Methodologies, Workloads, and Tools for Processing-in-Memory: Enabling the Adoption of Data-Centric Architectures

Geraldo F. Oliveira

Saugata Ghose

Juan Gómez-Luna Onur Mutlu

1SVLSI 2022

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

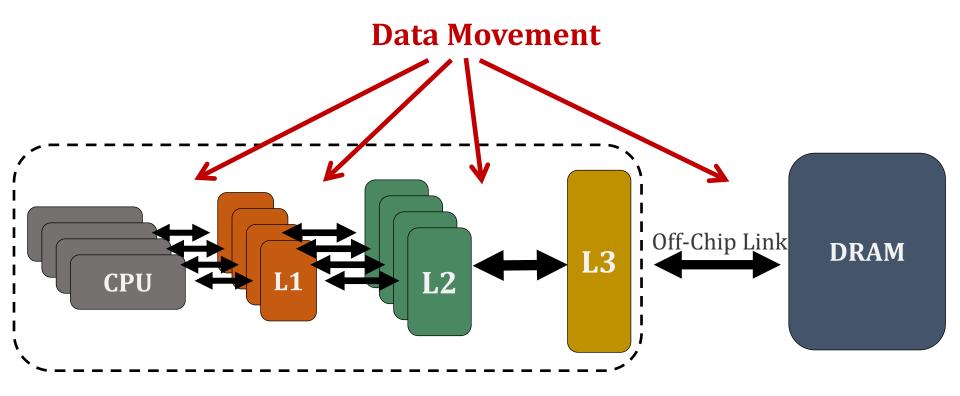
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

Data Movement Bottlenecks (1/2)

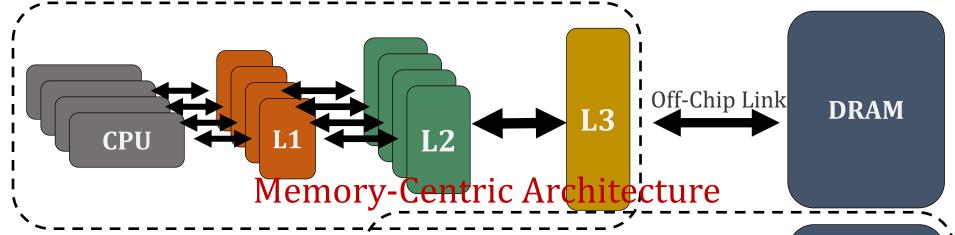


Data movement bottlenecks happen because of:

- Not enough data **locality** → ineffective use of the cache hierarchy
- Not enough memory bandwidth
- High average **memory access time**

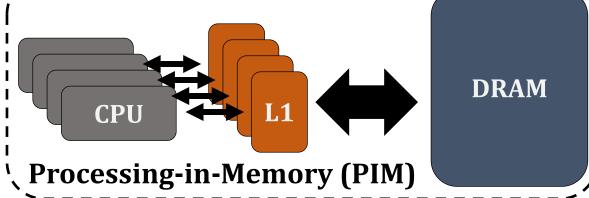
Data Movement Bottlenecks (2/2)

Compute-Centric Architecture



- Abundant DRAM bandwidth
Off-Chip Link

- Shorter average memory access time

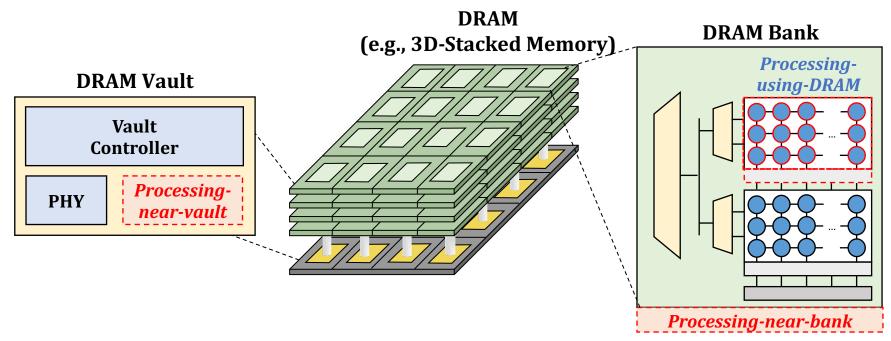


SAFARI

Processing-in-Memory: Taxonomy

Two main approaches for Processing-in-Memory:

- 1 Processing-near-Memory: PIM logic is added to the same die as memory or to the logic layer of 3D-stacked memory
- Processing-using-Memory: uses the operational principles of memory cells to perform computation



Processing-in-Memory: Challenges

The <u>lack of tools</u> and <u>system support</u> for PIM architectures limit the <u>adoption</u> of PIM system

To fully support PIM systems, we need to develop:

- 1 Workload characterization methodologies and benchmark suites targeting PIM architectures
- **Prameworks that can facilitate the implementation of complex operations and algorithms using PIM primitives**
- 3 Compiler support and compiler optimizations targeting PIM architectures
- 4 Operating system support for PIM-aware virtual memory, memory management, data allocation and mapping
- **5** Efficient data coherence and consistency mechanisms

In this Work

The <u>lack of tools</u> and <u>system support</u> for PIM architectures limit the <u>adoption</u> of PIM system

To fully supportt PIM systems, we need to develop:

- 1 Workload characterization methodologies and benchmark suites targeting PIM architectures
- **Prameworks** that can facilitate the implementation of complex operations and algorithms using PIM primitives
- 3 Compiler support and compiler optimizations targeting PIM architectures
- 4 Operating system support for PIM-aware virtual memory, memory management, data allocation and mapping
- 5 Efficient data coherence and consistency mechanisms

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

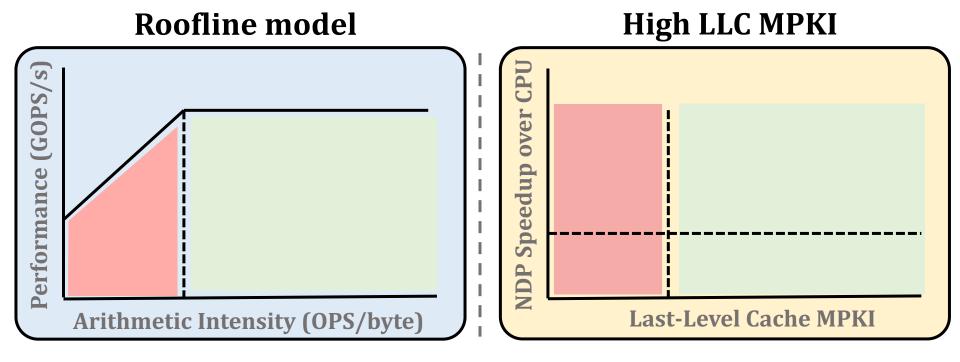
3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

Identifying Memory Bottlenecks

- Multiple approaches to identify applications that:
 - suffer from data movement bottlenecks
 - take advantage of NDP
- Existing approaches are not comprehensive enough

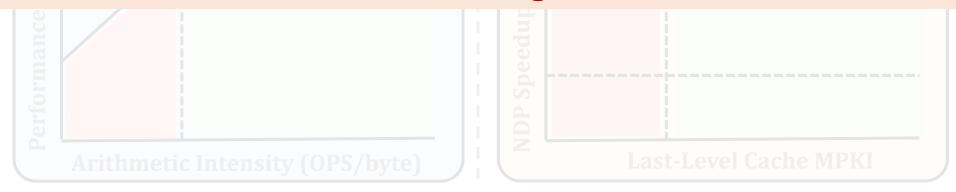


The Problem

- Multiple approaches to identify applications that:
 - suffer from data movement bottlenecks
 - take advantage of NDP

No available methodology can comprehensively:

- identify data movement bottlenecks
- correlate them with the most suitable data movement mitigation mechanism



Our Goal

- Our Goal: develop a methodology to:
 - methodically identify sources of data movement bottlenecks
 - comprehensively compare compute- and memorycentric data movement mitigation techniques

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

Key Approach

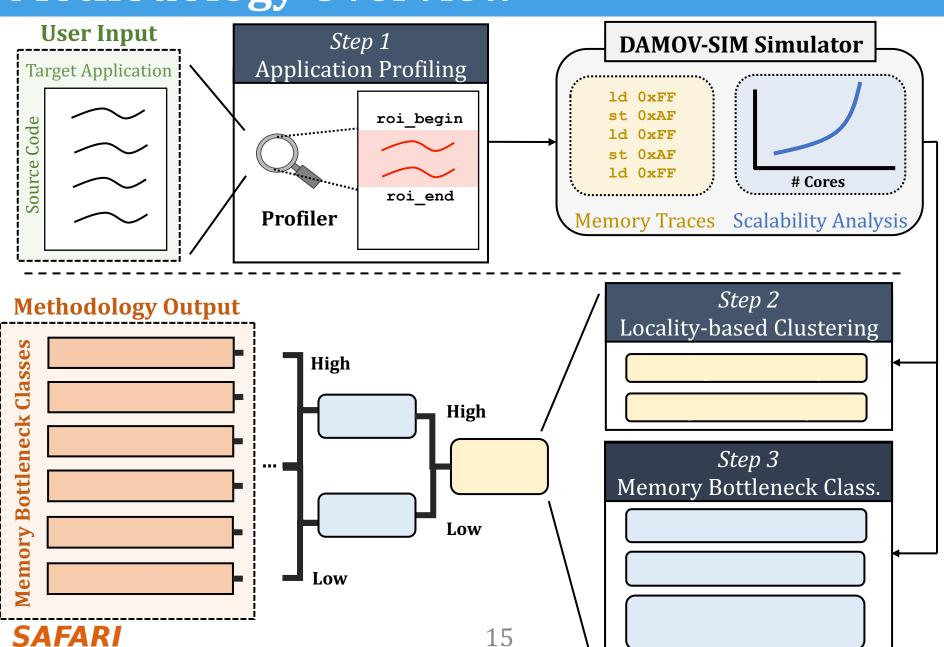
- New workload characterization methodology to analyze:
 - data movement bottlenecks
 - suitability of different data movement mitigation mechanisms
- Two main profiling strategies:

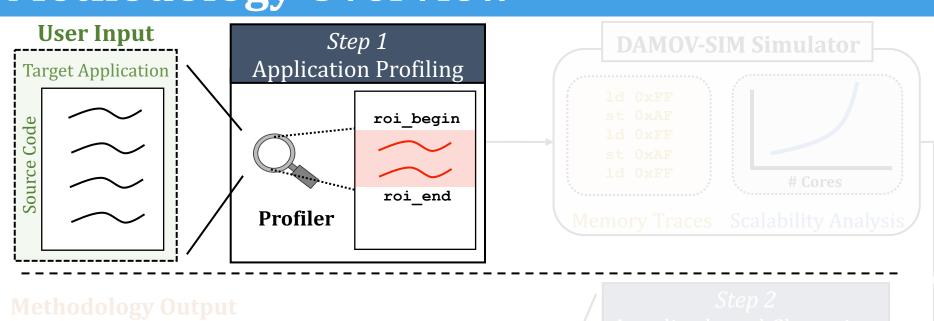
Architecture-independent profiling:

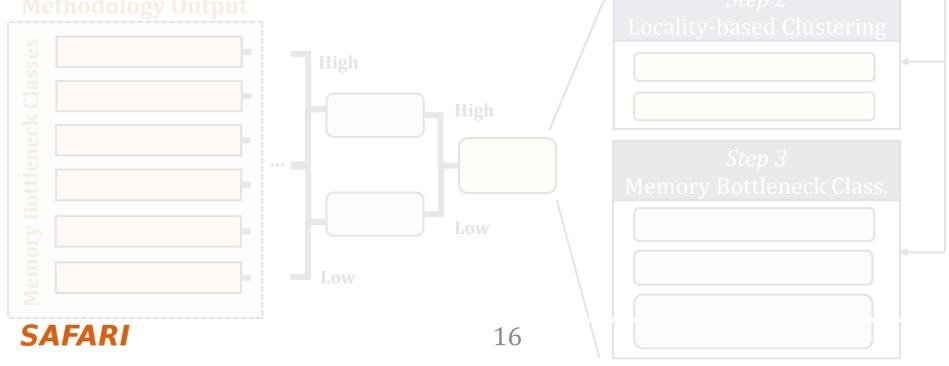
characterizes the memory behavior independently of the underlying hardware

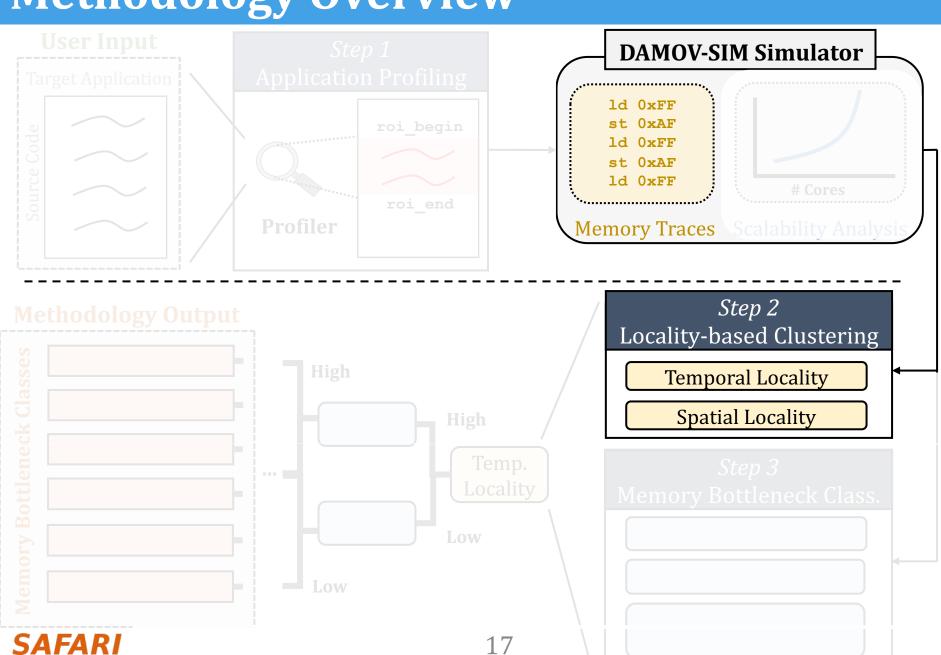
Architecture-dependent profiling:

evaluates the impact of the system configuration on the memory behavior

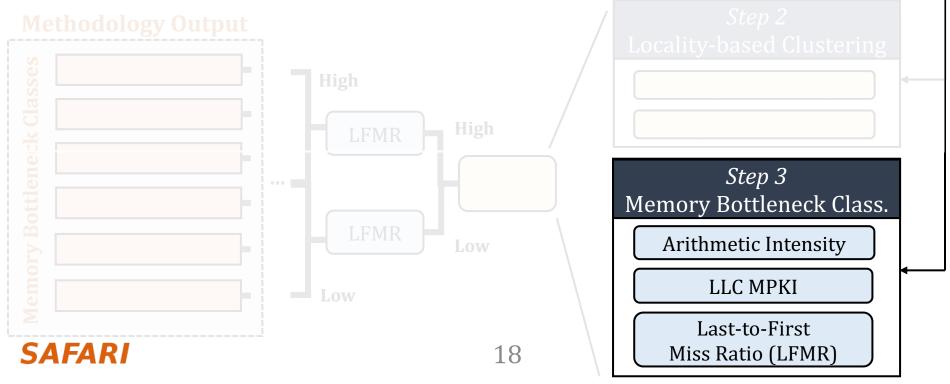


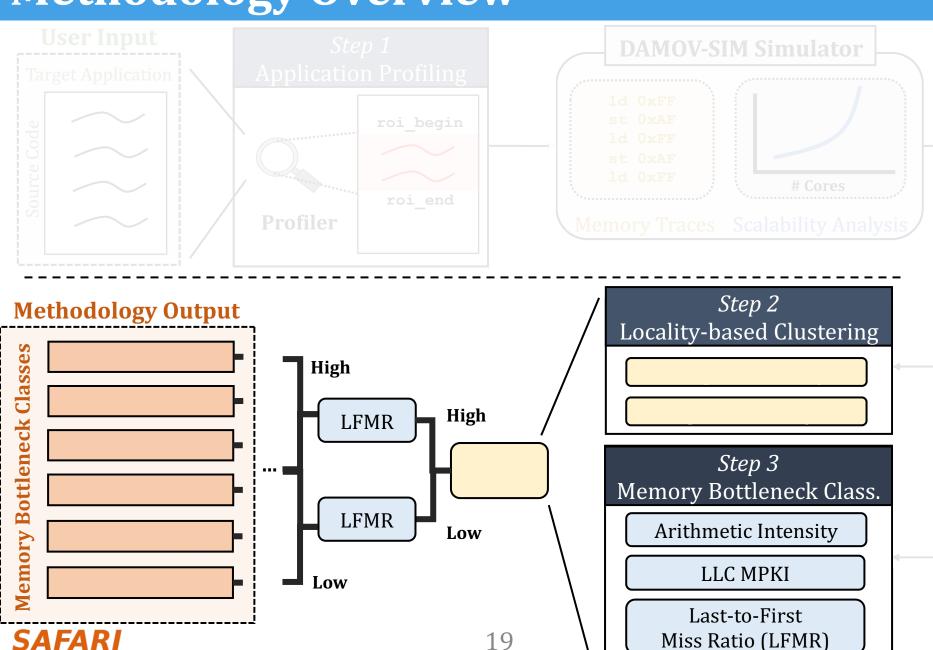












1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

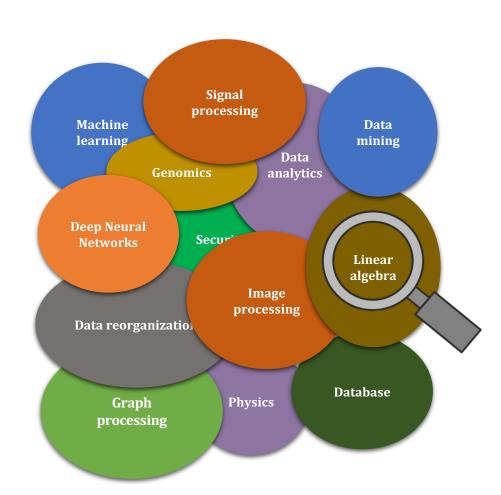
3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

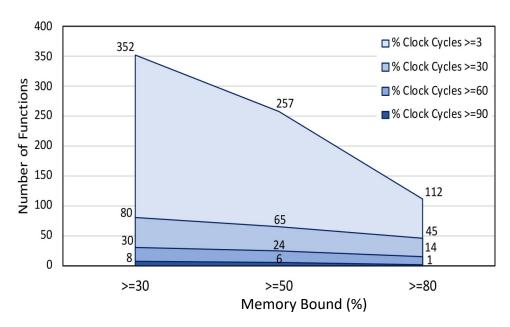
Step 1: Application Profiling

- We analyze 345 applications from distinct domains:
- Graph Processing
- Deep Neural Networks
- Physics
- High-Performance Computing
- Genomics
- Machine Learning
- Databases
- Data Reorganization
- Image Processing
- Map-Reduce
- Benchmarking
- Linear Algebra



Memory Bound Functions

- We analyze 345 applications from distinct domains
- Selection criteria: clock cycles > 3% and Memory Bound > 30%



- We find 144 functions from a total of 77K functions and select:
 - 44 functions → apply steps 2 and 3
 - 100 functions → validation

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

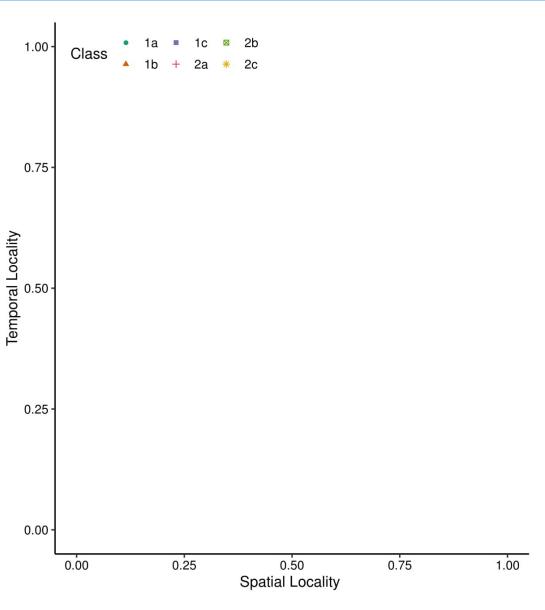
SIMDRAM Framework

System Integration

Step 2: Locality-Based Clustering

We use K-means to cluster the applications across both **spatial and temporal locality**, forming two groups

- 1. Low locality applications (in orange)
- 2. High locality applications (in blue)



Step 2: Locality-Based Clustering

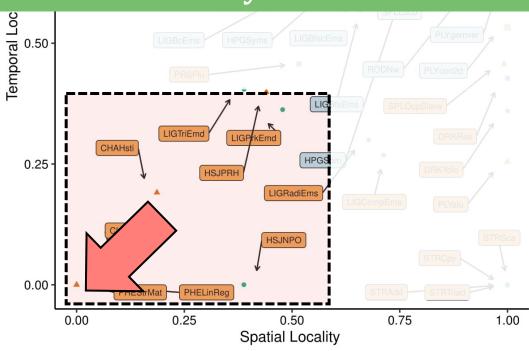
We use K-means to cluster the applications across both

The closer a function is to the bottom-left corner

→ less likely it is to **take advantage** of a deep cache hierarchy

applications (in orange)

High locality applications (in blue)



1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

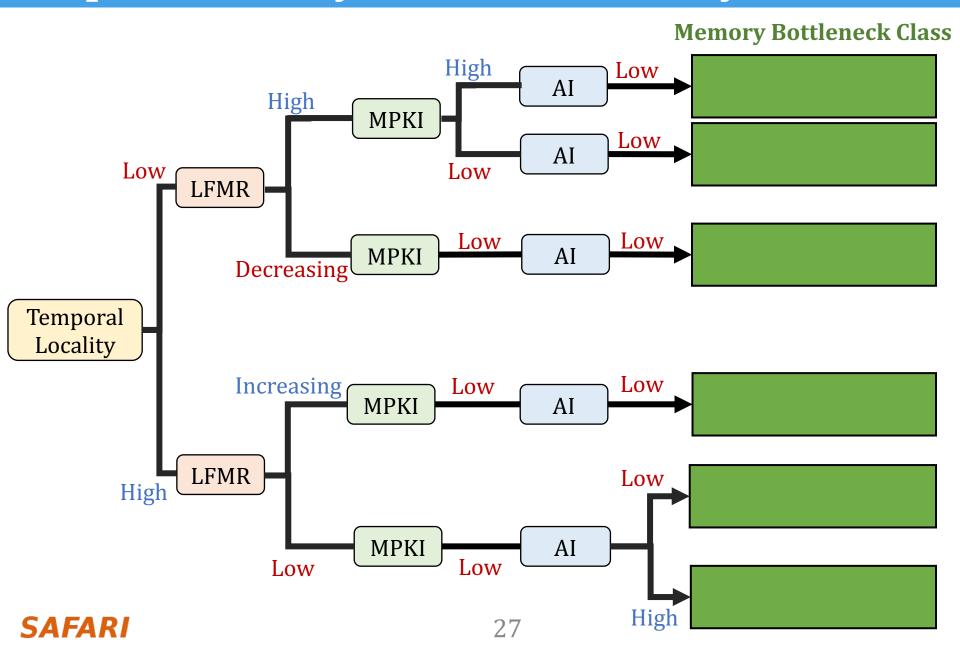
Memory Bottleneck Analysis

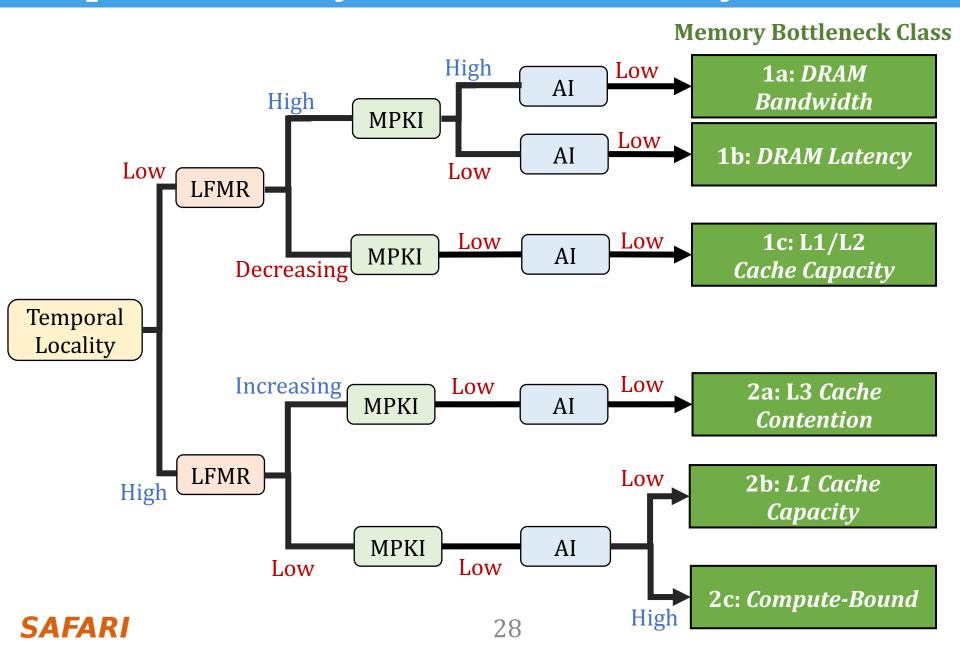
DAMOV Benchmark Suite

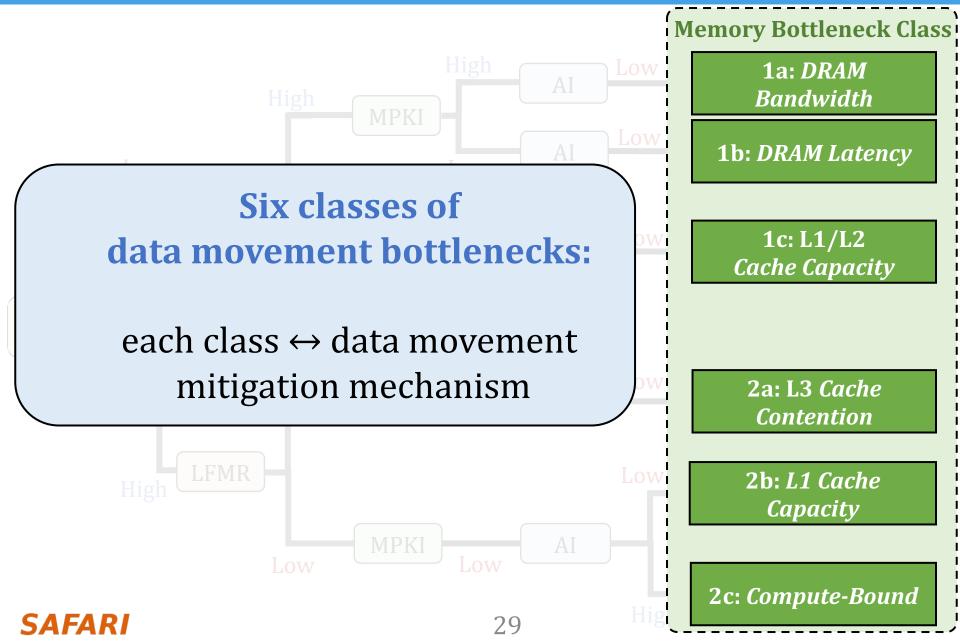
3. Enabling Complex Operations using DRAM

