying	hardware

Architecture-dependent	profiling:

evaluates	the	impact	of	the	system	configuration	
on	the	memory	behavior
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Step	1:	Application	Profiling	
• We	analyze	345	applications from	distinct	domains:

- Graph	Processing
- Deep	Neural	Networks
- Physics
- High-Performance	Computing
- Genomics	
- Machine	Learning	
- Databases	
- Data	Reorganization
- Image	Processing
- Map-Reduce
- Benchmarking	
- Linear	Algebra		
…

Physics

Security

Machine	
learning

Database
Graph	

processing

Data	
analytics

Data	reorganization

Genomics

Deep	Neural	
Networks

Image	
processing

Linear	
algebra

Signal	
processing

Data	
mining
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Memory	Bound	Functions
• We	analyze	345	applications from	distinct	domains
• Selection	criteria:		clock	cycles	>	3%	and	Memory	Bound	>	30%

• We	find	144	functions	from	a	total	of	77K	functions	and	select:
- 44	functions	→	apply	steps	2	and	3
- 100	functions	→	validation

Memory Bound (%)
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Step	2:	Locality-Based	Clustering	
We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	
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Step	2:	Locality-Based	Clustering	
We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	

The	closer	a	function	is	to	the	bottom-left	corner
→	less	likely	it	is	to	take	advantage of

a	deep	cache	hierarchy
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Step	3:	Memory	Bottleneck	Analysis
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Six	classes	of	
data	movement	bottlenecks:

each	class	↔ data	movement
mitigation	mechanism	
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− High	MPKI	→ high	memory	pressure

− Host	scales	well	until	bandwidth	saturates

− NDP scales	without	saturating alongside attained	bandwidth		

DRAM	bandwidth	bound	applications:
NDP does	better	because	of	the	higher	internal	DRAM	bandwidth

Class	1a:	DRAM	Bandwidth	Bound	(1/2)	
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− High	LFMR	→ L2	and	L3	caches	are	inefficient	

− Host’s	energy consumption	is	dominated	by	
cache	look-ups	and	off-chip	data	transfers

− NDP provides	large	system	energy	reduction	since	it	does	not	
access	L2,	L3,	and	off-chip	links	

DRAM	bandwidth	bound	applications:
NDP does	better	because	it	eliminates	off-chip	I/O	traffic

Class	1a:	DRAM	Bandwidth	Bound	(2/2)	
Temp.	Loc:	low
LFMR:	high
MPKI:	high
AI:	low
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Step	3:	Memory	Bottleneck	Analysis
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DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark
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DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark

Get	DAMOV	at:
https://github.com/CMU-SAFARI/DAMOV
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• Problem:	Data	movement	is	a	major bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		themost	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies	
−	Get	DAMOV	at:	https://github.com/CMU-SAFARI/DAMOV

−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	

Conclusion

38

https://github.com/CMU-SAFARI/DAMOV


1.	Introduction

Methodology	Overview
2.	Identifying	Memory	Bottlenecks

Application	Profiling	
Locality-Based	Clustering	
Memory	Bottleneck	Analysis	
DAMOV	Benchmark	Suite	

3.	Enabling	Complex	Operations	using	DRAM
SIMDRAM	Framework
System	Integration
Evaluation	

Outline

39



Access	
Transistor

Storage	
Capacitor

Bitline

Wordline

Wordline

Bi
tli
ne

Subarray
(2D	Array

of	DRAM	Cells)

Sense	Amplifiers

DRAM	Module

DRAM	Chips

DRAM	Bank

DRAM	Cells

Row	Buffer

Inside	a	DRAM	Chip	

40



DRAM	Cell	Operation
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM	Cell	Operation	(1/3)
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM	Cell	Operation	(2/3)
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read/write charge	
latched	in	sense	amplifier
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM	Cell	Operation	(3/3)

wordline
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storage
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1.	lower	
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RowClone:	In-DRAM	Row	Copy	(1/2)
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½	VDD
source	A

destination	B
1.	ACTIVATE	(ACT)

2.	ACTIVATE	(ACT)

3.	PRECHARGE	(PRE)

Row	copy
command	sequence2:
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RowClone:	In-DRAM	Row	Copy	(2/2)

bitline

sense	
amplifier

enable

½	VDD
source	A

destination	B

1.	ACTIVATE	source	row	A

2.	bitline	will	be	pulled	
to	charge	level	of	row	A

VDD

3.	ACTIVATE	destination	row	B

4.	charge	level	of	source	row	A	will	
be	copied to	destination	row	B

5.	PRECHARGE	bitline	
for	next	access

½	VDD

2	V.	Seshadri	et	al.,	“RowClone:	Fast	and	Energy-Efficient	In-DRAM	Bulk	Data	Copy	and	Initialization",	MICRO,	2013

1.	ACTIVATE	(ACT)

2.	ACTIVATE	(ACT)

3.	PRECHARGE	(PRE)

Row	copy
command	sequence2:
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Triple-Row	Activation:	Majority	Function	

bitline

sense	
amplifier

enable

½	VDD
A

B

C

1.	ACTIVATE	(ACT)

2.	PRECHARGE	(PRE)

Majority	function
command	sequence3:

3	V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017
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Triple-Row	Activation:	Majority	Function

bitline

sense	
amplifier

enable

½	VDD
A

B

C

1. ACTIVATE	three	rows	
simultaneously	

→	triple-row	activation

2.	bitline	will	be	pulled	
to	the	majority of	
cells	A,	B,	and	C

VDD

3.	values	in	cells	A,	B,	C	
will	be	overwritten	

with	the	majority	output

1.	ACTIVATE	(ACT)

2.	PRECHARGE	(PRE)

Majority	function
command	sequence3:

3	V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017

4.	PRECHARGE	bitline	
for	next	access

½	VDD

MAJ(A,	B,	C	)	=
MAJ(Vdd,	Vdd,	0)	=	Vdd

48



Ambit:	In-DRAM	Bulk	Bitwise	AND/OR	

bitline

sense	
amplifier

enable

A

B

C

½	VDD

V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017

MAJ	(A,	B,	0)		=		AND	(A,	B)

MAJ	(A,	B,	1)		=		OR	(A,	B)
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Ambit:	Subarray	Organization

sense	amplifiers

16	designated	rows
for	triple	activation	

2	pre-initialized	rows

1006	regular	
data	rows

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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r	
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e	
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r

address	A

Less	than	1%	of	overhead	
in	existing	DRAM	chips

V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017
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• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)

PuM:	Prior	Works
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• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)

Need	a	framework	that	aids	general	adoption	of	PuM,	by:
- Efficiently	implementing	complex	operations
- Providing	flexibility	to	support	new	operations

PuM:	Prior	Works
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Goal:	Design	a	PuM	framework	that	

- Efficiently implements	complex operations

- Provides	the	flexibility to	support	new	desired	
operations

- Minimally changes	the	DRAM	architecture

Our	Goal

53



1.	Introduction

Methodology	Overview
2.	Identifying	Memory	Bottlenecks

Application	Profiling	
Locality-Based	Clustering	
Memory	Bottleneck	Analysis	
DAMOV	Benchmark	Suite	

