
Juan Gómez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,

Gagandeep Singh, Onur Mutlu

Machine Learning Training
on a Real Processing-in-Memory System

https://arxiv.org/pdf/2206.06022.pdf
juang@ethz.ch

https://arxiv.org/pdf/2206.06022.pdf
mailto:juang@ethz.ch

2

Executive Summary
• Training machine learning (ML) algorithms is a computationally expensive process,

frequently memory-bound due to repeatedly accessing large training datasets
• Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,

can alleviate this data movement bottleneck
• Real-world PIM systems have only recently been manufactured and commercialized

- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

• Our goal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

• Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear regression, logistic

regression, decision tree, K-means clustering
- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

• Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz
and 158 GB of DRAM memory

• New observations and insights:
- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)

hybrid precision implementations
- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without

native support for those activation functions
- Data can be placed and laid out for PIM cores to access nearby memory banks in streaming, thus

maximizing PIM memory bandwidth
- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to

memory banks

3

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights

4

Machine Learning Workloads
• Machine learning training

with large amounts of data
is a computationally
expensive process, which
requires many iterations to
update an ML model’s
parameters

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

• Frequent data movement between memory and processing
elements to access training data
• The amount of computation is not enough to amortize the

cost of moving training data to the processing elements
- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses

5

Machine Learning Workloads: Our Goal
• Our goal is to study and analyze

how real-world general-purpose
PIM can accelerate ML training
• Four representative ML

algorithms: linear regression,
logistic regression, decision tree,
K-means

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

DRAM

L3

Peak compute performance

KME

DTR

LIN

LOG

0.3

1

3

10

30

0.01 0.1 1 10
Arithmetic Intensity (OP/B)

Pe
rfo

rm
an

ce
 (G

O
PS

)

• Roofline model to
quantify the memory
boundedness of CPU
versions of the four
workloads

All workloads fall in the memory-bound area of the Roofline

6

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights

7

Processing-in-Memory (PIM)
• PIM is a computing paradigm that advocates for memory-

centric computing systems, where processing elements are
placed near or inside the memory arrays
• Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AxDIMM, SK Hynix AiM,
Alibaba HB-PNM

• These PIM systems have some common characteristics:
1. There is a host processor (CPU or GPU) with access to (1) standard

main memory, and (2) PIM-enabled memory
2. PIM-enabled memory contains multiple PIM processing elements

(PEs) with high bandwidth and low latency memory access
3. PIM PEs run only at a few hundred MHz and have a small number

of registers and small (or no) cache/scratchpad
4. PEs may need to communicate via the host processor

8

A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are

emulated, as well as floating-point operations
- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

Host CPU

S
h

ar
ed

 C
ac

h
e

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Standard Main Memory

xN

xM

PIM-enabled Memory

PIM-Host

Host-PIM

C
ac

h
e

C
ac

h
e

C
or

e
C

or
e Memory

Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory Array
(Rank or Bank)

PIM Processing Elements

Instruction
Memory

Scratchpad/
Cache

9

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights

10

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

ML Training Workloads
• Four widely-used machine learning

workloads:
- Linear regression (LIN)
- Logistic regression (LOG)
- Decision tree (DTR)
- K-means clustering (KME)

• Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Host CPU

S
h

ar
ed

 C
ac

h
e

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Standard Main Memory

xN

xM

PIM-enabled Memory

PIM-Host

Host-PIM

C
ac

h
e

C
ac

h
e

C
o

re
C

o
re Memory

Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory Array
(Rank or Bank)

PIM Processing Elements

Instruction
Memory

Scratchpad/
Cache

Figure 3: High-level view of a state-of-the-art processing-in-memory system. The host CPU has access to" standard memory
modules and # PIM-enabled memory modules.

Table 1: Machine learning workloads.

Learning Application Algorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach Sequential Strided Random Operations Datatype Intra PIM Core Inter PIM Core

Supervised
Regression Linear Regression LIN Yes No No mul, add �oat, int32_t barrier Yes

Classi�cation Logistic Regression LOG Yes No No mul, add, exp, div �oat, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add �oat barrier, mutex Yes

Unsupervised Clustering K-Means KME Yes No No mul, compare, add int16_t, int64_t barrier, mutex Yes

and PUs in AiM [163] have 16-bit �oating point arithmetic
units. Second, ML models and hardware with adaptive preci-
sion are becoming widely-used [163, 180].

