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Data Movement Bottlenecks (1/2)

Data Movement

Off-Chip Link
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Data movement bottlenecks happen because of:

— Not enough data locality — ineffective use of the cache
hierarchy

— Not enough memory bandwidth

— High average memory access time
SAFARI 4



Data Movement Bottlenecks (2/2)

Compute-Centric Architecture
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' Processing-in-Memory (PIM)
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When to Employ PIM

Mobile consumer workloads
(GoogleWL?)

Graph processing
(Tesseract!')

Neural networks
(GoogleWL?)

Processing-in-
Memory

Databases
(Polynesia®)

DNA

sequence mapping

Time series analysis (GenASM3; GRIM-Filter?)

(NATSA®)

SAFARI 6



Drawbacks and Limitations of PIM

PIM designs are restricted by low area and power budgets,

manufacturing challenges, and limited clock frequencies

\

To avoid subpar performance, an efficient PIM architecture needs
to take into consideration PIM constraints
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Chrome Browser Video Playback and Capture TensorFlows GMean

Mobile *

Co-designing hardware and software to take advantage of PIM properties while

mitigating its shortcomings can lead to a better system design
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HW/SW Co-Design for PIM

We follow a two-step approach to co-design software
and hardware to efficiently take advantage of PIM paradigm

Step |: Step 2:

Application Profiling Co-design SW and HW

v } !
HW/SW  performance energy

requirements bottleneck bottleneck

high-performance
and energy-efficient
PIM architecture

We showcase our two-step approach for two applications:
| Machine learning inference models for edge devices
2 Hybrid transactional/analytical processing databases

for cloud systems
SAFARI 8
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Why ML on Edge Devices?

Significant interest in pushing ML inference computation

directly to edge devices

(D (1) e

Privacy Connectivity Latency Bandwidth
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Why Specialized ML Accelerator?

Edge devices have limited battery and computation budget

a_» -

TELEL
Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve
inference latency and energy consumption

Apple Neural Engine (Al2) Google Edge TPU
SAFARI Introduction 11



Myriad of Edge Neural Network Models
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Challenge: edge ML accelerators have to execute inference

efficiently across a wide variety of NN models
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Edge TPU: Baseline Accelerator
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Google Edge NN Models

We analyze inference execution using 24 edge NN models
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Major Edge TPU Challenges

We find that the accelerator suffers from
three major challenges:

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

Question: Where do these challenges come from?

SA FA R' TPU and Modcil Characterization I 6
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Model Analysis:
Let’s Take a Deeper Look
Into the Google Edge NN
Models

TPU and Model Characterization
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Diversity Across the Models

Insight |:there is significant variation in terms of
layer characteristics across the models

Layers from
;,CNNs and RCNNs

100000 a - CNN3
10000 © :
g o %38 \ ~-CNN4
@ 00 s * %
. L e g TFOPoo ) ~-CNNI |
™ *e 0@ o “/iy ~-CNN9
10 \ ¢ o @
--CNNII3
| | - 4 o<
0.00 0.01 0.1 | 100 FHTHM
Parameter Footprint (MB) \‘a\
Layers from
LSTMs and Transducers
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Diversity Within the Models

Insight 2: even within each model, layers exhibit
significant variation in terms of layer characteristics

For example, our analysis of edge CNN models shows:

CNNI3

6000

A
o
o
o

2000

FLOP/Byte

Variation in MAC intensity: up to 200x across layers

Variation in FLOP/Byte: up to 244x across layers

SA FA R' TPU and Model Cha.racterization I 9



Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completely
oblivious to layer heterogeneity

; Dataflow

I % PE Array

o N f
—>
Off-chip o g g -
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

\

While this approach might work for a specific group of layers, it fails

to efficiently execute inference across a wide variety of edge models
SA FA R' TPU and Model Char:cterization 2 0
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Mensa Framework

Goal: design an edge accelerator that can efficiently run
inference across a wide range of different models and layers

Instead of running the entire NN model on
a monolithic accelerator:

\

Mensa: a new acceleration framework for edge NN inference

SA FA R' Me.nsa Framework 2 2



Mensa High-Level Overview
Edge TPU Accelerator Mensa

Model A Model B Model C

Model A Model B Model C
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Mensa Runtime Scheduler

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup
of a system
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Each of the accelerators Layers tend to group
caters to together into a small
a specific family of layers number of families
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Identifying Layer Families

Key observation: the majority of layers group into

a small number of layer families
~=CNN3 «0=CNN4 «=¢=CNN11 =¢=CNN9 =¢=CNN13
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Families | & 2:low parameter footprint, high data reuse and MAC intensity
— compute-centric layers

Families 3,4 & 5: high parameter footprint, low data reuse and MAC intensity
— data-centric layers
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Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models
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Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models

( Pascal Families | &2 — compute-centric layers )
o ———— N - 32x32 PE Array — 2 TFLOPIs

il £ [ 32x32 }: - 256 KB Act. Buffer — 8x Reduction

8@ |fa PEArray |! - 128KB Param. Buffer — 32x Reduction
N 2/ - On-chip accelerator )
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Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models

4 )

Paviov Family 3 — LSTM data-centric layers
________________ - 8x8 PE Array — 128 GFLOPI/s
. [ 8x8 - 128KB Act. Buffer — 16x Reduction
PE Array - No Param. Buffer — 4MB in Baseline
- Near-data accelerator

—— i —,
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SA FA R' Mensa Frame:vork 2 8



Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models

4 )

Jacquard Families 4&5 — non-LSTM data-centric layers
oo R -16x16 PE Array — 256 GFLOPI/s

16x16 -128KB Act. Buffer — |16x Reduction
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Mensa-G: Mensa for Google Edge Models

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand'® Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo E. Oliveira* Xiaoyu Ma® Eric Shiu® Onur Mutlu**

"Carnegie Mellon Univ. °Stanford Univ. YUniv. of Hllinois Urbana-Champaign YGoogle *ETH Ziirich
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Energy Analysis
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Energy Analysis
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Throughput Analysis
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Conclusion