3.	Enabling	Complex	Operations	using	DRAM
SIMDRAM	Framework
System	Integration
Evaluation	

Outline
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• SIMDRAM	framework	is	built	around	a	DRAM	substrate	
that	enables	two	techniques:

(1)	Vertical	data	layout

4-
bi
t	e
le
m
en
t	s
iz
e

Ro
w
		D
ec
od
er

most	significant	bit	(MSB)

least	significant	bit	(LSB)

A

B Cout

Cin

MAJ

(2)	Majority-based	computation

Pros compared	to	the	
conventional horizontal	layout:

• Implicit	shift	operation
• Massive	parallelism

Cout=	AB	+	ACin +	BCin

Pros compared	to AND/OR/NOT-
based	computation:

• Higher	performance
• Higher	throughput
• Lower	energy	consumption

SIMDRAM:	PuM	Substrate
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SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program

SIMDRAM	Framework
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SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program

SIMDRAM	Framework:	Step	1
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A

B

Cin

Cout
Part	1

MAJ
0

B

Cin

CoutMAJ MAJ
MAJ

A

0
1

1

A

B
C

A

B
C

output	is	“1”	only	when	A	=	B	=	“1”

output	is	“0”	only	when	A	=	B	=	“0”

Naïvely converting	AND/OR/NOT-implementation to	
MAJ/NOT-implementation	leads	to	an	unoptimized	circuit

MAJ
A
B C
0

MAJ
A
B C
1

Step	1:	Naïve	MAJ/NOT	Implementation
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Part	2

Step	1	generates	an optimized
MAJ/NOT-implementation	of	the	desired	operation

A

B Cout

Cin

MAJ

Greedy	
optimization
algorithm4

4 L.	Amarù et	al,	“Majority-Inverter	Graph:	A	Novel	Data-Structure	and	Algorithms	for	Efficient	Logic	Optimization”,	DAC,	2014.

MAJ
0

B

Cin

CoutMAJ MAJ
MAJ

A

0
1

1

Step	1:	Efficient	MAJ/NOT	Implementation
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SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝝁Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program

SIMDRAM	Framework:	Step	2
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Step	2:	µProgram	Generation

• µProgram:	A	series	of	microarchitectural	operations	
(e.g.,	ACT/PRE)	that	SIMDRAM	uses	to	execute SIMDRAM	
operation	in	DRAM

• Goal	of	Step	2:	To generate the µProgram	that	executes
the	desired	SIMDRAM	operation	in	DRAM	

Task	1:	Allocate	DRAM	rows	to	the	operands

Task	2:	Generate	µProgram
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Step	2:	µProgram	Generation

• µProgram:	A	series	of	microarchitectural	operations	
(e.g.,	ACT/PRE)	that	SIMDRAM	uses	to	execute SIMDRAM	
operation	in	DRAM

• Goal	of	Step	2:	To generate the µProgram	that	executes	
the	desired	SIMDRAM	operation	in	DRAM	

Task	1:	Allocate	DRAM	rows	to	the	operands

Task	2:	Generate	µProgram
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subarray	organization

Constraint	1:	
Limited number	of	rows	
reserved	for	computation

• Allocation	algorithm considers	two	constraints	specific	to	
processing-using-DRAM

Compute
rows

Task	1:	Allocating	DRAM	Rows	to	Operands
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
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r

subarray	organization

Constraint	2:	
Destructive behavior	
of	triple-row	activation

Overwritten	
with	MAJ	output

• Allocation	algorithm considers	two	constraints	specific	to	
processing-using-DRAM

Task	1:	Allocating	DRAM	Rows	to	Operands
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A
B Cout
Cin

MAJ

Allocation	
algorithm

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

• Allocation	algorithm:

Triple-row	
activation

Cout
Cout
Cout

• Assigns	as	many	inputs	as	the	number	of	free	compute	rows
• All	three input	rows	contain	the	MAJ	output	and	can	be	reused

Task	1:	Allocating	DRAM	Rows	to	Operands
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Step	2:	µProgram	Generation

• µProgram:	A	series	of	microarchitectural	operations	
(e.g.,	ACT/PRE)	that	SIMDRAM	uses	to	execute SIMDRAM	
operation	in	DRAM

• Goal	of	Step	2:	To generate the µProgram	that	executes	
the	desired	SIMDRAM	operation	in	DRAM	

Task	1:	Allocate	DRAM	rows	to	the	operands

Task	2:	Generate	µProgram
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Task	2:	Generate	an	initial	µProgram

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

1.	Copy	A	to	reserved	row	
(ACT/ACT/PRE)

2.	Copy	B	to	reserved	row	
(ACT/ACT/PRE)

3.	Copy	Cin to	reserved	row
(ACT/ACT/PRE)

4.	Execute	MAJ	
(ACT/PRE)

5.	Copy	Cout to	destination	row
(ACT/PRE)		

Initial	µProgram	
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Task	2:	Optimize	the	µProgram

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

Initial	µProgram	

Coalesce
row	copies

Merge
MAJ	+	row	copy

Optimized	µProgram	

2.	Optimize

68

1.	Copy	A	to	reserved	row	
(ACT/ACT/PRE)

2.	Copy	B	to	reserved	row	
(ACT/ACT/PRE)

3.	Copy	Cin to	reserved	row
(ACT/ACT/PRE)

4.	Execute	MAJ	
(ACT/PRE)

5.	Copy	Cout to	destination	row
(ACT/PRE)		



Task	2:	Generate	N-bit	Computation

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

3.	Generate	N-bit	
computation

Repeat	N	times:

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

Final	µProgram	

Repeat	N	times:

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

• Final	µProgram is	optimized	and	computes	the	desired	
operation	for	operands	of	N-bit	size	in	a	bit-serial	fashion

2.	Optimize

Optimized	µProgram	
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Task	2:	Generate	µProgram

Repeat	N	times:

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

Stored	in	a	reserved	
DRAM	region
for	future	use

A	new	SIMDRAM	
instruction	(called	bbop)	

added	to	CPU	ISA

Final	µProgram	

• Final	µProgram is	optimized	and	computes	the	desired	
operation	for	operands	of	N-bit	size	in	a	bit-serial	fashion
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SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	𝛍Program

Memory	Controller

User	Input

SIMDRAM-enabled	application

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program

SIMDRAM	Framework:	Step	3
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Step	3:	µProgram	Execution
• SIMDRAM	control	unit:	handles	the	execution	of	the	
µProgram	at	runtime	

• Upon	receiving	a	bbop instruction,	the	control	unit:
1. Loads	the	µProgram corresponding	to	SIMDRAM	operation
2. Issues	the	sequence	of	DRAM	commands	(ACT/PRE)	stored	

in	the	µProgram to	SIMDRAM	subarrays	to	perform	the	in-
DRAM	operation	

Step	3:	Execution	according	to	𝜇Program

Memory	Controller

User	Input

SIMDRAM-enabled	application

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

72



1.	Introduction

Methodology	Overview
2.	Identifying	Memory	Bottlenecks
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Locality-Based	Clustering	
Memory	Bottleneck	Analysis	
DAMOV	Benchmark	Suite	