• LIN-BUI replaces compiler-generated 16-bit and 32-bit mul-
tiplications with a custom multiplication based on 8-bit built-
in multiplication functions (this optimization is speci�c to
the UPMEM PIM architecture). Listing 1 shows the default
integer multiplication code (C-based (a) and compiled code
(b)) and our custom integer multiplication code (C-based (c)
and compiled code (d)).

In Section 4, we evaluate all LIN versions in terms of accuracy
(Section 4.2), performance for di�erent numbers of threads per
PIM core (Section 4.3), and performance scaling characteristics
(Section 4.4).

3.2 Logistic Regression
Logistic regression [165, 167] is a supervised learning algorithm
used for classi�cation, which outputs probability values for each
input observation variable or vector. This probability values repre-
sent the likelihood of belonging to a certain class or event. Logistic
regression is used in various �elds (e.g., medical, marketing, engi-
neering, economics, etc.) [167].

Logistic regression uses the sigmoid function to map predicted
values (output vector ~ obtained from an input matrix - and a
weights vectorF) to probabilities. Our implementation of logistic
regression uses gradient descent, same as our linear regression
implementation (Section 3.1). In the beginning of each training

iteration, we obtain the dot product of row vectors G8 and weights
F . Then, we apply the sigmoid function to the dot product results.
Next, we calculate the gradient to evaluate the error of the pre-
dicted probability. Finally, we update the weightsF according to
the gradients.

Our PIM implementation of logistic regression follows the same
workload distribution pattern as our linear regression implemen-
tation. First, row vectors G8 are distributed across PIM cores and
threads in each PIM core. Second, each thread computes the dot
product of a row vector and the weights (G8 ·F), and applies the
sigmoid function to the dot product result. Third, the thread com-
putes partial gradient values. Fourth, partial gradient values from
di�erent threads are reduced, and the results return to the host.
Finally, the host computes the �nal reductions, and updates the
weights before redistributing them to the PIM cores.

We implement six di�erent versions of logistic regression with
di�erent input datatypes and optimizations: (1) 32-bit �oating
point (LOG-FP32), (2) 32-bit �xed point (LOG-INT32), (3) 32-bit
�xed point with LUT-based sigmoid calculation and LUT in DRAM
(LOG-INT32-LUT (MRAM)), (4) 32-bit �xed point with LUT-based sig-
moid calculation and LUT in scratchpad (LOG-INT32-LUT (WRAM)),
(5) �xed point with hybrid precision and LUT-based sigmoid calcula-
tion (LOG-HYB-LUT), and (6) �xed point with hybrid precision, LUT-
based sigmoid calculation, and built-in functions (LOG-BUI-LUT).

5

11

Linear Regression
• Linear regression (LIN) is a supervised learning algorithm where

the predicted output variable has a linear relation with the input
variable
- We use gradient descent as the optimization algorithm to find the

minimum of the loss function

• Our PIM implementation divides the training dataset (X) equally
among PIM cores
• PIM threads compute dot products of row vectors and weights

- Each dot product is compared to the observed value y to compute a partial
gradient value

- Partial gradient values are reduced and sent to the host

• Four versions of LIN:
- LIN-FP32: training datasets of 32-bit real values
- LIN-INT32: 32-bit fixed-point representation
- LIN-HYB: hybrid precision (8-bit, 16-bit, 32-bit)
- LIN-BUI: custom multiplication based on 8-bit built-in multiplication

12

Logistic Regression
• Logistic regression (LOG) is a supervised learning algorithm

used for classification, which outputs probability values for
each input observation variable or vector
- Sigmoid function to map predicted values to probabilities

• Our PIM implementation follows the same workload
distribution pattern as our linear regression implementation
• Six versions of LOG:

- LOG-FP32: training datasets of 32-bit real values, sigmoid
approximated with Taylor series

- LOG-INT32: 32-bit fixed-point representation, Taylor series
- LOG-INT32-LUT: Sigmoid calculation with a lookup table (LUT)

