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Executive Summary
• Training machine learning (ML) algorithms is a computationally expensive process, 

frequently memory-bound due to repeatedly accessing large training datasets
• Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities, 

can alleviate this data movement bottleneck
• Real-world PIM systems have only recently been manufactured and commercialized

- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

• Our goal is to understand the potential of modern general-purpose PIM architectures to 
accelerate machine learning training

• Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear regression, logistic 

regression, decision tree, K-means clustering
- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

• Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz 
and 158 GB of DRAM memory

• New observations and insights:
- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3) 

hybrid precision implementations
- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without 

native support for those activation functions
- Data can be placed and laid out for PIM cores to access nearby memory banks in streaming, thus 

maximizing PIM memory bandwidth
- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to 

memory banks
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Machine Learning Workloads
• Machine learning training 

with large amounts of data 
is a computationally 
expensive process, which 
requires many iterations to 
update an ML model’s 
parameters

Machine learning
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Unsupervised 
learning

Reinforcement 
learning
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Networks
Clustering

Dimensionality 
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least 
squares regression
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Logistic regression
Decision trees
K-nearest neighbor
Support vector 
machine
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K-means
K-median
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clustering
Mean shift

• Frequent data movement between memory and processing 
elements to access training data
• The amount of computation is not enough to amortize the 

cost of moving training data to the processing elements
- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses



5

Machine Learning Workloads: Our Goal
• Our goal is to study and analyze 

how real-world general-purpose 
PIM can accelerate ML training
• Four representative ML 

algorithms: linear regression, 
logistic regression, decision tree, 
K-means
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Processing-in-Memory (PIM)
• PIM is a computing paradigm that advocates for memory-

centric computing systems, where processing elements are 
placed near or inside the memory arrays
• Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AxDIMM, SK Hynix AiM, 
Alibaba HB-PNM

• These PIM systems have some common characteristics:
1. There is a host processor (CPU or GPU) with access to (1) standard 

main memory, and (2) PIM-enabled memory
2. PIM-enabled memory contains multiple PIM processing elements

(PEs) with high bandwidth and low latency memory access
3. PIM PEs run only at a few hundred MHz and have a small number 

of registers and small (or no) cache/scratchpad
4. PEs may need to communicate via the host processor
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A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing 

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are 

emulated, as well as floating-point operations
- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)
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ML Training Workloads
• Four widely-used machine learning 

workloads:
- Linear regression (LIN)
- Logistic regression (LOG)
- Decision tree (DTR)
- K-means clustering (KME)

• Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization
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Figure 3: High-level view of a state-of-the-art processing-in-memory system. The host CPU has access to" standard memory
modules and # PIM-enabled memory modules.

Table 1: Machine learning workloads.

Learning Application Algorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach Sequential Strided Random Operations Datatype Intra PIM Core Inter PIM Core

Supervised
Regression Linear Regression LIN Yes No No mul, add �oat, int32_t barrier Yes

Classi�cation Logistic Regression LOG Yes No No mul, add, exp, div �oat, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add �oat barrier, mutex Yes

Unsupervised Clustering K-Means KME Yes No No mul, compare, add int16_t, int64_t barrier, mutex Yes

and PUs in AiM [163] have 16-bit �oating point arithmetic
units. Second, ML models and hardware with adaptive preci-
sion are becoming widely-used [163, 180].

• LIN-BUI replaces compiler-generated 16-bit and 32-bit mul-
tiplications with a custom multiplication based on 8-bit built-
in multiplication functions (this optimization is speci�c to
the UPMEM PIM architecture). Listing 1 shows the default
integer multiplication code (C-based (a) and compiled code
(b)) and our custom integer multiplication code (C-based (c)
and compiled code (d)).

In Section 4, we evaluate all LIN versions in terms of accuracy
(Section 4.2), performance for di�erent numbers of threads per
PIM core (Section 4.3), and performance scaling characteristics
(Section 4.4).

3.2 Logistic Regression
Logistic regression [165, 167] is a supervised learning algorithm
used for classi�cation, which outputs probability values for each
input observation variable or vector. This probability values repre-
sent the likelihood of belonging to a certain class or event. Logistic
regression is used in various �elds (e.g., medical, marketing, engi-
neering, economics, etc.) [167].

Logistic regression uses the sigmoid function to map predicted
values (output vector ~ obtained from an input matrix - and a
weights vectorF ) to probabilities. Our implementation of logistic
regression uses gradient descent, same as our linear regression
implementation (Section 3.1). In the beginning of each training

iteration, we obtain the dot product of row vectors G8 and weights
F . Then, we apply the sigmoid function to the dot product results.
Next, we calculate the gradient to evaluate the error of the pre-
dicted probability. Finally, we update the weightsF according to
the gradients.