3.	Enabling	Complex	Operations	using	DRAM
SIMDRAM	Framework
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Outline
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Efficiently	transposing	data

Programming interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework

System	Integration
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Efficiently	transposing	data

Programming interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework

More	in	the	Paper
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System	Integration
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Methodology:	Experimental	Setup	
• Simulator:	gem5

• Baselines:
- A	multi-core	CPU	(Intel	Skylake)
- A	high-end	GPU	(NVidia	Titan	V)
- Ambit: a	state-of-the-art	in-memory	computing	mechanism

• Evaluated	SIMDRAM	configurations (all	using	a	DDR4	
device):
- 1-bank: SIMDRAM	exploits	65’536	SIMD	lanes	(an	8	kB	row	
buffer)	

- 4-banks: SIMDRAM	exploits	262’144	SIMD	lanes
- 16-banks:	SIMDRAM	exploits	1’048’576	SIMD	lanes
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Methodology:	Workloads
Evaluated:
• 16	complex	in-DRAM	operations:

- Absolute - Predication
- Addition/Subtraction - ReLU
- BitCount - AND-/OR-/XOR-Reduction
- Equality/	Greater/Greater	Equal				- Division/Multiplication

• 7	real-world	applications
- BitWeaving (databases)			- LeNET (Neural	Networks)
- TPH-H	(databases) - VGG-13/VGG-16	(Neural	Networks)
- kNN (machine	learning)			- brightness	(graphics)
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Throughput	Analysis
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SIMDRAM	significantly	outperforms	
all	state-of-the-art	baselines	for	a	wide	range	of	operations

Average	normalized	throughput	across	all	16	SIMDRAM	
operations
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Energy	Analysis
Average	normalized	energy	efficiency	across	all	16	
SIMDRAM	operations
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SIMDRAM	is	more	energy-efficient than	
all	state-of-the-art	baselines	for	a	wide	range	of	operations
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Real-World	Application
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Average	speedup	across	7	real-world	applications
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• Motivation: Processing-using-Memory	(PuM)	architectures	can	effectively	perform	bulk	
bitwise	computation

• Problem:	Existing	PuM architectures are	not	widely	applicable
– Support	only	a	limited	and	specific	set	of	operations
– Lack	the	flexibility	to	support	new	operations
– Require	significant	changes	to	the	DRAM	subarray

• Goals:	Design	a	processing-using-DRAM	framework	that:	
– Efficiently	implements	complex	operations
– Provides	the	flexibility	to	support	new	desired	operations
– Minimally	changes	the	DRAM	architecture

• SIMDRAM:	An	end-to-end	processing-using-DRAM	framework	that	provides	the	
programming	interface,	the	ISA,	and	the	hardware	support	for:
1. Efficiently	computing	complex	operations
2. Providing	the	ability	to	implement	arbitrary	operations	as	required
3. Using	a	massively-parallel	in-DRAM	SIMD	substrate

• Key	Results:	SIMDRAM	provides:
– 88x	and		5.8x	the	throughput	and	257x	and	31x	the	energy	efficiency	of	a	baseline	CPU	and	a	

high-end	GPU,	respectively,	for	16	in-DRAM	operations
– 21x	and	2.1x	the	performance	of	the	CPU	and	GPU	over	seven	real-world	applications

Conclusion
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• Problem:	Data	movement	is	a	major bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		themost	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies
−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	

2

Executive	Summary	

DAMOV:	https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV
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Data	Movement	Bottlenecks	(1/2)

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Data Movement

Data	movement	bottlenecks	happen	because	of:
- Not	enough	data	locality	→	ineffective	use	of	the	cache	hierarchy
- Not	enough	memory	bandwidth
- High	average	memory	access	time	

4

Off-Chip Link



Data	Movement	Bottlenecks	(2/2)
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DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Compute-Centric Architecture

Off-Chip Link

DRAM
CPUCPUCPU

L1L1L1L1CPU

Off-Chip Link

Memory-Centric Architecture

Near-Data Processing (NDP)

- Abundant DRAM bandwidth

- Shorter average memory 
access time   

…



DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Compute-Centric Architecture

Off-Chip Link

Near-Data	Processing	(1/2)	

6

DRAM
CPUCPUCPU

L1L1L1L1CPU

Off-Chip Link

Memory-Centric Architecture

Near-Data Processing (NDP)

- Abundant DRAM bandwidth

- Shorter average memory 
access time   

…

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	



Near-Data	Processing	(2/2)	
Samsung	FIMDRAM	(2021)

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	

UPMEM	(2019)

Near-DRAM-banks	processing	
for	neural	networks	

1.2	TFLOPS	compute	throughput2

Near-DRAM-banks	processing	
for	general-purpose	computing

0.9	TOPS	compute	throughput1

7[1]	Devaux,	"The	True	Processing	In	Memory	Accelerator,”	HCS,	2019
[2]	Kwon+,	“A	20nm	6GB	Function-In-Memory	DRAM,	Based	on	HBM2	with	a	1.2TFLOPS	Programmable	Computing	Unit	Using	
Bank-Level	Parallelism,	for	Machine	Learning	Applications,"	ISSCC,	2021



When	to	Employ	Near-Data	Processing?	

Near-Data	
Processing

Mobile	consumer	workloads
(GoogleWL2)

Neural	networks
(GoogleWL2)

Graph	processing
(Tesseract1)

Time	series	analysis
(NATSA6)

DNA	
sequence	mapping
(GenASM3; GRIM-Filter4)...

[1]	Ahn+,	“A	Scalable	Processing-in-Memory	Accelerator	for	Parallel	Graph	Processing,"	ISCA,	2015
[2]	Boroumand+,	"Google	Workloads	for	Consumer	Devices:	Mitigating	Data	Movement	Bottlenecks,”	ASPLOS,	2018
[3]	Cali+,	"GenASM:	A	High-Performance,	Low-Power	Approximate	String	Matching	Acceleration	Framework	for	Genome	Sequence	Analysis,”	MICRO,	2020	
[4]	Kim+,	"GRIM-Filter:	Fast	Seed	Location	Filtering	in	DNA	Read	Mapping	Using	Processing-in-Memory	Technologies,”	BMC	Genomics, 2018
[5]	Boroumand+,	"Polynesia:	Enabling	Effective	Hybrid	Transactional/Analytical	Databases	with	Specialized	Hardware/Software	Co-Design,”	
arXiv:2103.00798	[cs.AR],	2021
[6]	Fernandez+,	“NATSA:	A	Near-Data	Processing	Accelerator	for	Time	Series	Analysis,”	ICCD,	2020
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Databases
(Polynesia5)



Identifying	Memory	Bottlenecks
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Compute	Roof	
y	=	Peak	System	Throughput

Memory	Roof	
y	=	BW	x	AI

Compute Bound →
Not suitable for NDPMemory 

Bound →
Suitable for 

NDP

10



Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

11



Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Memory	Bound	
applications	are
faster	on	NDP

Compute	Bound	
applications	

are faster	on	CPU

Memory	Bound	
applications	
are	faster	on	

CPU,	
or	performance	
depends❌

Compute	Bound	applications	
have	similar	performance	

on	CPU/NDP	or
performance depends❌

12
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Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Memory	Bound	
applications	are
faster	on	NDP