• LOG-INT32-LUT(MRAM): LUT in MRAM
• LOG-INT32-LUT(WRAM): LUT in WRAM

- LOG-HYB-LUT: hybrid precision (8-bit, 16-bit, 32-bit), LUT in WRAM
- LOG-BUI-LUT: custom multiplication based on 8-bit built-in

multiplication, LUT in WRAM

13

Decision Tree
• Decision trees (DTR) are tree-based methods used for classification and

regression, which partition the feature space into boxes, with a simple
prediction model in each box

• Our PIM implementation partitions the training set among PIM cores,
which compute partial Gini scores to evaluate split decisions done by the
host

• The host sends commands to the PIM cores:
- Split commit to split a tree leaf
- Split evaluate to evaluate a split
- Min-max to query the minimum and maximum values of a feature in a tree

leaf

0 8 7 2 5 11 4 9 6 2

0 2 5 8 7 11 6 2 4 9

Memory layout

Feature 1Feature 0

Feature 1Feature 0

Decision tree

Dataset:
5 points, 2 features: p0 = (0, 11); p1 = (8, 4); p2 = (7, 9); p3 = (2, 6); p4 = (5, 2)

Split commit: feature 0, threshold 5

L0
[p0, p1, p2,

p3, p4]

L0

L1
[p0, p3, p4]

L2
[p1, p2]

Leaf 0 Leaf 0

Leaf 1 Leaf 2 Leaf 1 Leaf 2

• PIM threads work on different
batches of feature values,
compare them to a threshold,
and update the partial Gini score

• Data layout in split commit to
maximize memory bandwidth
with streaming accesses

14

K-Means Clustering
• K-means (KME) is an iterative clustering method used to find

groups in a dataset which have not been explicitly labeled
• Our PIM implementation distributes the dataset evenly over

the PIM cores
• PIM threads evaluate which centroid is the closest one to

each point of the training set
- Counter and accumulator per coordinate (per centroid)

• Then, the host recalculates the centroids
• Convergence to a local optimum when the updated

centroid’s coordinates are within a threshold (Frobenius
norm)

15

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights

16

Evaluation Methodology
• Synthetic and real datasets

• Evaluated systems
- UPMEM PIM system with 2,524 PIM cores @ 425 MHz and 158 GB of

DRAM
- Intel Xeon Silver 4215 CPU (16 hardware threads)
- NVIDIA A100 GPU

• We evaluate:
- Metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

Table 2: Evaluated PIM system, baseline CPU, and baseline GPU.

System Process Processor Cores Memory TDPNode Total Cores Frequency Peak Performance Capacity Total Bandwidth
UPMEM PIM System [153] 2x nm 2,560⇧ 425 MHz 1,088 GOPS 160 GB 2.1 TB/s 280 W†

Intel Xeon Silver 4215 CPU [221] 14 nm 8 (16 threads) 2.5 GHz 40 GFLOPS¢ 256 GB 37.5 GB/s 85 W
NVIDIA A100 GPU [222] 7 nm 108 (6,912 SIMD lanes) 1.4 GHz 19,500 GFLOPS 40 GB 1555 GB/s 250 W
⇧ There are several faulty PIM cores in the PIM system where we run our experiments.
†⇢BC8<0C43)⇡% =)>C0; %�" 2>A4B

%�" 2>A4B/⇡�"" ⇥ 14, /⇡�"" [153].
¢⇢BC8<0C43 ⌧�!$%(= 2.5 ⌧�I ⇥ 8 2>A4B ⇥ 2 8=BCAD2C8>=B ?4A 2~2;4 .

Table 3: Datasets.

ML Workload Synthetic Datasets Real DatasetStrong Scaling (1 PIM core | 256-2048 PIM cores) Weak Scaling (per PIM core)
Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) SUSY [223, 224]
Logistic regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) 600,000 samples, 16 attr. (38.4 MB) Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) Higgs boson [223, 226]

low and close to that of the 32-bit �oating point version, as shown
in the �gure.