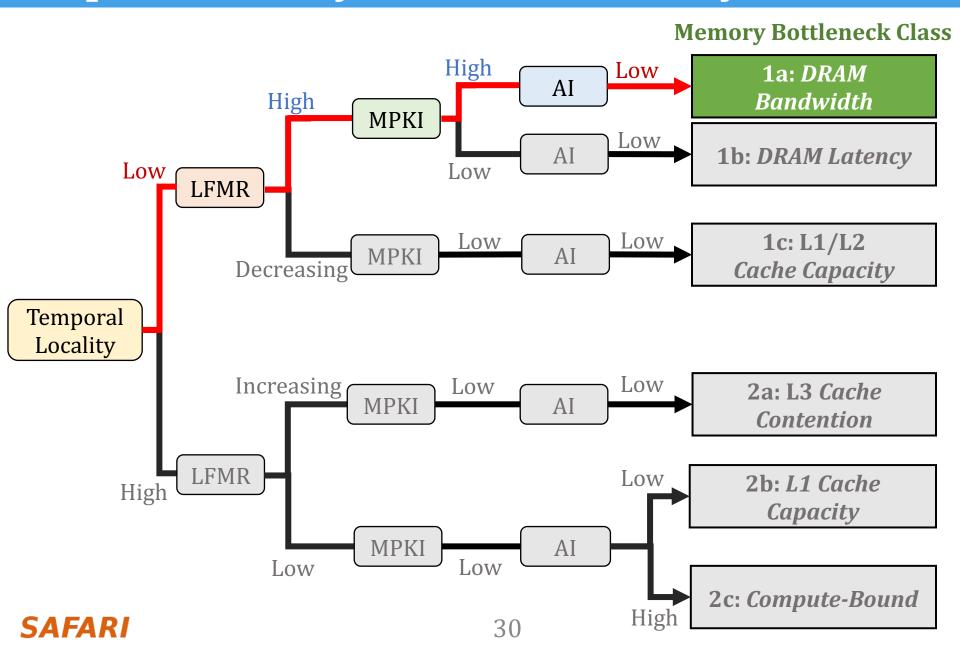
SIMDRAM Framework

System Integration









Class 1a: DRAM Bandwidth Bound (1/2)

- High MPKI → high memory pressure
- Host scales well until bandwidth saturates

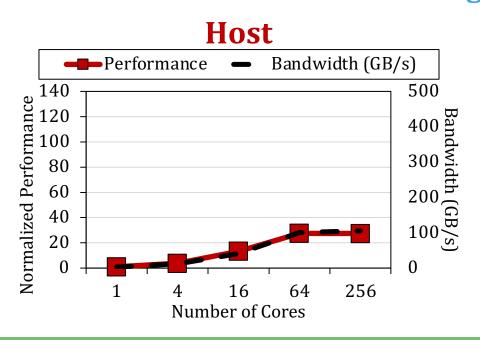
Temp. Loc: low

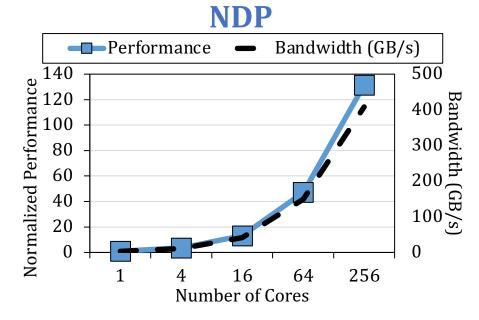
LFMR: high

MPKI: high

AI: low

NDP scales without saturating alongside attained bandwidth





DRAM bandwidth bound applications:

NDP does better because of the higher internal DRAM bandwidth

Class 1a: DRAM Bandwidth Bound (2/2)

- High LFMR → L2 and L3 caches are inefficient
- Host's energy consumption is dominated by cache look-ups and off-chip data transfers

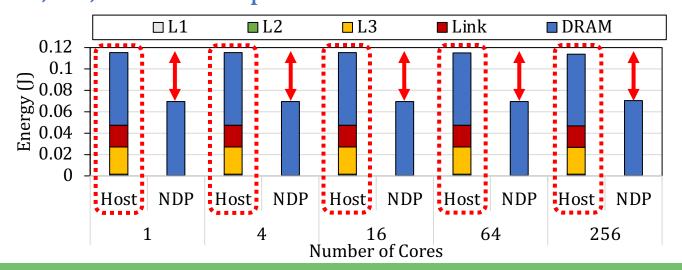
Temp. Loc: low

LFMR: high

MPKI: high

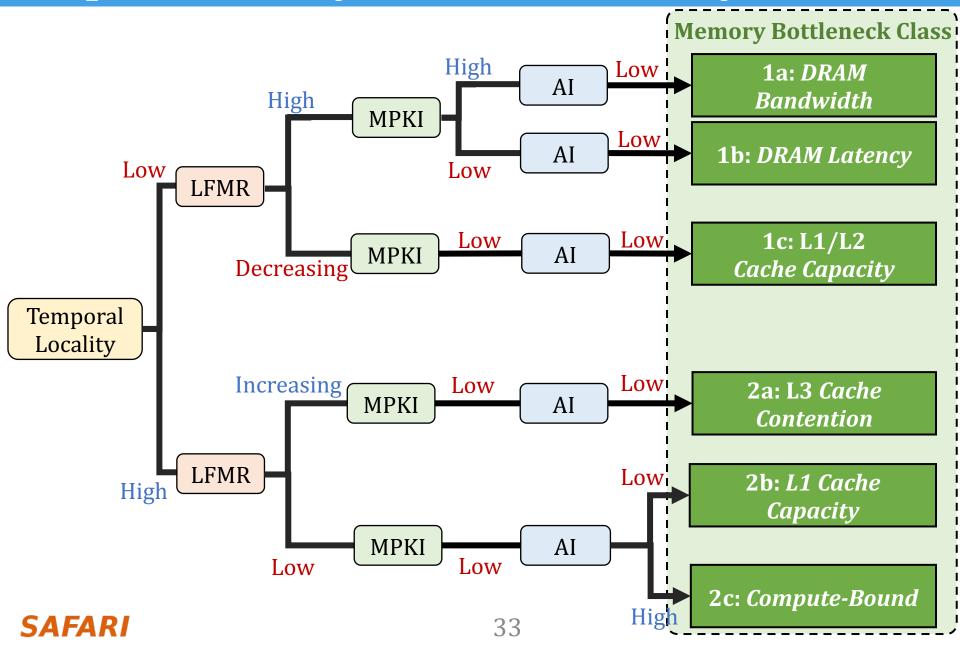
AI: low

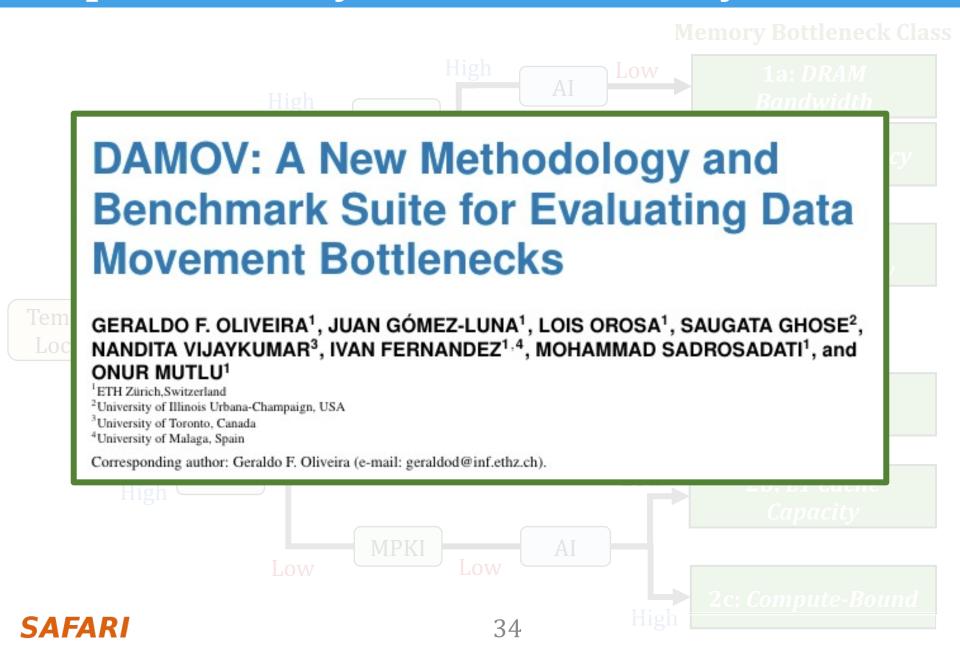
- NDP provides **large system energy reduction** since it does not access L2, L3, and off-chip links



DRAM bandwidth bound applications:

NDP does better because it eliminates off-chip I/O traffic





1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

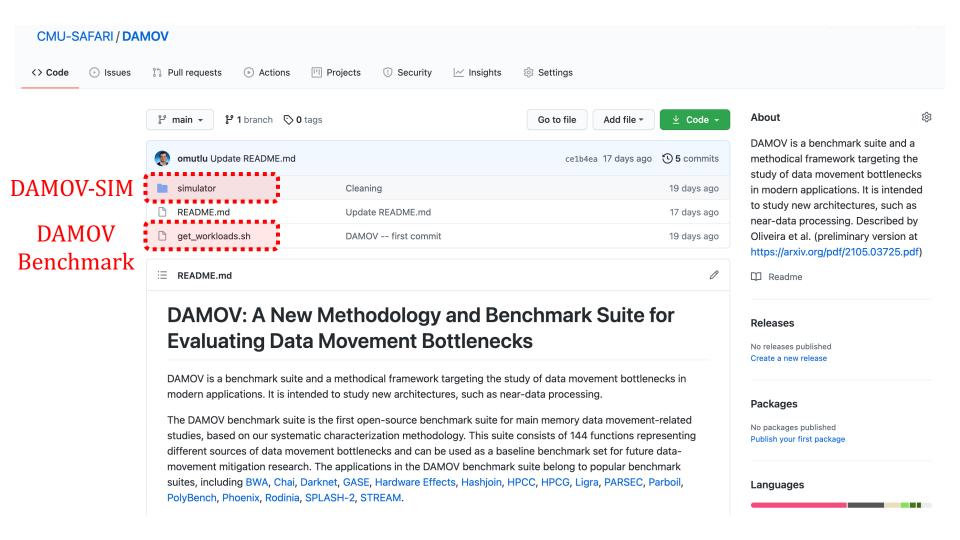
3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

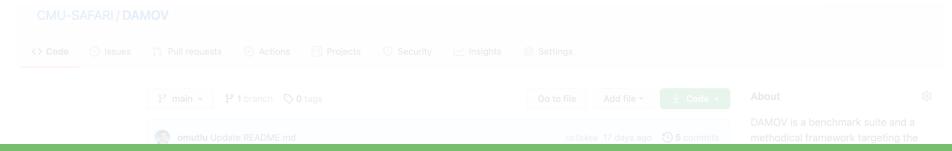
DAMOV is Open-Source

We open-source our benchmark suite and our toolchain



DAMOV is Open-Source

We open-source our benchmark suite and our toolchain



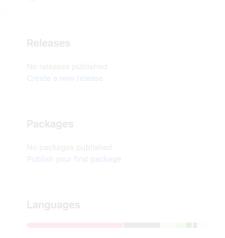
Get DAMOV at:

https://github.com/CMU-SAFARI/DAMOV

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in modern applications. It is intended to study new architectures, such as near-data processing.

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related studies, based on our systematic characterization methodology. This suite consists of 144 functions representing different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.



Conclusion

- **<u>Problem</u>**: Data movement is a major bottleneck is modern systems. However, it is **unclear** how to identify:
 - **different sources** of data movement bottlenecks
 - the **most suitable** mitigation technique (e.g., caching, prefetching, near-data processing) for a given data movement bottleneck

• Goals:

- 1. Design a methodology to **identify** sources of data movement bottlenecks
- 2. **Compare** compute- and memory-centric data movement mitigation techniques
- **Key Approach**: Perform a large-scale application characterization to identify **key metrics** that reveal the sources to data movement bottlenecks
- Key Contributions:
 - **Experimental characterization** of 77K functions across 345 applications
 - A **methodology** to characterize applications based on data movement bottlenecks and their relation with different data movement mitigation techniques
 - DAMOV: a benchmark suite with 144 functions for data movement studies
 - Get DAMOV at: https://github.com/CMU-SAFARI/DAMOV
 - Four case-studies to highlight DAMOV's applicability to open research problems

SAFARI 38

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

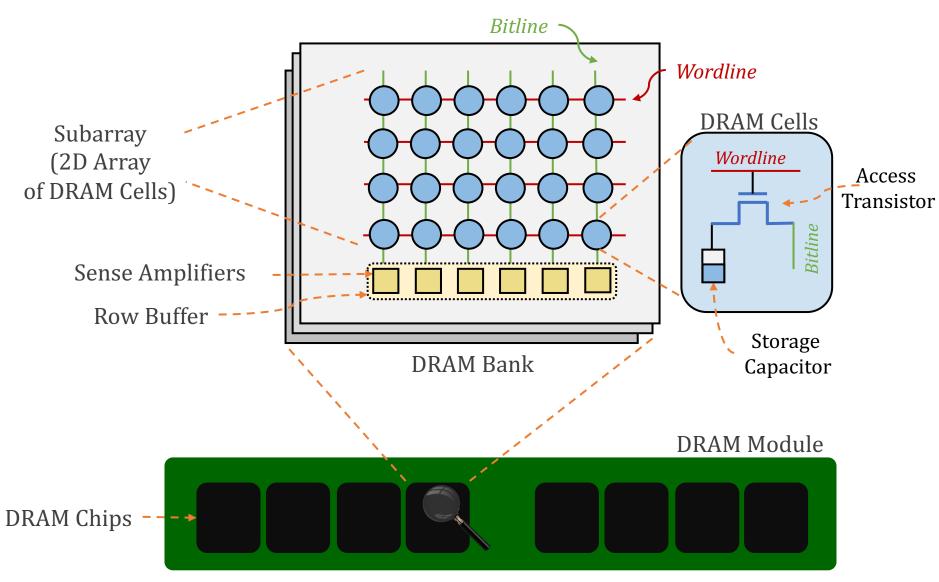
3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

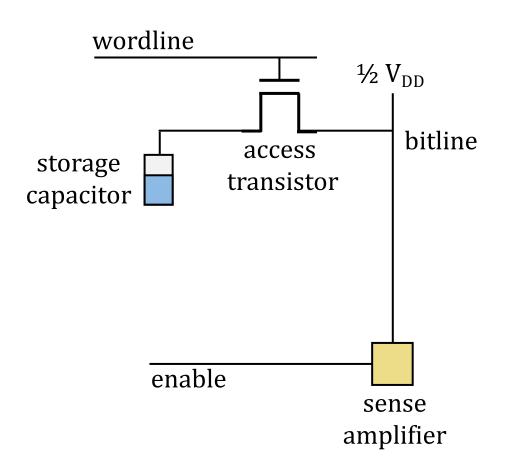
Evaluation

Inside a DRAM Chip



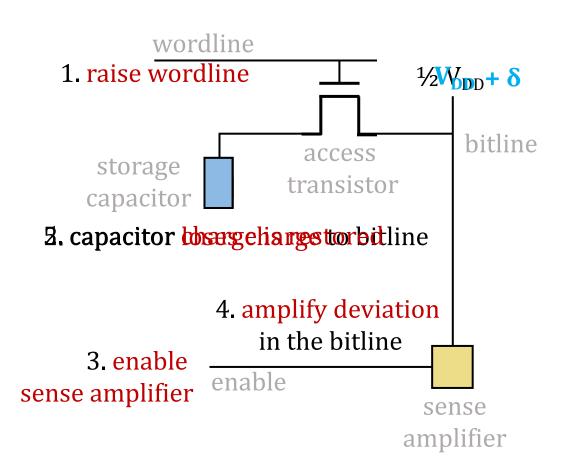
SAFARI

DRAM Cell Operation



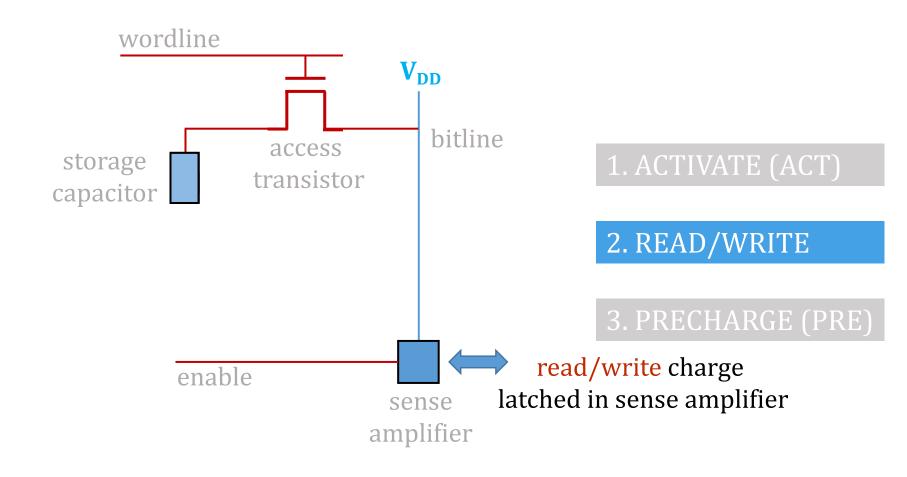
- 1. ACTIVATE (ACT)
- 2. READ/WRITE
- 3. PRECHARGE (PRE)

DRAM Cell Operation (1/3)

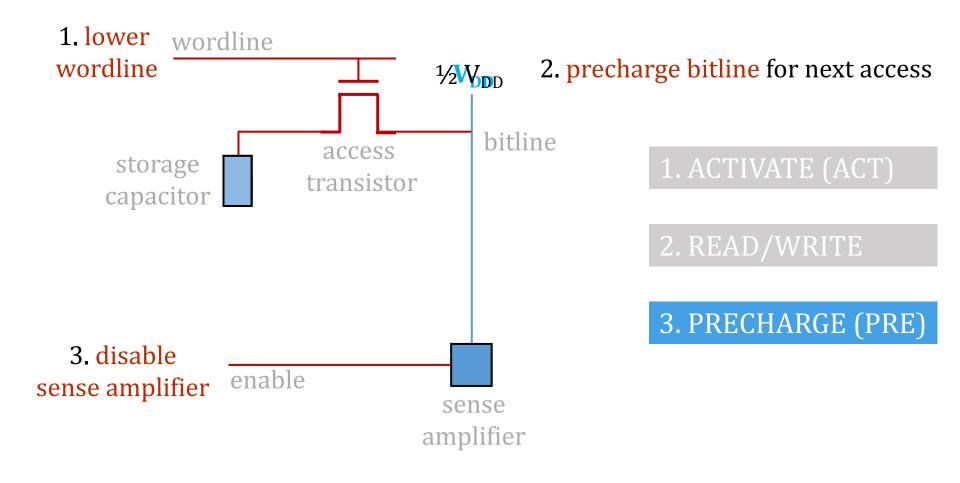


- 1. ACTIVATE (ACT)
- 2. READ/WRITE
- 3. PRECHARGE (PRE)

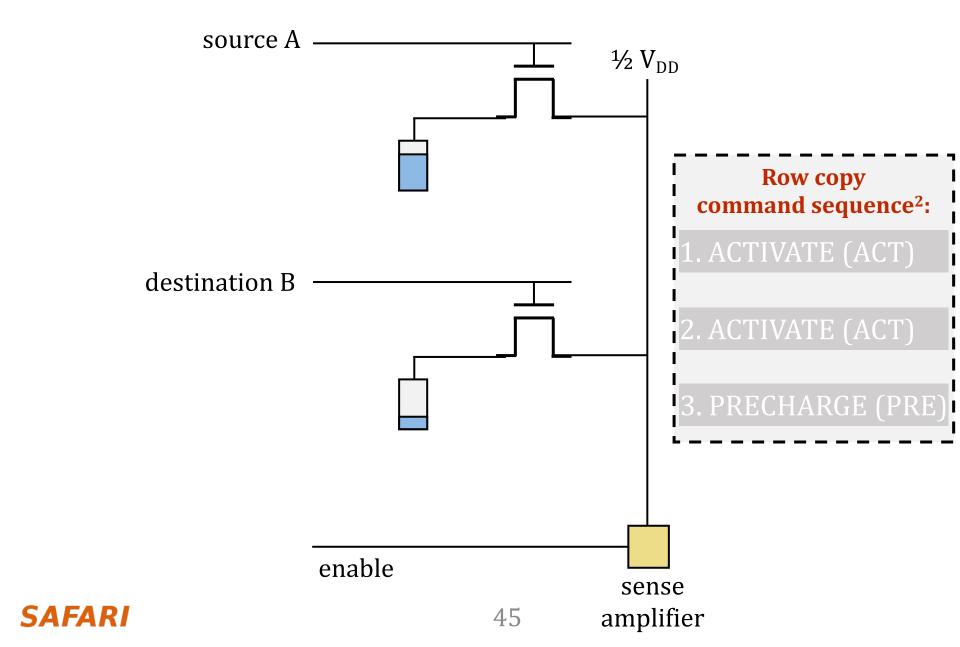
DRAM Cell Operation (2/3)



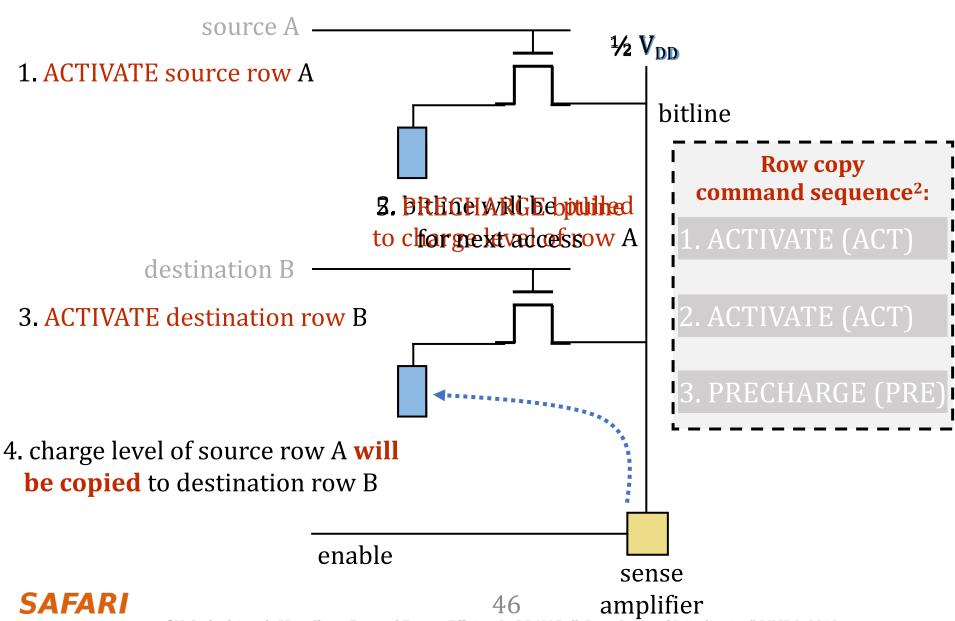
DRAM Cell Operation (3/3)



RowClone: In-DRAM Row Copy (1/2)

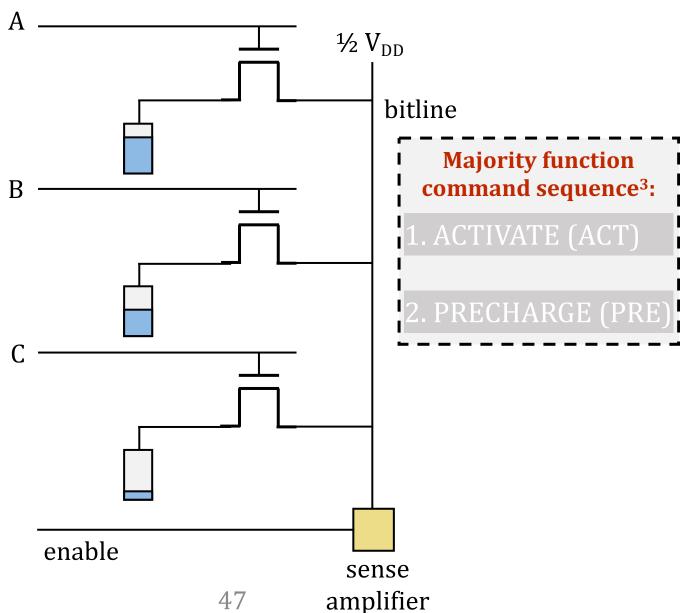


RowClone: In-DRAM Row Copy (2/2)

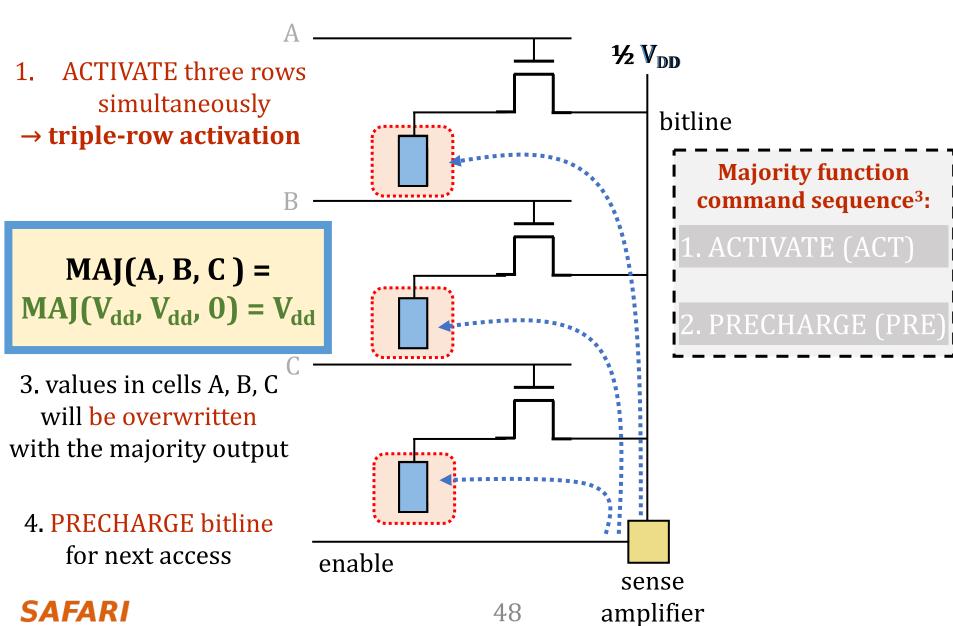


²V. Seshadri et al., "RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization", MICRO, 2013

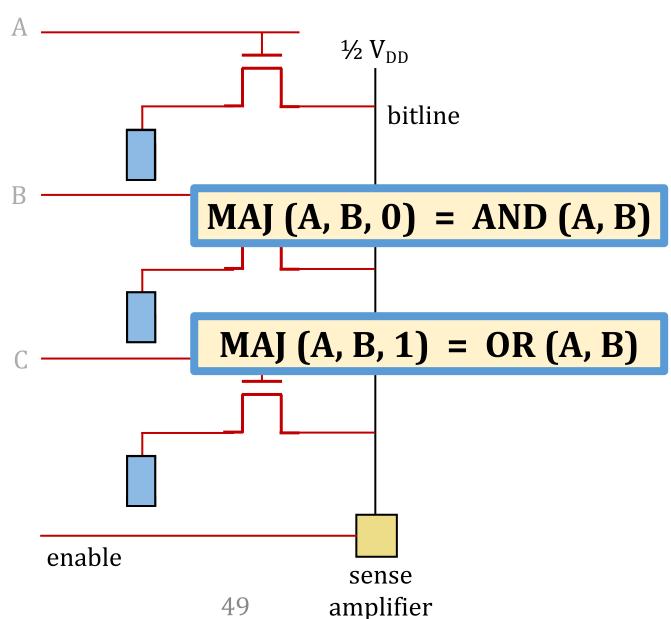
Triple-Row Activation: Majority Function



Triple-Row Activation: Majority Function

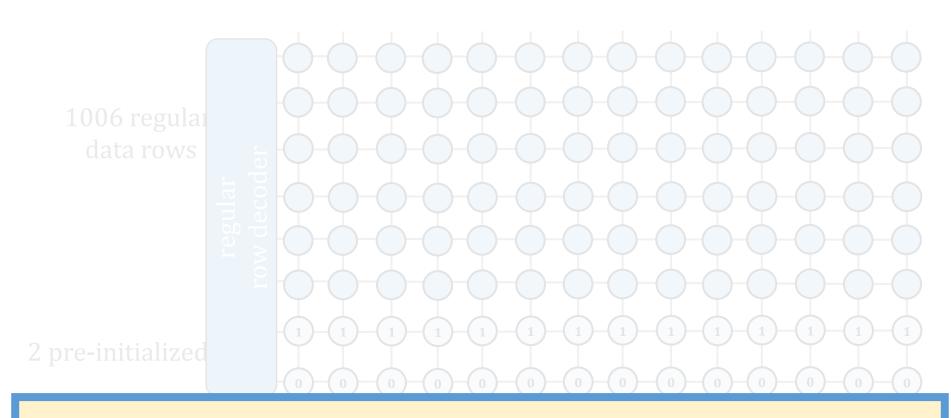


Ambit: In-DRAM Bulk Bitwise AND/OR



V. Seshadri et al., "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

Ambit: Subarray Organization



Less than 1% of overhead in existing DRAM chips

sense amplifiers

PuM: Prior Works

 DRAM and other memory technologies that are capable of performing computation using memory

Shortcomings:

- Support only basic operations (e.g., Boolean operations, addition)
 - Not widely applicable
- Support a limited set of operations
 - Lack the flexibility to support new operations
- Require significant changes to the DRAM
 - Costly (e.g., area, power)

PuM: Prior Works

 DRAM and other memory technologies that are capable of performing computation using memory

Shortcomings:

• Support **only basic** operations (e.g., Boolean operations, addition)

Need a framework that aids general adoption of PuM, by:

- Efficiently implementing complex operations
- Providing flexibility to support new operations

- Costly (e.g., area, power)

Our Goal

Goal: Design a PuM framework that

- Efficiently implements complex operations
- Provides the flexibility to support new desired operations
- Minimally changes the DRAM architecture

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework

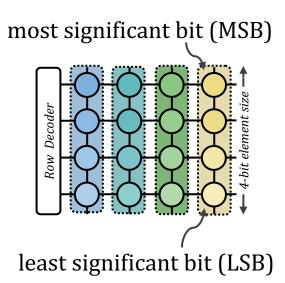
System Integration

Evaluation

SIMDRAM: PuM Substrate

• SIMDRAM framework is built around a DRAM substrate that enables two techniques:

(1) Vertical data layout



Pros compared to the conventional horizontal layout:

- Implicit shift operation
- Massive parallelism

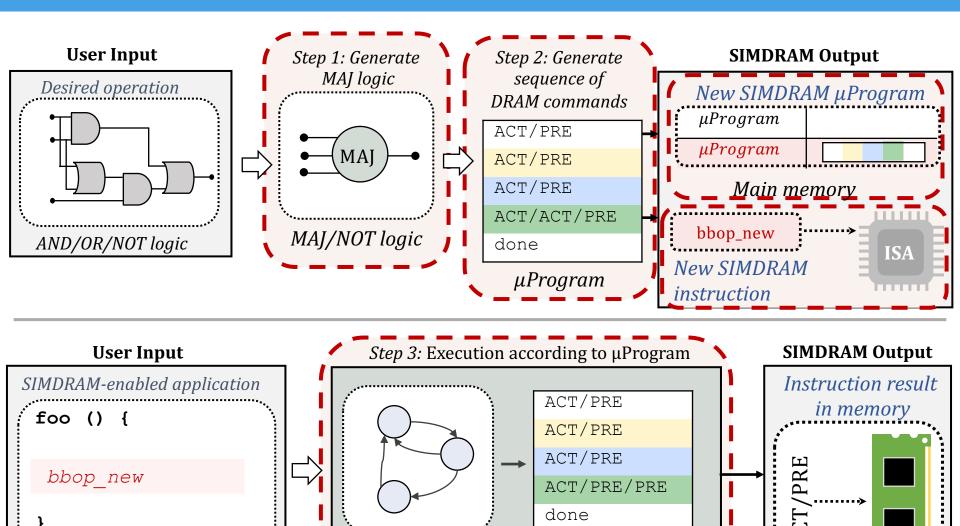
(2) Majority-based computation

$$C_{out} = AB + AC_{in} + BC_{in}$$
 $A \longrightarrow C_{out}$
 $C_{in} \longrightarrow C_{out}$

Pros compared to AND/OR/NOT-based computation:

- Higher performance
- Higher throughput
- Lower energy consumption

SIMDRAM Framework

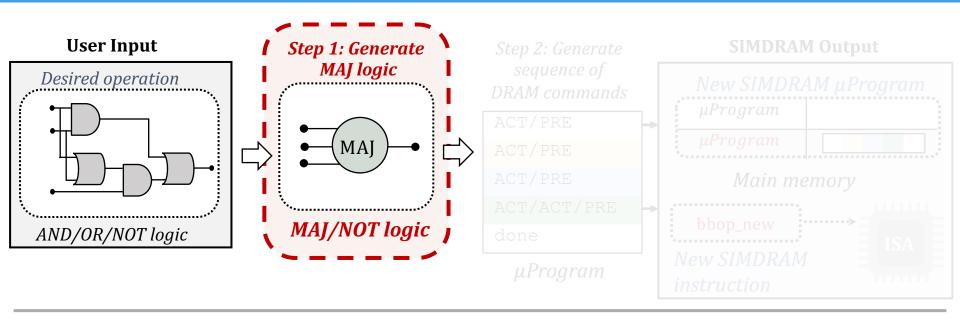


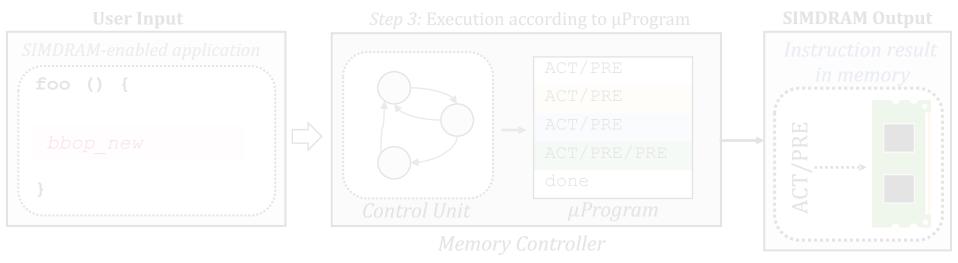
Memory Controller

μProgram

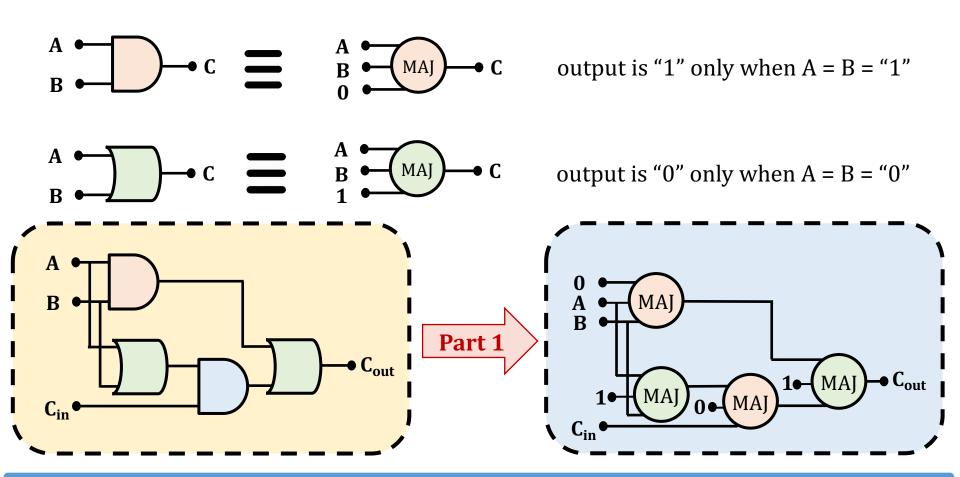
Control Unit

SIMDRAM Framework: Step 1



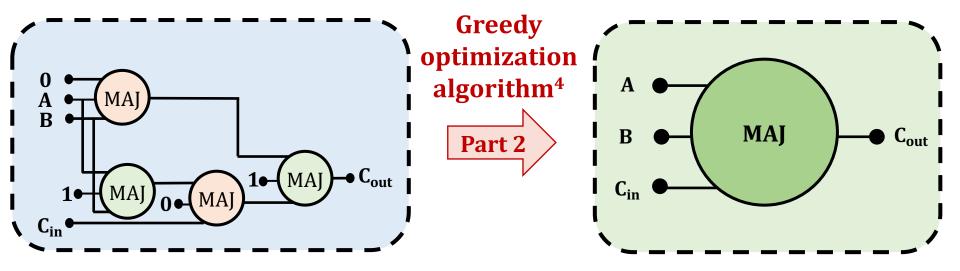


Step 1: Naïve MAJ/NOT Implementation



Naïvely converting AND/OR/NOT-implementation to MAJ/NOT-implementation leads to an unoptimized circuit

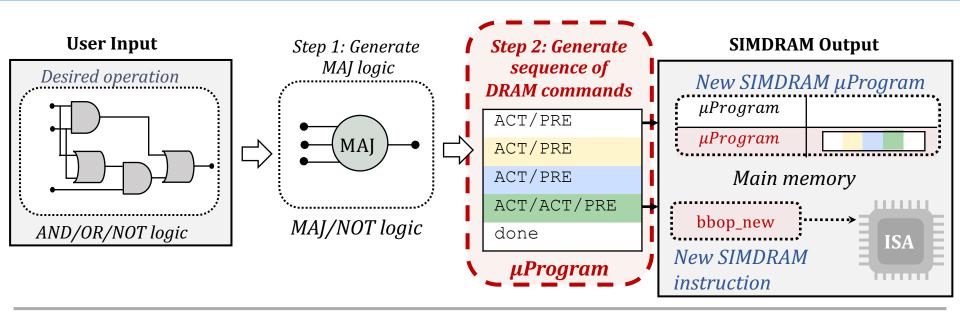
Step 1: Efficient MAJ/NOT Implementation

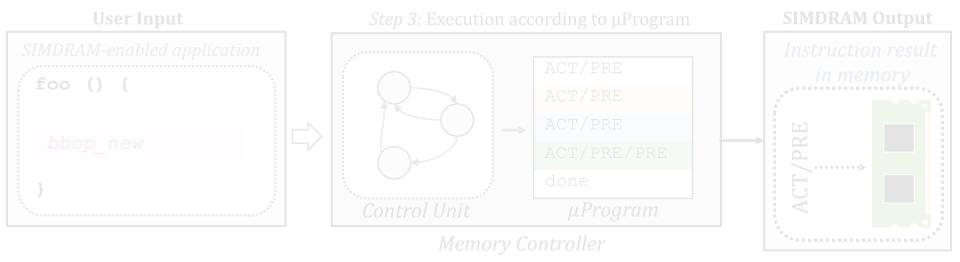


Step 1 generates an optimized MAJ/NOT-implementation of the desired operation

⁴ L. Amarù et al, "Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization", DAC, 2014.

SIMDRAM Framework: Step 2





Step 2: µProgram Generation

• **µProgram:** A series of microarchitectural operations (e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM operation in DRAM

• Goal of Step 2: To generate the µProgram that executes the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate μProgram

Step 2: µProgram Generation

• **µProgram:** A series of microarchitectural operations (e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM operation in DRAM

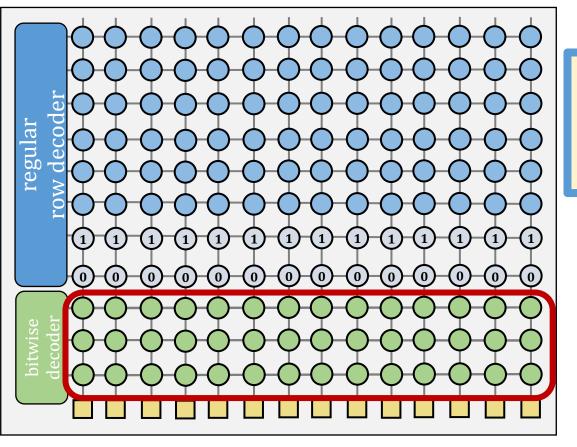
• Goal of Step 2: To generate the µProgram that executes the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate μProgram

Task 1: Allocating DRAM Rows to Operands

 Allocation algorithm considers two constraints specific to processing-using-DRAM



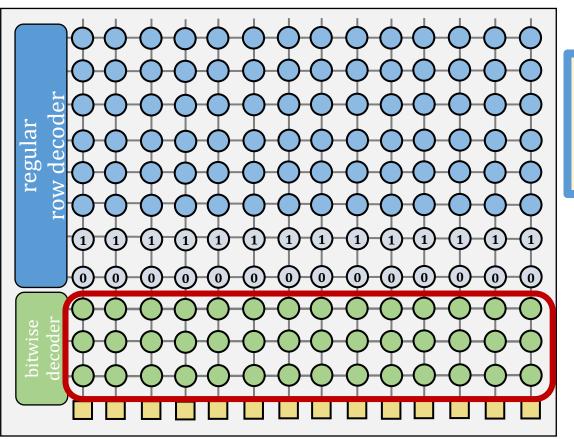
Constraint 1:
Limited number of rows
reserved for computation

Compute rows

subarray organization

Task 1: Allocating DRAM Rows to Operands

 Allocation algorithm considers two constraints specific to processing-using-DRAM



Constraint 2:

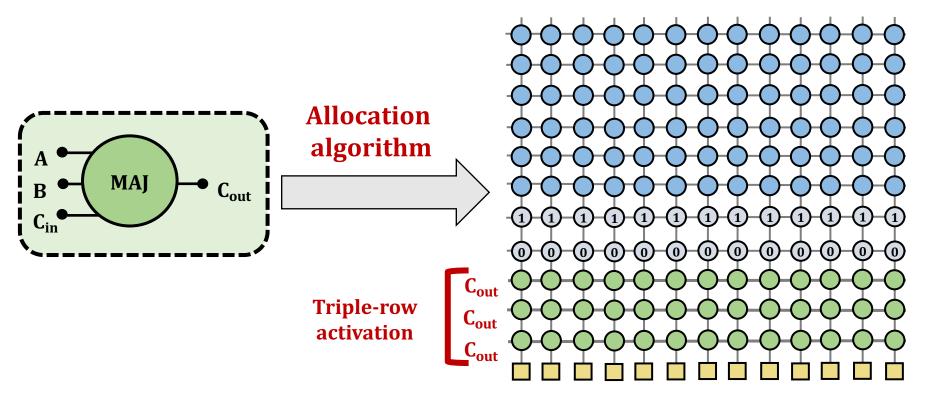
Destructive behavior of triple-row activation

Overwritten with MAJ output

subarray organization

Task 1: Allocating DRAM Rows to Operands

- Allocation algorithm:
 - Assigns as many inputs as the number of free compute rows
 - All three input rows contain the MAJ output and can be reused



Step 2: µProgram Generation

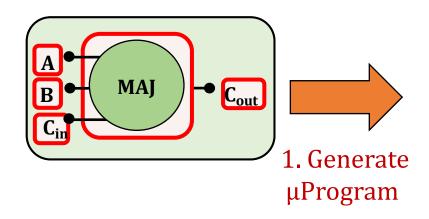
• **µProgram:** A series of microarchitectural operations (e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM operation in DRAM

• Goal of Step 2: To generate the µProgram that executes the desired SIMDRAM operation in DRAM

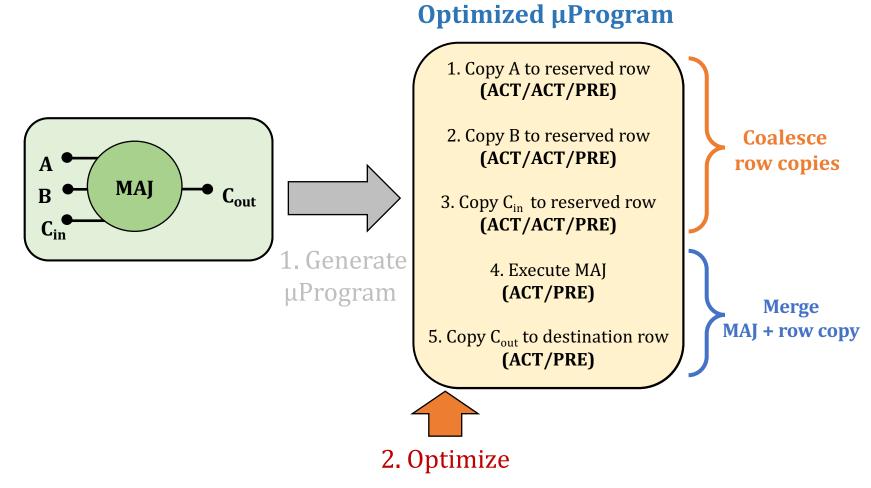
Task 1: Allocate DRAM rows to the operands

Task 2: Generate μProgram

Task 2: Generate an initial µProgram



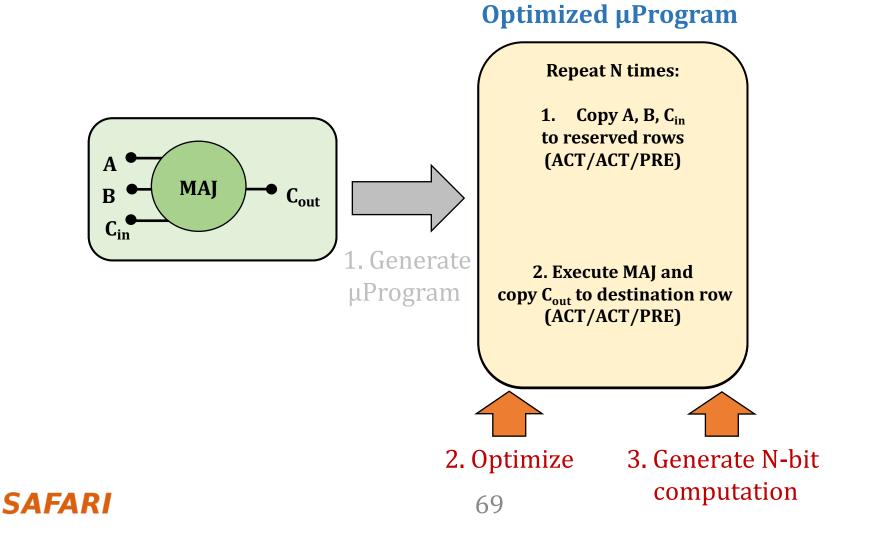
Task 2: Optimize the μProgram



SAFARI

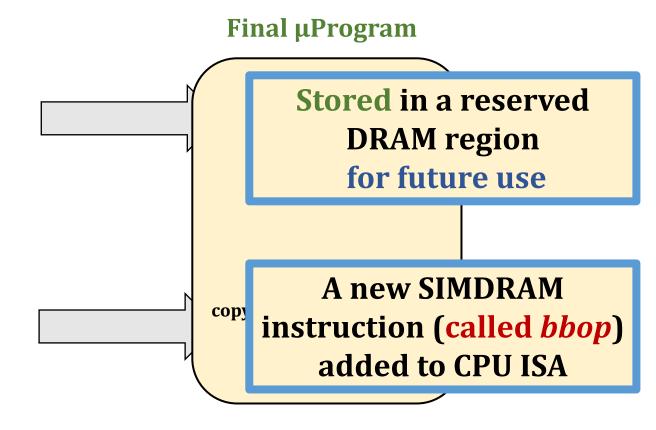
Task 2: Generate N-bit Computation

• Final µProgram is optimized and computes the desired operation for operands of N-bit size in a bit-serial fashion

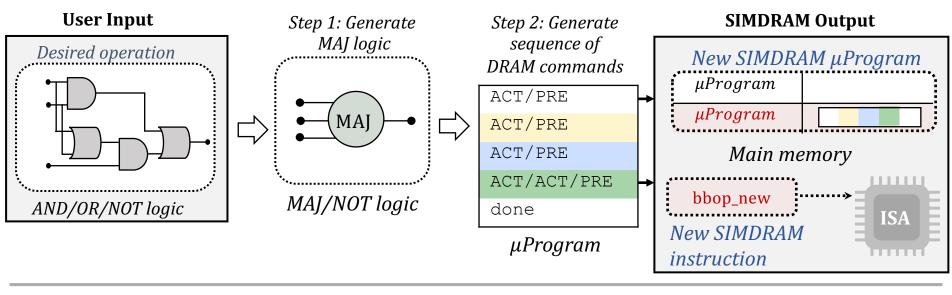


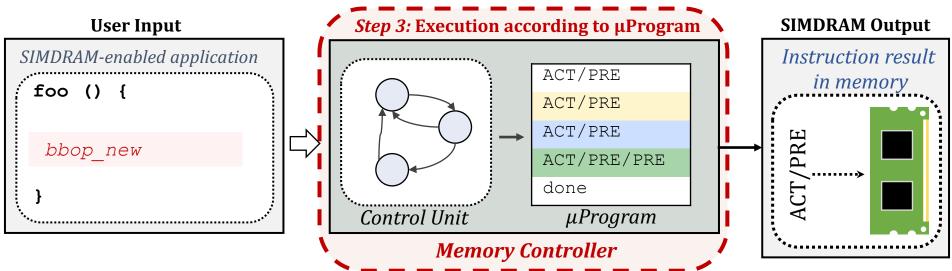
Task 2: Generate µProgram

 Final μProgram is optimized and computes the desired operation for operands of N-bit size in a bit-serial fashion



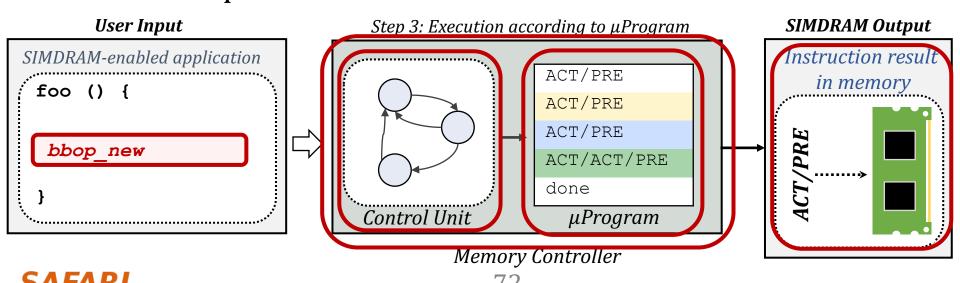
SIMDRAM Framework: Step 3





Step 3: µProgram Execution

- SIMDRAM control unit: handles the execution of the $\mu Program$ at runtime
- Upon receiving a **bbop instruction**, the control unit:
 - 1. Loads the μProgram corresponding to SIMDRAM operation
 - 2. Issues the sequence of DRAM commands (ACT/PRE) stored in the μ Program to SIMDRAM subarrays to perform the in-DRAM operation



Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

Evaluation

System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation, coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

More in the Paper

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM

*Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹
Minesh Patel¹
Iuan Gómez-Luna¹

Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³

¹ETH Zürich

²Simon Fraser University

³University of Illinois at Urbana–Champaign

Handling page faults, address translation, coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview

Application Profiling

Locality-Based Clustering

Memory Bottleneck Analysis

DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework

System Integration

Evaluation

Methodology: Experimental Setup

• Simulator: gem5

• Baselines:

- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism
- Evaluated SIMDRAM configurations (all using a DDR4 device):
 - 1-bank: SIMDRAM exploits 65'536 SIMD lanes (an 8 kB row buffer)
 - 4-banks: SIMDRAM exploits 262'144 SIMD lanes
 - **16-banks:** SIMDRAM exploits 1'048'576 SIMD lanes

Methodology: Workloads

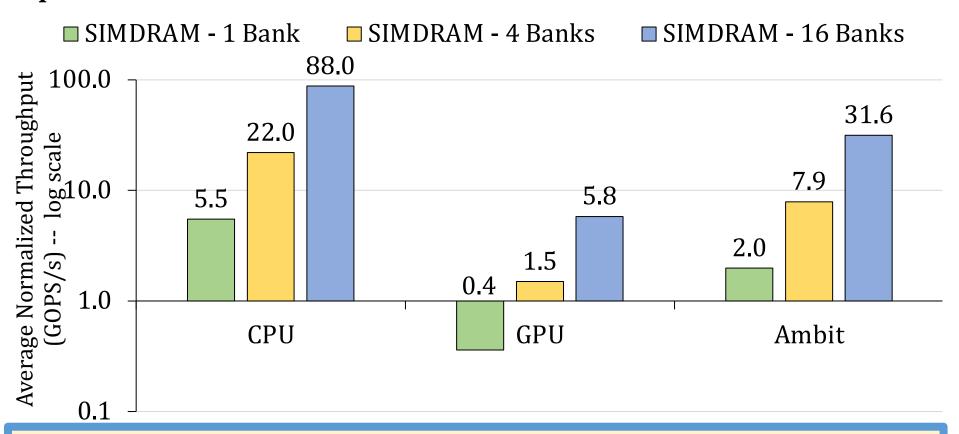
Evaluated:

- 16 complex in-DRAM operations:
 - Absolute Predication
 - Addition/Subtraction ReLU
 - BitCount AND-/OR-/XOR-Reduction
 - Equality/Greater/Greater Equal Division/Multiplication

- 7 real-world applications
 - BitWeaving (databases) LeNET (Neural Networks)
 - TPH-H (databases) VGG-13/VGG-16 (Neural Networks)
 - kNN (machine learning) brightness (graphics)

Throughput Analysis

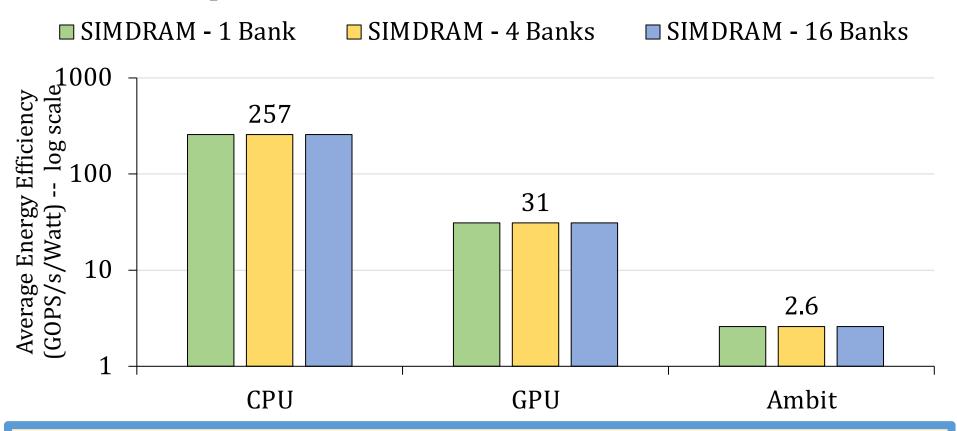
Average normalized throughput across all 16 SIMDRAM operations



SIMDRAM significantly outperforms all state-of-the-art baselines for a wide range of operations

Energy Analysis

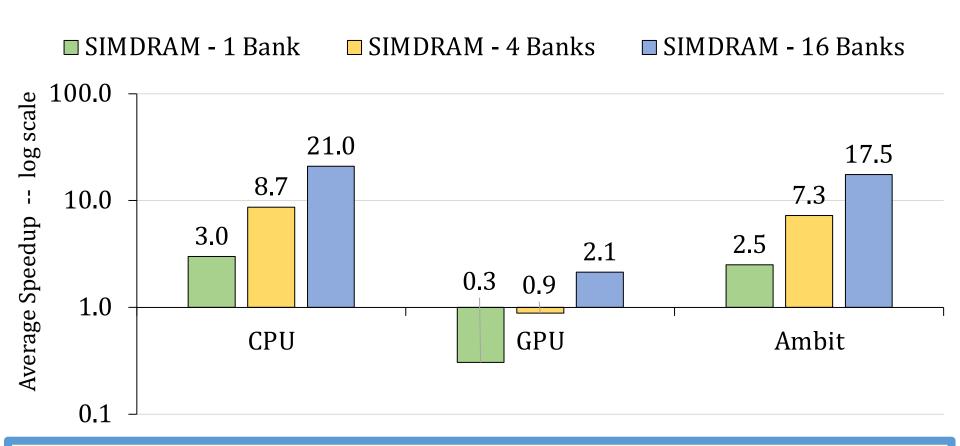
Average normalized energy efficiency across all 16 SIMDRAM operations



SIMDRAM is more energy-efficient than all state-of-the-art baselines for a wide range of operations

Real-World Application

Average speedup across 7 real-world applications



SIMDRAM effectively and efficiently accelerates many commonly-used real-world applications

Conclusion

- <u>Motivation</u>: Processing-using-Memory (PuM) architectures can effectively perform bulk bitwise computation
- **Problem**: Existing PuM architectures are not widely applicable
 - Support only a limited and specific set of operations
 - Lack the flexibility to support new operations
 - Require significant changes to the DRAM subarray
- **Goals**: Design a processing-using-DRAM framework that:
 - Efficiently implements complex operations
 - Provides the flexibility to support new desired operations
 - Minimally changes the DRAM architecture
- <u>SIMDRAM</u>: An end-to-end processing-using-DRAM framework that provides the programming interface, the ISA, and the hardware support for:
 - 1. Efficiently computing complex operations
 - 2. Providing the ability to implement arbitrary operations as required
 - 3. Using a massively-parallel in-DRAM SIMD substrate
- Key Results: SIMDRAM provides:
 - 88x and 5.8x the throughput and 257x and 31x the energy efficiency of a baseline CPU and a high-end GPU, respectively, for 16 in-DRAM operations
 - 21x and 2.1x the performance of the CPU and GPU over seven real-world applications

Methodologies, Workloads, and Tools for Processing-in-Memory: Enabling the Adoption of Data-Centric Architectures