Context: We extensively analyze a state-of-the-art edge ML accelerator
(Google Edge TPU) using 24 Google edge models

— Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:
— It operates significantly below its peak throughput
— It operates significantly below its theoretical energy efficiency
— It inefficiently handles memory accesses

Key Insight: These shortcomings arise from the monolithic design of the
Edge TPU accelerator

— The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

— Mensa consists of heterogeneous accelerators whose dataflow and hardware
are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models
— Mensa improves performance and energy by 3.0X and 3.1X

— Mensa reduces cost and improves area efficiency
SA FAR' Conc:usion 3 6
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Real-Time Analysis

An explosive interest in many applications domains to

perform data analytics on the most recent version of data
(real-time analysis)

Use transactions to record Run analytics across
each periodic sample of data sensor data to make
from all sensors I~ real-time steering decisions
V~\~ P S 5 4
~Q L 7
\\ ,/

Self-Driving Cars

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

SA FAR' Intrc.)duction 3 8



HTAP: Supporting Real-Time Analysis

Traditionally, new transactions (updates) are propagated to the
analytical database using a periodic and costly process

h /d
@ our:‘ ays @

Transactions ; Analytics Transactions Analytics
N 11 W
.

‘- Migration - -
- B = & ‘-—l'- : I =

Transactional Analytical Hybrid DBMS
DBMS DBMS (HTAP System)

To support real-time analysis: a single hybrid DBMS is used

to execute both transactional and analytical workloads

SA FA R' Introd.uction 3 9



Ideal HTAP System Properties

An ideal HTAP system should have three properties:

I Workload-Specific Optimizations
* Transactional and analytical workloads must benefit from their
own specific optimizations

2 Data Freshness and Consistency Guarantees

« Guarantee access to the most recent version of data for
analytics while ensuring that transactional and analytical
workloads have a consistent view of data

3 Performance Isolation
* Latency and throughput of transactional and analytical
workloads are the same as if they were run in isolation

Achieving all three properties at the same time

is very challenging

SA FA R' Introdu::tion 4 0
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State-of-the-Art HTAP Systems

We study two major types of HTAP systems:

Transactions Analytics Transactions Analytics Analytics

o

Replica

Single-Instance Multiple-Instance

We observe two key problems:

1

are costly and cause a drastic reduction in throughput

2 These systems fail to provide performance isolation

because of high main memory contention
SA FAR' HTAP Systems Characterization 4 2




State-of-the-Art HTAP Systems

Transactions Analytics

S

Main Replica

Single-Instance

SA FAR' HTAP Syst(:ms Characterization
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Single-Instance: Data Consistency

Since both analytics and transactions work on the same data
concurrently, we need to ensure that the data is consistent

There are two major mechanisms to ensure consistency:

Transactions Analytics

=== =
1 Snapshotting S Snapshot [

aln Repiica
P Transactional Analytical

version chain

Data Snapshot
Column .
] — Transaction
T y Analytics 4 |=plT1:54] Updates
o . ransac ions

Multi-Version §§ '

___) 8 [Pl T|: |2l T2: | 3jmpp T3: 84

Concurrency 3 Time-stamped
2
3

Control (MVCCQC)

e T | : [ O] T2:7

Main Replica
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Drawbacks of Snapshotting and MVYCC

We evaluate the throughput loss caused by Snapshotting and MVCC:

B Zero-Cost-Snapshot Snapshot

0 Tcé: ‘é_ | Throughput loss comes from

N [

5L -&8'2 memcpy operation:

€83,

5CE 8; generates a large amount of
- .

ZFF 0 data movement

128 256 512
Number of Analytical Queries

B Zero-Cost-MVCC  @aMVCC Throughput loss comes from

| 1
0.8 - 9 long version chains:
0.6
04 - expensive time-stamp
0.2 - comparison and

0 -

Throughput

Normalized
Analytical

a large number of random

Number of Transactions memory accesses
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State-of-the-Art HTAP Systems

Transactions Analytics Analytics

3

Replica

Multiple-Instance

SA FAR' HTAP Systems C.haractenzatlon
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Maintaining Data Freshness

One of the major challenges in multiple-instance systems is
to keep analytical replicas up-to-date

Transactional queries

g% Updates Analytical
/ Replica
\ Analytical

Updates Replica

Multiple-Instance HTAP System
To maintain data freshness (via Update Propagation):

| Update Gathering and Shipping: gather updates from
transactional threads and ship them to analytical the replica

Update Application: perform the necessary format conversation
and apply those updates to analytical replicas
S A FA R l HTAP Systems Ch.aracterization 4 7



Cost of Update Propagation

We evaluate the throughput loss caused by Update Propagation:

B Zero-Cost-Update-Propagation #Update-Gathering&Shipping & Update-Propagation

3 212

.EOAI.SE-IZ

e

= X 5E-13 -

£

FS o :

E 8M | 16M | 32M  8M ; 16M | 32M
Update/Read: 50%/50% | Update/Read: 80%/20% | Update/Read: 100%/0%

Transactional throughput reduces by up to 21.2% during the
update gathering & shipping process

Transactional throughput reduces by up to 64.2% during the
update application process

SA FA R' HTAP Systems Char.acterization 4 8



Problem and Goal

Problems:

1 State-of-the-art HTAP systems do not achieve
all of the desired HTAP properties

2 Data freshness and consistency mechanisms are

data-intensive and cause a drastic reduction in throughput

3 These systems fail to provide performance isolation
because of high main memory contention

Goal:

Take advantage of custom algorithm and
processing-in-memory (PIM) to address these challenges

SA FA R' HTAP Systems Chara:terization 4 9
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Polynesia

Key idea: partition computing resources into
two types of isolated and specialized processing islands

'

Isolating transactional islands from analytical islands allows us to:

I Apply workload-specific optimizations to each island

2 Avoid high main memory contention

3 Design efficient data freshness and consistency
mechanisms without incurring high data movement costs
* Leverage processing-in-memory (PIM) to reduce data movement
* PIM mitigates data movement overheads by

placing computation units nearby or inside memory

SA FAR' . Polynesia 5 I



Polynesia: High-Level Overview

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources
Designed to provide high read throughput