Our PIM implementation of logistic regression follows the same
workload distribution pattern as our linear regression implemen-
tation. First, row vectors G8 are distributed across PIM cores and
threads in each PIM core. Second, each thread computes the dot
product of a row vector and the weights (G8 ·F ), and applies the
sigmoid function to the dot product result. Third, the thread com-
putes partial gradient values. Fourth, partial gradient values from
di�erent threads are reduced, and the results return to the host.
Finally, the host computes the �nal reductions, and updates the
weights before redistributing them to the PIM cores.

We implement six di�erent versions of logistic regression with
di�erent input datatypes and optimizations: (1) 32-bit �oating
point (LOG-FP32), (2) 32-bit �xed point (LOG-INT32), (3) 32-bit
�xed point with LUT-based sigmoid calculation and LUT in DRAM
(LOG-INT32-LUT (MRAM)), (4) 32-bit �xed point with LUT-based sig-
moid calculation and LUT in scratchpad (LOG-INT32-LUT (WRAM)),
(5) �xed point with hybrid precision and LUT-based sigmoid calcula-
tion (LOG-HYB-LUT), and (6) �xed point with hybrid precision, LUT-
based sigmoid calculation, and built-in functions (LOG-BUI-LUT).

5
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Linear Regression
• Linear regression (LIN) is a supervised learning algorithm where 

the predicted output variable has a linear relation with the input 
variable
- We use gradient descent as the optimization algorithm to find the 

minimum of the loss function

• Our PIM implementation divides the training dataset (X) equally 
among PIM cores
• PIM threads compute dot products of row vectors and weights

- Each dot product is compared to the observed value y to compute a partial 
gradient value

- Partial gradient values are reduced and sent to the host

• Four versions of LIN:
- LIN-FP32: training datasets of 32-bit real values
- LIN-INT32: 32-bit fixed-point representation
- LIN-HYB: hybrid precision (8-bit, 16-bit, 32-bit)
- LIN-BUI: custom multiplication based on 8-bit built-in multiplication
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Logistic Regression
• Logistic regression (LOG) is a supervised learning algorithm 

used for classification, which outputs probability values for 
each input observation variable or vector
- Sigmoid function to map predicted values to probabilities

• Our PIM implementation follows the same workload 
distribution pattern as our linear regression implementation
• Six versions of LOG:

- LOG-FP32: training datasets of 32-bit real values, sigmoid 
approximated with Taylor series

- LOG-INT32: 32-bit fixed-point representation, Taylor series
- LOG-INT32-LUT: Sigmoid calculation with a lookup table (LUT)

• LOG-INT32-LUT(MRAM):  LUT in MRAM
• LOG-INT32-LUT(WRAM):  LUT in WRAM

- LOG-HYB-LUT: hybrid precision (8-bit, 16-bit, 32-bit), LUT in WRAM
- LOG-BUI-LUT: custom multiplication based on 8-bit built-in 

multiplication, LUT in WRAM
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Decision Tree
• Decision trees (DTR) are tree-based methods used for classification and 

regression, which partition the feature space into boxes, with a simple 
prediction model in each box

• Our PIM implementation partitions the training set among PIM cores, 
which compute partial Gini scores to evaluate split decisions done by the 
host

• The host sends commands to the PIM cores:
- Split commit to split a tree leaf
- Split evaluate to evaluate a split
- Min-max to query the minimum and maximum values of a feature in a tree 

leaf

0 8 7 2 5 11 4 9 6 2

0 2 5 8 7 11 6 2 4 9

Memory layout

Feature 1Feature 0

Feature 1Feature 0

Decision tree

Dataset:
5 points, 2 features: p0 = (0, 11); p1 = (8, 4); p2 = (7, 9); p3 =  (2, 6); p4 = (5, 2)

Split commit: feature 0, threshold 5

L0
[p0, p1, p2, 

p3, p4]

L0

L1
[p0, p3, p4]

L2
[p1, p2]

Leaf 0 Leaf 0

Leaf 1 Leaf 2 Leaf 1 Leaf 2

• PIM threads work on different 
batches of feature values, 
compare them to a threshold, 
and update the partial Gini score

• Data layout in split commit to 
maximize memory bandwidth 
with streaming accesses
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K-Means Clustering
• K-means (KME) is an iterative clustering method used to find 

groups in a dataset which have not been explicitly labeled
• Our PIM implementation distributes the dataset evenly over 

the PIM cores 
• PIM threads evaluate which centroid is the closest one to 

each point of the training set
- Counter and accumulator per coordinate (per centroid)

• Then, the host recalculates the centroids
• Convergence to a local optimum when the updated 

centroid’s coordinates are within a threshold (Frobenius
norm)
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Evaluation Methodology
• Synthetic and real datasets

• Evaluated systems
- UPMEM PIM system with 2,524 PIM cores @ 425 MHz and 158 GB of 

DRAM
- Intel Xeon Silver 4215 CPU (16 hardware threads)
- NVIDIA A100 GPU

• We evaluate:
- Metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

Table 2: Evaluated PIM system, baseline CPU, and baseline GPU.