Geraldo F. Oliveira

Saugata Ghose

Juan Gómez-Luna Onur Mutlu

1SVLSI 2022

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

P&S Ramulator 29.04.2022

Geraldo F. Oliveira

Juan Gómez-Luna Lois Orosa Saugata Ghose

Nandita Vijaykumar Ivan Fernandez Mohammad Sadrosadati

Onur Mutlu

SAFARI

Executive Summary

- <u>Problem</u>: Data movement is a major bottleneck is modern systems.
 However, it is <u>unclear</u> how to identify:
 - **different sources** of data movement bottlenecks
 - the **most suitable** mitigation technique (e.g., caching, prefetching, near-data processing) for a given data movement bottleneck

• Goals:

- 1. Design a methodology to **identify** sources of data movement bottlenecks
- 2. **Compare** compute- and memory-centric data movement mitigation techniques
- <u>Key Approach</u>: Perform a large-scale application characterization to identify **key metrics** that reveal the sources to data movement bottlenecks

Key Contributions:

- **Experimental characterization** of 77K functions across 345 applications
- A **methodology** to characterize applications based on data movement bottlenecks and their relation with different data movement mitigation techniques
- **DAMOV:** a **benchmark suite** with **144 functions** for data movement studies
- **Four case-studies** to highlight DAMOV's applicability to open research problems

Outline

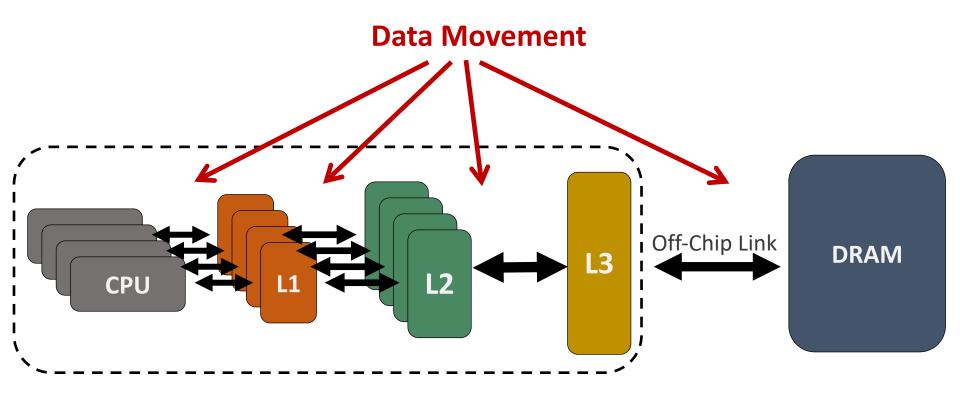
- 1. Data Movement Bottlenecks
- 2. Methodology Overview
- 3. Application Profiling
- 4. Locality-Based Clustering
- 5. Memory Bottleneck Analysis
- 6. Case Studies

Outline

1. Data Movement Bottlenecks

- 2. Methodology Overview
- 3. Application Profiling
- 4. Locality-Based Clustering
- 5. Memory Bottleneck Analysis
- 6. Case Studies

Data Movement Bottlenecks (1/2)



Data movement bottlenecks happen because of:

- Not enough data **locality** → ineffective use of the cache hierarchy
- Not enough memory bandwidth
- High average memory access time

Data Movement Bottlenecks (2/2)

Compute-Centric Architecture Off-Chip Link **DRAM L2** CPU Memory-Centric Architecture Abundant DRAM bandwidth! Off-Chip Link **DRAM CPU** - Shorter average memory

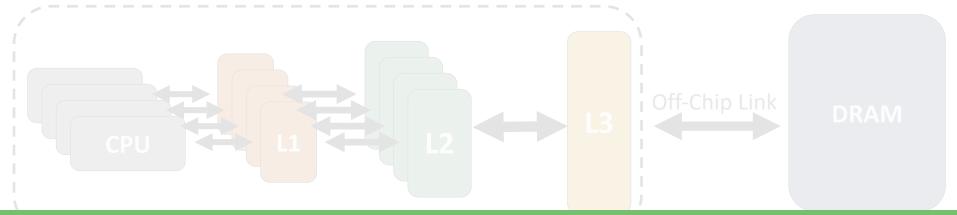
Near-Data Processing (NDP)

SAFARI

access time

Near-Data Processing (1/2)

Compute-Centric Architecture



The goal of Near-Data Processing (NDP) is to mitigate data movement

Memory-centric Architecture

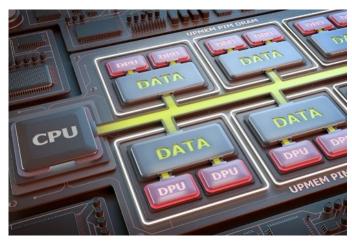
- Abundant DRAM bandwidth
Off-Chip Link
- Shorter average memory access time

Off-Chip Link
Near-Data Processing (NDP)

SAFARI

Near-Data Processing (2/2)

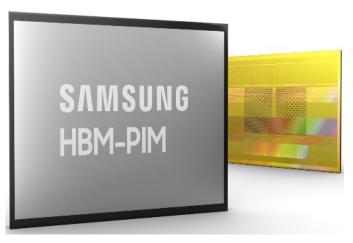
UPMEM (2019)



Near-DRAM-banks processing for general-purpose computing

0.9 TOPS compute throughput¹

Samsung FIMDRAM (2021)



Near-DRAM-banks processing for neural networks

1.2 TFLOPS compute throughput²

The goal of Near-Data Processing (NDP) is to mitigate data movement

When to Employ Near-Data Processing?

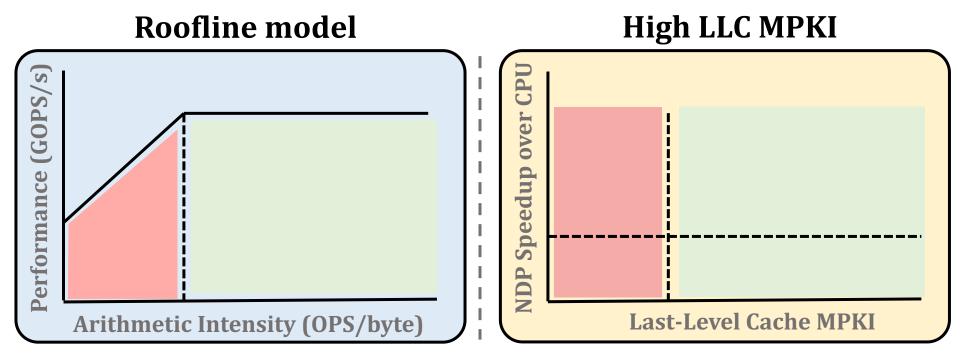


- [1] Ahn+, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015
- [2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS, 2018
- [3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis," MICRO, 2020
- [4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies," BMC Genomics, 2018
- [5] Boroumand+, "Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases with Specialized Hardware/Software Co-Design," arXiv:2103.00798 [cs.AR], 2021

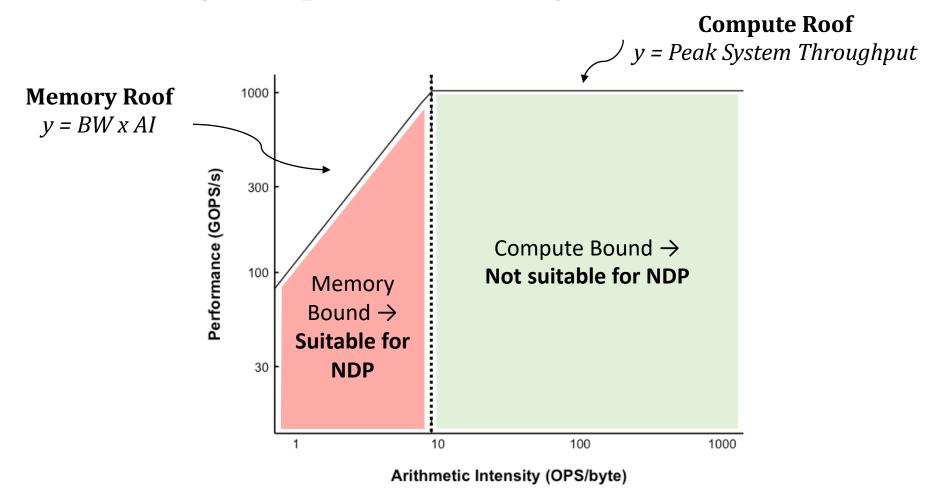
[6] Fernandez+, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis," ICCD, 2020

Identifying Memory Bottlenecks

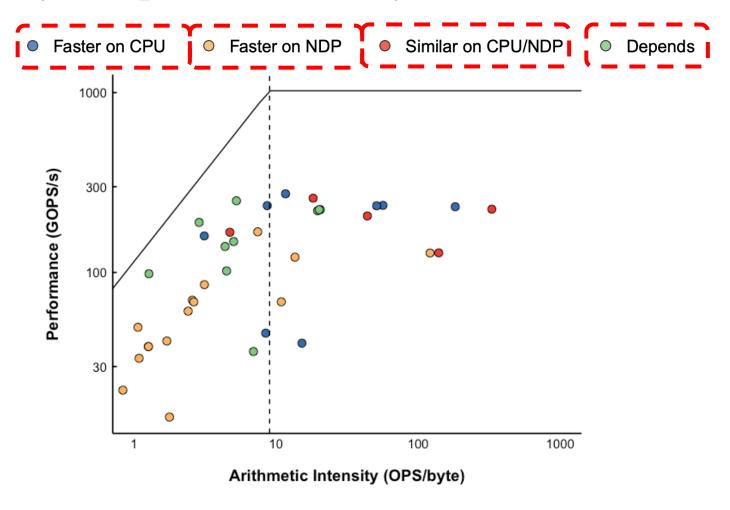
- Multiple approaches to identify applications that:
 - suffer from data movement bottlenecks
 - take advantage of NDP
- Existing approaches are not comprehensive enough



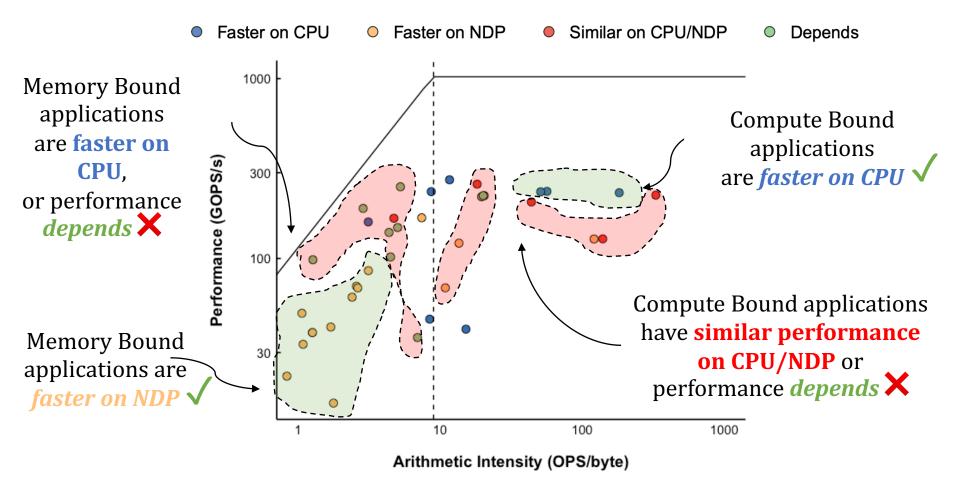
 Roofline model → identifies when an application is bounded by compute or memory units



 Roofline model → identifies when an application is bounded by compute or memory units

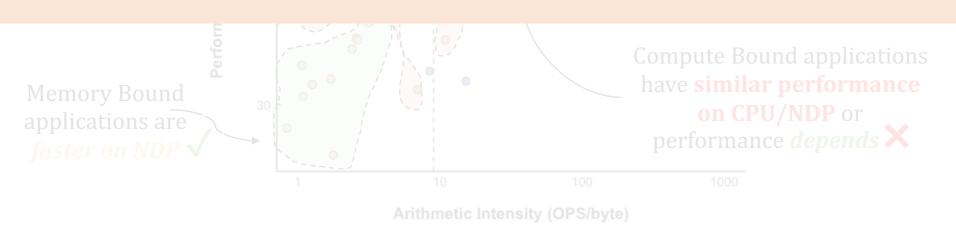


 Roofline model → identifies when an application is bounded by compute or memory units

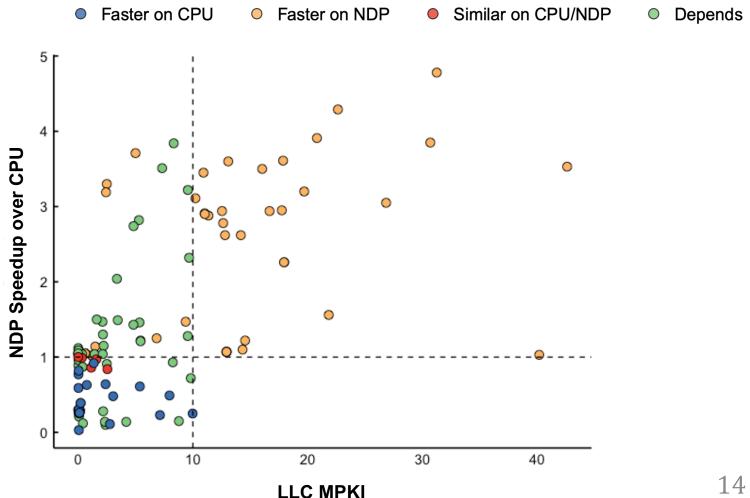


 Roofline model → identifies when an application is bounded by compute or memory units

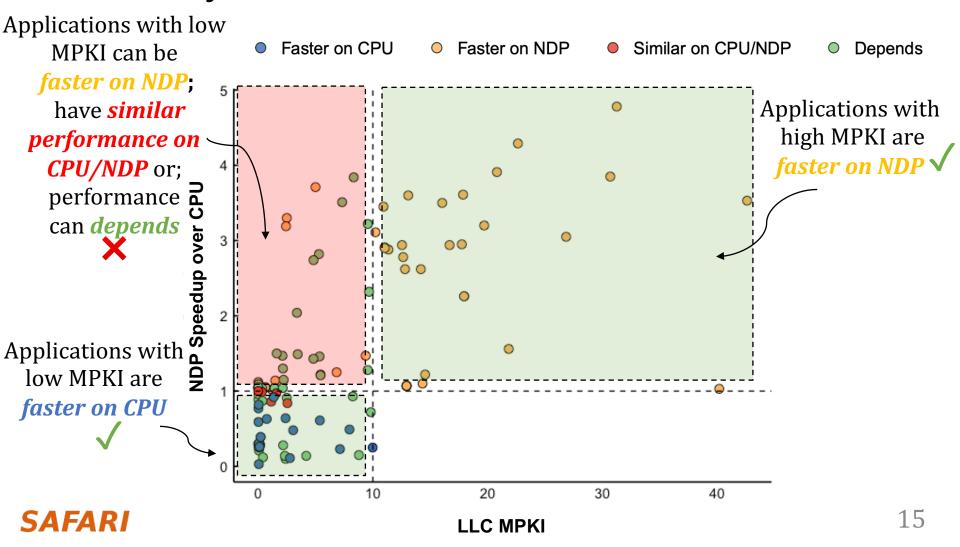
Roofline model **does not accurately account** for the **NDP suitability** of memory-bound applications



- Application with a last-level cache MPKI > 10
 - → memory intensive and benefits from NDP

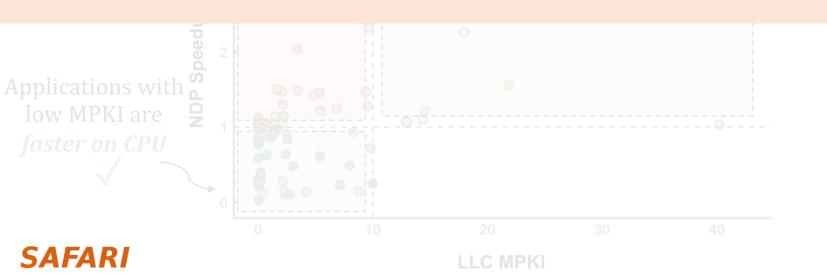


- Application with a last-level cache MPKI > 10
 - → memory intensive and benefits from NDP



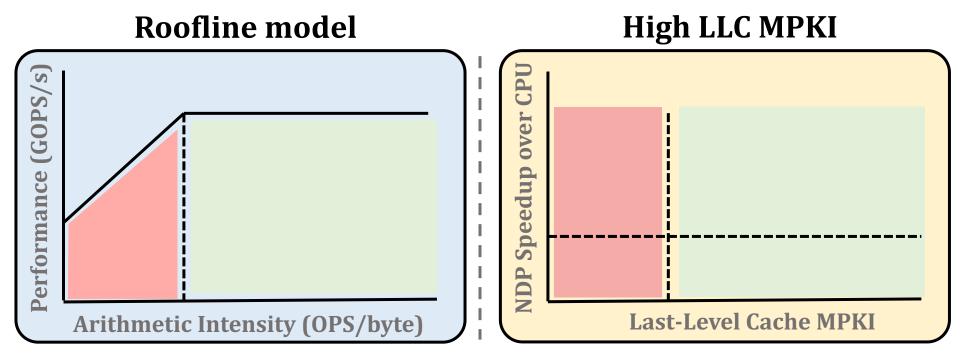
- Application with a last-level cache MPKI > 10 → memory intensive and benefits from NDP

LLC MPKI does not accurately account for the NDP suitability of memory-bound applications



Identifying Memory Bottlenecks

- Multiple approaches to identify applications that:
 - suffer from data movement bottlenecks
 - take advantage of NDP
- Existing approaches are not comprehensive enough



The Problem

- Multiple approaches to identify applications that:
 - suffer from data movement bottlenecks
 - take advantage of NDP

No available methodology can comprehensively:

- identify data movement bottlenecks
- correlate them with the most suitable data movement mitigation mechanism



Our Goal

- Our Goal: develop a methodology to:
 - methodically identify sources of data movement bottlenecks
 - comprehensively compare compute- and memorycentric data movement mitigation techniques

Outline

1. Data Movement Bottlenecks

2. Methodology Overview

- 3. Application Profiling
- 4. Locality-Based Clustering
- 5. Memory Bottleneck Analysis
- 6. Case Studies

Key Approach

- New workload characterization methodology to analyze:
 - data movement bottlenecks
 - suitability of different data movement mitigation mechanisms
- Two main profiling strategies:

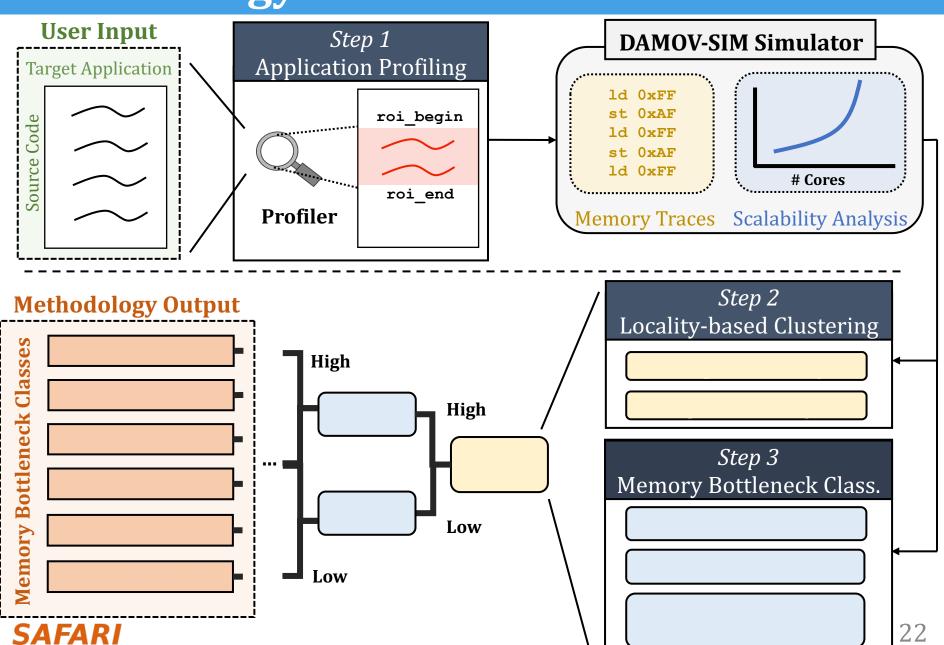
Architecture-independent profiling:

characterizes the memory behavior independently of the underlying hardware

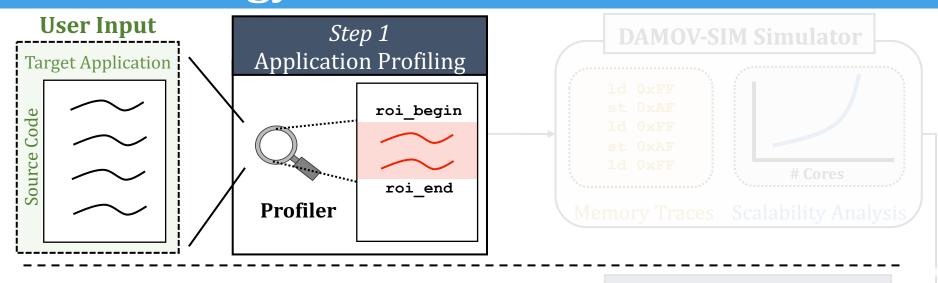
Architecture-dependent profiling:

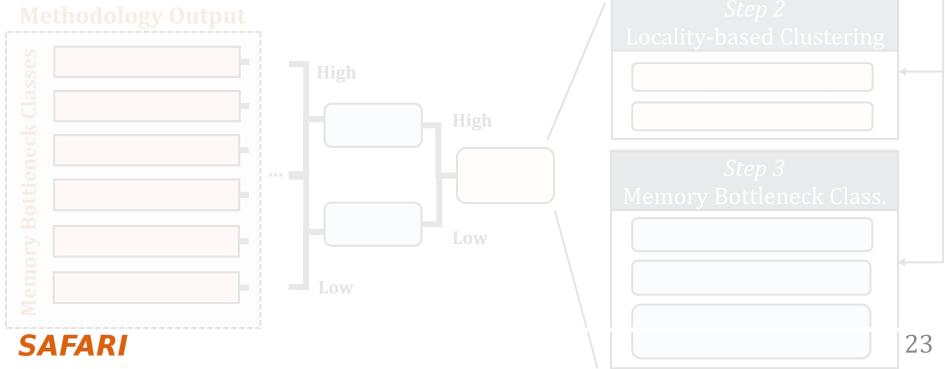
evaluates the impact of the system configuration on the memory behavior

Methodology Overview



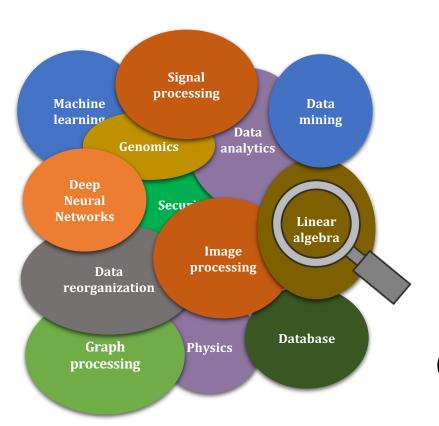
Methodology Overview





Step 1: Application Profiling

Goal: Identify application functions that suffer from data movement bottlenecks

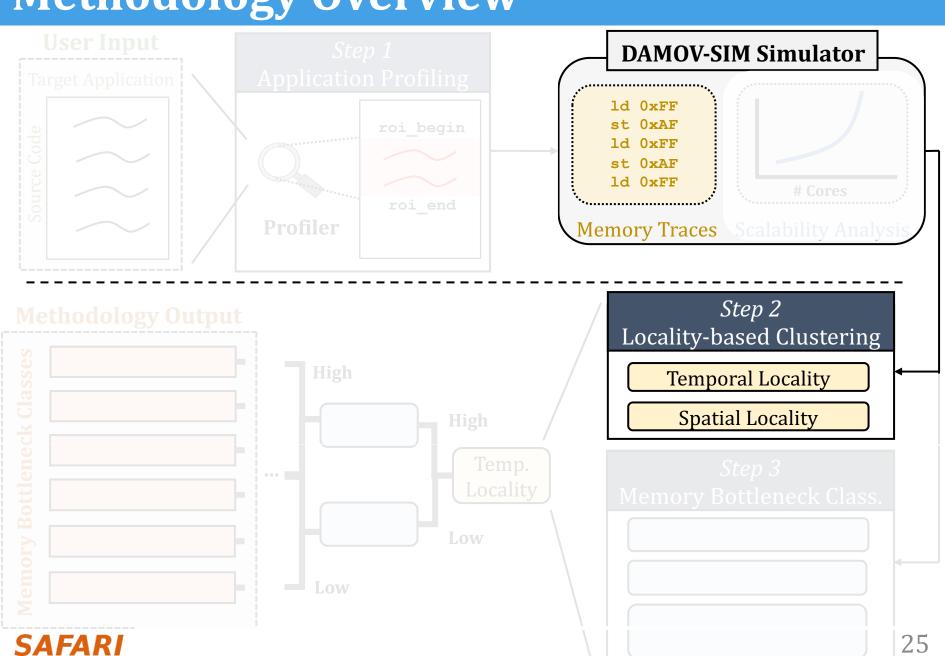


Hardware Profiling Tool: Intel VTune

MemoryBound:

CPU is stalled due to load/store

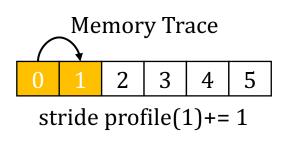
Methodology Overview

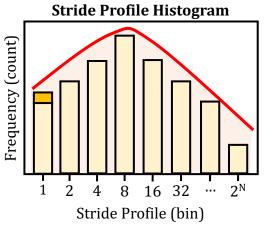


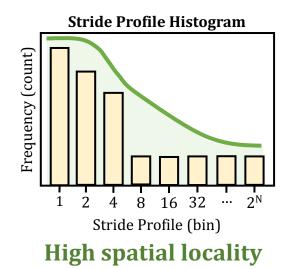
Step 2: Locality-Based Clustering

Goal: analyze application's memory characteristics

Spatial Locality⁷



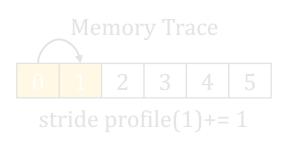


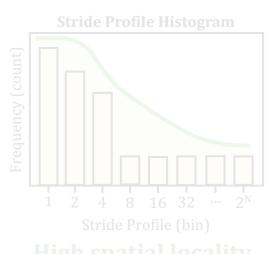


Step 2: Locality-Based Clustering

• Goal: analyze application's memory characteristics

Spatial Locality⁷

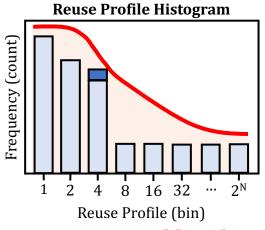




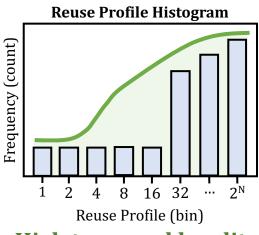
Temporal Locality⁷

Memory Trace

reuse profile(4)+= 1

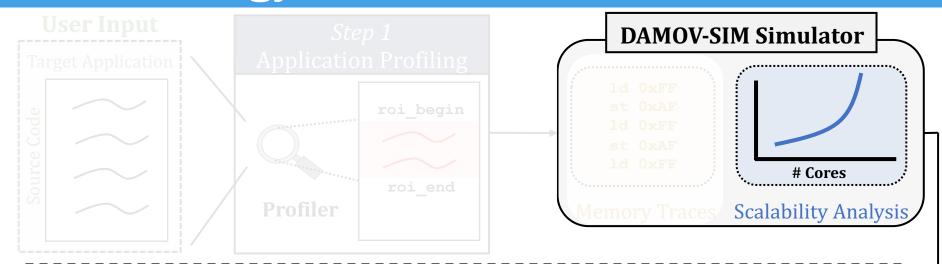


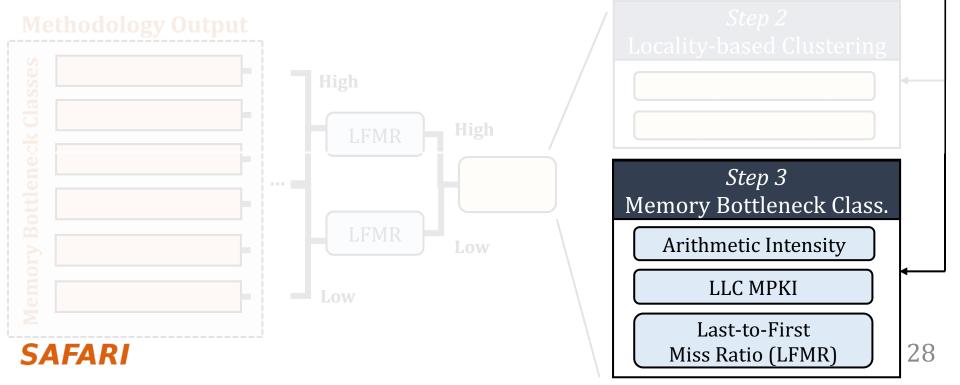
Low temporal locality



High temporal locality

Methodology Overview





Step 3: Memory Bottleneck Classification (1/2)