Designed to sustain ;.*
bursts of updates -
fA ' °
s ! Analytical Island
. DRAM I
Transactional Island Banlc L ZZZ 73" | Analytical Engine
 BH X FH PM |[ Pm |[ PIM |[ PIM Memory
c c \ Controller
Transactional Engme v 7 7 \‘ Core || Core || Core || Core
Jl| €PU || €PU || cPU (| CPU , 0 5 Z 72 7 < * Update Propagation Consistency
! Off-Chip 7——7— ~ N\ Mechanism Mechanism
1 |||Shared Last-Level Cache (LLC) Link o _7/ ~ TSV . e S Cop
1 2 / 4 / \ pdate Gatherin pdate
\\A ) Y &4 Vault %\ | || and Shipping Unii Application Unit Un,-ty
Seo Processor 3D-Stacked ' —
SN ~——— Memory ot
Ssq U4
~ ;
\ \4
¥ Take advantage of PIM to mitigate

Conventional multicore CPUs data movement bottleneck

with multi-level caches

Polynesia
°
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Polynesia: High-Level Overview

SAFARI
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Polynesia: High-Level Overview

SAFARI
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Maintaining Data Freshness

One of the major challenges in multiple-instance systems is
to keep analytical replicas up-to-date

Transactional queries

g% Updates Analytical
/ Replica
\ Analytical

Updates Replica

Multiple-Instance HTAP System
To maintain data freshness (via Update Propagation):

| Update Gathering and Shipping: gather updates from
transactional threads and ship them to analytical the replica

Update Application: perform the necessary format conversation
and apply those updates to analytical replicas
SAF AR' Poly:esia 55



Update Gathering & Shipping: Algorithm

Update gathering & shipping algorithm has three major stages:

Scan and Merge
Transactional Updates

Tnx. | |

g

i
l
{
{
l
Update Logs :
l
{
{
l

Tnx. 2 |

g

Tnx.Nl |

— e o EE EE EE EE EEE S S S EEE EEE B B S S S S S B B B B e Sae Sae Gae B B e e o

Transfer Updates

to Analytical Replica :

Update),

Final

Target
Update L
a plaei c:g Column
\ 'Updatek

I_

I

|

I

I
Column; :
Buffer |
|

I

I

|

I

]

2"d and 3" stages generate a large amount of data movement
and account for 87.2% of our algorithm’s execution time

SAFARI
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Update Gathering & Shipping: Hardware

To avoid these bottlenecks, we design a new hardware accelerator,
called update gathering & shipping unit

Merge Unit Hash Lookup Unit Copy Unit
Mem. Ctrl.
I'Zﬁ‘;zleosg PrObe UnltS Reorder ___.‘/e_rn:v_xr_————
Comparator tree =g I Buffer ,l Fetch '| Writeback :
[T hesozm=mmmm-m--5 FrontEnd ONO) — —i | Read/ iili Unit j: Unit IEI:
_ Engine T | Wrie e SEssesnm
Inal | p======== I SN [ e T AL it T TTTT T T
Log : i :__C_g_)_ i _':_:""ED:D"’ 4 Memor)i—Address )
1 - - - - - - 1 1
~[I1TH | 1 : N A 1 R S
| BpieSipn lE= [ Hash Jndex
R ] o= ! Y SR
[~ OO — I T
T Tracking Buffer
— 4 /
-~~~ Y ___"l
A 3-level tor |} 4 -
-level compara ; - . . .
P < e Multiple fetch and write-back units
tree to merge / . .
/ to issue multiple memory accesses
updates \4

Decoupled hash computation from concurrently

the hash bucket traversal to allow for
concurrent hash lookups
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Polynesia: High-Level Overview
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Polynesia: High-Level Overview

Polynesia: Enabling High-Performance and Energy-Efficient
Hybrid Transactional/Analytical Databases

with Hardware/Software Co-Design

Amirali Boroumand' Saugata Ghose® Geraldo F. Oliveira* Onur Mutlu?
TGoogle °Univ. of lllinois Urbana-Champaign *ETH Ziirich

Analytical Island
DRAM 7 7
Banksw 7 5555 Analytical Engine
v
. 55047 ) Consistency
Off-Chip —— Y, Mechanism
<:>Lmk I jl ;I_4 I; _7/ L/ \\‘ Update
= L7Vault E ‘Applicztion Unit‘
3D-Stacked
Memory

SAFARI Polynesia 59




Outline

1 Introduction

2 Mensa: Accelerating Google Neural Networks
Edge TPU and Model Characterization

Mensa Framework
Evaluation

Conclusion

3 Polynesia: Accelerating HTAP Systems

HTAP Systems Characterization
Polynesia: Overview
Evaluation

L d
Conclusion
SA FAR' Introduction HTAP Systems Characterization Polynesia Evaluation Conclusion
LN N ] [ ]



Methodology

* We adapt previous transactional/analytical engines with
our new algorithms

— DBxI1000 for transactional engine
— C-store for analytical engine

* We use gemb to simulate Polynesia
— Available at: https://github.com/CMU-SAFARI/Polynesia

* We compare against:
— Single-Instance-Snapshotting (SI-SI)
— Single-Instance-MVCC (SI-MVCCQC)
— Multiple-Instance + Polynesia’s new algorithms (MI+SW)
— MI+SW+HB: MI+SW with a 256 GB/s main memory device

— ldeal-Txn: the peak transactional throughput if transactional
workloads run in isolation

SAFARI Introduction HTAP Systems Characterization Polynesia Evaluation Conclusion
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End-to-End System Analysis (1/3)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn

-I-\

ghput

©
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Throughput

Throu

| i7N== 78 | X

8M |6M 32M 8M |6M 32M
Number of Transactions Number of Transactions

Normal. Transactional
Normal. Analytical

Polynesia comes within 8.4% of ideal Txn
because it uses custom PIM logic for

data freshness/consistency mechanisms,
significantly reducing main memory contention and data movement