Compute	Bound	
applications	

are faster	on	CPU

Memory	Bound	
applications	
are	faster	on	

CPU,	
or	performance	
depends❌

Compute	Bound	applications	
have	similar	performance	

on	CPU/NDP	or
performance depends❌

13

✓

✓Roofline model	does	not	accurately	account	
for	the	NDP	suitability	of	memory-bound	applications



Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		
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Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		

Applications	with
high	MPKI	are
faster	on	NDP

Applications	with	
low	MPKI	are	
faster	on	CPU

Applications	with	low	
MPKI can	be
faster	on	NDP;	
have	similar	

performance	on	
CPU/NDP	or;
performance	
can depends

❌
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Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		

Applications	with
high	MPKI	are
faster	on	NDP

Applications	with	
low	MPKI	are	
faster	on	CPU

Applications	with	low	
MPKI can	be
faster	on	NDP;	
have	similar	

performance	on	
CPU/NDP	or;
performance	
can depends

❌
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LLC	MPKI	does	not	accurately	account	
for	the	NDP	suitability	of	memory-bound	applications



Identifying	Memory	Bottlenecks
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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The	Problem
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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No	available	methodology	can	comprehensively:

−		identify data	movement	bottlenecks

− correlate	them	with	the	most	suitable	
data	movement	mitigation	mechanism



Our	Goal
• Our	Goal:	develop	a	methodology	to:

− methodically	identify	sources	of	data	movement	
bottlenecks

− comprehensively	compare	compute- and	memory-
centric	data	movement	mitigation	techniques

19



Outline

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies
20



Key	Approach
• New	workload	characterization	methodology	to	analyze:

- data	movement	bottlenecks
- suitability	of	different	data	movement	mitigation	mechanisms

• Two	main	profiling	strategies:	

Architecture-independent	profiling:

characterizes	the	memory	behavior	independently
of	the	underlying	hardware

Architecture-dependent	profiling:

evaluates	the	impact	of	the	system	configuration	
on	the	memory	behavior

21



DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis
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Step	2
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Step	3
Memory	Bottleneck	Class.
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DAMOV-SIM	Simulator

Methodology	Overview
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Step	1:	Application	Profiling
Goal:	Identify	application functions that	suffer	from	data	
movement	bottlenecks

24

Physics

Security

Machine	
learning

DatabaseGraph	
processing

Data	
analytics

Data	
reorganization

Genomics

Deep	
Neural	

Networks

Image	
processing

Linear	
algebra

Signal	
processing

Data	
mining

Hardware	Profiling Tool:	
Intel	VTune

MemoryBound:	
CPU	is	stalled	due	to	load/store



DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis
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Low	spatial	locality	

Step	2:	Locality-Based	Clustering	
• Goal:	analyze	application’s	memory	characteristics

Stride	Profile	(bin)

…1 2 4 8 16 32 2N

Fr
eq
ue
nc
y	
(c
ou
nt
)

Stride	Profile	Histogram

High	spatial	locality	

…1 2 4 8 16 32 2N

Stride	Profile	(bin)

Fr
eq
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y	
(c
ou
nt
)

Stride	Profile	Histogram

stride	profile(1)+=	1
0 1 2 3 4 5

Memory	Trace

Spatial	Locality7

[7]	Weinberg+,	“Quantifying	Locality	in	the	Memory	Access	Patterns	of	HPC	Applications,”	SC,	2005 26



Low	spatial	locality	

Step	2:	Locality-Based	Clustering	
• Goal:	analyze	application’s	memory	characteristics

…1 2 4 8 16 32 2N

Reuse	Profile	(bin)

Fr
eq
ue
nc
y	
(c
ou
nt
)

Reuse	Profile	Histogram

High	temporal	locality	
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High	spatial	locality	
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[7]	Weinberg+,	“Quantifying	Locality	in	the	Memory	Access	Patterns	of	HPC	Applications,”	SC,	2005 27
Low	temporal	locality	



DAMOV-SIM	Simulator

Methodology	Overview
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Scalability	Analysis
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Step	3:	Memory	Bottleneck	Classification	(1/2)

Arithmetic	Intensity	(AI)
- floating-point/arithmetic	operations	per	L1	cache	lines	accessed

→	shows	computational	intensity	per	memory	request

LLC	Misses-per-Kilo-Instructions	(MPKI)
- LLC	misses	per	one	thousand	instructions

→	shows	memory	intensity

Last-to-First	Miss	Ratio	(LFMR)
- LLC	misses	per	L1	misses

→	shows	if	an	application	benefits	from	L2/L3	caches

29



Step	3:	Memory	Bottleneck	Classification	(2/2)

• Goal:	identify the	specific	sources	of	data	movement	
bottlenecks

DAMOV-SIM Simulator

#	Cores
Scalability	Analysis

Integrated	ZSim and	Ramulator

• Scalability	Analysis:	
− 1,	4,	16,	64,	and	256	out-of-order/in-order	host	and	NDP	CPU	cores
− 3D-stacked	memory	as	main	memory

Configuration	2:	NDP	System

Off-chip	link

DRAMCPUCPUCPU

L
2

L
1 L3

L
2

L
1 L

2
L
1 L2L1CPU

Configuration	1:	Host	CPU	System	

Off-chip	link

30DAMOV-SIM:	https://github.com/CMU-SAFARI/DAMOV

…

Logic	Layer

CPUCPUCPU

L
1L1L1L1CPU

DRAMDRAMDRAMDRAM

DRAMDRAMDRAM

https://github.com/CMU-SAFARI/DAMOV


Outline
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1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies



Step	1:	Application	Profiling	
• We	analyze	345	applications from	distinct	domains:

32

- Graph	Processing
- Deep	Neural	Networks
- Physics
- High-Performance	Computing
- Genomics	
- Machine	Learning	
- Databases	
- Data	Reorganization
- Image	Processing
- Map-Reduce
- Benchmarking	
- Linear	Algebra		
…

Physics

Security

Machine	
learning

Database
Graph	

processing

Data	
analytics

Data	reorganization

Genomics

Deep	Neural	
Networks

Image	
processing

Linear	
algebra

Signal	
processing

Data	
mining



Memory	Bound	Functions
• We	analyze	345	applications from	distinct	domains
• Selection	criteria:		clock	cycles	>	3%	and	Memory	Bound	>	30%

• We	find	144	functions	from	a	total	of	77K	functions	and	select:
- 44	functions	→	apply	steps	2	and	3
- 100	functions	→	validation

33

Memory Bound (%)



Outline
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1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies



Step	2:	Locality-Based	Clustering	

35

We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	



Step	2:	Locality-Based	Clustering	

36

We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	

The	closer	a	function	is	to	the	bottom-left	corner
→	less	likely	it	is	to	take	advantage of

a	deep	cache	hierarchy



Outline
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Step	3:	Memory	Bottleneck	Analysis
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Step	3:	Memory	Bottleneck	Analysis
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Step	3:	Memory	Bottleneck	Analysis
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Memory	Bottleneck	Class

