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Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive process,
frequently memory-bound due torepeatedly accessing large training datasets

* Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,
can alleviate this data movement bottleneck

* Real-world PIM systems have only recently been manufactured and commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

* Our goal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

e QOur main contributions:

- PIM implementation of several classic machine learning algorithms: linear regression, logistic
regression, decision tree, K-means clustering

- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores (@ 425 MHz
and 158 GB of DRAM memory

* New observations and insights:

- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)
hybrid precision implementations

- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without
native support for those activation functions

- Data canbe [EIaced and laid out for PIM cores to access nearby memory banks in streaming, thus
maximizing PIM memory bandwidth

- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to
memory banks
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Machine Learning Workloads

Machine learning
Unsupervised
learning

* Machine learning training
with large amounts of data
is a computationally
expensive process, which
requires many iterations to
update an ML model’s e
parameters e,

Supervised Reinforcement
learning learning

* Frequent data movement between memory and processing
elements to access training data

* The amount of computation is not enough to amortize the
cost of moving training data to the processing elements

- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses
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Machine Learning Workloads: Our Goal

* Our goal is to study and analyze
how real-world general-purpose
PIM can accelerate ML training

* Four representative ML

algorithms: linear regression,
logistic regression, decision tree,
K-means 30 etk compute perormance
* Roofline modelto g 1
quantify the memory g o]
boundedness of CPU &
versions of the four & | :
workloads *301 0.1 ; 10

Arithmetic Intensity (OP/B)

[ All workloads fall in the memory-bound area of the Roofline ]
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Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PEs may need to communicate via the host processor
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A State-of-the-Art PIM System
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* In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing

Units (DPUs)
* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are

emulated, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)
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ML Training Workloads

* Four widely-used machine learning
workloads:

Machine learning
Unsupervised
learning

Supervised Reinforcement
learning learning

Linear reg i Logistic reg i K-means

Linear regression (LIN)

Logistic regression (LOG)

Decision tree (DTR)
K-means clustering (KME)

* Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Learning Avplication | Alsorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach PP & Sequential | Strided | Random Operations | Datatype Intra PIM Core | Inter PIM Core
Regression Linear Regression LIN Yes No No mul, add float, int32_t barrier Yes
Supervised Classification Logistic Regression LOG Yes No No mul, add, exp, div | float, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add float barrier, mutex Yes
Unsupervised | Clustering K-Means KME Yes No No ul, compare, add | int16_t, int64_t| barrier, mutex Yes
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Linear Regression

* Linear regression (LIN)is a supervised learning algorithm where
the predicted output variable has a linear relation with the input
variable

- We use gradient descent as the optimization algorithm to find the
minimum of the loss function

Our PIM implementation divides the training dataset (X) equally
among PIM cores

PIM threads compute dot products of row vectors and weights

- Each dot product is compared to the observed value y to compute a partial
gradient value

- Partial gradient values are reduced and sent to the host

Four versions of LIN:
- LIN-FP32: training datasets of 32-bit real values
- LIN-INT32: 32-bit fixed-point representation
- LIN-HYB: hybrid precision (8-bit, 16-bit, 32-bit)
- LIN-BUI: custom multiplication based on 8-bit built-in multiplication
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Logistic Regression

* Logistic regression (LOG) is a supervised learning algorithm
used for classification, which outputs probability values for
each input observation variable or vector

- Sigmoid function to map predicted values to probabilities

* Our PIM implementation follows the same workload
distribution pattern as our linear regression implementation

e Six versions of LOG:

- LOG-FP32: training datasets of 32-bit real values, sigmoid
approximated with Taylor series

LOG-INT32: 32-bit fixed-point representation, Taylor series
LOG-INT32-LUT: Sigmoid calculation with a lookup table (LUT)

e LOG-INT32-LUT(MRAM): LUTin MRAM

* LOG-INT32-LUT(WRAM): LUTin WRAM
LOG-HYB-LUT: hybrid precision (8-bit, 16-bit, 32-bit), LUT in WRAM
LOG-BUI-LUT: custom multiplication based on 8-bit built-in
multiplication, LUT in WRAM
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Decision Tree