SA FAR' Eva.luation 6 2



End-to-End System Analysis (2/3)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn
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Polynesia improves over MI+SW+HB by 63.8%
by eliminating data movement, and using
custom logic for update propagation and

consistency
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End-to-End System Analysis (3/3)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn
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Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x)
over prior HTAP systems
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Energy Analysis

%

SI-SS SI-MVCC MI+SW

Polynesia is an energy-efficient HTAP system,
reducing energy consumption by 48%,
on average across prior works

SAFARI Evaluation 6 5
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Conclusion

* Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
— An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

* Problem: Prior works cannot achieve all properties of an ideal HTAP system

* Key ldea: Divide the system into transactional and analytical processing
islands

— Enables workload-specific optimizations and performance isolation

* Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases

— Implements custom algorithms and hardware to reduce the costs of
data freshness and consistency

— Exploits PIM for analytical processing to alleviate data movement

* Key Results: Polynesia outperforms three state-of-the-art HTAP systems
— Average transactional/analytical throughput improvements of 1.7x/3.7x
— 48% reduction on energy consumption
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Executive Summary

Context: We extensively analyze a state-of-the-art edge ML accelerator
(Google Edge TPU) using 24 Google edge models

— Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:
— It operates significantly below its peak throughput
— It operates significantly below its theoretical energy efficiency
— It inefficiently handles memory accesses

Key Insight: These shortcomings arise from the monolithic design of the
Edge TPU accelerator

— The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

— Mensa consists of heterogeneous accelerators whose dataflow and
hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models

— Mensa improves performance and energy by 3.0X and 3.1X
— Mensa reduces cost and improves area efficiency

SAFARI 70
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Why ML on Edge Devices?

Significant interest in pushing ML inference computation

directly to edge devices

(D (1) e

Privacy Connectivity Latency Bandwidth
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Why Specialized ML Accelerator?

Edge devices have limited battery and computation budget

a_» -

TELEL
Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve
inference latency and energy consumption

Apple Neural Engine (Al2) Google Edge TPU
SAMI Introduction 74



Myriad of Edge Neural Network Models

Tra NN
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Face Detection mage Captioning

Challenge: edge ML accelerators have to execute inference

efficiently across a wide variety of NN models
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Edge TPU: Baseline Accelerator
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Google Edge NN Models

We analyze inference execution using 24 edge NN models

Speech Recognition Language Translation

| 3
Ia% - < ARe
(): .-~ Google Edge TPU ~~~_™ I—W‘_I
L - Vg >
el

Image Captioning

D

Face Detection
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Major Edge TPU Challenges

We find that the accelerator suffers from
three major challenges:

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

m’ Introduction TPU and Model Characterization Mensa Framewor! k Mensa-G Evaluation Conclusion 79
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(1) High Resource Underutilization

We find that the accelerator operates significantly below

its peak throughput across all models

10

Throughput (TFLOP/s)

0.0l

SAFARI

Peak =2 TFLOP/s
CNNs and RCNN:s: \,\ .
only 52.2% of peak throughput oo |

prad LSTMs and Transducers:
o rm—— > less than 1%

-~ 1 a, of peak throughput

’ |

== STMI
=J=LSTM2
=f=-Transducer |
—a—Transducer?
== Transducer3
=f=Transducer4
a¢p=CNN |
=p=CNN2
==CNN3
=¢p=CNN4
=C=CNND5
=0=CNN6
=0=CNN7
=90=CNNS8
==CNN9
==CNN 0
a¢p=CNNI |
=C=CNN |2
==CNN 3
=@=RCNN /|
=@=RCNN?2

0 | 10 100 1000 g RCNNG

FLOP/Byte

TPU and Model Characterization

80



(2) Low Energy Efficiency

The accelerator operates far below

its upper bound energy efficiency

Best CNN model: Peak = |.42TFLOP/J

o of upper boun
energy efficiency

LSTMs and Transducers:

33.1% of upper bound
energy efficiency

0.1 I 10 100 1000
FLOP/Byte

TPU and Model Characterization
°
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=T ransducer|
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--CNNI
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-<>=CNN3
--CNN4
->=CNNS5
--CNN6
->=CNN7
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--CNN?9
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<>=CNNI2
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(3) Inefficient Memory Access Handling

Parameter traffic (off-chip and on-chip) takes

a large portion of the inference energy and performance

B Total Static O PE B Param. Buffer & NoC
B Act. Buffer & NoC O Off-chip Interconnect O DRAM

‘\--

Normalized Energy

LRCNI
LRCN2
LRCN3

46% and 3 1% of total energy goes to off-chip parameter traffic
and distributing parameters across PE array

SAWI TPU and Model Characterization 8 2
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Major Edge TPU Challenges

We find that the accelerator suffers from
three major challenges:

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

Question: Where do these challenges come from?

m’ TPU and Model Characterization 8 3
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Model Analysis:
Let’s Take a Deeper Look
Into the Google Edge NN Models

m’ TPU and Model Characterization 8 4
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Diversity Across the Models

Insight |:there is significant variation in terms of
layer characteristics across the models

Layers from
;,CNNS and RCNNs

100000 a - CNN3
10000 © :
g o %38 \ ~-CNN4
@ 00 s * %
. L e g TFOPoo ) ~-CNNI |
™ *e 0@ o “/iy ~-CNN9
10 \ ¢ o @
--CNNII3
| | - 4 o<
0.00 0.01 0.1 | 100 FHTHM
Parameter Footprint (MB) \‘a\
Layers from
LSTMs and Transducers
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Diversity Within the Models

Insight 2: even within each model, layers exhibit
significant variation in terms of layer characteristics

For example, our analysis of edge CNN models shows:

CNNI3

6000

A
o
o
o

2000

FLOP/Byte

Variation in MAC intensity: up to 200x across layers
Variation in FLOP/Byte: up to 244x across layers
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Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completely
oblivious to layer heterogeneity