Arithmetic Intensity (AI)

- floating-point/arithmetic operations per L1 cache lines accessed
 - → shows computational intensity per memory request

LLC Misses-per-Kilo-Instructions (MPKI)

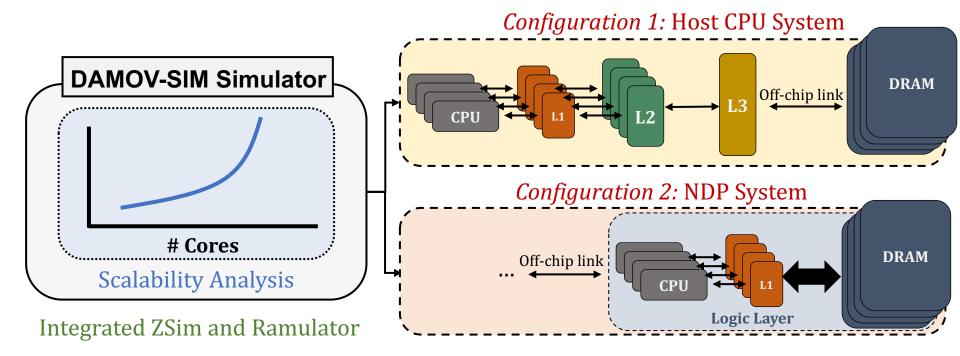
- LLC misses per one thousand instructions
 - → shows memory intensity

Last-to-First Miss Ratio (LFMR)

- LLC misses per L1 misses
- → shows if an application benefits from L2/L3 caches

Step 3: Memory Bottleneck Classification (2/2)

 Goal: identify the specific sources of data movement bottlenecks



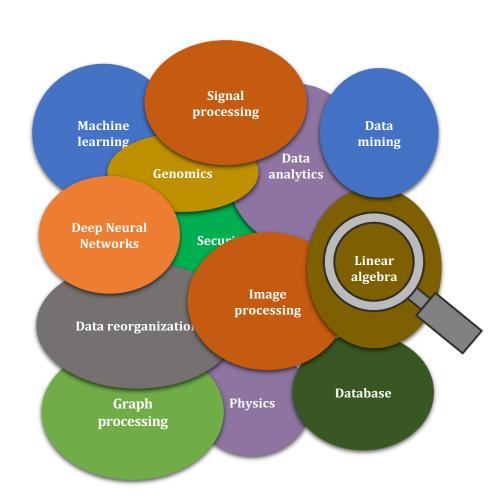
- Scalability Analysis:
 - 1, 4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
 - 3D-stacked memory as main memory

Outline

- 1. Data Movement Bottlenecks
- 2. Methodology Overview
- 3. Application Profiling
- 4. Locality-Based Clustering
- 5. Memory Bottleneck Analysis
- 6. Case Studies

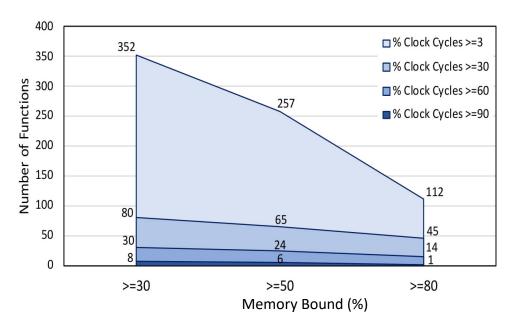
Step 1: Application Profiling

- We analyze 345 applications from distinct domains:
- Graph Processing
- Deep Neural Networks
- Physics
- High-Performance Computing
- Genomics
- Machine Learning
- Databases
- Data Reorganization
- Image Processing
- Map-Reduce
- Benchmarking
- Linear Algebra



Memory Bound Functions

- We analyze 345 applications from distinct domains
- Selection criteria: clock cycles > 3% and Memory Bound > 30%



- We find 144 functions from a total of 77K functions and select:
 - 44 functions → apply steps 2 and 3
 - 100 functions → validation

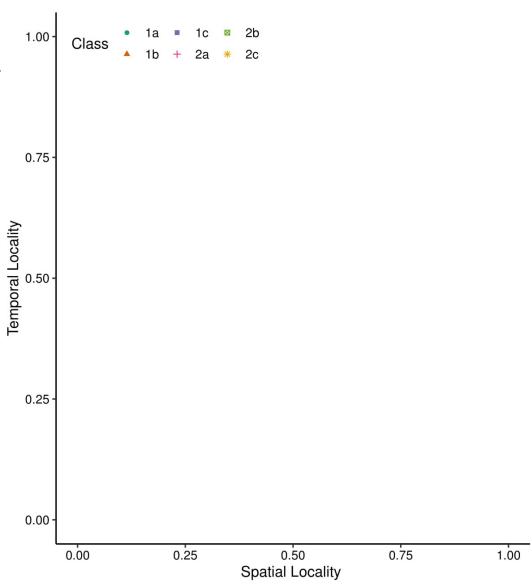
Outline

- 1. Data Movement Bottlenecks
- 2. Methodology Overview
- 3. Application Profiling
- 4. Locality-Based Clustering
- 5. Memory Bottleneck Analysis
- 6. Case Studies

Step 2: Locality-Based Clustering

We use K-means to cluster the applications across both **spatial and temporal locality**, forming two groups

- 1. Low locality applications (in orange)
- 2. High locality applications (in blue)



Step 2: Locality-Based Clustering

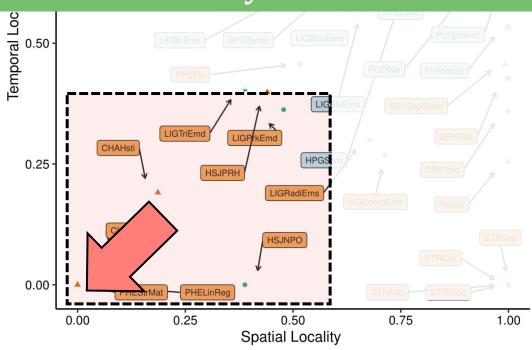
We use K-means to cluster the applications across both

The closer a function is to the bottom-left corner

→ less likely it is to **take advantage** of a deep cache hierarchy

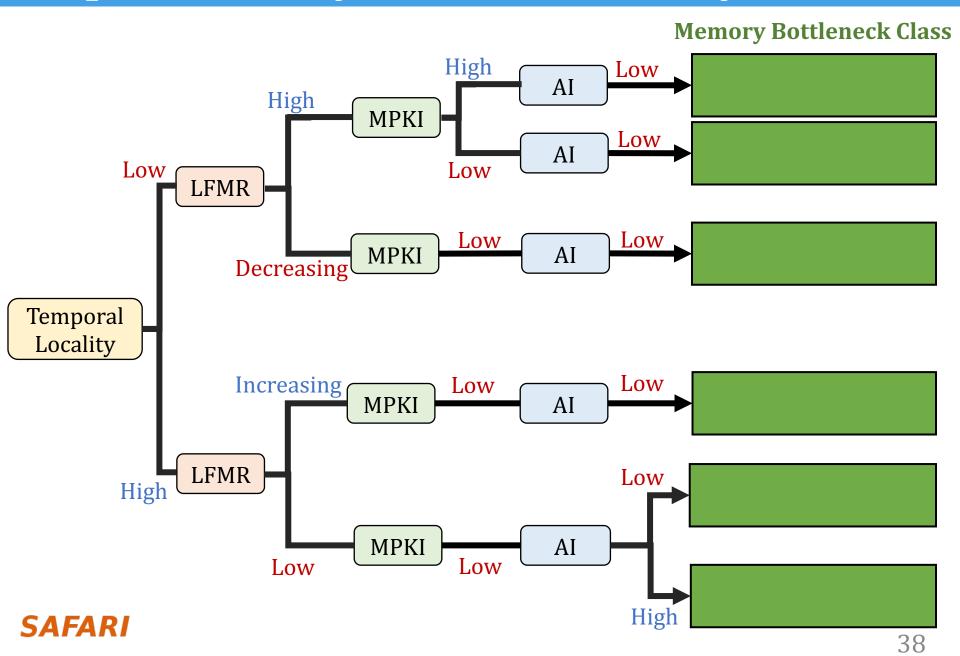
applications (in orange)

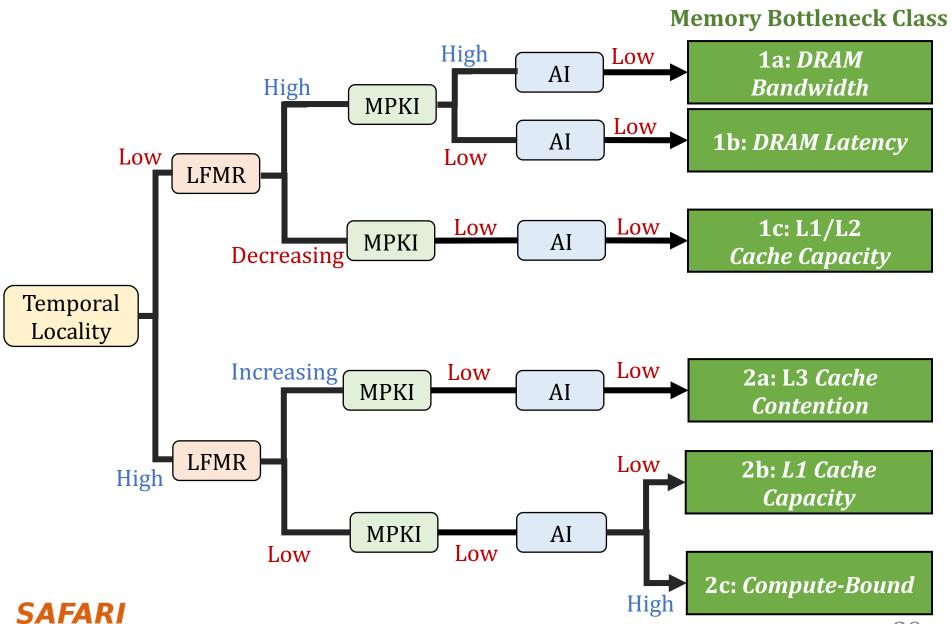
High locality applications (in blue)



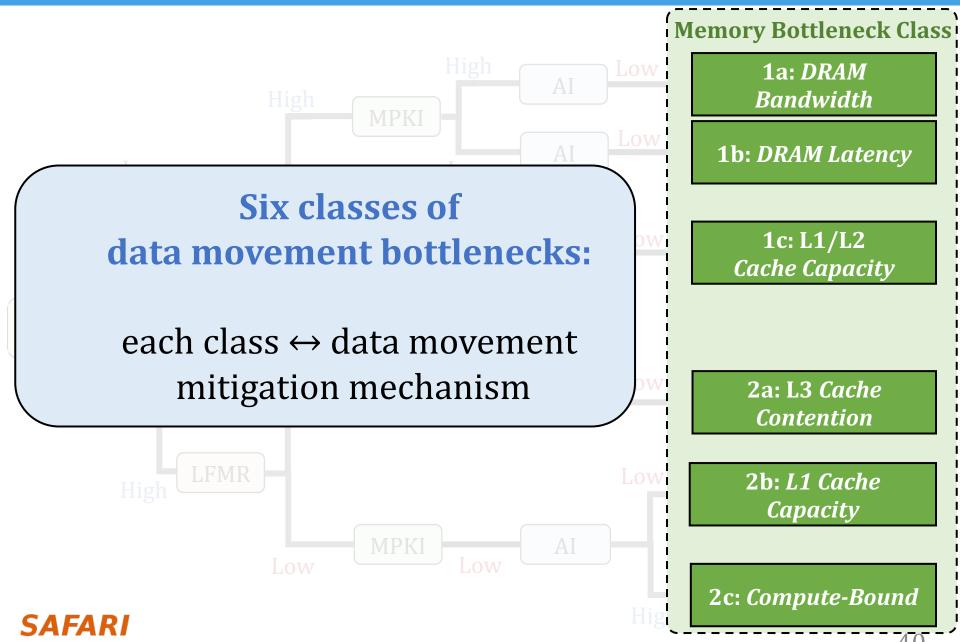
Outline

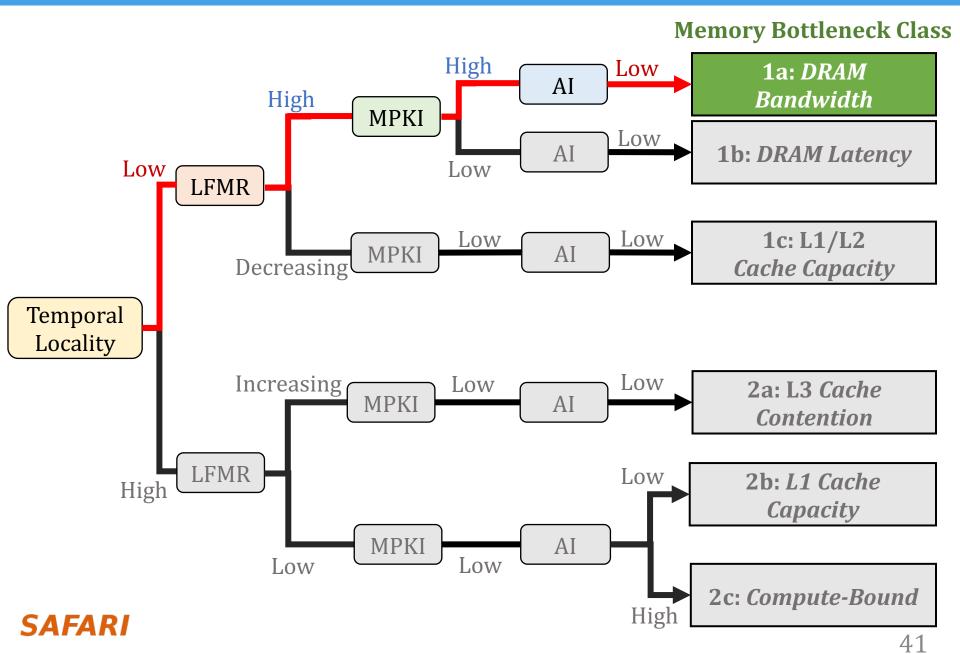
- 1. Data Movement Bottlenecks
- 2. Methodology Overview
- 3. Application Profiling
- 4. Locality-Based Clustering
- 5. Memory Bottleneck Analysis
- 6. Case Studies





39





Class 1a: DRAM Bandwidth Bound (1/2)

- High MPKI → high memory pressure
- Host scales well until bandwidth saturates

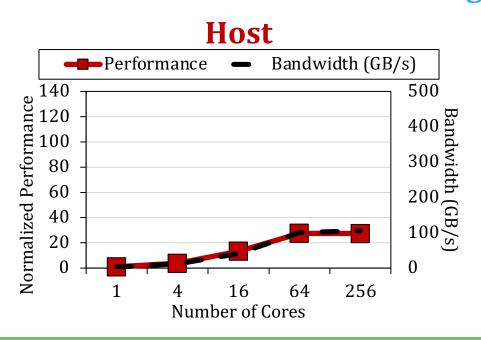
Temp. Loc: low

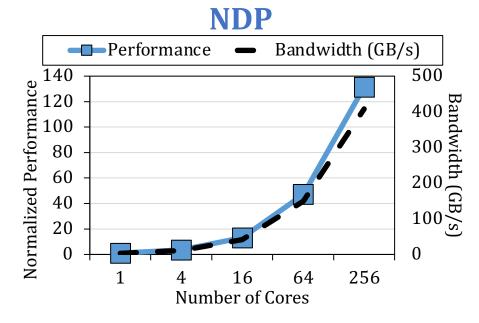
LFMR: high

MPKI: high

AI: low

NDP scales without saturating alongside attained bandwidth





DRAM bandwidth bound applications:

NDP does better because of the higher internal DRAM bandwidth

Class 1a: DRAM Bandwidth Bound (2/2)

- High LFMR → L2 and L3 caches are inefficient
- Host's energy consumption is dominated by cache look-ups and off-chip data transfers

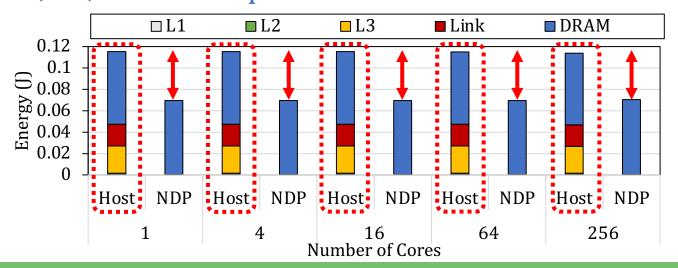
Temp. Loc: low

LFMR: high

MPKI: high

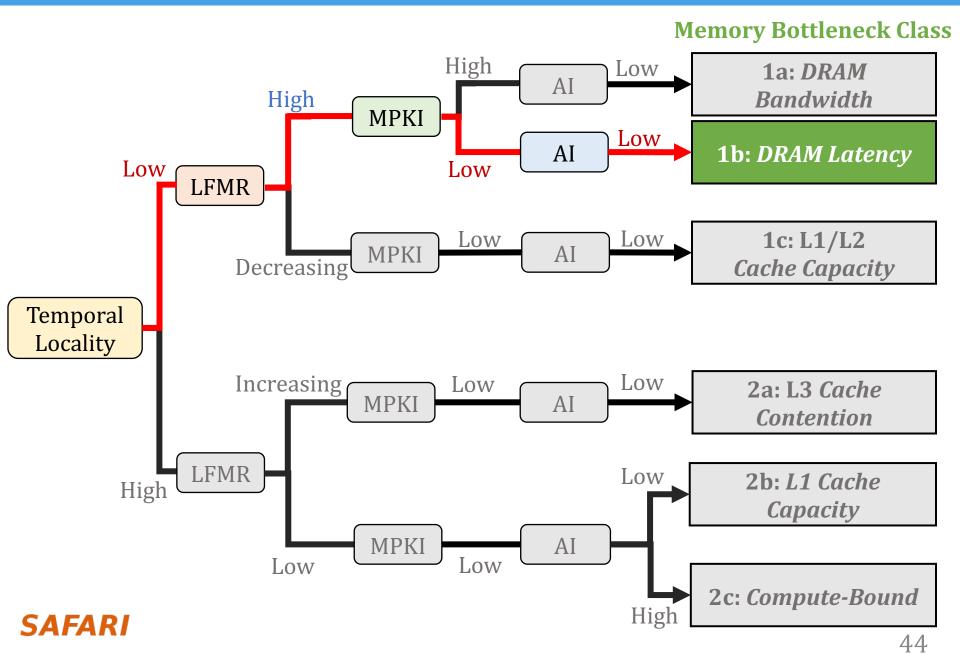
AI: low

- NDP provides **large system energy reduction** since it does not access L2, L3, and off-chip links



DRAM bandwidth bound applications:

NDP does better because it eliminates off-chip I/O traffic



Class 1b: DRAM Latency Bound

- High LFMR → L2 and L3 caches are inefficient
- Host scales well but NDP performance is always higher

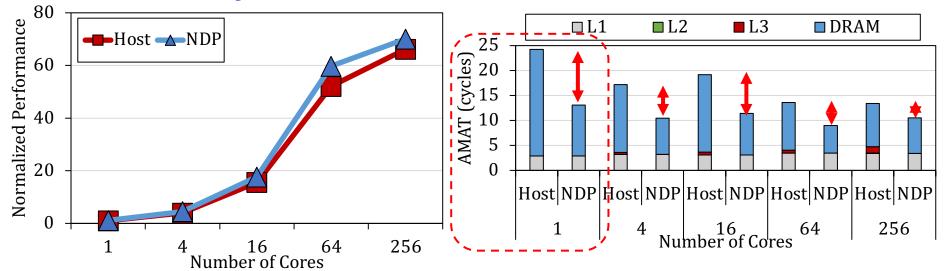
Temp. Loc: low

LFMR: high

MPKI: low

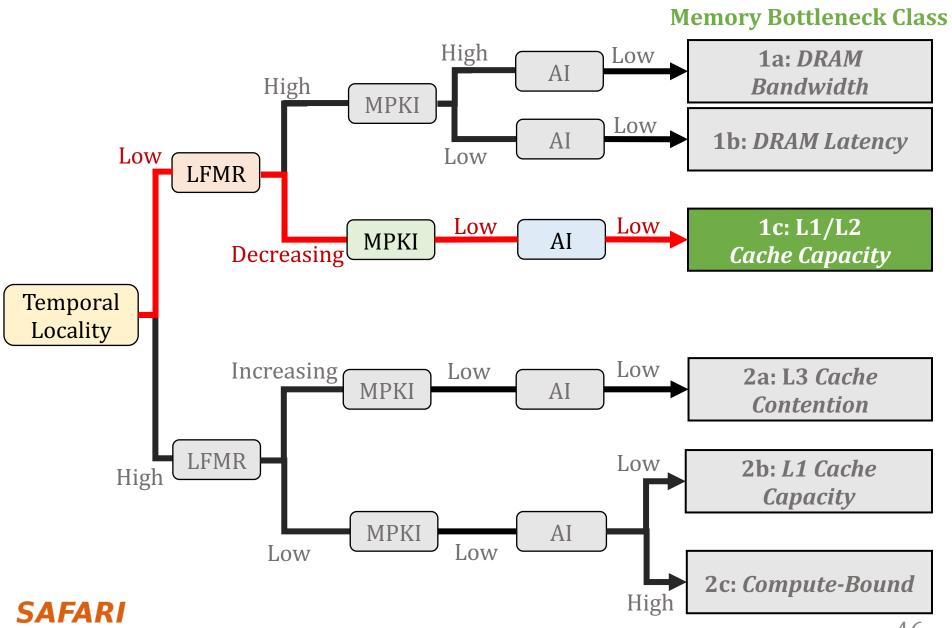
AI: low

NDP performs better than host because of its lower memory access latency



DRAM latency bound applications:

host performance is hurt by the cache hierarchy and off-chip link



46

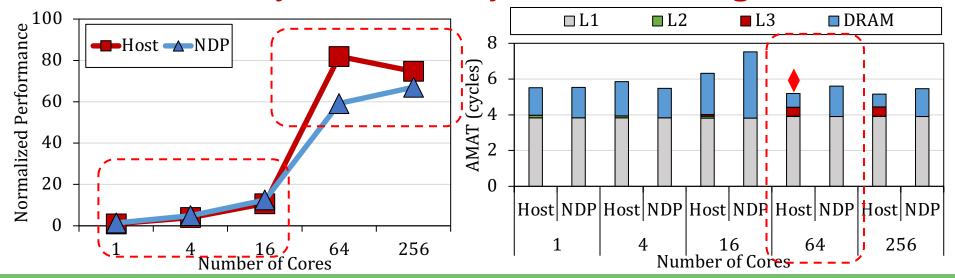
Class 1c: L1/L2 Cache Capacity

- Decreasing LFMR → L2/L3 caches turn efficient
- NDP scales better than the host at low core counts
- Temp. Loc: low

 LFMR: decreasing

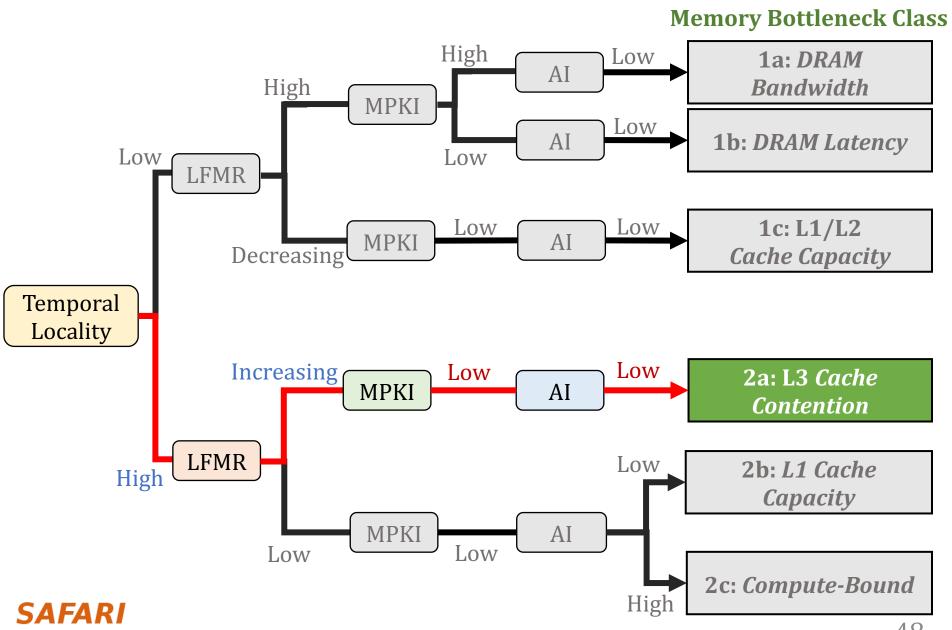
 MPKI: low

 AI: low
- Host scales better than NDP at high core counts
- Host performs better than NDP at high core counts since it reduces memory access latency via data caching



L1/L2 cache capacity bottlenecked applications:

NDP is higher performance when the aggregated cache size is small



48

Class 2a: L3 Cache Contention

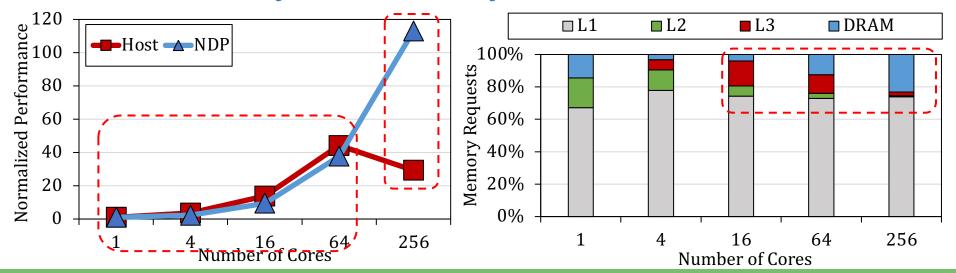
- Increasing LFMR → L2/L3 caches turn inefficient
- Host scales better than the NDP at low core counts
- LFMR: increasing

 MPKI: low

 AI: low

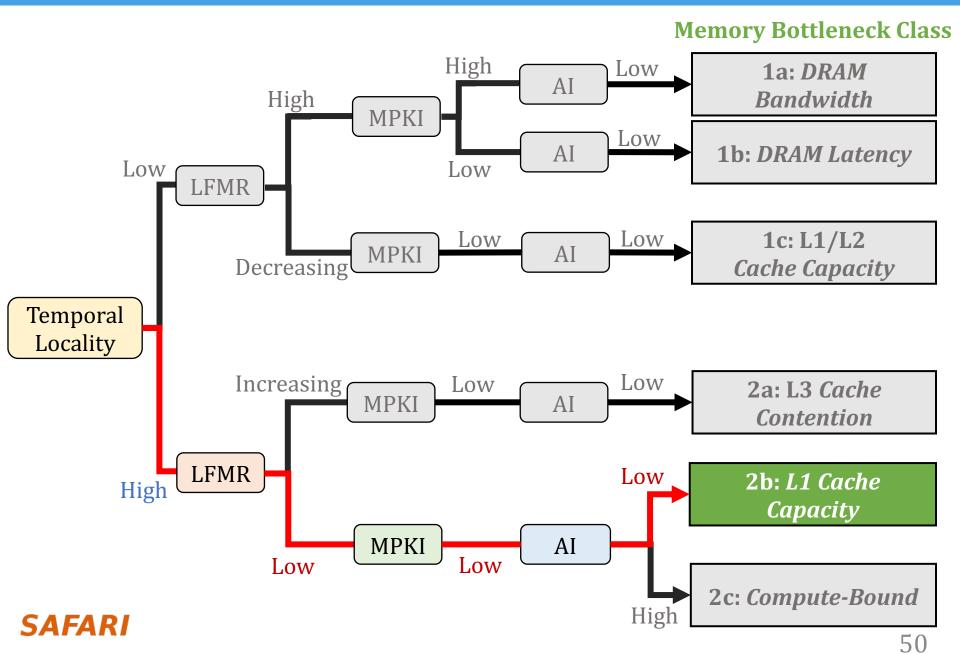
Temp. Loc: high

- NDP scales better than host at high core counts
- NDP performs better than host at high core counts since it reduces memory access latency