System Process Processor Cores Memory TDPNode Total Cores Frequency Peak Performance Capacity Total Bandwidth
UPMEM PIM System [153] 2x nm 2,560⇧ 425 MHz 1,088 GOPS 160 GB 2.1 TB/s 280 W†

Intel Xeon Silver 4215 CPU [221] 14 nm 8 (16 threads) 2.5 GHz 40 GFLOPS¢ 256 GB 37.5 GB/s 85 W
NVIDIA A100 GPU [222] 7 nm 108 (6,912 SIMD lanes) 1.4 GHz 19,500 GFLOPS 40 GB 1555 GB/s 250 W
⇧ There are several faulty PIM cores in the PIM system where we run our experiments.
†⇢BC8<0C43 )⇡% = )>C0; %�" 2>A4B

%�" 2>A4B/⇡�"" ⇥ 14, /⇡�"" [153].
¢⇢BC8<0C43 ⌧�!$%( = 2.5 ⌧�I ⇥ 8 2>A4B ⇥ 2 8=BCAD2C8>=B ?4A 2~2;4 .

Table 3: Datasets.

ML Workload Synthetic Datasets Real DatasetStrong Scaling (1 PIM core | 256-2048 PIM cores) Weak Scaling (per PIM core)
Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) SUSY [223, 224]
Logistic regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) 600,000 samples, 16 attr. (38.4 MB) Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) Higgs boson [223, 226]

low and close to that of the 32-bit �oating point version, as shown
in the �gure.
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Figure 6: Training error rate (%) of LIN versions.

LOG. Figure 7(a) presents the training error rate of our six
versions of LOG for numbers of training iterations between 1
and 1000. The training error of LOG-FP32, which we use as
the comparison point for the integer versions (i.e., LOG-INT32,
LOG-INT32-LUT (MRAM), LOG-INT32-LUT (WRAM), LOG-HYB-LUT
(WRAM), LOG-BUI-LUT (WRAM)), is almost �at after 100 iterations,
and is as low as 1.20% after 1000 iterations (same as the CPU ver-
sion). We observe that the training error rate of LOG-INT32 is
higher than that of LOG-INT32-LUT (MRAM) and LOG-INT32-LUT
(WRAM). The reason is that LOG-INT32 approximates exponenti-
ation (hence, sigmoid) with Taylor series, while LOG-INT32-LUT
(MRAM) and LOG-INT32-LUT (WRAM) store exact sigmoid values in a
LUT. LOG-HYB-LUT (WRAM) and LOG-BUI-LUT (WRAM) increase the
training error rate signi�cantly (14.12%) due to the use of reduced-
precision datatypes. In another experiment using samples with 2
decimal numbers (Figure 7(b)), the training error rate of these two
versions decreases to 4.49%.

DTR. We limit the tree depth to 10. The tree is built by splitting
leaf nodes until no node can be split. A node cannot be split if
it holds fewer than two data points, or if it contains only points
belonging to the same class, or if its depth exceeds the maximum
tree depth. To account for the e�ect of di�erent random number
generation on both implementations, we restart the algorithm 10
times, and average the resulting accuracies. We register a training
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Figure 7: Training error rate (%) of LOG versions.

accuracy of 0.90008 for the PIM implementation, against 0.90175
for the Scikit-learn CPU version.

KME. We perform a K-Means clustering with 16 clusters to
match the dataset generation. The clustering iterates for a maxi-
mum of 300 iterations, or until the relative Frobenius norm between
the cluster centers of two consecutive iterations is lower than 0.0001.
In practice, the clustering always converges after less than 40 itera-
tions on both the PIM and Scikit-learn CPU implementations. To
account for randomness in the loss of precision due to quantization,
we average the metrics on 10 runs with di�erent random seeds.
We register an average Calinski-Harabasz scores of 82200 for both
implementations. The adjusted Rand index between the PIM and
Scikit-learn CPU clusterings is 0.999347 on average, showing that
the clusterings are nearly identical despite the quantization.

4.3 Performance Analysis of PIM Kernels
We analyze in this section the performance of the di�erent PIM
kernel versions of our ML workloads on a single PIM core (i.e., an
UPMEM DPU). This way, we understand the e�ect of (1) di�er-
ent optimizations we apply, and (2) increasing the number of PIM
threads.