; Dataflow

I % PE Array

o N f
—>
Off-chip o g g -
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

\

While this approach might work for a specific group of layers, it fails

to efficiently execute inference across a wide variety of edge models
m’ TPU and Model Characterization 8 7
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Mensa Framework

Goal: design an edge accelerator that can efficiently run
inference across a wide range of different models and layers

Instead of running the entire NN model on
a monolithic accelerator:

\

Mensa: a new acceleration framework for edge NN inference

SAMI Mensa Framework 89
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Mensa High-Level Overview

Edge TPU Accelerator Mensa
ModelA ModelB Model C

Family 3

(===

g

Y

O Ny

Monolithic Accelerator
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Mensa Runtime Scheduler

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup
of a system

¥, :
\\ ® -
I‘x """""""" N NN model
\
['|  Accelerator || l
i characteristics | |
' Layer
E : —{ Scheduler H Y . J
. I Mapping
i Layer !
| | characteristics ,l
\\\ ————— 7‘,::::-‘_ —,,
/, =~ ~
,/ “~~~~~
‘_/ ~~~)
Each of the accelerators Layers tend to group
caters to together into a small
a specific family of layers number of families
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Mensa Runtime Scheduler

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks
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Identifying Layer Families

Key observation: the majority of layers group into

a small number of layer families
~=CNN3 «0=CNN4 «=¢=CNN11 =¢=CNN9 =¢=CNN13

100000 100000
10000 10000 Family | 0§08
v 1000 1000 - Family.>
2 (e s & Famijly 2
| amily
g 100 &? Family 4 @ 100 ‘*‘O
G 10 *2 eo/ L G I0 @
> Family 5 Family 3 ¥ Family 3 Family 4
= T o e G o o>
0.001 0.01 0.1 0 100 0.01 | ... 100
Parameter Footprint MAC (Millions)

Families | & 2:low parameter footprint, high data reuse and MAC intensity
— compute-centric layers

Families 3,4 & 5: high parameter footprint, low data reuse and MAC intensity
— data-centric layers
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Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models

Pascal
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Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models

( Pascal Families | &2 — compute-centric layers )
o ———— N - 32x32 PE Array — 2 TFLOPIs

il £ [ 32x32 }: - 256 KB Act. Buffer — 8x Reduction

8@ |fa PEArray |! - 128KB Param. Buffer — 32x Reduction
N 2/ - On-chip accelerator )
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Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models

4 )

Paviov Family 3 — LSTM data-centric layers
________________ - 8x8 PE Array — 128 GFLOPI/s
. [ 8x8 - 128KB Act. Buffer — 16x Reduction
PE Array - No Param. Buffer — 4MB in Baseline
- Near-data accelerator

—— i —,

P
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Mensa-G: Mensa for Google Edge Models

Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models

( Jacquard Families 4&5 — non-LSTM data-centric layers )
S R -16x16 PE Array — 256 GFLOPI/s
i ES 16x16 256 GB/s -128KB Act. Buffer — | 6x Reduction
ElL." 2 [ PE Array J -128KB Param. Buffer — 32x Reduction

| e e s - Near-data accelerator )
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Mensa-G: Mensa for Google Edge Models
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Energy Analysis
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Energy Analysis

B Total Static = PE O Param Buffer+NoC
H Act Buffer+NoC B Off-chip Interconnect 0O DRAM
| I ¥ 11 11
- - o= 5 i

0.75 fMensa-G lowers on-chip/off-chip parameter traffic energy by
15.3x by scheduling layers on the accelerator with the most
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Mensa-G improves energy efficiency by 3.0X

compared to the Baseline
—— - . y
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Throughput Analysis

Hl Base [0 Base+HB B Mensa

Normalized Throughput

LSTMI Trans.] Trans2 CNN5 CNN9 CNNIO CNNI2 RCNNI RCNN3 Average

Mensa-G improves throughput by 3.1X
compared to the Baseline
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More in the Paper

e Details about Mensa Runtime Scheduler

* Details about Pascal, Pavlov, and Jacquard’s
dataflows

* Energy comparison with Eyeriss v2
* Mensa-G’s utilization results

* Mensa-G’s inference latency results

m’ Introduction TPU and Model Characterization Mensa Framewor! k Mensa-G Evaluation Conclusion I 04
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More in the Paper
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Conclusion

Context: We extensively analyze a state-of-the-art edge ML accelerator
(Google Edge TPU) using 24 Google edge models

— Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:
— It operates significantly below its peak throughput
— It operates significantly below its theoretical energy efficiency
— It inefficiently handles memory accesses

Key Insight: These shortcomings arise from the monolithic design of the
Edge TPU accelerator

— The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

— Mensa consists of heterogeneous accelerators whose dataflow and
hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models

— Mensa improves performance and energy by 3.0X and 3.1X
— Mensa reduces cost and improves area efficiency

SAWI Conclusion |07
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Executive Summary

* Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
— An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

* Problem: Prior works cannot achieve all properties of an ideal HTAP system

* Key ldea: Divide the system into transactional and analytical processing
islands

— Enables workload-specific optimizations and performance isolation

* Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases

— Implements custom algorithms and hardware to reduce the costs of
data freshness and consistency

— Exploits PIM for analytical processing to alleviate data movement

* Key Results: Polynesia outperforms three state-of-the-art HTAP systems
— Average transactional/analytical throughput improvements of 1.7x/3.7x
— 48% reduction on energy consumption

SAFARI 110



Outline

N O O A ON -

8

SA FAR' Intrt.)d.uition

Introduction
Limitations of HTAP Systems
Polynesia: Overview
Update Propagation Mechanism
Consistency Mechanism
Analytical Engine
Evaluation

Conclusion

Motivation Polynesia Update Propagation Consistency Mechanism  Analytical Engine Evaluation
oooooooooooooooo oo eee eeecccee



Outline

N OO g A ON =

8

SA FAR' Intr(.)d.u:tion

Introduction
Limitations of HTAP Systems
Polynesia: Overview
Update Propagation Mechanism
Consistency Mechanism
Analytical Engine
Evaluation

Conclusion

Motivation Polynesia Update Propagation Consistency Mechanism  Analytical Engine Evaluation
oooooooooooooooo oo eee eeecccee



Real-Time Analysis

An explosive interest in many applications domains to

perform data analytics on the most recent version of data
(real-time analysis)

Use transactions to record Run analytics across
each periodic sample of data sensor data to make
from all sensors I~ real-time steering decisions
V~\~ P S 5 4
~Q L 7
\\ ,/

Self-Driving Cars

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

SA FAR' Intrfduction i I 3



HTAP: Supporting Real-Time Analysis

Traditionally, new transactions (updates) are propagated to the
analytical database using a periodic and costly process

h /d
@ our:‘ ays @

Transactions ; Analytics Transactions Analytics
N 11 W
.