0.55 1.02 1.29

0
2
4
6
8

1 30 70 17
0

50
0

10
00 10 50 10

0

25
0

70
0 1 30 70 17
0

50
0

10
00

LIN-FP32 LIN-INT32 LIN-HYB & LIN-BUI

Tr
ai

ni
ng

 Er
ro

r R
at

e
(%

)

LIN Versions
52.56 53.16 53.70

Figure 6: Training error rate (%) of LIN versions.

LOG. Figure 7(a) presents the training error rate of our six
versions of LOG for numbers of training iterations between 1
and 1000. The training error of LOG-FP32, which we use as
the comparison point for the integer versions (i.e., LOG-INT32,
LOG-INT32-LUT (MRAM), LOG-INT32-LUT (WRAM), LOG-HYB-LUT
(WRAM), LOG-BUI-LUT (WRAM)), is almost �at after 100 iterations,
and is as low as 1.20% after 1000 iterations (same as the CPU ver-
sion). We observe that the training error rate of LOG-INT32 is
higher than that of LOG-INT32-LUT (MRAM) and LOG-INT32-LUT
(WRAM). The reason is that LOG-INT32 approximates exponenti-
ation (hence, sigmoid) with Taylor series, while LOG-INT32-LUT
(MRAM) and LOG-INT32-LUT (WRAM) store exact sigmoid values in a
LUT. LOG-HYB-LUT (WRAM) and LOG-BUI-LUT (WRAM) increase the
training error rate signi�cantly (14.12%) due to the use of reduced-
precision datatypes. In another experiment using samples with 2
decimal numbers (Figure 7(b)), the training error rate of these two
versions decreases to 4.49%.

DTR. We limit the tree depth to 10. The tree is built by splitting
leaf nodes until no node can be split. A node cannot be split if
it holds fewer than two data points, or if it contains only points
belonging to the same class, or if its depth exceeds the maximum
tree depth. To account for the e�ect of di�erent random number
generation on both implementations, we restart the algorithm 10
times, and average the resulting accuracies. We register a training

4.49

0
5

10
15
20

1 30 70 25
0

70
0

LOG-HYB-LUT
(WRAM) & LOG-
BUI-LUT (WRAM)

(b)

1.20 2.42 2.14 2.08

14.12

0
5

10
15
20

1 30 70 25
0

70
0 1 30 70 25
0

70
0 1 30 70 25
0

70
0 1 30 70 25
0

70
0 1 30 70 25
0

70
0

LOG-FP32 LOG-INT32 LOG-INT32-LUT
(MRAM)

LOG-INT32-LUT
(WRAM)

LOG-HYB-LUT
(WRAM) & LOG-
BUI-LUT (WRAM)

Tr
ai

ni
ng

 E
rr

or
 R

at
e

(%
)

(a) LOG Versions

Figure 7: Training error rate (%) of LOG versions.

accuracy of 0.90008 for the PIM implementation, against 0.90175
for the Scikit-learn CPU version.

KME. We perform a K-Means clustering with 16 clusters to
match the dataset generation. The clustering iterates for a maxi-
mum of 300 iterations, or until the relative Frobenius norm between
the cluster centers of two consecutive iterations is lower than 0.0001.
In practice, the clustering always converges after less than 40 itera-
tions on both the PIM and Scikit-learn CPU implementations. To
account for randomness in the loss of precision due to quantization,
we average the metrics on 10 runs with di�erent random seeds.
We register an average Calinski-Harabasz scores of 82200 for both
implementations. The adjusted Rand index between the PIM and
Scikit-learn CPU clusterings is 0.999347 on average, showing that
the clusterings are nearly identical despite the quantization.

4.3 Performance Analysis of PIM Kernels
We analyze in this section the performance of the di�erent PIM
kernel versions of our ML workloads on a single PIM core (i.e., an
UPMEM DPU). This way, we understand the e�ect of (1) di�er-
ent optimizations we apply, and (2) increasing the number of PIM
threads.