L3 cache contention bottlenecked applications:

at high core counts, applications turn into DRAM latency-bound



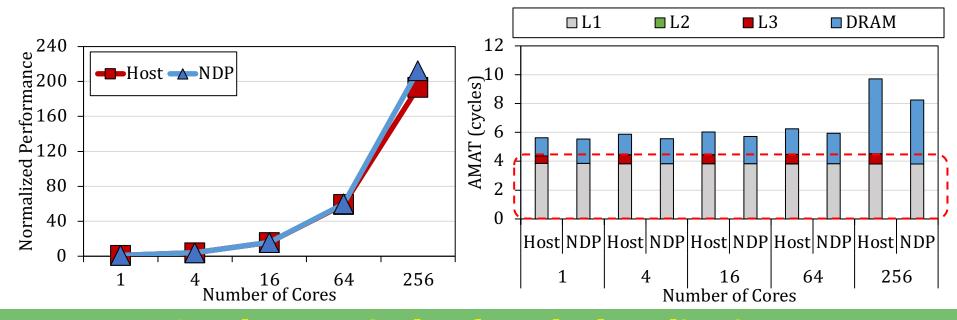
Class 2b: L1 Cache Capacity

- Low LFMR, MPKI; high temporal locality
 → efficient L2/L3 caches, low memory intensity
- Low AI → few operations per byte
- Host and NDP performance are similar
 → L1 dominates average memory access time
- Temp. Loc: high

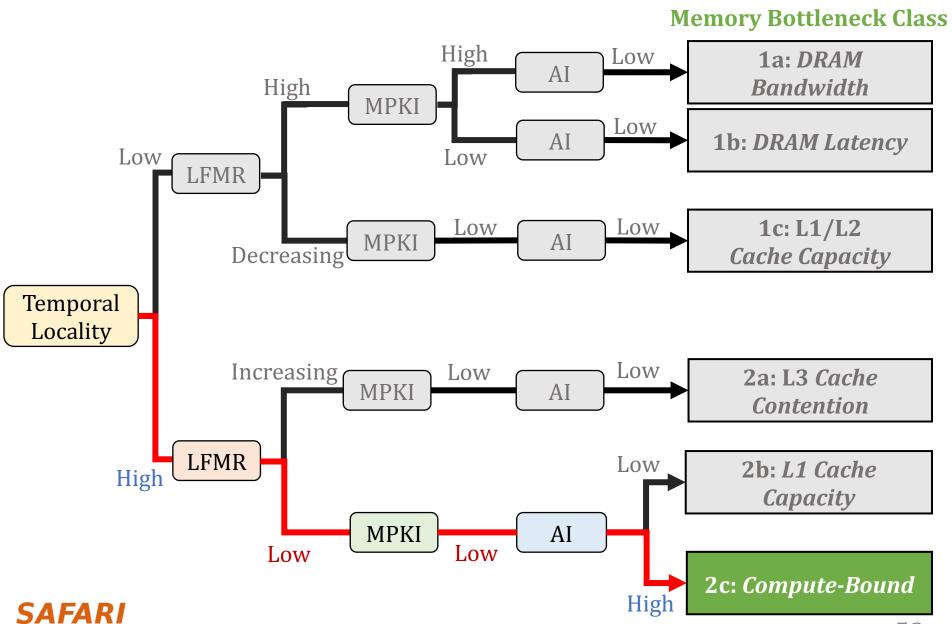
 LFMR: low

 MPKI: low

 AI: low



L1 cache capacity bottlenecked applications:
NDP can be used to reduce the host overall SRAM area



52

Class 2c: Compute-Bound

Low LFMR, MPKI; high temporal locality
 → efficient L2/L3 caches, low memory intensity

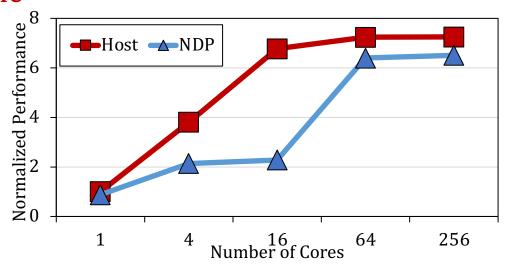
Temp. Loc: high

LFMR: low

MPKI: low

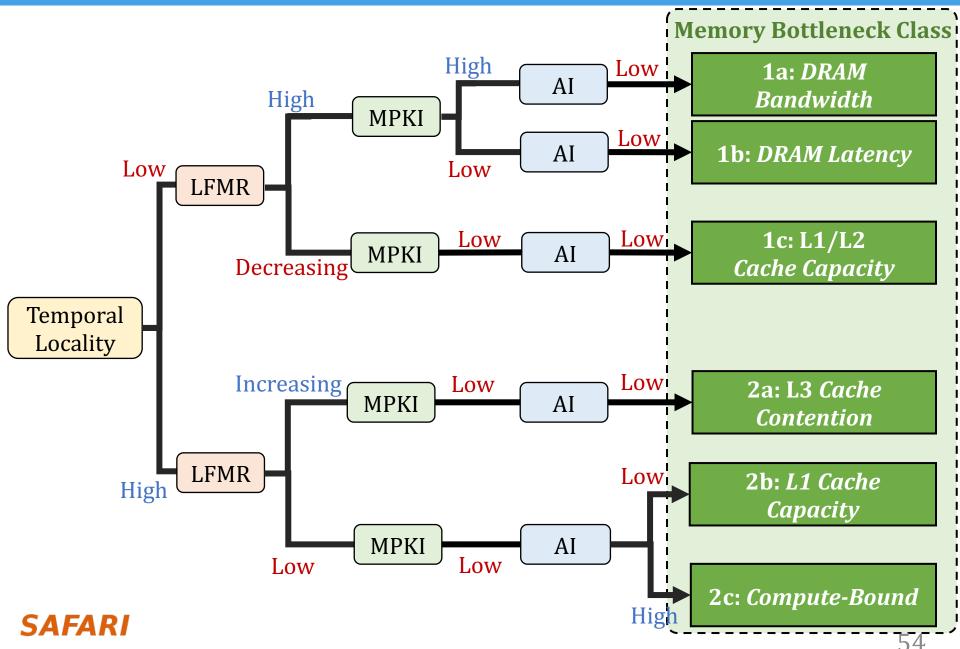
AI: high

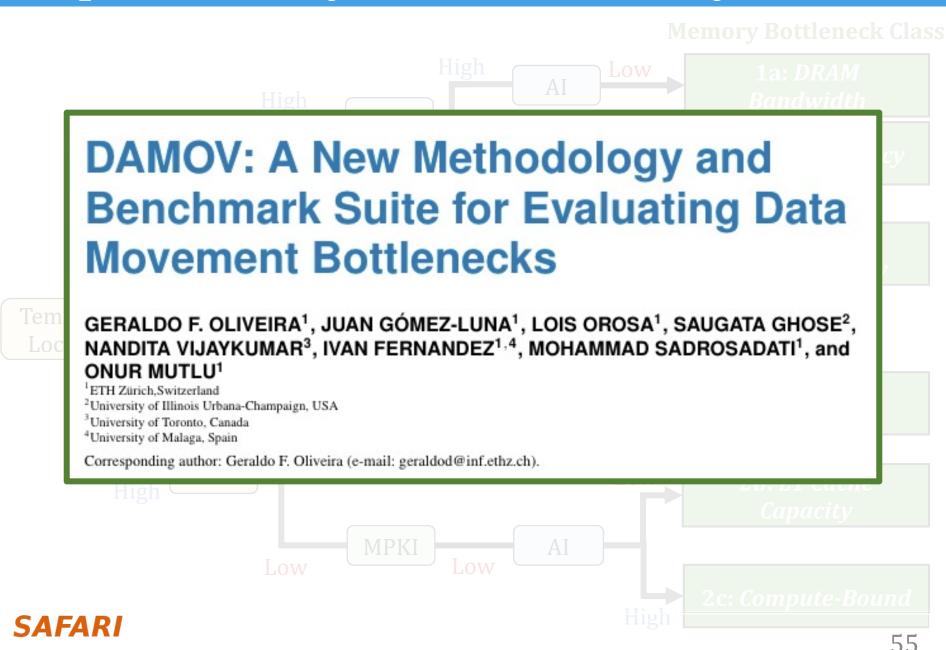
- High AI → many operations per byte
- Host performs better than NDP because computation dominates execution time



Compute-bound applications:

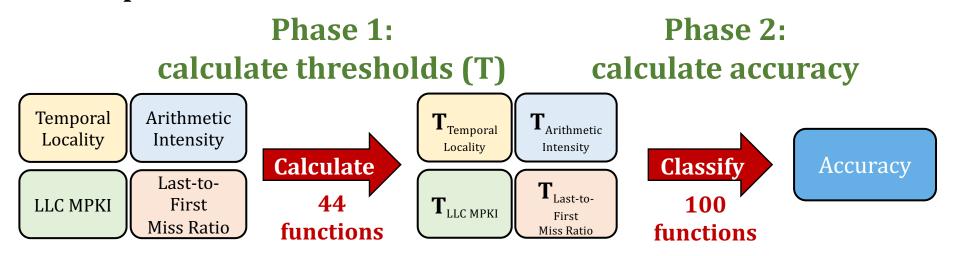
benefit highly from cache hierarchy; NDP is *not* a good fit





Methodology Validation

- Goal: evaluate the accuracy of our workload characterization methodically on a large set of functions
- Two-phase validation:



High accuracy:

our methodology accurately classifies 97% of functions into one of the six memory bottleneck classes

More in the Paper

- Effect of the last-level cache size
 - Large L3 cache size (e.g., 512 MB) can mitigate some cache contention issues

- Summary of our workload characterization methodology
 - Including workload characterization using in-order host/NDP cores

Limitations of our methodology

Benchmark diversity

More in the Paper

- Effect of the last-level cache size
 - Large L3 cache size (e.g., 512 MB) can mitigate some cache

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA¹, JUAN GÓMEZ-LUNA¹, LOIS OROSA¹, SAUGATA GHOSE², NANDITA VIJAYKUMAR³, IVAN FERNANDEZ^{1,4}, MOHAMMAD SADROSADATI¹, and ONUR MUTLU¹

1ETH Zürich, Switzerland

²University of Illinois Urbana-Champaign, USA

3University of Toronto, Canada

4University of Malaga, Spain

Corresponding author: Geraldo F. Oliveira (e-mail: geraldod@inf.ethz.ch).

Benchmark diversity

Outline

- 1. Data Movement Bottlenecks
- 2. Methodology Overview
- 3. Application Profiling
- 4. Locality-Based Clustering
- 5. Memory Bottleneck Analysis
- 6. Case Studies

Case Studies

- Many open questions related to NDP system designs⁸:
 - Interconnects
 - Data mapping and allocation
 - NDP core design (accelerators, general-purpose cores)
 - Offloading granularity
 - Programmability
 - Coherence
 - System integration

- ...

Goal: demonstrate how DAMOV is useful to study NDP system designs

[8] Mutlu+, "A Modern Primer on Processing in Memory," Emerging Computing: From Devices to Systems - Looking Beyond Moore and Von Neumann, 2021

Case Studies

Load Balance and Inter-Vault Communication on NDP

NDP Accelerators and Our Methodology

Different Core Models on NDP Architectures

Case Studies (1/4)

Load Balance and Inter-Vault Communication on NDP

portion of the memory requests an NDP core issues go to remote vaults

→ increases the memory access latency for the NDP core

NDP Accelerators and Our Methodology

Different Core Models on NDP Architectures

Case Studies (2/4)

Load Balance and Inter-Vault Communication on NDP

NDP Accelerators and Our Methodology

NDP accelerator is faster than compute-centric accelerator for Class 1a and 1b applications; slower for Class 2c

→ key observations hold for other NDP architectures

Different Core Models on NDP Architectures

Case Studies (3/4)

Load Balance and Inter-Vault Communication on NDP

NDP Accelerators and Our Methodology

Different Core Models on NDP Architectures

using in-order cores limits performance of some applications

→ static instruction scheduling cannot exploit memory parallelism

Case Studies (4/4)

Load Balance and Inter-Vault Communication on NDP

NDP Accelerators and Our Methodology

Different Core Models on NDP Architectures

Fine-Grained NDP Offloading

few basic blocks are responsible for most of LLC misses

→ offloading such basic blocks to NDP are enough to improve performance

Case Studies

Load Balance and Inter-Vault Communication on NDP

portion of the memory requests an NDP core issues go to remote vaults

→ increases the memory access latency for the NDP core

NDP Accelerators and Our Methodology

NDP accelerator is faster than compute-centric accelerator for Class 1a and 1b applications; slower for Class 2c

→ key observations hold for other NDP architectures

Different Core Models on NDP Architectures

using in-order cores limits performance of some applications

→ static instruction scheduling cannot exploit memory parallelism

Fine-Grained NDP Offloading

few basic blocks are responsible for most of LLC misses

→ offloading such basic blocks to NDP are enough to improve performance

Case Studies

Load Balance and Inter-Vault Communication on NDP

NDP Accelerators and Our Methodology

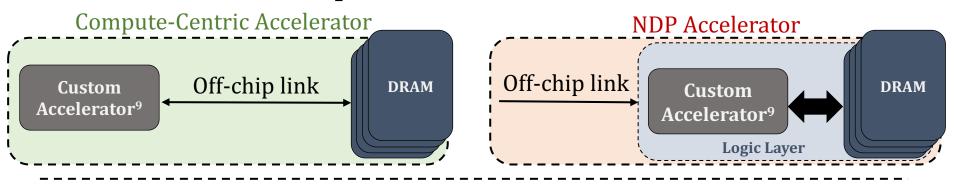
NDP accelerator is faster than compute-centric accelerator for Class 1a and 1b applications; slower for Class 2c

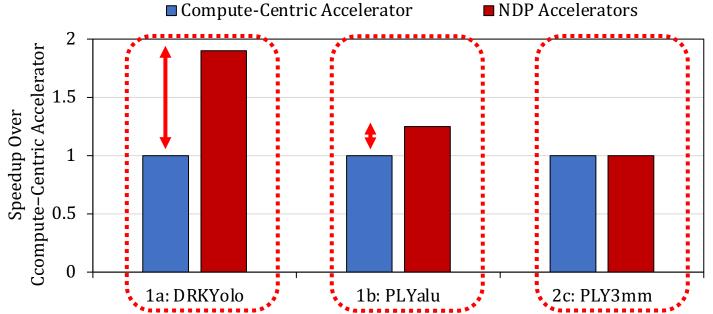
→ key observations hold for other NDP architectures

Different Core Models on NDP Architectures

NDP Accelerators and Our Methodology

Goal: evaluate compute-centric versus NDP accelerators





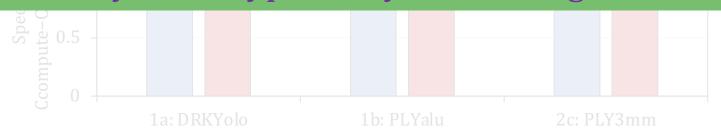
[9] Shao+, "Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures," in ISCA, 2014

NDP Accelerators and Our Methodology

Goal: evaluate compute-centric versus NDP accelerators

The performance of NDP accelerators are in line with the characteristics of the memory bottleneck classes:

our memory bottleneck classification can be applied to study other types of system configurations



[9] Shao+, "Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized

Case Studies

Load Balance and Inter-Vault Communication on NDP

portion of the memory requests an NDP core issues go to remote vaults

→ increases the memory access latency for the NDP core

NDP Accelerators and Our Methodology

NDP accelerator is faster than compute-centric accelerator for Class 1a and 1b applications; slower for Class 2c

→ key observations hold for other NDP architectures

Different Core Models on NDP Architectures

using in-order cores limits performance of some applications

→ static instruction scheduling cannot exploit memory parallelism

Fine-Grained NDP Offloading

few basic blocks are responsible for most of LLC misses

→ offloading such basic blocks to NDP are enough to improve performance

Case Studies

Load Balance and Inter-Vault Communication on NDP

portion of the memory requests an NDP core issues go to remote vaults

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA¹, JUAN GÓMEZ-LUNA¹, LOIS OROSA¹, SAUGATA GHOSE², NANDITA VIJAYKUMAR³, IVAN FERNANDEZ^{1,4}, MOHAMMAD SADROSADATI¹, and ONUR MUTLU¹

Corresponding author: Geraldo F. Oliveira (e-mail: geraldod@inf.ethz.ch).

Fine-Grained NDP Offloading

few basic blocks are responsible for most of LLC misses

→ offloading such basic blocks to NDP are enough to improve performance

SAFARI

11

¹ETH Zürich, Switzerland

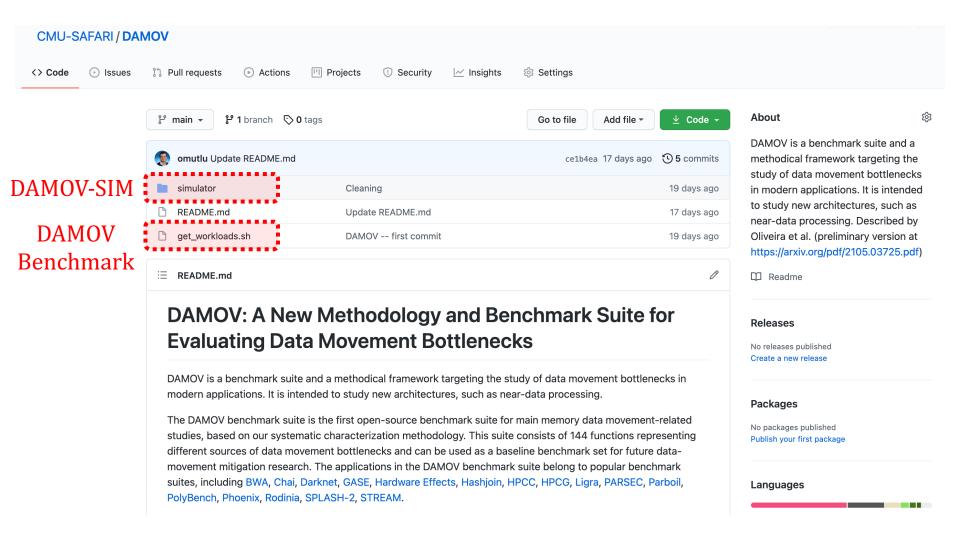
²University of Illinois Urbana-Champaign, USA

³University of Toronto, Canada

⁴University of Malaga, Spain

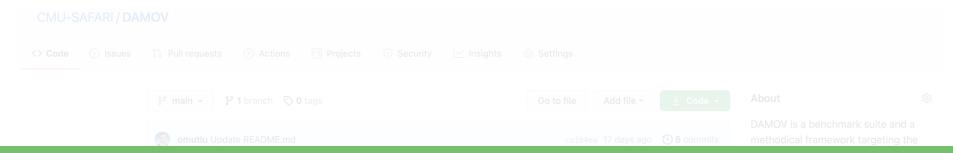
DAMOV is Open-Source

We open-source our benchmark suite and our toolchain



DAMOV is Open-Source

We open-source our benchmark suite and our toolchain



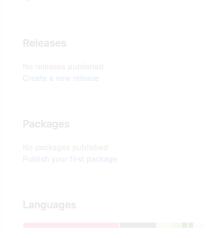
Get DAMOV at:

https://github.com/CMU-SAFARI/DAMOV

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in modern applications. It is intended to study new architectures, such as near-data processing.

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related studies, based on our systematic characterization methodology. This suite consists of 144 functions representing different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.



Conclusion

- <u>Problem</u>: Data movement is a major bottleneck is modern systems.
 However, it is <u>unclear</u> how to identify:
 - different sources of data movement bottlenecks
 - the **most suitable** mitigation technique (e.g., caching, prefetching, near-data processing) for a given data movement bottleneck

• Goals:

- 1. Design a methodology to **identify** sources of data movement bottlenecks
- 2. **Compare** compute- and memory-centric data movement mitigation techniques
- <u>Key Approach</u>: Perform a large-scale application characterization to identify **key metrics** that reveal the sources to data movement bottlenecks

Key Contributions:

- **Experimental characterization** of 77K functions across 345 applications
- A **methodology** to characterize applications based on data movement bottlenecks and their relation with different data movement mitigation techniques
- **DAMOV:** a **benchmark suite** with **144 functions** for data movement studies
- **Four case-studies** to highlight DAMOV's applicability to open research problems

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

P&S Ramulator 29.04.2022

Geraldo F. Oliveira

Juan Gómez-Luna Lois Orosa Saugata Ghose

Nandita Vijaykumar Ivan Fernandez Mohammad Sadrosadati

Onur Mutlu

SIMDRAM: A Framework for **Bit-Serial SIMD Processing using DRAM**

Nastaran Hajinazar* <u>Geraldo F. Oliveira*</u>

Sven Gregorio Joao Ferreira

Nika Mansouri Ghiasi

Minesh Patel Mohammed Alser

Saugata Ghose

Juan Gómez–Luna

Onur Mutlu

Executive Summary

- <u>Motivation</u>: Processing-using-Memory (PuM) architectures can effectively perform bulk bitwise computation
- **Problem**: Existing PuM architectures are not widely applicable
 - Support only a limited and specific set of operations
 - Lack the flexibility to support new operations
 - Require significant changes to the DRAM subarray
- **Goals**: Design a processing-using-DRAM framework that:
 - Efficiently implements complex operations
 - Provides the flexibility to support new desired operations
 - Minimally changes the DRAM architecture
- <u>SIMDRAM</u>: An end-to-end processing-using-DRAM framework that provides the programming interface, the ISA, and the hardware support for:
 - 1. Efficiently computing complex operations
 - 2. Providing the ability to implement arbitrary operations as required
 - 3. Using a massively-parallel in-DRAM SIMD substrate
- <u>Key Results</u>: SIMDRAM provides:
 - 88x and 5.8x the throughput and 257x and 31x the energy efficiency of a baseline CPU and a high-end GPU, respectively, for 16 in-DRAM operations
 - 21x and 2.1x the performance of the CPU and GPU over seven real-world applications

Outline

- 1. Processing-using-DRAM
- 2. Background
- 3. SIMDRAM

Processing-using-DRAM Substrate Framework

- 4. System Integration
- 5. Evaluation
- 6. Conclusion

Outline

1. Processing-using-DRAM

2. Background

3. SIMDRAM

Processing-using-DRAM Substrate Framework

4. System Integration

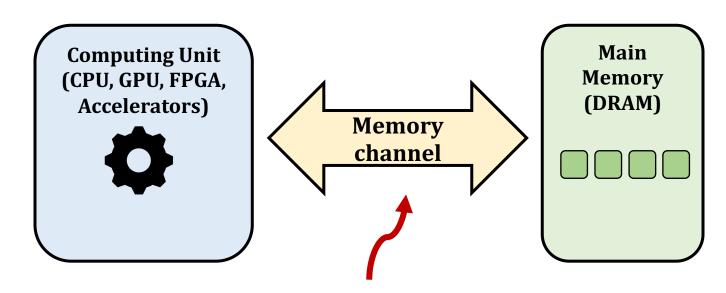
5. Evaluation

6. Conclusion

Data Movement Bottleneck

Data movement is a major bottleneck

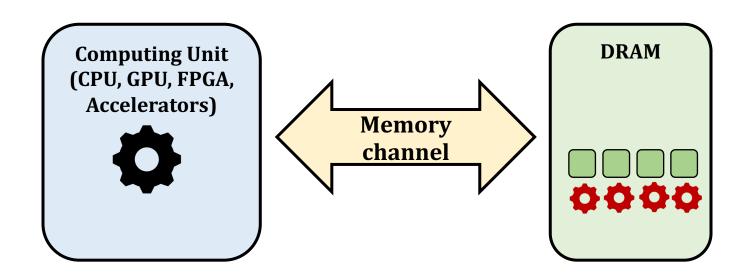
More than 60% of the total system energy is spent on data movement¹



Bandwidth-limited and power-hungry memory channel

Processing-in-Memory (PIM)

- Processing-in-Memory: moves computation closer to where the data resides
 - Reduces/eliminates the need to move data between processor and DRAM



Processing-using-Memory (PuM)

- PuM: Exploits analog operation principles of the memory circuitry to perform computation
 - Leverages the large internal bandwidth and parallelism available inside the memory arrays
- A common approach for PuM architectures is to perform bulk bitwise operations
 - Simple logical operations (e.g., AND, OR, XOR)
 - More complex operations (e.g., addition, multiplication)

Outline

1. Processing-using-DRAM

2. Background

3. SIMDRAM

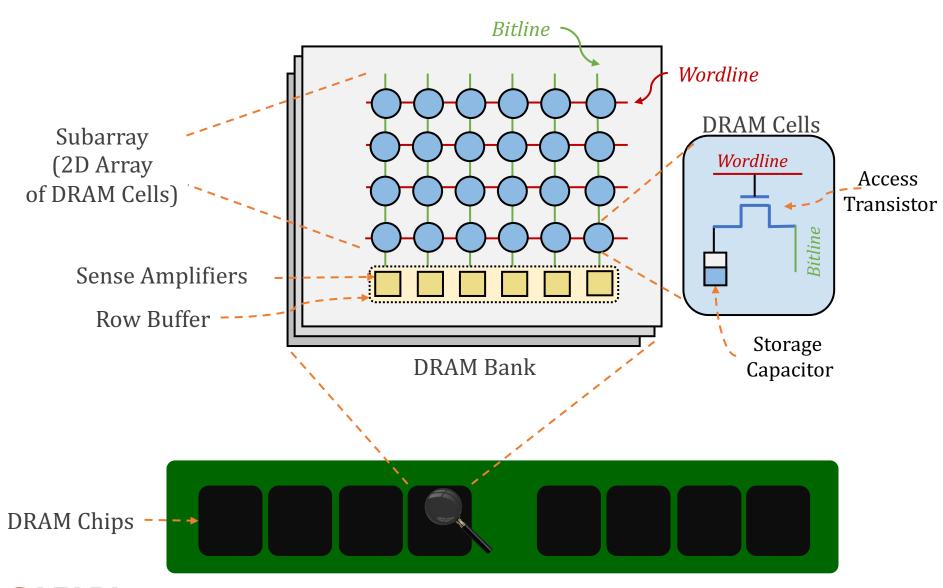
Processing-using-DRAM Substrate Framework

4. System Integration

5. Evaluation

6. Conclusion

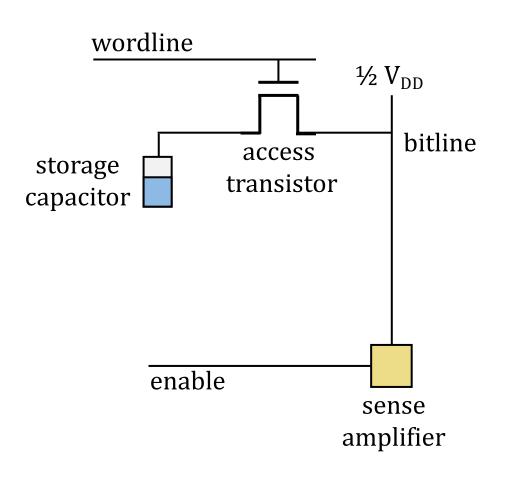
Inside a DRAM Chip



SAFARI

DRAM Module

DRAM Cell Operation



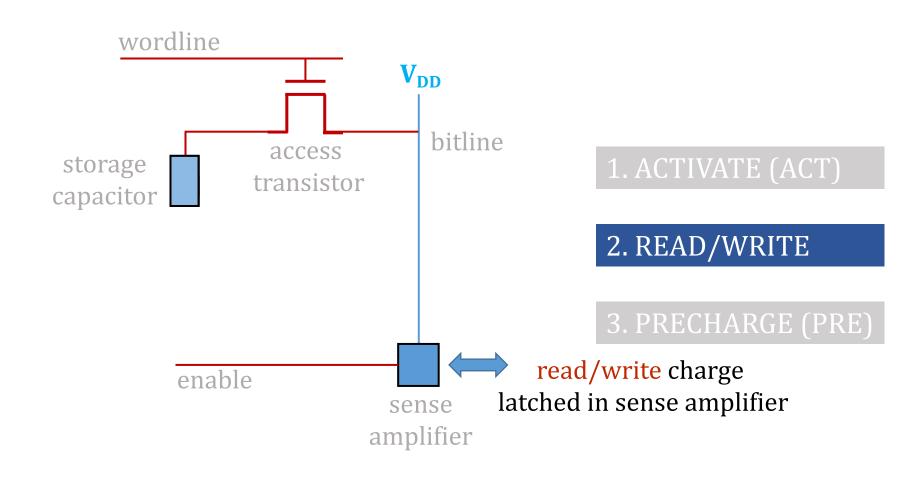
- 1. ACTIVATE (ACT)
- 2. READ/WRITE
- 3. PRECHARGE (PRE)