‘- Migration - -
- B = & ‘-—l'- : I =

Transactional Analytical Hybrid DBMS
DBMS DBMS (HTAP System)

To support real-time analysis: a single hybrid DBMS is used

to execute both transactional and analytical workloads
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Ideal HTAP System Properties

An ideal HTAP system should have three properties:

I Workload-Specific Optimizations
* Transactional and analytical workloads must benefit from their
own specific optimizations

2 Data Freshness and Consistency Guarantees

« Guarantee access to the most recent version of data for
analytics while ensuring that transactional and analytical
workloads have a consistent view of data

3 Performance Isolation
* Latency and throughput of transactional and analytical
workloads are the same as if they were run in isolation

Achieving all three properties at the same time

is very challenging

SA FAR' Introdu:tion i I 5
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State-of-the-Art HTAP Systems

We study two major types of HTAP systems:

Transactions Analytics Transactions Analytics Analytics

o

Replica

Single-Instance Multiple-Instance

We observe two key problems:

1

are costly and cause a drastic reduction in throughput

2 These systems fail to provide performance isolation

because of high main memory contention
SAFARI .Motivation i I 7




State-of-the-Art HTAP Systems

Transactions Analytics

S

Main Replica

Single-Instance
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Single-Instance: Data Consistency

Since both analytics and transactions work on the same data
concurrently, we need to ensure that the data is consistent

There are two major mechanisms to ensure consistency:

Transactions Analytics

=== =
1 Snapshotting S Snapshot [

aln Repiica
P Transactional Analytical

version chain

Data Snapshot
Column .
] — Transaction
T y Analytics 4 |=plT1:54] Updates
o . ransac ions

Multi-Version §§ '

___) 8 [Pl T|: |2l T2: | 3jmpp T3: 84

Concurrency 3 Time-stamped
2
3

Control (MVCCQC)

e T | : [ O] T2:7

Main Replica
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Drawbacks of Snapshotting and MVYCC

We evaluate the throughput loss caused by Snapshotting and MVCC:

B Zero-Cost-Snapshot Snapshot

0 Tcé: ‘é_ | Throughput loss comes from

N [

5L -&8'2 memcpy operation:

€83,

5CE 8; generates a large amount of
- .

ZFF 0 data movement

128 256 512
Number of Analytical Queries

B Zero-Cost-MVCC  @aMVCC Throughput loss comes from

| 1
0.8 - 9 long version chains:
0.6
04 - expensive time-stamp
0.2 - comparison and

0 -

Throughput

Normalized
Analytical

a large number of random

Number of Transactions memory accesses
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State-of-the-Art HTAP Systems

Transactions Analytics Analytics

3

Multiple-Instance
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Maintaining Data Freshness

One of the major challenges in multiple-instance systems is
to keep analytical replicas up-to-date

Transactional queries

g% Updates Analytical
/ Replica
\ Analytical

Updates Replica

Multiple-Instance HTAP System
To maintain data freshness (via Update Propagation):

| Update Gathering and Shipping: gather updates from
transactional threads and ship them to analytical the replica

Update Application: perform the necessary format conversation
and apply those updates to analytical replicas
s A FA R l Motivati.on i 2 2



Cost of Update Propagation

We evaluate the throughput loss caused by Update Propagation:

B Zero-Cost-Update-Propagation #Update-Gathering&Shipping & Update-Propagation

3 212

.EOAI.SE-IZ

e

= X 5E-13 -

£

£E T :

E 8M | I16M | 32M : 16M | 32M
Update/Read: 50%/50% | Update/Read: 80%/20% | Update/Read: 100%/0%

Transactional throughput reduces by up to 21.2% during the
update gathering & shipping process

Transactional throughput reduces by up to 64.2% during the
update application process
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Problem and Goal

Problems:

1 State-of-the-art HTAP systems do not achieve
all of the desired HTAP properties

2 Data freshness and consistency mechanisms are

data-intensive and cause a drastic reduction in throughput

3 These systems fail to provide performance isolation
because of high main memory contention

Goal:

Take advantage of custom algorithm and
processing-in-memory (PIM) to address these challenges

SA FAR' Motivation . i 24
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Polynesia

Key idea: partition computing resources into
two types of isolated and specialized processing islands

'

Isolating transactional islands from analytical islands allows us to:

I Apply workload-specific optimizations to each island

2 Avoid high main memory contention

3 Design efficient data freshness and consistency
mechanisms without incurring high data movement costs
* Leverage processing-in-memory (PIM) to reduce data movement
* PIM mitigates data movement overheads by

placing computation units nearby or inside memory

SAFARI 126



Polynesia: High-Level Overview

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources
Designed to provide high read throughput

Designed to sustain ;.*
bursts of updates -
fA ' °
e ! Analytical Island
i DRAM o777 %)
'Transactlonal Island‘ Banks ! AnayGealEngne pr—
- : y, &/ &7/ /& \ PIM |[ PiM |[ PIM |[ PIM ——
Transactional Engme v 7 7 \‘ Core || Core || Core || Core
Jl| €PU || €PU || cPU (| CPU , 0 5 Z 72 7 < * Update Propagation Consistency
! Off-Chip 7——7— ~ ' Mechanism Mechanism
I |||Shared Last-Level Cache (LLC) Link ¢ ey Ry 7/ - TSV . Undate Gath Undat Cop
1 2 / 4 / \ pdate Gatherin pdate
\\A )T Y &4 Vault %\ | || and Shipping Unii Application Unit Un,-ty
Seo Processor 3D-Stacked ' =
SN ~———— Memory ot
‘x\ U4
\\ U4
\ \ 4
] o Take advantage of PIM to mitigate
Conv?ntlonal.multlcore CPUs data movement bottleneck
with multi-level caches