LIN. Figure 8 shows the PIM kernel time of our four versions
of LIN. The upper plot (Figure 8(a)) represents the PIM kernel time
of LIN-FP32. The lower plot (Figure 8(b)) shows the PIM kernel
time of the integer versions. We make four observations. First, all
LIN versions result in their best performance with 11 or more PIM
threads. Eleven is the minimum number of PIM threads that keep

9

17

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

2,560-DPU System (I)
• UPMEM-based PIM

system with 20 UPMEM
DIMMs of 16 chips each
(40 ranks)
- P21 DIMMs
- Dual x86 socket

• UPMEM DIMMs
coexist with regular
DDR4 DIMMs

• 2 memory
controllers/socket (3
channels each)

• 2 conventional DDR4
DIMMs on one
channel of one
controller

2560 DPUs*

* There are some faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,524

160 GB

18

2,560-DPU System (II)

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

19

Evaluation: Metrics
• Linear regression

- Training error rate of LIN-FP32 is the same as the CPU
version

- For integer versions, it remains low and close to that of LIN-
FP32

• Logistic regression
- LUT-based versions obtain lower training error rates that
LOG-INT32, since they use exact values, not approximations

• Decision tree
- Training accuracy only slightly lower than that of the CPU

version
• K-means

- Same Calinski-Harabasz score and adjusted Rand index of PIM
and CPU versions

20

Evaluation: Analysis of PIM Kernels (I)
• Linear regression

4550

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(a) LIN-FP32
LIN-FP32

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(b) LIN INT Versions

LIN-INT32
LIN-HYB
LIN-BUI

457

324

259
0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23

All versions saturate
at 11 or more PIM

threads

Fixed point
accelerates the

kernel by an order
of magnitude

LIN-HYB is 41% faster than
LIN-INT32

LIN-BUI provides an
additional 25% speedup

21

40316
24460

0
100000
200000
300000
400000
500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(a) LOG 32-bit Versions
LOG-FP32

LOG-INT32

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(b) LOG LUT Versions
LOG-INT32-LUT (MRAM)
LOG-INT32-LUT (WRAM)
LOG-HYB-LUT (WRAM)
LOG-BUI-LUT (WRAM)

463
449

352 246
0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23

Evaluation: Analysis of PIM Kernels (II)
• Logistic regression

Very high kernel
time of LOG-FP32
and LOG-INT32

due to sigmoid
approximation

LOG-INT32-
LUT(MRAM) is 53x
faster than LOG-

INT32

LOG-HYB-LUT is 28% faster
than LOG-INT32-LUT

LOG-BUI-LUT provides an
additional 43% speedup

22

Evaluation: Analysis of PIM Kernels (III)
• Decision tree & K-means

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e (

m
s)

Number of PIM Threads (per PIM Core)

(b) KME

KME

0
10000
20000
30000
40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e (

m
s)

Number of PIM Threads (per PIM Core)

(a) DTR

DTR

Both workloads
saturate at 11 or

more PIM threads

Maximum number
of PIM threads in
DTR is 16 due to

the usage of local
scratchpad

memory

23

Evaluation: Performance Scaling
• Strong scaling: 256 to 2,048 PIM cores

0
1
2
3
4
5
6
7
8
9

0

50000

100000

150000

200000

250000

300000

256 512 1024 2048

LIN-FP32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LIN-INT32

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

256 512 1024 2048

LIN-HYB

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

1

2

3

4

5

6

7

0

2000

4000

6000

8000

10000

12000

14000

16000

256 512 1024 2048

LIN-BUI

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

500000

1000000

1500000

2000000

2500000

256 512 1024 2048

LOG-FP32
Ex

ec
ut

io
n

Ti
m

e
(m

s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0

1

2

3

4

5

6

7

0

100000
200000
300000
400000
500000
600000
700000
800000
900000

256 512 1024 2048

LOG-INT32

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT (MRAM)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT (WRAM)

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

256 512 1024 2048

LOG-HYB-LUT (WRAM)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

1

2

3

4

5

6

7

0

2000

4000

6000

8000

10000

12000

14000

256 512 1024 2048

LOG-BUI-LUT (WRAM)

Sp
ee

du
p

0
1
2
3
4
5
6
7
8
9

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

256 512 1024 2048

KME

Sp
ee

du
p

0

1

2

3

4

5

6

7

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

DTR

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

PIM kernel time
scales linearly with
the number of PIM

cores

Little overhead from
inter PIM core

communicati0n and
communication

between host and
PIM cores

24

Comparison to CPU and GPU (I)
• Linear regression and logistic regression

0
200
400
600
800

1000
1200
1400
1600
1800
2000

CPU

Ex
ec

ut
io

n
 T

im
e

(m
s)