Six	classes	of	
data	movement	bottlenecks:

each	class	↔ data	movement
mitigation	mechanism	
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Step	3:	Memory	Bottleneck	Analysis
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− High	MPKI	→ high	memory	pressure

− Host	scales	well	until	bandwidth	saturates

− NDP scales	without	saturating alongside attained	bandwidth		

DRAM	bandwidth	bound	applications:
NDP does	better	because	of	the	higher	internal	DRAM	bandwidth

Class	1a:	DRAM	Bandwidth	Bound	(1/2)	
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− High	LFMR	→ L2	and	L3	caches	are	inefficient	

− Host’s	energy consumption	is	dominated	by	
cache	look-ups	and	off-chip	data	transfers

− NDP provides	large	system	energy	reduction	since	it	does	not	
access	L2,	L3,	and	off-chip	links	

DRAM	bandwidth	bound	applications:
NDP does	better	because	it	eliminates	off-chip	I/O	traffic

Class	1a:	DRAM	Bandwidth	Bound	(2/2)	
Temp.	Loc:	low
LFMR:	high
MPKI:	high
AI:	low



Step	3:	Memory	Bottleneck	Analysis
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- High	LFMR	→	L2	and	L3	caches	are	inefficient	

- Host	scales	well	but	NDP	performance	is	always	
higher

- NDP	performs	better	than	host	because of	its	lower	memory	
access	latency

DRAM	latency	bound	applications:
host performance	is	hurt	by	the	cache	hierarchy	and	off-chip	link

Class	1b:	DRAM	Latency	Bound	
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Step	3:	Memory	Bottleneck	Analysis
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- Decreasing	LFMR	→	L2/L3	caches	turn	efficient
- NDP	scales	better	than	the	host	at	low	core	counts
- Host	scales	better	than	NDP	at	high	core	counts
- Host	performs	better	than	NDP	at	high	core	counts	since	it	
reduces memory	access	latency	via	data	caching

L1/L2	cache	capacity	bottlenecked	applications:
NDP	is	higher	performance	when	the	aggregated	cache	size	is	small
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Step	3:	Memory	Bottleneck	Analysis
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− Increasing	LFMR	→ L2/L3	caches	turn	inefficient
− Host	scales	better	than	the	NDP	at	low	core	counts
− NDP	scales	better	than	host	at	high	core	counts	
- NDP	performs	better	than	host	at	high	core	counts	since	it
reduces	memory	access	latency

L3	cache	contention	bottlenecked	applications:
at	high	core	counts,	applications	turn	into	DRAM	latency-bound

Class	2a:	L3	Cache	Contention	

0

20

40

60

80

100

120

1 4 16 64 256

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Host NDP

0%

20%

40%

60%

80%

100%

1 4 16 64 256

M
em

or
y	
Re
qu
es
ts

Number	of	Cores

L1 L2 L3 DRAM

Temp.	Loc:	high
LFMR:	increasing

MPKI:	low
AI:	low



Step	3:	Memory	Bottleneck	Analysis
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- Low	LFMR,	MPKI;	high	temporal	locality	
→	efficient	L2/L3	caches,	low	memory	intensity	

- Low	AI	→	few	operations	per	byte	
- Host	and	NDP	performance	are	similar	

L1	cache	capacity	bottlenecked	applications:	
NDP	can	be	used	to	reduce the	host	overall	SRAM	area

Class	2b:	L1	Cache	Capacity	
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Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing	

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

52



53

Compute-bound	applications:
benefit highly from	cache	hierarchy;	NDP	is	not a	good	fit

Class	2c:	Compute-Bound	
- Low	LFMR,	MPKI;	high	temporal	locality	
→	efficient	L2/L3	caches,	low	memory	intensity	

- High	AI	→	many	operations	per	byte	

- Host	performs	better	than	NDP	because	computation dominates	
execution	time	
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Methodology	Validation	
• Goal:	evaluate	the	accuracy	of	our	workload	
characterization	methodically	on	a	large	set	of	functions

• Two-phase	validation:

Classify Accuracy
100

functions

Phase	2:	
calculate	accuracy

High accuracy:	
our	methodology	accurately classifies	97%	of	functions	

into	one	of	the	six	memory	bottleneck	classes	

Phase	1:	
calculate	thresholds	(T)

Temporal
Locality

LLC	MPKI
Last-to-
First	

Miss	Ratio

Arithmetic	
Intensity

TTemporal
Locality

TLLC	MPKI
TLast-to-

First	
Miss	Ratio

TArithmetic
Intensity

Calculate
44

functions
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More	in	the	Paper	
• Effect	of	the	last-level	cache	size

- Large	L3	cache	size	(e.g.,	512	MB)	can	mitigate some	cache	
contention	issues	

• Summary	of	our	workload	characterization	methodology
- Including	workload	characterization	using	in-order	host/NDP	
cores

• Limitations	of	our	methodology

• Benchmark	diversity
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1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies



Case	Studies	
• Many	open	questions	related	to	NDP	system	designs8:

- Interconnects
- Data	mapping	and	allocation
- NDP	core	design	(accelerators,	general-purpose	cores)
- Offloading	granularity		
- Programmability	
- Coherence	
- System	integration	
- …	

• Goal:	demonstrate	how	DAMOV	is	useful	to	study	NDP	
system	designs	

[8]	Mutlu+,	“A	Modern	Primer	on	Processing	in	Memory,"	Emerging	Computing:	From	Devices	to	Systems	- Looking	Beyond	Moore	and	
Von	Neumann,	2021
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Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	(1/4)	
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Case	Studies	(2/4)
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	(3/4)	
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→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	(4/4)	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core
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→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies
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NDP	Accelerators	and	Our	Methodology
• Goal: evaluate	compute-centric	versus	NDP	accelerators

Compute-Centric	Accelerator

Off-chip	linkCustom	
Accelerator9 DRAMDRAMDRAMDRAM

NDP	Accelerator

Logic	Layer

Custom	
Accelerator9 DRAMDRAMDRAMDRAMOff-chip	link

[9]	Shao+,	“Aladdin:	A	Pre-RTL,	Power-Performance	Accelerator	Simulator	Enabling	Large	Design	Space	Exploration	of	Customized	
Architectures,”	in	ISCA,	2014
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The	performance	of	NDP	accelerators	
are	in	line	with	the	characteristics	of	the

memory	bottleneck	classes:	

our	memory	bottleneck	classification	can	be	applied	to	
study	other	types	of	system	configurations
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Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark
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DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark
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Get	DAMOV	at:
https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV


• Problem:	Data	movement	is	a	major bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		themost	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies
−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	

74

Conclusion

DAMOV:	https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV


DAMOV:	A	New	Methodology	
and	Benchmark	Suite	for	Evaluating	

Data	Movement	Bottlenecks

Geraldo	F.	Oliveira
Juan	Gómez-Luna Lois	Orosa Saugata Ghose	

Nandita	Vijaykumar					Ivan	Fernandez					Mohammad	Sadrosadati
Onur Mutlu

P&S	Ramulator
29.04.2022
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• Motivation: Processing-using-Memory	(PuM)	architectures	can	effectively	perform	bulk	
bitwise	computation