* Decision trees (DTR) are tree-based methods used for classification and
regression, which partition the feature space into boxes, with a simple

prediction model in each box

* Our PIM implementation partitions the training set among PIM cores,
\r/]vhich compute partial Gini scores to evaluate split decisions done by the
ost

* The host sends commands to the PIM cores:
- Split commit to split a tree leaf

- Split evaluate to evaluate a split
- Min-max to query the minimum and maximum values of a feature in a tree

leaf
¢ PIM threads Work On different SD?)toai:T:,:Zfeatures: PO =(0, 11); p1=(8,4);p2=(7,9);p3 = (2,6);p4=(5,2)
batches of feature values, Memory layout Decision tree
compare them to a threshold, Feature 0 Feature 1 -
and update the partial Giniscore L2 7171 1 g
Leaf O Leaf O
L Data Iayout in Split Commit to @ Split commit: feature 0, threshold 5

Feature O Feature 1

maximize memory bandwidth
with streaming accesses

0 2 5 8 7 111 ] 6 2 4 9

L1
[P0, p3, p4l

Leaf 1 Leaf 2 Leaf 1 Leaf 2
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K-Means Clustering

* K-means (KME) is an iterative clustering method used to find
groups in a dataset which have not been explicitly labeled

* Our PIM implementation distributes the dataset evenly over
the PIM cores

 PIM threads evaluate which centroid is the closest one to
each point of the training set

- Counter and accumulator per coordinate (per centroid)
* Then, the host recalculates the centroids

* Convergence to a local optimum when the updated
centroid’s coordinates are within a threshold (Frobenius

norm)
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Evaluation Methodology

* Synthetic and real datasets

Synthetic Datasets

ML Workload Strong Scaling (1 PIM core | 256-2048 PIM cores) | Weak Scaling (per PIM core) Real Dataset

Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | SUSY [223, 224]
Logistic regression || 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) | 600,000 samples, 16 attr. (38.4 MB) | Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) | Higgs boson [223, 226]

* Evaluated systems

- UPMEM PIM system with 2,524 PIM cores (@ 425 MHz and 158 GB of
DRAM

- Intel Xeon Silver 4215 CPU (16 hardware threads)
- NVIDIA A100 GPU

* We evaluate:
- Metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU
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2,560-DPU System (1)

* UPMEM-based PIM
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2,560-DPU System (lI)
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Evaluation: Metrics

* Linear regression

- Training error rate of LIN-FP32 is the same as the CPU
version

- For integer versions, it remains low and close to that of LIN-
FP32

* Logistic regression
- LUT-based versions obtain lower training error rates that
LOG-INT32, since they use exact values, not approximations

* Decision tree
- Training accuracy only slightly lower than that of the CPU
version
* K-means

- Same Calinski-Harabasz score and adjusted Rand index of PIM
and CPU versions
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Evaluation: Analysis of PIM Kernels (1)
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Evaluation: Analysis of PIM Kernels (II)
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Evaluation: Analysis of PIM Kernels (111)

e Decision tree & K-means
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Evaluation: Performance Scaling

* Strong scaling: 256 to 2,048 PIM cores
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Comparison to CPU and GPU (1)

* Linear regression anc
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Comparison to CPU and GPU (II)

e Decision tree and K-means
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Key Observations and Insights

* ML training workloads can greatly benefit from (1) fixed-
point data representation, (2) quantization, and (3)
hybrid precision implementation in PIM systems

* ML training workloads that require complex activation
functions (e.g., sigmoid) can take advantage of lookup
tables (LUTs) in PIM systems instead of function
approximation

* Data can be placed and laid out such that memory
accesses of PIM cores are streaming

* ML training workloads with large training datasets
benefit from scaling the size of PIM-enabled memory
with PIM cores attached to memory arrays
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Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive process,
frequently memory-bound due torepeatedly accessing large training datasets

* Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,
can alleviate this data movement bottleneck

* Real-world PIM systems have only recently been manufactured and commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

* Our goal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

e QOur main contributions:

- PIM implementation of several classic machine learning algorithms: linear regression, logistic
regression, decision tree, K-means clustering

- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores (@ 425 MHz
and 158 GB of DRAM memory

* New observations and insights:

- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)
hybrid precision implementations

- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without
native support for those activation functions

- Data canbe [EIaced and laid out for PIM cores to access nearby memory banks in streaming, thus
maximizing PIM memory bandwidth

- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to
memory banks
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ML Training on a Real PIM System
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Analysis of Real PIM Hardware

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware
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PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks & Unwatch ~ 2 {7 star 2 % Fork 1

<>

I_Y

A

Code () Issues 1 Pull requests (*) Actions [ Projects [ wiki () Security [~ Insights 2 Settings

main v prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

1 contributor

168 lines (132 sloc) 5.79 KB Raw Blame GJ 2 ]

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.
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PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®, Juan G6mez-Luna?, Rachata Ausavarungnirun?

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.
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Processing-in-Memory Course (Spring 2022)
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‘{W SAFARI Project & Seminars Courses

i Recent Ch Media M: Sit
N ‘N (Sp”ng 2022) ecent Changes Media Manager Sitemap
 Hands-on projects
Trace: » heterogeneous_systems ¢« processing_in_memory
processing_in_memory
Home
Table of Contents
Courses . . -
Exploring the Processing-in-Memory Exploring the Processing-in-
= SoftMC A - Memory Paradigm for Future
« Ramulator Paradigm for Future Computing Systems Computing Systems
= Accelerating Genomics e Edit Course Description
= Mobile Genomics Course Description Mentors
= Processing-in-Memory Lecture Video Playlists on
= Heterogeneous Systems Data movement between the memory units and the compute units of YouTube }
= Modern SSDs current computing systems is a major performance and energy fp””g_ 20’\2112 :A?er'”QSISChEd“'e
1 2 F: rning it
Processing-in-Memory Course: Lecture 1: Exploring the PIM Paradigm for Future Systems - Spring 2022 n bottleneck. From [arge-scale servers to mobile devices, data movement AZ:iganglen;e als
Onur Mutl Lectures costs dominate computation costs in terms of both performance and
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Processing-in-Memory Course: Lecture 3: Real-world PIM: Microbenchmarking of UPMEM PIM - Spring 2022

Onur Mutlu Lectures

Many modern and important workloads such as machine learning, computational biology, graph
processing, databases, video analytics, and real-time data analytics suffer greatly from the data
Processing-in-Memory Course: Lecture 4: Real-world PIM: Samsung HBM-PIM Architecture - Spring 2022 movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data
Onur Mutlu Lectures: reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and
large datasets that greatly exceed the main memory size. The computation in these workloads cannot
usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we
orur Ml Lectures need a paradigm shift from the traditional processor-centric design, where all computation takes place in
— the compute units, to a more data-centric design where processing elements are placed closer to or
inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

" Processing-in-Memory Course: Lecture 5: How to Evaluate Data Movement Bottlenecks - Spring 2022

e Onur “" Processing-in-Memory Course: Lecture 6: Real-world PIM: SK Hynix AiM - Spring 2022
&b Mutiu SUBSCRIBED [} ) L e This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent
Lectures ” o = Bl 2 . .
“the next big thing” in Computer Architecture. You will work hands-on with the first real-world PIM
Processing-in-Memory Course: Lecture 7: Programming PIM Architectures - Spring 2022 architecture, will explore different PIM architecture designs for important workloads, and will develop tools
Z ; = Onur Mutl Lectures to enable research of future PIM systems. Projects in this course span software and hardware as well as

the software/hardware interface. You can potentially work on developing and optimizing new workloads
for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that

Processing-in-Memory Course: Lecture 8: ing and itability on PIM - Spring 2022 N .
can forward our understanding of the PIM paradigm.

L Onur Mutlu Lectures.

Processing-in-Memory Course: Lecture 9: Real-world PIM: Samsung AxDIMM - Spring 2022

onur Mt Letures https://safari.ethz.ch/projects and seminars/spring2022/doku.php?id=
processing in_memory

https://youtube.com/playlist?list=PL5Q2s0XY2Zi-ONK1C5vi2Zx9nmE_3-cKN
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