Polynesia
L]
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Maintaining Data Freshness

One of the major challenges in multiple-instance systems is
to keep analytical replicas up-to-date

Transactional queries

g% Updates Analytical
/ Replica
\ Analytical

Updates Replica

Multiple-Instance HTAP System
To maintain data freshness (via Update Propagation):

| Update Gathering and Shipping: gather updates from
transactional threads and ship them to analytical the replica

Update Application: perform the necessary format conversation
and apply those updates to analytical replicas
SA FAR' Upda.te Propagation i 29



Update Gathering & Shipping: Algorithm

Update gathering & shipping algorithm has three major stages:

Scan and Merge

Transactional Updates

Tnx. | |

g

i
l
{
{
l
Update Logs :
l
{
{
l

Tnx. 2 |

g

Tnx.Nl |

Update),

Final

Target
Update L
a plaei c:g Column
\ 'Updatek

I_

— e o EE EE EE EE EEE S S S EEE EEE B B S S S S S B B B B e Sae Sae Gae B B e e o

Transfer Updates
to Analytical Replica :

I

|

I

I
Column; :
Buffer |
|

I

I

|

I

]

2"d and 3" stages generate a large amount of data movement
and account for 87.2% of our algorithm’s execution time
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Update Gathering & Shipping: Hardware

To avoid these bottlenecks, we design a new hardware accelerator,
called update gathering & shipping unit

Merge Unit Hash Lookup Unit Copy Unit
Mem. Ctrl.
I'Zﬁ‘;zleosg PrObe UnltS Reorder ___.‘/e_rn:v_xr_————
Comparator tree =g I Buffer ,l Fetch '| Writeback :
[T hesozm=mmmm-m--5 FrontEnd ONO) — —i | Read/ iili Unit j: Unit IEI:
_ Engine T | Wrie e SEssesnm
Inal | p======== I SN [ e T AL it T TTTT T T
Log : i :__C_g_)_ i _':_:""ED:D"’ 4 Memor)i—Address )
1 - - - - - - 1 1
~[I1TH | 1 : N A 1 R S
| BpieSipn lE= [ Hash Jndex
R ] o= ! Y SR
[~ OO — I T
T Tracking Buffer
— 4 /
-~~~ Y ___"l
A 3-level tor |} 4 -
-level compara ; - . . .
P < e Multiple fetch and write-back units
tree to merge / . .
/ to issue multiple memory accesses
updates \4

Decoupled hash computation from concurrently

the hash bucket traversal to allow for
concurrent hash lookups
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Update Propagation: Update Application

Goal: perform the necessary format conversation and
apply transactional updates to analytical replicas

Transactional Replica

Update: Row 2, Column | and 3

| A simple tuple update in row-wise layout leads to

2

Analytical Replica

ID Value

~

Compressed Dictionar
Column

0

ann

1 0
|3 |

|1
| 2
|3 |

multiple random accesses in column-wise layout

car
cat
ear

") Updates change encoded value in the dictionary = (1) Need to

reconstruct the dictionary, and (2) recompress the column

SAFARI
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Update Application: Algorithm

We design our update application algorithm to be aware of
PIM logic characteristics and constraints

Build Update Dict. New Compressed Col.
Dict. Update Dict. Index
Updates Old Col.[ | Location in
— + Value New Dict.
. I New Dict.
Update Dict. New Dict. Index — E . —
>0 —>
——] Encoded
Value
g
——————— - 1
/”—— ‘\
14 \ Avoids the need to decompress
[ [ [ ‘
We maintain a hash index that Y the column and add updates,
links the old encoded value in a eliminating data movement and
column to the new encoded value random accesses to 3D DRAM
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Update Application: Hardware

We design a hardware implementation of our algorithm, and
add it to each in-memory analytical island

Sort Unit Hash Lookup Unit Merge Unit

FIFOs  1024-Bitonic _frobe Units

LLLL] sorter Nework Foncend 4 Q0 F—
[TT1 |= I I Engine ;::::::::::l
1 T 1 e 1 1
%: ] i ] 00
1 = 1 ———

O | oy P OO
IO 1 | | e
1 & 1 !_ ________ |_ --------- i

o L — 00—

\\~-~ ‘NN
Y S
\ )
A\ N

A 1024-value bitonic sorter,
whose basic building block is a
network of comparators

Similar design as our
update gathering & shipping unit
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Consistency Mechanism: Algorithm

For each column, there is a chain of snapshots where each
chain entry corresponds to a version of the column

Compressed Snapshot Snapshot Snapshot
Column V3 V2 \4
) ) )
Updates
[ 1 --=> >
1
Y
,/ 1
- ) /) —_

/

o=

Polynesia does not create a snapshot

Unlike chains in MVCC, each

every time a column is updated. . o . i
version is associated with a

Instead, Polynesia marks the column
as dirty column, not a row

Polynesia creates a new snapshot only if

(1) any of the columns are dirty, and
(2) no current snapshot exists for the same column

Consistency Mechanism

SAFARI
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Consistency Mechanism: Hardware

Our algorithm success at satisfying performance isolation relies
on how fast we can do memcpy to minimize snapshotting latency

Multiple
fetch and writeback units
to issue multiple memory
accesses concurrently

~ -
—————————

! -{'_]'_'_['_1'_]'_'_{'_1'_'_['_['_ SE.

Copy Unit

Mem. Ctrl.