DRAM Cell Operation (1/3)

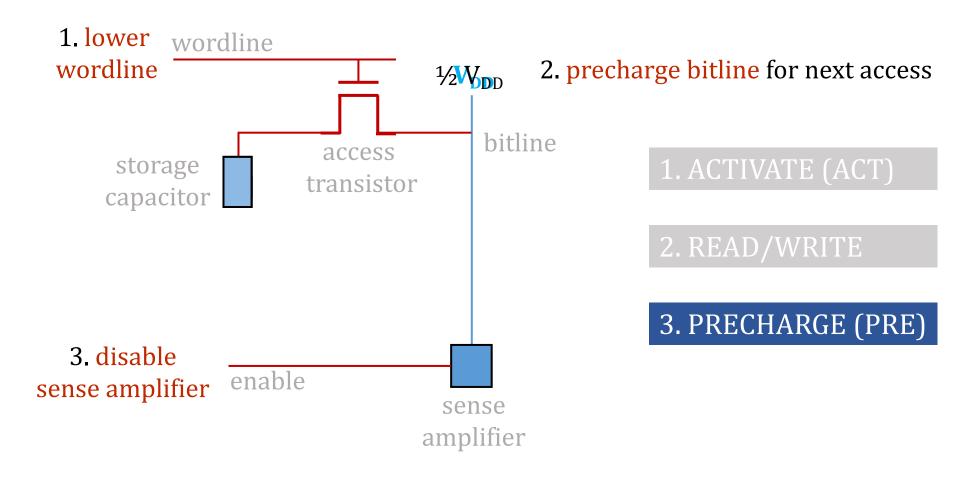


- 1. ACTIVATE (ACT)
- 2. READ/WRITE
- 3. PRECHARGE (PRE)

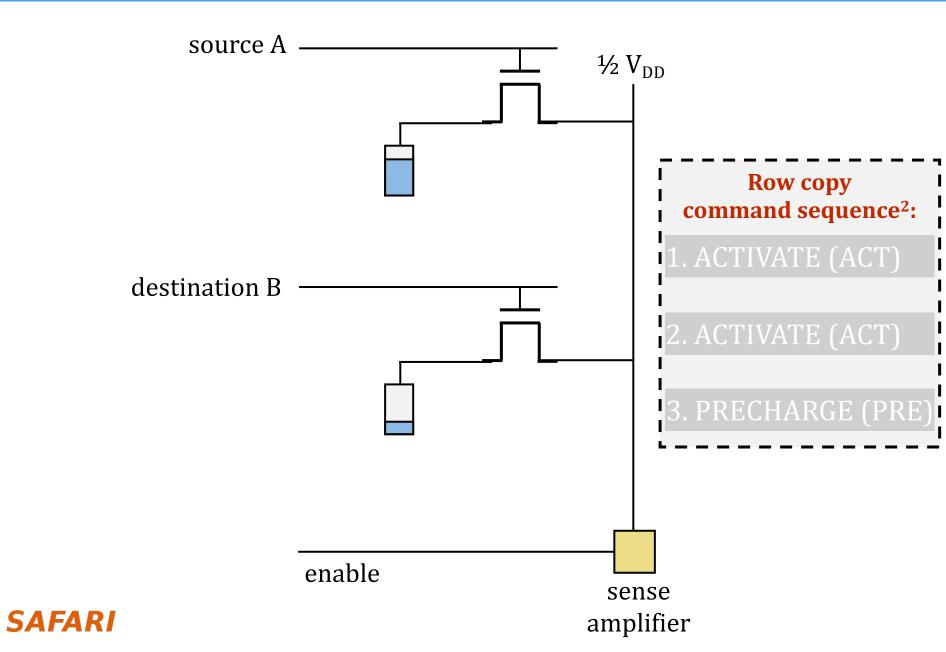
DRAM Cell Operation (2/3)



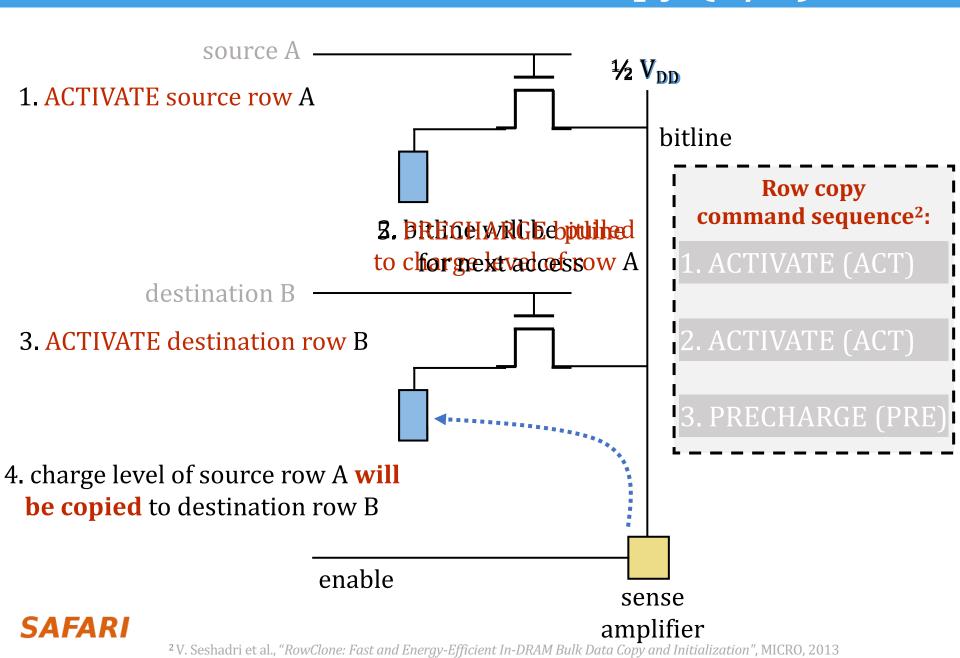
DRAM Cell Operation (3/3)



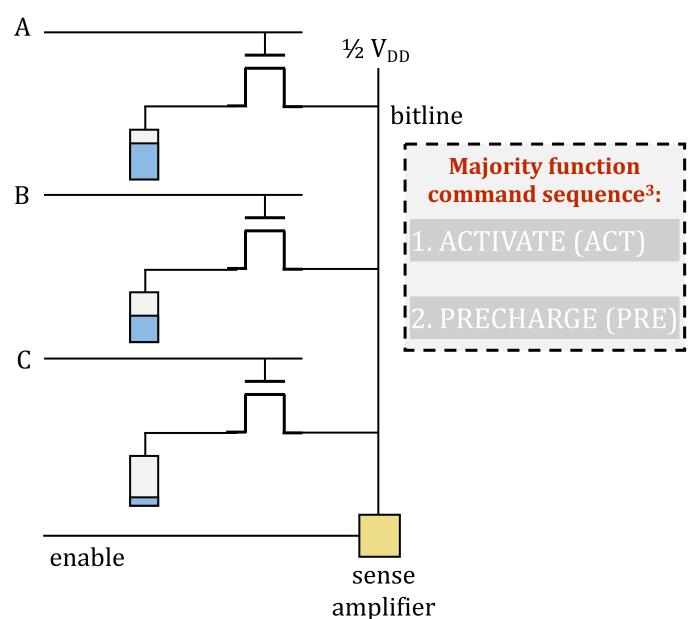
RowClone: In-DRAM Row Copy (1/2)



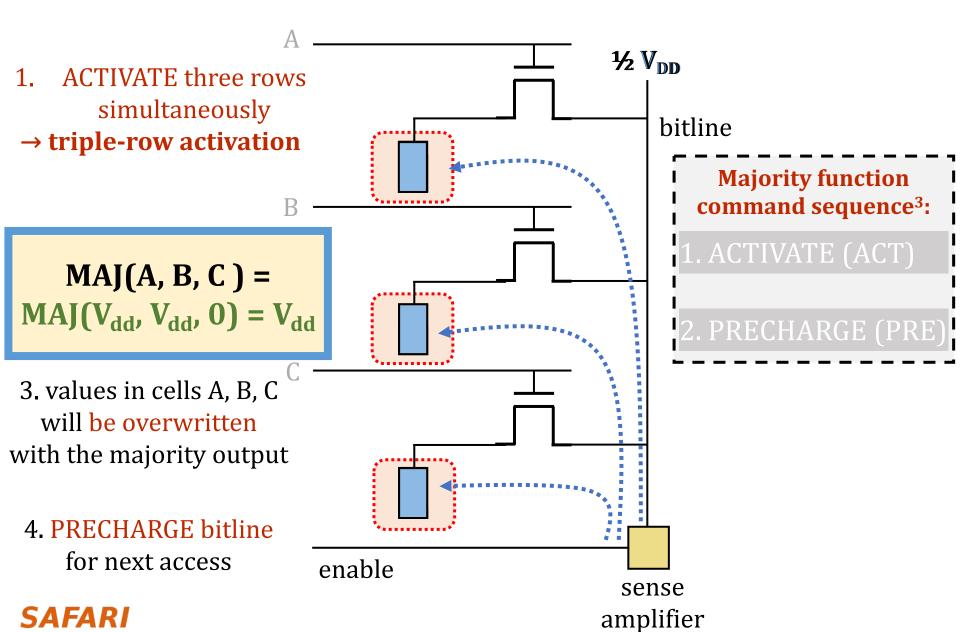
RowClone: In-DRAM Row Copy (2/2)



Triple-Row Activation: Majority Function

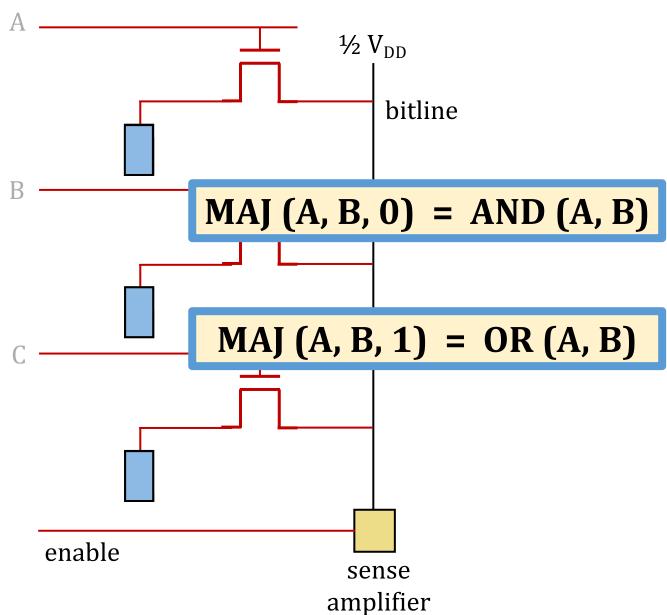


Triple-Row Activation: Majority Function



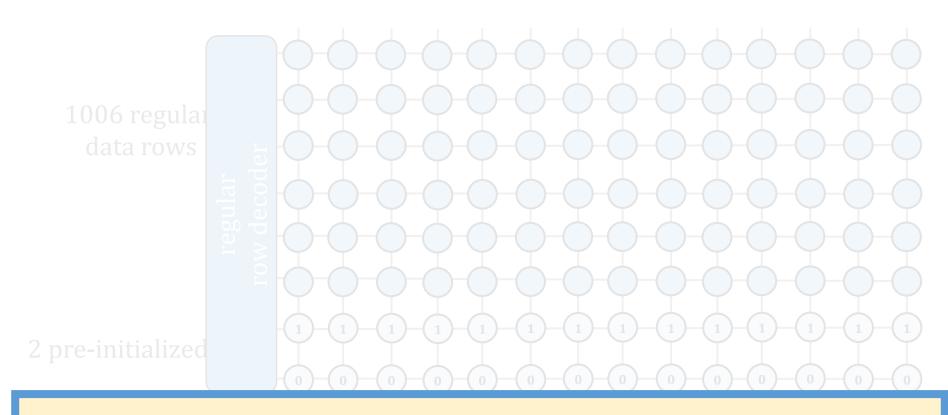
³ V. Seshadri et al., "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

Ambit: In-DRAM Bulk Bitwise AND/OR



V. Seshadri et al., "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

Ambit: Subarray Organization



Less than 1% of overhead in existing DRAM chips

sense amplifiers

PuM: Prior Works

 DRAM and other memory technologies that are capable of performing computation using memory

Shortcomings:

- Support only basic operations (e.g., Boolean operations, addition)
 - Not widely applicable
- Support a limited set of operations
 - Lack the flexibility to support new operations
- Require significant changes to the DRAM
 - Costly (e.g., area, power)

PuM: Prior Works

 DRAM and other memory technologies that are capable of performing computation using memory

Shortcomings:

• Support **only basic** operations (e.g., Boolean operations, addition)

Need a framework that aids general adoption of PuM, by:

- Efficiently implementing complex operations
- Providing flexibility to support new operations

Costly (e.g., area, power)

Our Goal

Goal: Design a PuM framework that

- Efficiently implements complex operations
- Provides the flexibility to support new desired operations
- Minimally changes the DRAM architecture

Outline

- 1. Processing-using-DRAM
- 2. Background

3. SIMDRAM

Processing-using-DRAM Substrate Framework

- 4. System Integration
- 5. Evaluation
- 6. Conclusion

Key Idea

- **SIMDRAM**: An end-to-end processing-using-DRAM framework that provides the programming interface, the ISA, and the hardware support for:
 - Efficiently computing complex operations in DRAM
 - Providing the ability to implement arbitrary operations as required
 - Using an in-DRAM massively-parallel SIMD substrate that requires minimal changes to DRAM architecture

Outline

- 1. Processing-using-DRAM
- 2. Background

3. SIMDRAM

Processing-using-DRAM Substrate

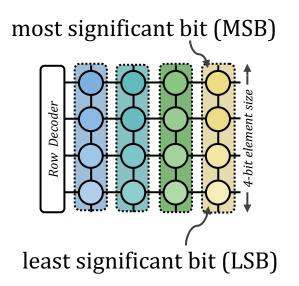
Framework

- 4. System Integration
- 5. Evaluation
- 6. Conclusion

SIMDRAM: PuM Substrate

• SIMDRAM framework is built around a DRAM substrate that enables two techniques:

(1) Vertical data layout



Pros compared to the conventional horizontal layout:

- Implicit shift operation
- Massive parallelism

SAFARI

(2) Majority-based computation

$$C_{out} = AB + AC_{in} + BC_{in}$$
 $A \longrightarrow C_{out}$
 $C_{in} \longrightarrow C_{out}$

Pros compared to AND/OR/NOT-based computation:

- Higher performance
- Higher throughput
- Lower energy consumption

Outline

- 1. Processing-using-DRAM
- 2. Background

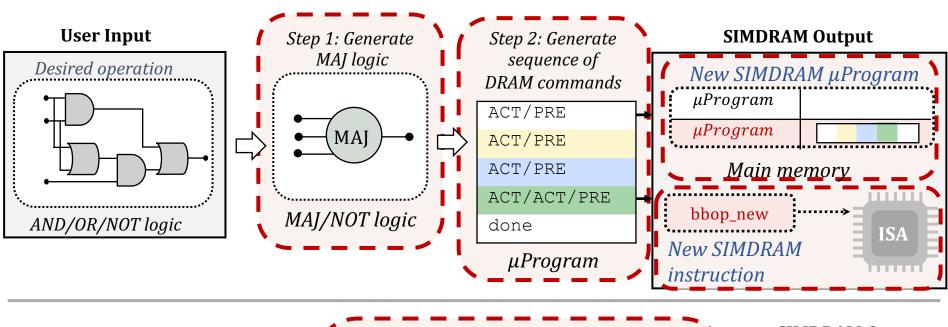
3. SIMDRAM

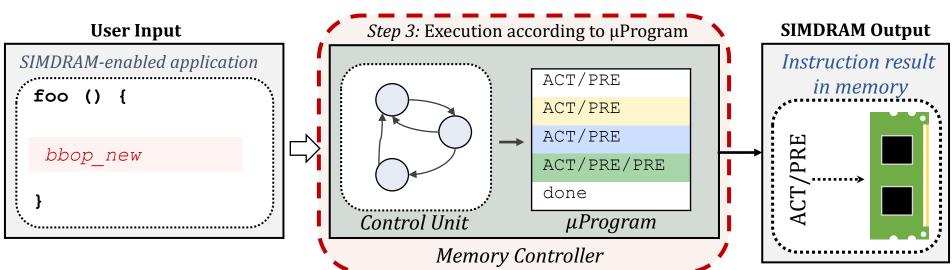
Processing-using-DRAM Substrate

Framework

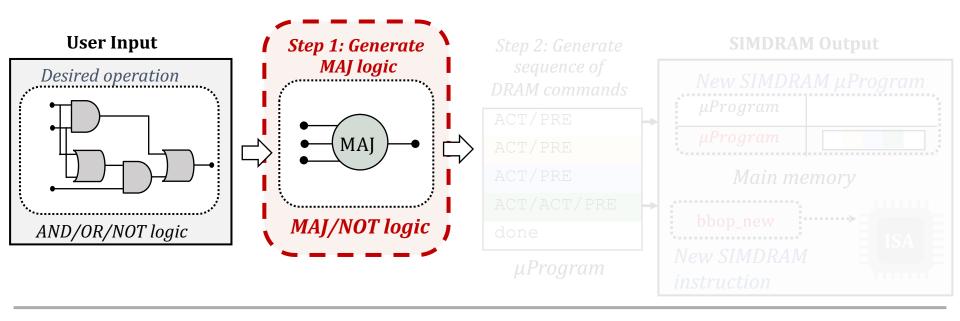
- 4. System Integration
- 5. Evaluation
- 6. Conclusion

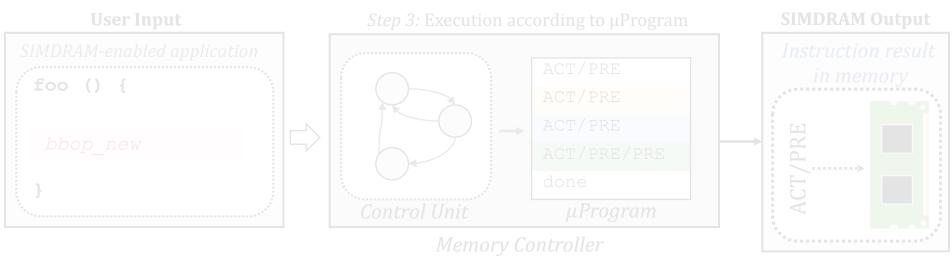
SIMDRAM Framework



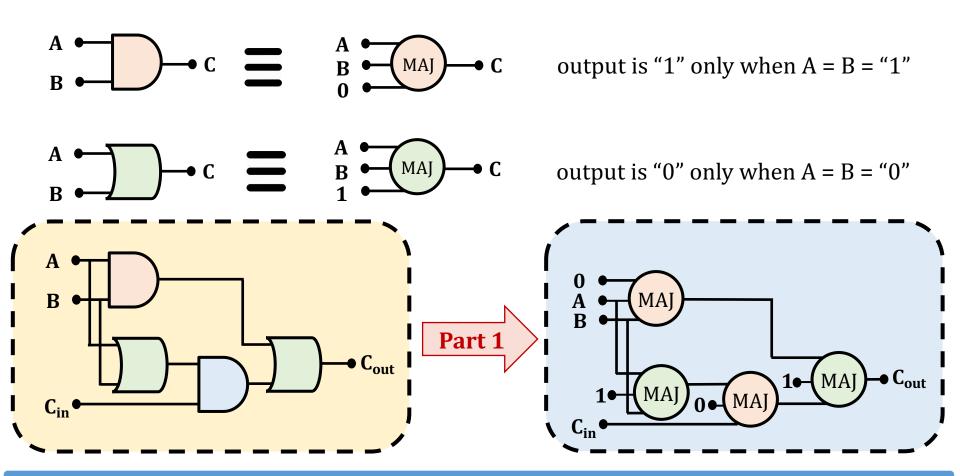


SIMDRAM Framework: Step 1



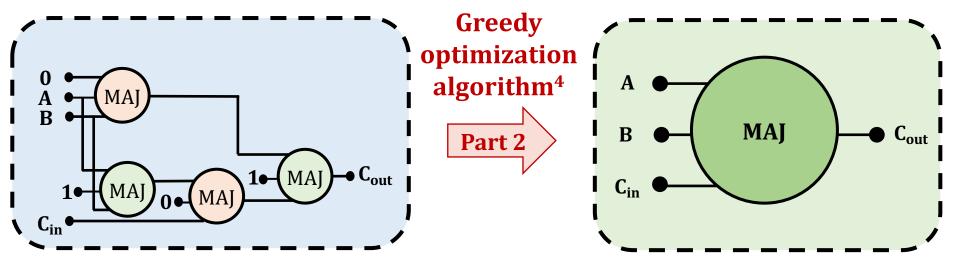


Step 1: Naïve MAJ/NOT Implementation



Naïvely converting AND/OR/NOT-implementation to MAJ/NOT-implementation leads to an unoptimized circuit

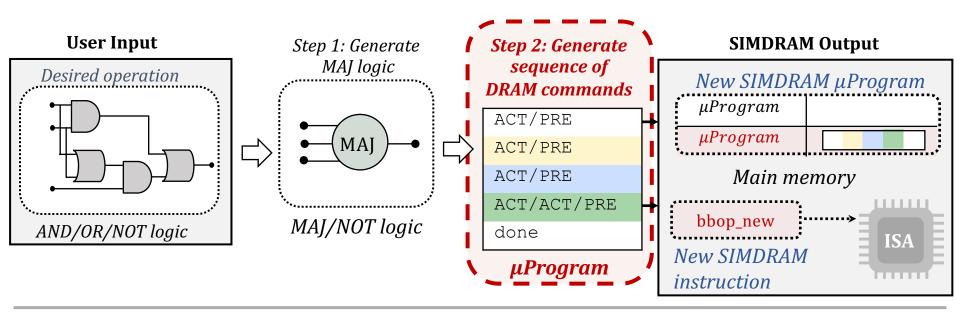
Step 1: Efficient MAJ/NOT Implementation

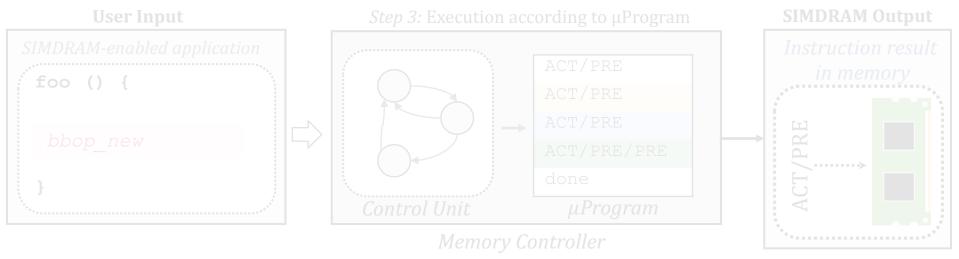


Step 1 generates an optimized MAJ/NOT-implementation of the desired operation

⁴ L. Amarù et al, "Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization", DAC, 2014.

SIMDRAM Framework: Step 2





Step 2: µProgram Generation

• **µProgram:** A series of microarchitectural operations (e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM operation in DRAM

• Goal of Step 2: To generate the µProgram that executes the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate μProgram

Step 2: µProgram Generation

• **µProgram:** A series of microarchitectural operations (e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM operation in DRAM

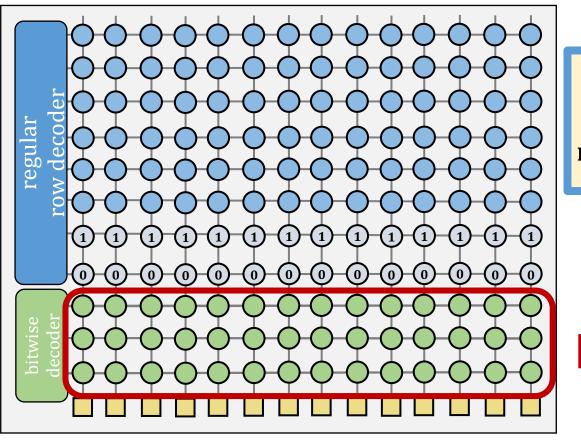
• Goal of Step 2: To generate the µProgram that executes the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate μProgram

Task 1: Allocating DRAM Rows to Operands

 Allocation algorithm considers two constraints specific to processing-using-DRAM



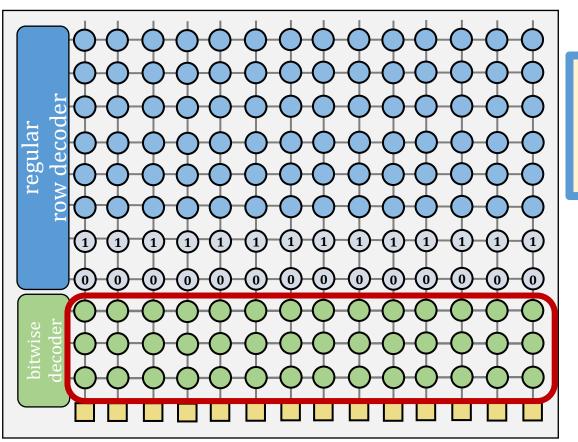
Constraint 1:
Limited number of rows
reserved for computation

Compute

subarray organization

Task 1: Allocating DRAM Rows to Operands

 Allocation algorithm considers two constraints specific to processing-using-DRAM



Constraint 2:

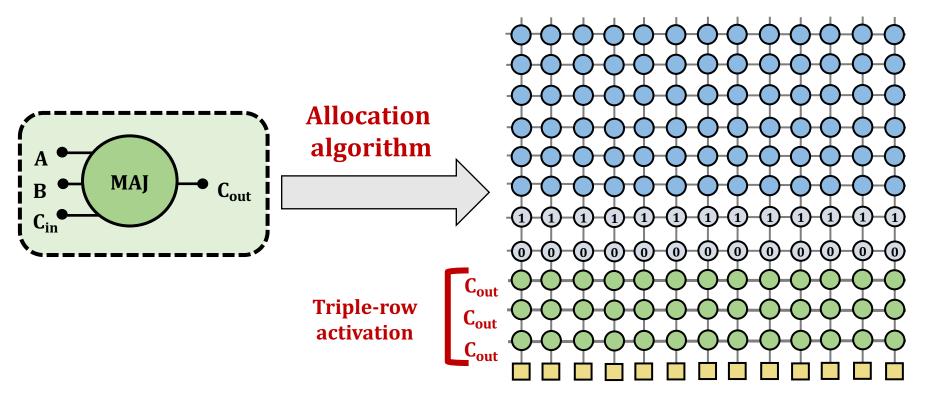
Destructive behavior of triple-row activation

Overwritten with MAJ output

subarray organization

Task 1: Allocating DRAM Rows to Operands

- Allocation algorithm:
 - Assigns as many inputs as the number of free compute rows
 - All three input rows contain the MAJ output and can be reused



Step 2: µProgram Generation

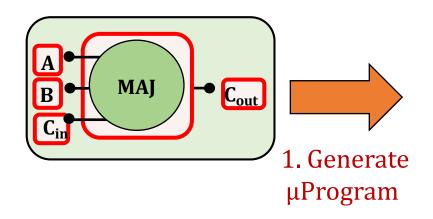
µProgram: A series of microarchitectural operations
 (e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM operation in DRAM

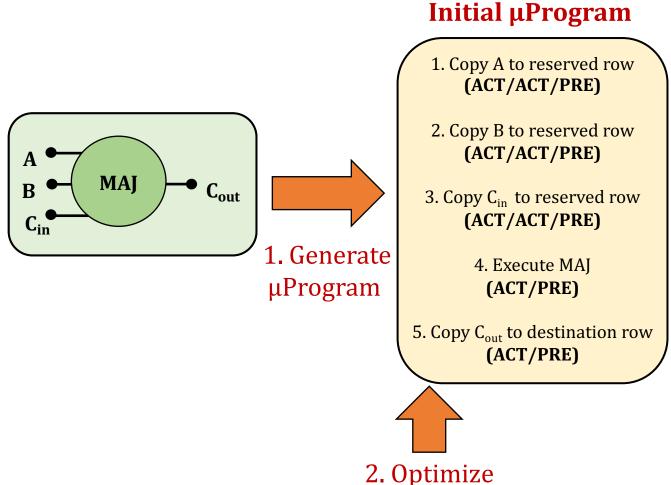
• Goal of Step 2: To generate the µProgram that executes the desired SIMDRAM operation in DRAM