CPU

0

5

10

15

20

25

30

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-INT32-LUT
(MRAM)

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-INT32-LUT
(WRAM)

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-HYB-LUT
(WRAM)

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-BUI-LUT
(WRAM)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

LOG-FP32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

10000

20000

30000

40000

50000

60000

CPU

Ex
ec

ut
io

n
 T

im
e

(m
s)

CPU

0

200

400

600

800

1000

1200

1400

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

0

1000

2000

3000

4000

5000

6000

LIN-HYB

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

1000

2000

3000

4000

5000

6000

LIN-BUI

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

10000

20000

30000

40000

50000

60000

LIN-FP32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

1000

2000

3000

4000

5000

6000

LIN-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

PIM versions are heavily
burdened when they use
operations that are not

natively supported by the
hardware

Several optimizations
reduce the execution time
considerably and close the

gap with GPU
performance

25

Comparison to CPU and GPU (II)
• Decision tree and K-means

0

500

1000

1500

2000

2500

3000

3500

4000

DTR

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

10000

20000

30000

40000

50000

60000

70000

80000

CPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CPU

0

500

1000

1500

2000

2500

3000

3500

4000

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

KME

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

CPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CPU

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

(a) Decision Tree (b) K-means

PIM version of DTR is 27x
faster than the CPU

version and 1.34x faster
than the GPU version

PIM version of KME is 2.8x
faster than the CPU

version and 3.2x faster
than the GPU version

26

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights

27

Key Observations and Insights
• ML training workloads can greatly benefit from (1) fixed-

point data representation, (2) quantization, and (3)
hybrid precision implementation in PIM systems
• ML training workloads that require complex activation

functions (e.g., sigmoid) can take advantage of lookup
tables (LUTs) in PIM systems instead of function
approximation
• Data can be placed and laid out such that memory

accesses of PIM cores are streaming
• ML training workloads with large training datasets

benefit from scaling the size of PIM-enabled memory
with PIM cores attached to memory arrays

28

Executive Summary
• Training machine learning (ML) algorithms is a computationally expensive process,

frequently memory-bound due to repeatedly accessing large training datasets
• Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,

can alleviate this data movement bottleneck
• Real-world PIM systems have only recently been manufactured and commercialized

- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

• Our goal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

• Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear regression, logistic

regression, decision tree, K-means clustering
- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

• Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz
and 158 GB of DRAM memory

• New observations and insights:
- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)

hybrid precision implementations
- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without

native support for those activation functions
- Data can be placed and laid out for PIM cores to access nearby memory banks in streaming, thus

maximizing PIM memory bandwidth
- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to

memory banks

29

ML Training on a Real PIM System

https://arxiv.org/pdf/2206.06022.pdf

https://arxiv.org/pdf/2206.06022.pdf

30

Analysis of Real PIM Hardware

https://arxiv.org/pdf/2110.01709.pdf
https://doi.org/10.1109/IGSC54211.2021.9651614
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/CMU-SAFARI/prim-benchmarks

31

Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://doi.org/10.1109/ACCESS.2022.3174101

https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://doi.org/10.1109/ACCESS.2022.3174101
https://github.com/CMU-SAFARI/prim-benchmarks

32

PrIM Repository
• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks

33

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

34

Processing-in-Memory Course (Spring 2022)

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=
processing_in_memory

https://youtube.com/playlist?list=PL5Q2soXY2Zi-0NK1C5vi2Zx9nmE_3-cKN

• Short weekly lectures
• Hands-on projects

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://youtube.com/playlist?list=PL5Q2soXY2Zi-0NK1C5vi2Zx9nmE_3-cKN

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,

Gagandeep Singh, Onur Mutlu

Machine Learning Training
on a Real Processing-in-Memory System

https://arxiv.org/pdf/2206.06022.pdf
juang@ethz.ch

https://arxiv.org/pdf/2206.06022.pdf
mailto:juang@ethz.ch