Unit

Tracking Buffer

Track outstanding reads, as they may
come back from memory out of order.
Allows to immediately initiate a write

after a read is complete

SAFARI

Consistency Mechanism

Look-ups at the tracking
buffer
limit performance
=> use a hash index to
alleviate performance
bottlenecks

-
_________
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Analytical Engine: Query Execution

Efficient analytical query execution strongly depends on:

1 Data layout and data placement
.4 Task scheduling policy
3 How each physical operator is executed

The execution of physical operators of analytical queries
significantly benefit from PIM

\

Without PIM-aware data placement/task scheduler,

PIM logic for operators alone cannot provide throughput

SA FA R' Analyt.ical Engine I 3 9



Analytical Engine: Data Placement

Problem: how to partition analytical data
across vaults of the 3D-stacked memory

Creates
inter-vault communication overheads
== -
Local Distributed Hybrid

\ Vault | Vault 2 Vault | Vault 2 Vault | Vault 2 <

1 3 A r )

(,0\‘)«\(\ (,o\‘)«\“ Co\‘)«\“ (Jo\\“““ . i

3

=

B :

3 3 ) 3 ) ¥
|:> | Interconnect | | Interconnect | _Interconnect _ |
) 3 7 3 3 3

B B

DR :

o

nEn Bl Lk

o

Vault 3 =~ )Vault 4 Vault 3 Vault 4 Vault 3{_‘_ _\fi’t_"

k ______________ ° ~~\\
. . . Increases the aggregate bandwidth for \
Limits the area/power/bandwidth . g8res . ]
servicing each query by 4 times, V%

available to the

analytical engine inside a vault and provides up to 4 times the power/area

for PIM logic compared to Local
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Analytical Engine: Query Execution

Other details in the paper:

Task scheduling policy

We design a pull-based task assignment strategy, where PIM threads
cooperatively pull tasks from the task queue at runtime

How each physical operator is executed

We employ the top-down Volcano (Iterator) execution model to
execute physical operations (e.g., scan, filter, join) while respecting
operator’s dependencies

SA FAR' AnalyticaI.Engine i 4 I



Analytical Engine: Query Execution

Polynesia: Enabling High-Performance and Energy-Efficient
Hybrid Transactional/Analytical Databases

with Hardware/Software Co-Design

Amirali Boroumand' Saugata Ghose® Geraldo F. Oliveira* Onur Mutlu*
TGoogle °Univ. of Illinois Urbana-Champaign *ETH Ziirich

S A FA R l AnalyticaI.Engine i 4 2




Outline

~N O O A WON -

8

SA FAR' Intrt.)d.uition

Introduction
Limitations of HTAP Systems
Polynesia: Overview
Update Propagation Mechanism
Consistency Mechanism
Analytical Engine
Evaluation

Conclusion

Motivation Polynesia Update Propagation Consistency Mechanism  Analytical Engine Evaluation
oooooooooooooooo oo eee eeecccee



Methodology

* We adapt previous transactional/analytical engines with
our new algorithms

— DBxI1000 for transactional engine
— C-store for analytical engine

* We use gemb to simulate Polynesia
— Available at: https://github.com/CMU-SAFARI/Polynesia

* We compare against:
— Single-Instance-Snapshotting (SI-SI)
— Single-Instance-MVCC (SI-MVCCQC)
— Multiple-Instance + Polynesia’s new algorithms (MI+SW)
— MI+SW+HB: MI+SW with a 256 GB/s main memory device

— ldeal-Txn: the peak transactional throughput if transactional
workloads run in isolation

SAFARI Introduction Motivation Polynesia Update Propagation Consistency Mechanism  Analytical Engine Evaluation Conclusio' 44
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End-to-End System Analysis (1/5)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn

- ® 2
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9,y = ® £0.5 == = =
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Z umber of Transactions Number of Transactions

While SI-MVCC is the best baseline for transactional throughput,

it degrades analytical throughput by 63.2%,
due to its lack of workload-specific optimizations and consistency mechanism
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End-to-End System Analysis (2/5)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn

-I-\

ghput

©
o u»n

© o oo
O N M O
|

|| || ||
[ I.I.I I.I.I I.I.
|

Throughput

Throu

| i7N== 78 | X

8M |6M 32M 8M |6M 32M
Number of Transactions Number of Transactions

Normal. Transactional
Normal. Analytical

Polynesia comes within 8.4% of ideal Txn
because it uses custom PIM logic for

data freshness/consistency mechanisms,
significantly reducing main memory contention and data movement
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End-to-End System Analysis (3/5)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn

- ® 2
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MI+SW+HB is the best software-only HTAP
for analytical workloads, because it provides

workload-specific optimizations, but it still
loses 35.3% of the analytical throughput
due to high main memory contention
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End-to-End System Analysis (4/5)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn
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Polynesia improves over MI+SW+HB by 63.8%
by eliminating data movement, and using
custom logic for update propagation and

consistency
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End-to-End System Analysis (5/5)

SI-MVCC OMI+SW = MI+SW+HB E Polynesia M ldeal-Txn
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Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x)
over prior HTAP systems
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Energy Analysis

2 CPU Caches O Interconnect = DRAM /'

60
]

_ 50 . :
= 40 .
2% 30 :
3 20 Z
c o
w |0 - 7

O 1 T T T

SI-SS SI-MVCC MI+SW

Polynesia is an energy-efficient HTAP system,
reducing energy consumption by 48%,
on average across prior works
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More in the Paper
Real workload analysis
Effect of the update propagation technique
Effect of the consistency mechanism
Effect of the analytical engine

Effect of the dataset size

Area Analysis
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Conclusion

* Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
— An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

* Problem: Prior works cannot achieve all properties of an ideal HTAP system

* Key ldea: Divide the system into transactional and analytical processing
islands

— Enables workload-specific optimizations and performance isolation

* Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases

— Implements custom algorithms and hardware to reduce the costs of
data freshness and consistency

— Exploits PIM for analytical processing to alleviate data movement

* Key Results: Polynesia outperforms three state-of-the-art HTAP systems
— Average transactional/analytical throughput improvements of 1.7x/3.7x
— 48% reduction on energy consumption
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