LIN. Figure 8 shows the PIM kernel time of our four versions
of LIN. The upper plot (Figure 8(a)) represents the PIM kernel time
of LIN-FP32. The lower plot (Figure 8(b)) shows the PIM kernel
time of the integer versions. We make four observations. First, all
LIN versions result in their best performance with 11 or more PIM
threads. Eleven is the minimum number of PIM threads that keep

9
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• UPMEM-based PIM 
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DIMMs of 16 chips each 
(40 ranks)
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coexist with regular 
DDR4 DIMMs

• 2 memory 
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* There are some faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,524

160 GB
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Evaluation: Metrics
• Linear regression

- Training error rate of LIN-FP32 is the same as the CPU 
version

- For integer versions, it remains low and close to that of LIN-
FP32

• Logistic regression
- LUT-based versions obtain lower training error rates that 
LOG-INT32, since they use exact values, not approximations

• Decision tree
- Training accuracy only slightly lower than that of the CPU 

version
• K-means

- Same Calinski-Harabasz score and adjusted Rand index of PIM 
and CPU versions
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Evaluation: Analysis of PIM Kernels (I)
• Linear regression
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Evaluation: Analysis of PIM Kernels (II)
• Logistic regression

Very high kernel 
time of LOG-FP32
and LOG-INT32

due to sigmoid 
approximation

LOG-INT32-
LUT(MRAM) is 53x 
faster than LOG-

INT32

LOG-HYB-LUT is 28% faster 
than LOG-INT32-LUT

LOG-BUI-LUT provides an 
additional 43% speedup
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Evaluation: Analysis of PIM Kernels (III)
• Decision tree & K-means
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Both workloads 
saturate at 11 or 

more PIM threads

Maximum number 
of PIM threads in 
DTR is 16 due to 

the usage of local 
scratchpad 

memory
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Evaluation: Performance Scaling
• Strong scaling: 256 to 2,048 PIM cores
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PIM kernel time 
scales linearly with 
the number of PIM 

cores

Little overhead from 
inter PIM core 

communicati0n and 
communication 

between host and 
PIM cores
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Comparison to CPU and GPU (I)
• Linear regression and logistic regression
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PIM versions are heavily 
burdened when they use 
operations that are not 

natively supported by the 
hardware

Several optimizations 
reduce the execution time 
considerably and close the 

gap with GPU 
performance
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Comparison to CPU and GPU (II)
• Decision tree and K-means
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(a) Decision Tree (b) K-means

PIM version of DTR is 27x 
faster than the CPU

version and 1.34x faster 
than the GPU version

PIM version of KME is 2.8x 
faster than the CPU 

version and 3.2x faster 
than the GPU version
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Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights
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Key Observations and Insights
• ML training workloads can greatly benefit from (1) fixed-

point data representation, (2) quantization, and (3) 
hybrid precision implementation in PIM systems
• ML training workloads that require complex activation 

functions (e.g., sigmoid) can take advantage of lookup 
tables (LUTs) in PIM systems instead of function 
approximation
• Data can be placed and laid out such that memory 

accesses of PIM cores are streaming
• ML training workloads with large training datasets 

benefit from scaling the size of PIM-enabled memory 
with PIM cores attached to memory arrays
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Executive Summary
• Training machine learning (ML) algorithms is a computationally expensive process, 

frequently memory-bound due to repeatedly accessing large training datasets
• Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities, 

can alleviate this data movement bottleneck
• Real-world PIM systems have only recently been manufactured and commercialized

- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

• Our goal is to understand the potential of modern general-purpose PIM architectures to 
accelerate machine learning training

• Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear regression, logistic 

regression, decision tree, K-means clustering
- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

• Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz 
and 158 GB of DRAM memory

• New observations and insights:
- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3) 

hybrid precision implementations
- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without 

native support for those activation functions
- Data can be placed and laid out for PIM cores to access nearby memory banks in streaming, thus 

maximizing PIM memory bandwidth
- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to 

memory banks
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ML Training on a Real PIM System

https://arxiv.org/pdf/2206.06022.pdf

https://arxiv.org/pdf/2206.06022.pdf
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Analysis of Real PIM Hardware

https://arxiv.org/pdf/2110.01709.pdf
https://doi.org/10.1109/IGSC54211.2021.9651614
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/CMU-SAFARI/prim-benchmarks
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Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://doi.org/10.1109/ACCESS.2022.3174101

https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://doi.org/10.1109/ACCESS.2022.3174101
https://github.com/CMU-SAFARI/prim-benchmarks
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PrIM Repository
• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf
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Processing-in-Memory Course (Spring 2022)

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=
processing_in_memory

https://youtube.com/playlist?list=PL5Q2soXY2Zi-0NK1C5vi2Zx9nmE_3-cKN

• Short weekly lectures
• Hands-on projects

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://youtube.com/playlist?list=PL5Q2soXY2Zi-0NK1C5vi2Zx9nmE_3-cKN
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