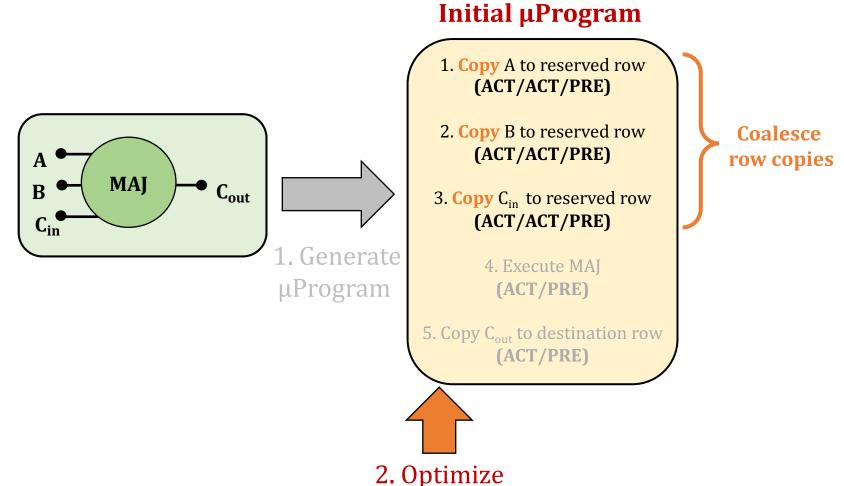
Task 1: Allocate DRAM rows to the operands

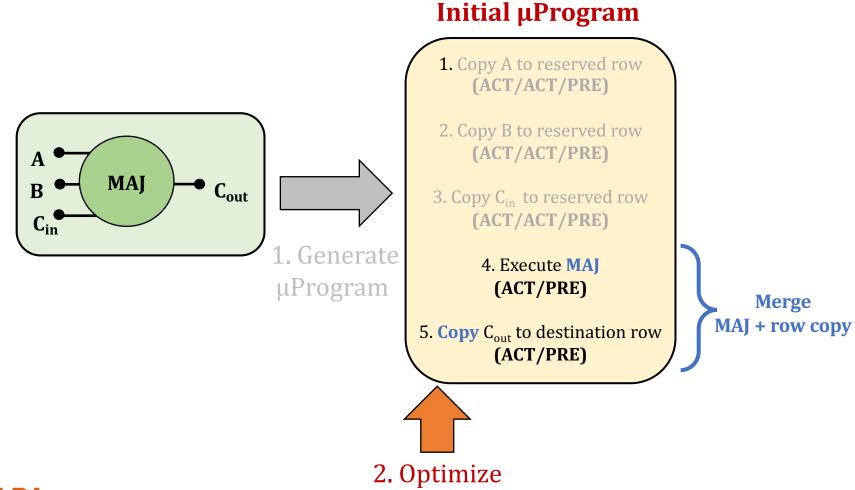
Task 2: Generate μProgram

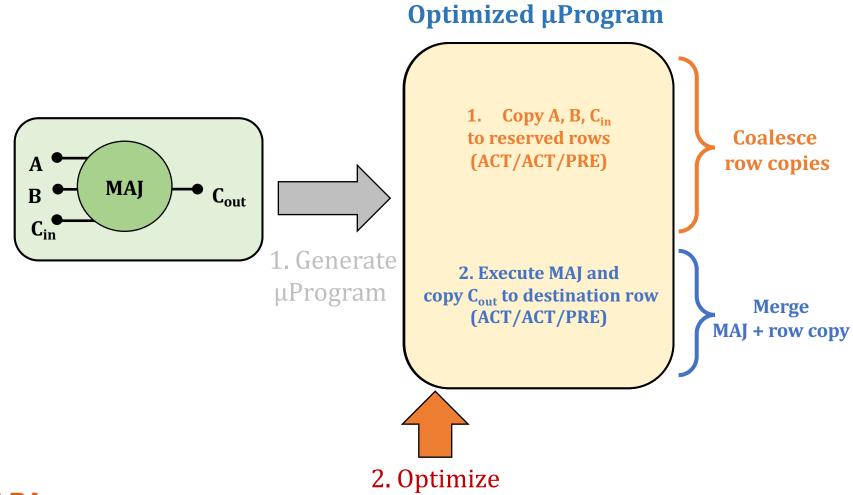
Task 2: Generate an initial µProgram





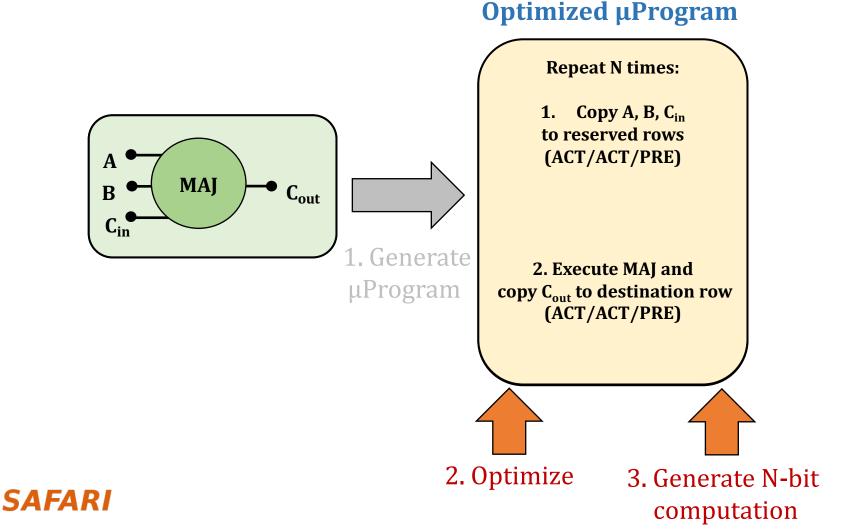






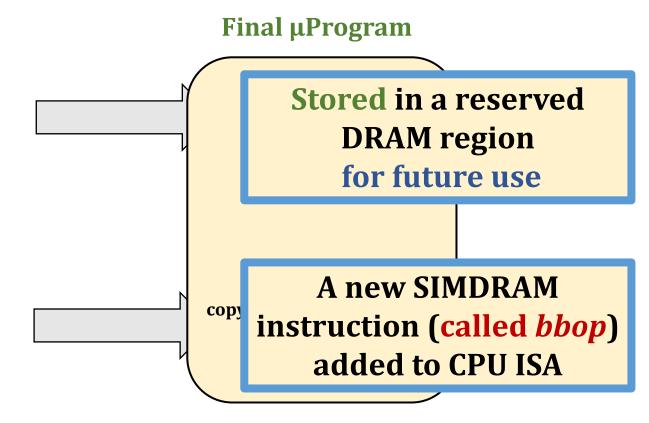
Task 2: Generate N-bit Computation

 Final μProgram is optimized and computes the desired operation for operands of N-bit size in a bit-serial fashion

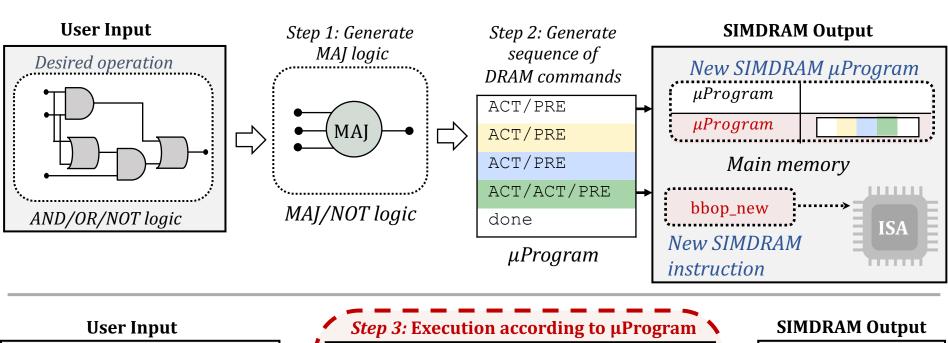


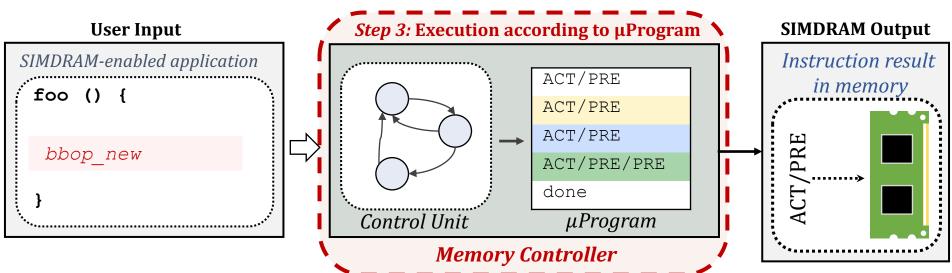
Task 2: Generate µProgram

 Final μProgram is optimized and computes the desired operation for operands of N-bit size in a bit-serial fashion



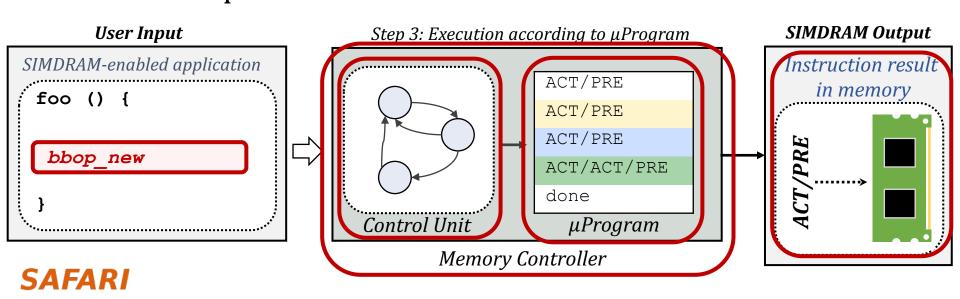
SIMDRAM Framework: Step 3





Step 3: µProgram Execution

- SIMDRAM control unit: handles the execution of the $\mu Program$ at runtime
- Upon receiving a bbop instruction, the control unit:
 - 1. Loads the μProgram corresponding to SIMDRAM operation
 - 2. Issues the sequence of DRAM commands (ACT/PRE) stored in the μ Program to SIMDRAM subarrays to perform the in-DRAM operation



Outline

- 1. Processing-using-DRAM
- 2. Background
- 3. SIMDRAM

Processing-using-DRAM Substrate

Framework

- 4. System Integration
- 5. Evaluation
- 6. Conclusion

System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation, coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation, coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

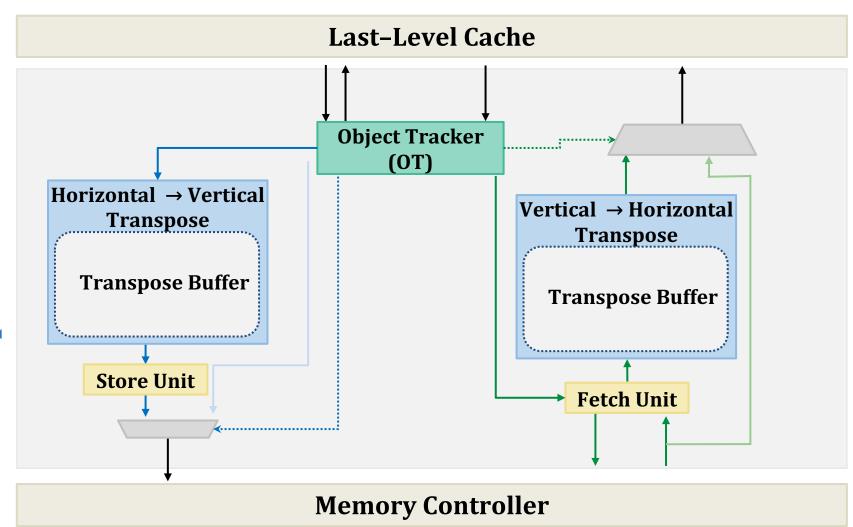
Transposing Data

SIMDRAM operates on vertically-laid-out data

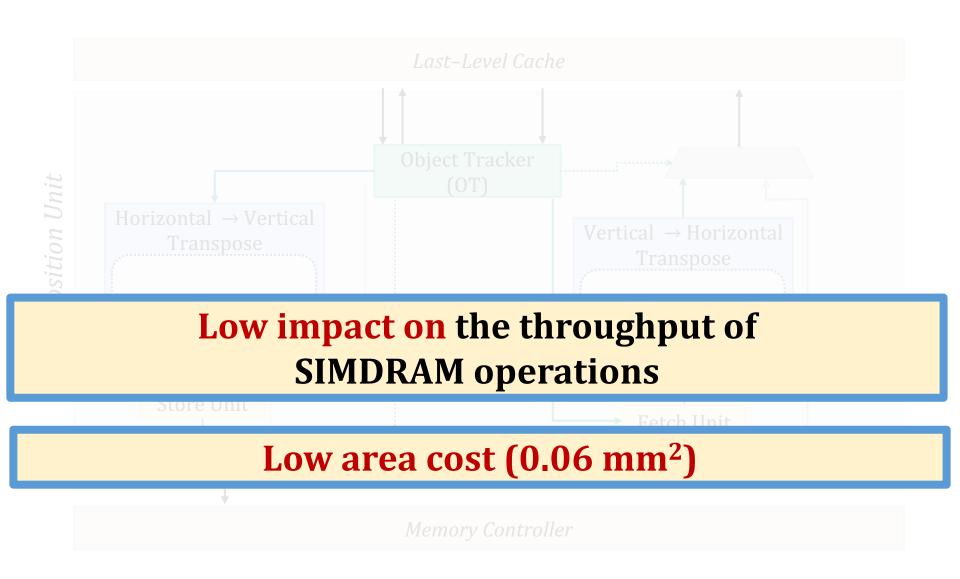
 Other system components expect data to be laid out horizontally

Challenging to share data between SIMDRAM and CPU

Transposition Unit



Efficiently Transposing Data



System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation, coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

Programming Interface

Four new SIMDRAM ISA extensions

Type ISA Format

Programming Interface

Four new SIMDRAM ISA extensions

Туре	ISA Format
Initialization	bbop_trsp_init address, size, n

Programming Interface

Four new SIMDRAM ISA extensions

Type	ISA Format
Initialization	bbop_trsp_init address, size, n
1-Input Operation	bbop_op dst, src, size, n

Programming Interface

Four new SIMDRAM ISA extensions

Туре	ISA Format
Initialization	bbop_trsp_init address, size, n
1-Input Operation	bbop_op dst, src, size, n
2-Input Operation	bbop_op dst, src_1, src_2, size, n

Programming Interface

Four new SIMDRAM ISA extensions

Type	ISA Format
Initialization	bbop_trsp_init address, size, n
1-Input Operation	bbop_op dst, src, size, n
2-Input Operation	bbop_op dst, src_1, src_2, size, n
Predication	<pre>bbop_if_else dst, src_1, src_2, select, size, n</pre>


```
1  int size = 65536;
2  int elm_size = sizeof (uint8_t);
3  uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4  uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5  ...
6  for (int i = 0; i < size ; ++ i){
7    bool cond = A[i] > pred[i];
8    if (cond)
9         C [i] = A[i] + B[i];
10    else
11         C [i] = A[i] - B [i];
12 }
```

← C code for vector add/sub with predicated execution

```
int size = 65536;
int elm_size = sizeof(uint8_t);
uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);

bbop_trsp_init(A , size , elm_size);
bbop_trsp_init(B , size , elm_size);
bbop_trsp_init(C , size , elm_size);
uint8_t *pred = (uint8_t *) malloc(size * elm_size);

// D, E, F store intermediate data
uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
bool *F = (bool *) malloc (size * sizeof(bool));

...
bbop_add(D , A , B , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_if_else(C , D , E , F , size , elm_size);
```

```
1  int size = 65536;
2  int elm_size = sizeof (uint8_t);
3  uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4  uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5  ...
6  for (int i = 0; i < size ; ++ i){
7    bool cond = A[i] > pred[i];
8    if (cond)
9         C [i] = A[i] + B[i];
10    else
11         C [i] = A[i] - B [i];
12 }
```

← C code for vector add/sub with predicated execution

```
int size = 65536;
int elm_size = sizeof(uint8_t);
uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);

bbop_trsp_init(A , size , elm_size);
bbop_trsp_init(B , size , elm_size);
bbop_trsp_init(C , size , elm_size);
uint8_t *pred = (uint8_t *) malloc(size * elm_size);

// D, E, F store intermediate data
uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
bool *F = (bool *) malloc (size * sizeof(bool));

...
bbop_add(D , A , B , size , elm_size);
bbop_sub(E , A , B , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_if_else(C , D , E , F , size , elm_size);
```



```
1 int size = 65536;
2 int elm_size = sizeof (uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5 ...
6 for (int i = 0; i < size ; ++ i){
7    bool cond = A[i] > pred[i];
8    if (cond)
9         C [i] = A[i] + B[i];
10    else
11         C [i] = A[i] - B [i];
12 }
```

← C code for vector add/sub with predicated execution

```
1 int size = 65536;
2 int elm_size = sizeof(uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4 
5 bbop_trsp_init(A , size , elm_size);
6 bbop_trsp_init(B , size , elm_size);
7 bbop_trsp_init(C , size , elm_size);
8 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
9 // D, E, F store intermediate data
10 uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
11 bool *F = (bool *) malloc (size * sizeof(bool));
12 ...
13 bbop_add(D , A , B , size , elm_size);
14 bbop_sub(E , A , B , size , elm_size);
15 bbop_greater(F , A , pred , size , elm_size);
16 bbop_if_else(C , D , E , F , size , elm_size);
```

```
1  int size = 65536;
2  int elm_size = sizeof (uint8_t);
3  uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4  uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5  ...
6  for (int i = 0; i < size ; ++ i){
7    bool cond = A[i] > pred[i];
8    if (cond)
9        C [i] = A[i] + B[i];
10    else
11        C [i] = A[i] - B [i];
12 }
```

← C code for vector add/sub with predicated execution

```
1 int size = 65536;
2 int elm_size = sizeof(uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4
5 bbop_trsp_init(A , size , elm_size);
6 bbop_trsp_init(B , size , elm_size);
7 bbop_trsp_init(C , size , elm_size);
8 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
9 // D, E, F store intermediate data
10 uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
11 bool *F = (bool *) malloc (size * sizeof(bool));
12 ...
13 bbop_add(D , A , B , size , elm_size);
14 bbop_sub(E , A , B , size , elm_size);
15 bbop_greater(F , A , pred , size , elm_size);
16 bbop_if_else(C , D , E , F , size , elm_size);
```

```
1  int size = 65536;
2  int elm_size = sizeof (uint8_t);
3  uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4  uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5  ...
6  for (int i = 0; i < size ; ++ i){
7     bool cond = A[i] > pred[i];
8     if (cond)
9          C [i] = A[i] + B[i];
10     else
11          C [i] = A[i] - B [i];
12 }
```

← C code for vector add/sub with predicated execution

```
1 int size = 65536;
2 int elm_size = sizeof(uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4
5 bbop_trsp_init(A , size , elm_size);
6 bbop_trsp_init(B , size , elm_size);
7 bbop_trsp_init(C , size , elm_size);
8 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
9 // D, E, F store intermediate data
10 uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
11 bool *F = (bool *) malloc (size * sizeof(bool));
12 ...
13 bbop_add(D , A , B , size , elm_size);
14 bbop_sub(E , A , B , size , elm_size);
15 bbop_greater(F , A , pred , size , elm_size);
16 bbop_if_else(C , D , E , F , size , elm_size);
```

```
int size = 65536;
int elm_size = sizeof (uint8_t);
uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
uint8_t *pred = (uint8_t *) malloc(size * elm_size);
...
for (int i = 0; i < size ; ++ i){
   bool cond = A[i] > pred[i];
   if (cond)
        C [i] = A[i] + B[i];
else

C [i] = A[i] - B [i];
```

← C code for vector add/sub with predicated execution

```
int size = 65536;
int elm_size = sizeof(uint8_t);
uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);

bbop_trsp_init(A , size , elm_size);
bbop_trsp_init(B , size , elm_size);
bbop_trsp_init(C , size , elm_size);
uint8_t *pred = (uint8_t *) malloc(size * elm_size);

// D, E, F store intermediate data
uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
bool *F = (bool *) malloc (size * sizeof(bool));

...
bbop_add(D , A , B , size , elm_size);
bbop_sub(E , A , B , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_if_else(C , D , E , F , size , elm_size);
```



```
1 int size = 65536;
2 int elm_size = sizeof (uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5 ...
6 for (int i = 0; i < size ; ++ i){
7    bool cond = A[i] > pred[i];
8    if (cond)
9         C [i] = A[i] + B[i];
10    else
11         C [i] = A[i] - B [i];
12 }
```

← C code for vector add/sub with predicated execution

```
int size = 65536;
int elm_size = sizeof(uint8_t);
uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);

bbop_trsp_init(A , size , elm_size);
bbop_trsp_init(B , size , elm_size);
bbop_trsp_init(C , size , elm_size);
uint8_t *pred = (uint8_t *) malloc(size * elm_size);
// D, E, F store intermediate data
uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
bool *F = (bool *) malloc (size * sizeof(bool));

...
bbop_add(D , A , B , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_if_else(C , D , E , F , size , elm_size);
```


More in the Paper

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM

*Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³

¹ETH Zürich

²Simon Fraser University

³University of Illinois at Urbana–Champaign

coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

Outline

- 1. Processing-using-DRAM
- 2. Background
- 3. SIMDRAM

Processing-using-DRAM Substrate Framework

- 4. System Integration
- 5. Evaluation
- 6. Conclusion

Methodology: Experimental Setup

• Simulator: gem5

Baselines:

- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism
- Evaluated SIMDRAM configurations (all using a DDR4 device):
 - 1-bank: SIMDRAM exploits 65'536 SIMD lanes (an 8 kB row buffer)
 - 4-banks: SIMDRAM exploits 262'144 SIMD lanes
 - 16-banks: SIMDRAM exploits 1'048'576 SIMD lanes

Methodology: Workloads

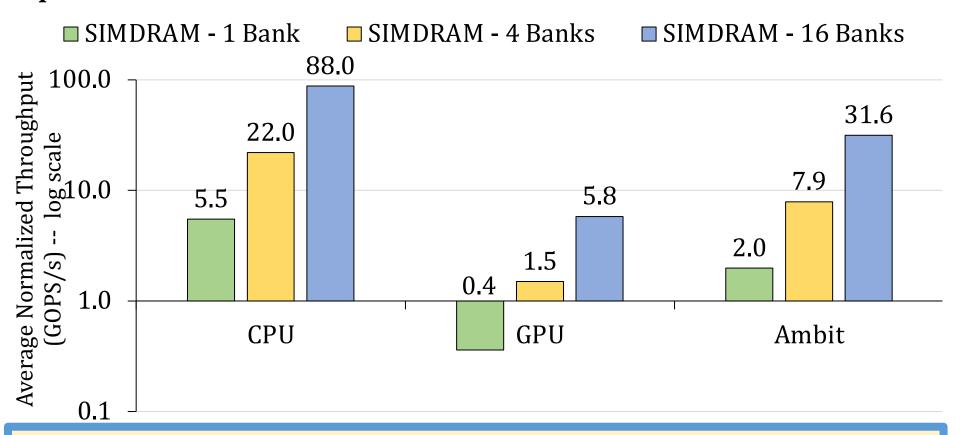
Evaluated:

- 16 complex in-DRAM operations:
 - Absolute Predication
 - Addition/Subtraction ReLU
 - BitCount AND-/OR-/XOR-Reduction
 - Equality/Greater/Greater Equal Division/Multiplication

- 7 real-world applications
 - BitWeaving (databases) LeNET (Neural Networks)
 - TPH-H (databases) VGG-13/VGG-16 (Neural Networks)
 - kNN (machine learning) brightness (graphics)

Throughput Analysis

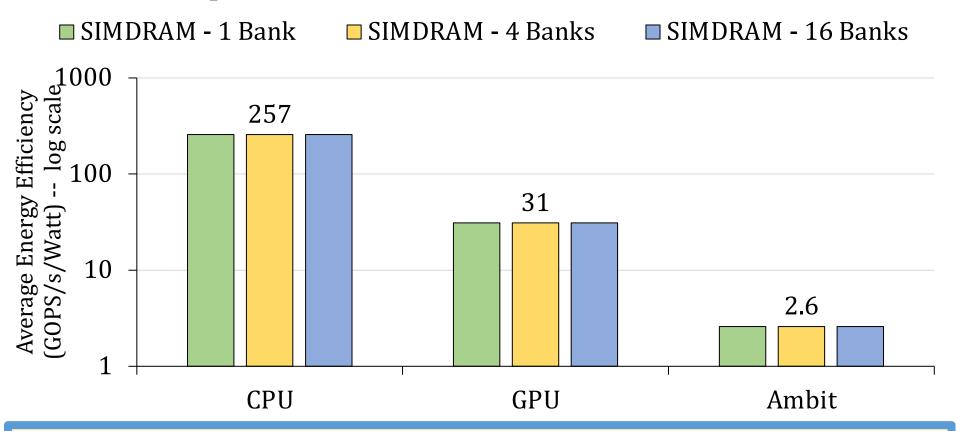
Average normalized throughput across all 16 SIMDRAM operations



SIMDRAM significantly outperforms all state-of-the-art baselines for a wide range of operations

Energy Analysis

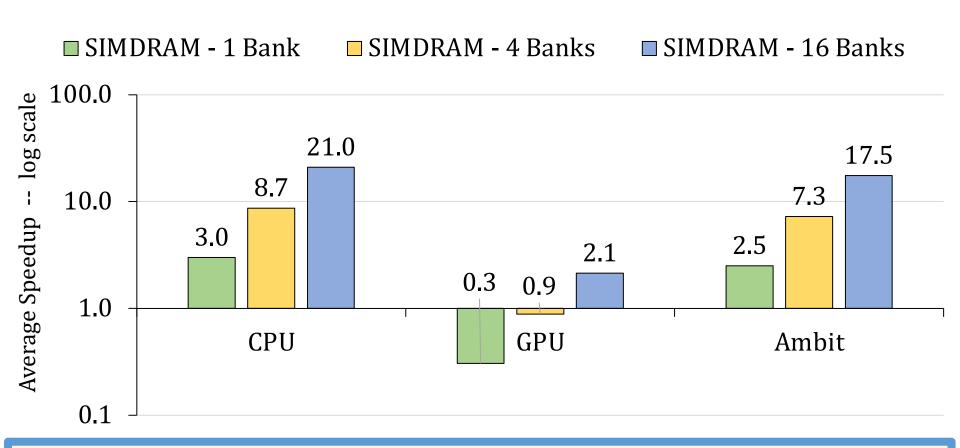
Average normalized energy efficiency across all 16 SIMDRAM operations



SIMDRAM is more energy-efficient than all state-of-the-art baselines for a wide range of operations

Real-World Application

Average speedup across 7 real-world applications



SIMDRAM effectively and efficiently accelerates many commonly-used real-world applications

More in the Paper

Evaluation:

- Reliability
- Data movement overhead
- Data transposition overhead
- Area overhead
- Comparison to in-cache computing

More in the Paper

Evaluation:

- Reliability

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM

*Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹
Minesh Patel¹
Juan Gómez-Luna¹

Sven Gregorio¹
Mohammed Alser¹
Onur Mutlu¹

João Dinis Ferreira¹ Saugata Ghose³

¹ETH Zürich

²Simon Fraser University

³University of Illinois at Urbana–Champaign

Comparison to in-cache computing

Outline

- 1. Processing-using-DRAM
- 2. Background
- 3. SIMDRAM

Processing-using-DRAM Substrate Framework

- 4. System Integration
- 5. Evaluation
- 6. Conclusion

Conclusion

- <u>SIMDRAM</u>: An end-to-end processing-using-DRAM framework that provides the programming interface, the ISA, and the hardware support for:
 - 1. Efficiently computing complex operations
 - 2. Providing the ability to implement arbitrary operations as required
 - 3. Using a massively-parallel in-DRAM SIMD substrate
- Key Results: SIMDRAM provides:
 - 88x and 5.8x the throughput and 257x and 31x the energy efficiency of a baseline CPU and a high-end GPU, respectively, for 16 in-DRAM operations
 - 21x and 2.1x the performance of the CPU and GPU over seven real-world applications
- **Conclusion**: SIMDRAM is a promising PuM framework
 - Can ease the adoption of processing-using-DRAM architectures
 - Improve the performance and efficiency of processing-using-DRAM architectures

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

P&S Processing-in-Memory Spring 2022 2 June 2022

Nastaran Hajinazar*

Geraldo F. Oliveira*

Sven Gregorio Joao Ferreira Nika Mansouri Ghiasi

Minesh Patel Mohammed Alser

Saugata Ghose

Juan Gómez–Luna Onur Mutlu