• Problem:	Existing	PuM architectures are	not	widely	applicable
– Support	only	a	limited	and	specific	set	of	operations
– Lack	the	flexibility	to	support	new	operations
– Require	significant	changes	to	the	DRAM	subarray

• Goals:	Design	a	processing-using-DRAM	framework	that:	
– Efficiently	implements	complex	operations
– Provides	the	flexibility	to	support	new	desired	operations
– Minimally	changes	the	DRAM	architecture

• SIMDRAM:	An	end-to-end	processing-using-DRAM	framework	that	provides	the	
programming	interface,	the	ISA,	and	the	hardware	support	for:
1. Efficiently	computing	complex	operations
2. Providing	the	ability	to	implement	arbitrary	operations	as	required
3. Using	a	massively-parallel	in-DRAM	SIMD	substrate

• Key	Results:	SIMDRAM	provides:
– 88x	and		5.8x	the	throughput	and	257x	and	31x	the	energy	efficiency	of	a	baseline	CPU	and	a	

high-end	GPU,	respectively,	for	16	in-DRAM	operations
– 21x	and	2.1x	the	performance	of	the	CPU	and	GPU	over	seven	real-world	applications

Executive	Summary
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Data	Movement	Bottleneck

Memory
channel

Main	
Memory
(DRAM)

Computing	Unit
(CPU,	GPU,	FPGA,	
Accelerators)

• Data	movement	is	a	major	bottleneck

Bandwidth-limited	and	power-hungry	memory	channel

1	A.	Boroumand et	al.,	“Google	Workloads	for	Consumer	Devices:	Mitigating	Data	Movement	Bottlenecks,”	ASPLOS,	2018

More	than 60% of	the	total	system	energy	
is	spent	on data	movement1



Processing-in-Memory	(PIM)
• Processing-in-Memory:moves	computation	closer	to	
where	the	data	resides	
- Reduces/eliminates	the	need	to	move	data	between	
processor	and	DRAM

Memory
channel

DRAMComputing	Unit
(CPU,	GPU,	FPGA,	
Accelerators)



• PuM:	Exploits	analog	operation	principles	of	the	
memory	circuitry	to	perform	computation

- Leverages	the	large	internal	bandwidth	and	parallelism
available	inside	the	memory	arrays

• A	common	approach	for	PuM architectures	is	to	perform	
bulk	bitwise	operations

- Simple	logical	operations	(e.g.,	AND,	OR,	XOR)

- More	complex	operations	(e.g.,	addition,	multiplication)	

Processing-using-Memory	(PuM)
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Inside	a	DRAM	Chip	
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of	DRAM	Cells)

Sense	Amplifiers

DRAM	Module

DRAM	Chips

DRAM	Bank

DRAM	Cells

Row	Buffer



DRAM	Cell	Operation

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

½	VDD

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)



1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM	Cell	Operation	(1/3)

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

½	VDD1.	raise	wordline

2.	capacitor	loses	charge	to	bitline	

4.	amplify	deviation	
in	the	bitline

+	δ

3.	enable	
sense	amplifier

VDD

5.	capacitor	charge	is	restored



1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM	Cell	Operation	(2/3)

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

VDD

read/write charge	
latched	in	sense	amplifier



1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM	Cell	Operation	(3/3)

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

VDD½	VDD 2.	precharge bitline	for	next	access
1.	lower	
wordline

3.	disable
sense	amplifier



RowClone:	In-DRAM	Row	Copy	(1/2)

sense	
amplifier

enable

½	VDD
source	A

destination	B
1.	ACTIVATE	(ACT)

2.	ACTIVATE	(ACT)

3.	PRECHARGE	(PRE)

Row	copy
command	sequence2:



RowClone:	In-DRAM	Row	Copy	(2/2)

bitline

sense	
amplifier

enable

½	VDD
source	A

destination	B

1.	ACTIVATE	source	row	A

2.	bitline	will	be	pulled	
to	charge	level	of	row	A

VDD

3.	ACTIVATE	destination	row	B

4.	charge	level	of	source	row	A	will	
be	copied to	destination	row	B

5.	PRECHARGE	bitline	
for	next	access

½	VDD

2	V.	Seshadri	et	al.,	“RowClone:	Fast	and	Energy-Efficient	In-DRAM	Bulk	Data	Copy	and	Initialization",	MICRO,	2013

1.	ACTIVATE	(ACT)

2.	ACTIVATE	(ACT)

3.	PRECHARGE	(PRE)

Row	copy
command	sequence2:



Triple-Row	Activation:	Majority	Function	

bitline

sense	
amplifier

enable

½	VDD
A

B

C

1.	ACTIVATE	(ACT)

2.	PRECHARGE	(PRE)

Majority	function
command	sequence3:

3	V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017



Triple-Row	Activation:	Majority	Function

bitline

sense	
amplifier

enable

½	VDD
A

B

C

1. ACTIVATE	three	rows	
simultaneously	

→	triple-row	activation

2.	bitline	will	be	pulled	
to	the	majority of	
cells	A,	B,	and	C

VDD

3.	values	in	cells	A,	B,	C	
will	be	overwritten	

with	the	majority	output

1.	ACTIVATE	(ACT)

2.	PRECHARGE	(PRE)

Majority	function
command	sequence3:

3	V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017

4.	PRECHARGE	bitline	
for	next	access

½	VDD

MAJ(A,	B,	C	)	=
MAJ(Vdd,	Vdd,	0)	=	Vdd



Ambit:	In-DRAM	Bulk	Bitwise	AND/OR	

bitline

sense	
amplifier

enable

A

B

C

½	VDD

V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017

MAJ	(A,	B,	0)		=		AND	(A,	B)

MAJ	(A,	B,	1)		=		OR	(A,	B)



Ambit:	Subarray	Organization

sense	amplifiers

16	designated	rows
for	triple	activation	

2	pre-initialized	rows

1006	regular	
data	rows

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

re
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r	

ro
w
	d
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de
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de
r

address	A

Less	than	1%	of	overhead	
in	existing	DRAM	chips

V.	Seshadri	et	al.,	“Ambit:	In-Memory	Accelerator	for	Bulk	Bitwise	Operations	Using	Commodity	DRAM	Technology",	MICRO,	2017



PuM:	Prior	Works
• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)



PuM:	Prior	Works
• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)

Need	a	framework	that	aids	general	adoption	of	PuM,	by:
- Efficiently	implementing	complex	operations
- Providing	flexibility	to	support	new	operations



Our	Goal

Goal:	Design	a	PuM	framework	that	

- Efficiently implements	complex operations

- Provides	the	flexibility to	support	new	desired	
operations

- Minimally changes	the	DRAM	architecture
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Key	Idea	

• SIMDRAM:	An	end-to-end	processing-using-DRAM	
framework	that	provides	the	programming	interface,	the	
ISA,	and	the	hardware	support	for:

- Efficiently computing	complex operations	in	DRAM

- Providing	the	ability	to	implement	arbitrary operations	as	
required

- Using	an	in-DRAM	massively-parallel	SIMD	substrate	that	
requires	minimal changes	to	DRAM	architecture
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SIMDRAM:	PuM Substrate
• SIMDRAM	framework	is	built	around	a	DRAM	substrate	
that	enables	two	techniques:

(1)	Vertical	data	layout

4-
bi
t	e
le
m
en
t	s
iz
e

Ro
w
		D
ec
od
er

most	significant	bit	(MSB)

least	significant	bit	(LSB)

A

B Cout

Cin

MAJ

(2)	Majority-based	computation

Pros compared	to	the	
conventional horizontal	layout:

• Implicit	shift	operation
• Massive	parallelism

Cout=	AB	+	ACin +	BCin

Pros compared	to AND/OR/NOT-
based	computation:

• Higher	performance
• Higher	throughput
• Lower	energy	consumption
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SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program



SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Step	1	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program



Step	1:	Naïve	MAJ/NOT	Implementation

A

B

Cin

Cout
Part	1

MAJ
0

B

Cin

CoutMAJ MAJ
MAJ

A

0
1

1

A

B
C

A

B
C

output	is	“1”	only	when	A	=	B	=	“1”

output	is	“0”	only	when	A	=	B	=	“0”

Naïvely converting	AND/OR/NOT-implementation to	
MAJ/NOT-implementation	leads	to	an	unoptimized	circuit

MAJ
A
B C
0

MAJ
A
B C
1



Step	1:	Efficient	MAJ/NOT	Implementation

Part	2

Step	1	generates	an optimized
MAJ/NOT-implementation	of	the	desired	operation

A

B Cout

Cin

MAJ

Greedy	
optimization
algorithm4

4 L.	Amarù et	al,	“Majority-Inverter	Graph:	A	Novel	Data-Structure	and	Algorithms	for	Efficient	Logic	Optimization”,	DAC,	2014.

MAJ
0

B

Cin

CoutMAJ MAJ
MAJ

A

0
1

1



SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Step	2	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝝁Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program



Step	2:	µProgram	Generation

• µProgram:	A	series	of	microarchitectural	operations	
(e.g.,	ACT/PRE)	that	SIMDRAM	uses	to	execute SIMDRAM	
operation	in	DRAM

• Goal	of	Step	2:	To generate the µProgram	that	executes
the	desired	SIMDRAM	operation	in	DRAM	

Task	1:	Allocate	DRAM	rows	to	the	operands

Task	2:	Generate	µProgram



Step	2:	µProgram	Generation

• µProgram:	A	series	of	microarchitectural	operations	
(e.g.,	ACT/PRE)	that	SIMDRAM	uses	to	execute SIMDRAM	
operation	in	DRAM

• Goal	of	Step	2:	To generate the µProgram	that	executes	
the	desired	SIMDRAM	operation	in	DRAM	

Task	1:	Allocate	DRAM	rows	to	the	operands

Task	2:	Generate	µProgram



Task	1:	Allocating	DRAM	Rows	to	Operands
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subarray	organization

Constraint	1:	
Limited number	of	rows	
reserved	for	computation

• Allocation	algorithm considers	two	constraints	specific	to	
processing-using-DRAM

Compute
rows



Task	1:	Allocating	DRAM	Rows	to	Operands

0 0 0 0 0 0 0 0 0 0 0 0 0 0
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r

subarray	organization

Constraint	2:	
Destructive behavior	
of	triple-row	activation

Overwritten	
with	MAJ	output

• Allocation	algorithm considers	two	constraints	specific	to	
processing-using-DRAM



A
B Cout
Cin

MAJ

Allocation	
algorithm

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

Task	1:	Allocating	DRAM	Rows	to	Operands
• Allocation	algorithm:

Triple-row	
activation

Cout
Cout
Cout

• Assigns	as	many	inputs	as	the	number	of	free	compute	rows
• All	three input	rows	contain	the	MAJ	output	and	can	be	reused



Step	2:	µProgram	Generation

• µProgram:	A	series	of	microarchitectural	operations	
(e.g.,	ACT/PRE)	that	SIMDRAM	uses	to	execute SIMDRAM	
operation	in	DRAM

• Goal	of	Step	2:	To generate the µProgram	that	executes	
the	desired	SIMDRAM	operation	in	DRAM	

Task	1:	Allocate	DRAM	rows	to	the	operands

Task	2:	Generate	µProgram



Task	2:	Generate	an	initial	µProgram

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

1.	Copy	A	to	reserved	row	
(ACT/ACT/PRE)

2.	Copy	B	to	reserved	row	
(ACT/ACT/PRE)

3.	Copy	Cin to	reserved	row
(ACT/ACT/PRE)

4.	Execute	MAJ	
(ACT/PRE)

5.	Copy	Cout to	destination	row
(ACT/PRE)		

Initial	µProgram	



Task	2:	Optimize	the	µProgram

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

1.	Copy A	to	reserved	row	
(ACT/ACT/PRE)

2.	Copy	B	to	reserved	row	
(ACT/ACT/PRE)

3.	Copy	Cin to	reserved	row
(ACT/ACT/PRE)

4.	Execute	MAJ	
(ACT/PRE)

5.	Copy	Cout to	destination	row
(ACT/PRE)		

Initial	µProgram	

2.	Optimize



Task	2:	Optimize	the	µProgram

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

1.	Copy A	to	reserved	row	
(ACT/ACT/PRE)

2.	Copy B	to	reserved	row	
(ACT/ACT/PRE)

3.	Copy Cin to	reserved	row
(ACT/ACT/PRE)

4.	Execute	MAJ	
(ACT/PRE)

5.	Copy	Cout to	destination	row
(ACT/PRE)		

Coalesce
row	copies

Initial	µProgram	

2.	Optimize



Task	2:	Optimize	the	µProgram

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

1.	Copy	A	to	reserved	row	
(ACT/ACT/PRE)

2.	Copy	B	to	reserved	row	
(ACT/ACT/PRE)

3.	Copy	Cin to	reserved	row
(ACT/ACT/PRE)

4.	Execute	MAJ
(ACT/PRE)

5.	Copy Cout to	destination	row
(ACT/PRE)		

Merge
MAJ	+	row	copy

Initial	µProgram	

2.	Optimize



1.	Copy A	to	reserved	row	
(ACT/ACT/PRE)

2.	Copy	B	to	reserved	row	
(ACT/ACT/PRE)

3.	Copy	Cin to	reserved	row
(ACT/ACT/PRE)

4.	Execute	MAJ	
(ACT/PRE)

5.	Copy	Cout to	destination	row
(ACT/PRE)		

Task	2:	Optimize	the	µProgram

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

Initial	µProgram	

Coalesce
row	copies

Merge
MAJ	+	row	copy

Optimized	µProgram	

2.	Optimize



Task	2:	Generate	N-bit	Computation

A
B Cout
Cin

MAJ
A
B Cout
Cin

MAJ

1.	Generate
µProgram	

3.	Generate	N-bit	
computation

Repeat	N	times:

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

Final	µProgram	

Repeat	N	times:

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

• Final	µProgram is	optimized	and	computes	the	desired	
operation	for	operands	of	N-bit	size	in	a	bit-serial	fashion

2.	Optimize

Optimized	µProgram	



Task	2:	Generate	µProgram

Repeat	N	times:

1. Copy	A,	B,	Cin
to	reserved	rows	
(ACT/ACT/PRE)

2.	Execute	MAJ	and
copy	Cout to	destination	row

(ACT/ACT/PRE)

Stored	in	a	reserved	
DRAM	region
for	future	use

A	new	SIMDRAM	
instruction	(called	bbop)	

added	to	CPU	ISA

Final	µProgram	

• Final	µProgram is	optimized	and	computes	the	desired	
operation	for	operands	of	N-bit	size	in	a	bit-serial	fashion



SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	𝛍Program

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Step	3	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program



Step	3:	µProgram Execution
• SIMDRAM	control	unit:	handles	the	execution	of	the	
µProgram	at	runtime	

• Upon	receiving	a	bbop instruction,	the	control	unit:
1. Loads	the	µProgram corresponding	to	SIMDRAM	operation
2. Issues	the	sequence	of	DRAM	commands	(ACT/PRE)	stored	

in	the	µProgram to	SIMDRAM	subarrays	to	perform	the	in-
DRAM	operation	

Step	3:	Execution	according	to	𝜇Program

Memory	Controller

User	Input

SIMDRAM-enabled	application

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done
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System	Integration

Efficiently	transposing	data

Programming interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework



System	Integration

Efficiently	transposing	data

Programming interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework



Transposing	Data

• SIMDRAM operates	on	vertically-laid-out data

• Other	system	components expect	data	to	be	laid	
out	horizontally

Challenging to	share	data	between	SIMDRAM	and	CPU
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Efficiently	Transposing	Data
Last–Level	Cache
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t

Memory	Controller

Object	Tracker	
(OT)

Fetch	Unit

Vertical		→	Horizontal
Transpose

Transpose	Buffer

Store	Unit

Horizontal		→	Vertical
Transpose

Transpose	Buffer
Low	impact	on	the	throughput	of	

SIMDRAM	operations

Low	area	cost	(0.06	mm2)



System	Integration

Efficiently	transposing	data

Programming interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework



Programming	Interface
• Four	new	SIMDRAM	ISA	extensions	

Type ISA	Format
Initialization bbop_trsp_init address, size, n

1-Input	Operation bbop_op dst, src, size, n

2-Input	Operation bbop_op dst, src_1, src_2, size, n

Predication bbop_if_else dst, src_1, src_2, select, 
size, n
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Programming	Interface
• Four	new	SIMDRAM	ISA	extensions	

Type ISA	Format
Initialization bbop_trsp_init address, size, n

1-Input	Operation bbop_op dst, src, size, n

2-Input	Operation bbop_op dst, src_1, src_2, size, n

Predication bbop_if_else dst, src_1, src_2, select, 
size, n



Code	Using	SIMDRAM	Instructions
1 int size = 65536;
2 int elm_size = sizeof (uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5 …
6 for (int i = 0; i < size ; ++ i){
7 bool cond = A[i] > pred[i];
8 if (cond)
9 C [i] = A[i] + B[i];
10 else
11 C [i] = A[i] - B [i];
12 }

1 int size = 65536;
2 int elm_size = sizeof(uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4
5 bbop_trsp_init(A , size , elm_size);
6 bbop_trsp_init(B , size , elm_size);
7 bbop_trsp_init(C , size , elm_size);
8 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
9 // D, E, F store intermediate data
10 uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
11 bool *F = (bool *) malloc (size * sizeof(bool));
12 …
13 bbop_add(D , A , B , size , elm_size);
14 bbop_sub(E , A , B , size , elm_size);
15 bbop_greater(F , A , pred , size , elm_size);
16 bbop_if_else(C , D , E , F , size , elm_size);

←	C	code	for	vector	add/sub	
with	predicated	execution

Equivalent	code	using	
SIMDRAM	operations	→
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More	in	the	Paper
Efficiently	transposing	data

Programming interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework
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Methodology:	Experimental	Setup	
• Simulator:	gem5

• Baselines:
- A	multi-core	CPU	(Intel	Skylake)
- A	high-end	GPU	(NVidia	Titan	V)
- Ambit: a	state-of-the-art	in-memory	computing	mechanism

• Evaluated	SIMDRAM	configurations (all	using	a	DDR4	
device):
- 1-bank: SIMDRAM	exploits	65’536	SIMD	lanes	(an	8	kB	row	
buffer)	

- 4-banks: SIMDRAM	exploits	262’144	SIMD	lanes
- 16-banks:	SIMDRAM	exploits	1’048’576	SIMD	lanes



Methodology:	Workloads
Evaluated:
• 16	complex	in-DRAM	operations:

- Absolute - Predication
- Addition/Subtraction - ReLU
- BitCount - AND-/OR-/XOR-Reduction
- Equality/	Greater/Greater	Equal				- Division/Multiplication

• 7	real-world	applications
- BitWeaving (databases)			- LeNET (Neural	Networks)
- TPH-H	(databases) - VGG-13/VGG-16	(Neural	Networks)
- kNN (machine	learning)			- brightness	(graphics)



Throughput	Analysis
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Energy	Analysis
Average	normalized	energy	efficiency	across	all	16	
SIMDRAM	operations
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Real-World	Application

3.0

0.3
2.5

8.7

0.9

7.3

21.0

2.1

17.5

0.1

1.0

10.0

100.0

CPU GPU Ambit

Av
er
ag
e	
Sp
ee
du
p	
	--

lo
g	
sc
al
e

SIMDRAM	-	1	Bank SIMDRAM	-	4	Banks SIMDRAM	-	16	Banks

SIMDRAM	effectively	and	efficiently	accelerates	
many	commonly-used	real-world	applications

Average	speedup	across	7	real-world	applications



More	in	the	Paper

• Evaluation:

- Reliability	

- Data	movement	overhead	

- Data	transposition	overhead

- Area	overhead

- Comparison	to	in-cache	computing



More	in	the	Paper

• Evaluation:

- Reliability	

- Data	movement	overhead	

- Data		transposition	overhead

- Area	overhead

- Comparison	to	in-cache	computing

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf


Outline	

Framework
Processing-using-DRAM	Substrate	

1.	Processing-using-DRAM
2.	Background

4.	System	Integration	

3.	SIMDRAM

5.	Evaluation
6.	Conclusion



• SIMDRAM:	An	end-to-end	processing-using-DRAM	framework	
that	provides	the	programming	interface,	the	ISA,	and	the	
hardware	support	for:
1. Efficiently computing	complex	operations
2. Providing	the	ability	to	implement	arbitrary operations	as	required
3. Using	a	massively-parallel in-DRAM	SIMD	substrate

• Key	Results:	SIMDRAM	provides:
– 88x and		5.8x the	throughput	and	257x and	31x the	energy	efficiency	of	a	
baseline	CPU	and	a	high-end	GPU,	respectively,	for	16	in-DRAM	operations

– 21x and	2.1x the	performance	of	the	CPU	and	GPU	over	seven	real-world	
applications

• Conclusion:	SIMDRAM is	a	promising	PuM	framework
• Can	ease	the	adoption of	processing-using-DRAM	architectures	
• Improve	the	performance and efficiency of	processing-using-DRAM	

architectures

Conclusion
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