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Data Movement Bottlenecks (1/2)

Data movement bottlenecks happen because of:
– Not enough data locality → ineffective use of the cache 

hierarchy
– Not enough memory bandwidth
– High average memory access time 

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Data Movement

Off-Chip Link
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Data Movement Bottlenecks (2/2)

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Off-Chip Link

Compute-Centric Architecture

1Abundant DRAM bandwidth

2 Shorter memory latency Processing-in-Memory (PIM)
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Memory-Centric Architecture

… Off-Chip Link
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When to Employ PIM

Processing-in-
Memory

Mobile consumer workloads
(GoogleWL2)

Neural networks
(GoogleWL2)

Graph processing
(Tesseract1)

Time series analysis
(NATSA6)

DNA 
sequence mapping

(GenASM3;GRIM-Filter4)...
[1] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015
[2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018
[3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence 
Analysis,” MICRO, 2020 
[4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics, 2018
[5] Boroumand+, "Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with 
Hardware/Software Co-Design,” ICDE, 2022
[6] Fernandez+, “NATSA: A Near-Data Processing Accelerator for Time Series Analysis,” ICCD, 2020

Databases
(Polynesia5)

6



Drawbacks and Limitations of PIM
PIM designs are restricted by low area and power budgets, 
manufacturing challenges, and limited clock frequencies

To avoid subpar performance, an efficient PIM architecture needs 
to take into consideration PIM constraints 

Co-designing hardware and software to take advantage of PIM properties while 
mitigating its shortcomings can lead to a better system design
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HW/SW Co-Design for PIM 
We follow a two-step approach to co-design software 

and hardware to efficiently take advantage of PIM paradigm 

Step 1:
Application Profiling

performance 
bottleneck

HW/SW 
requirements 

energy 
bottleneck

high-performance 
and energy-efficient 

PIM architecture 

Step 2:
Co-design SW and HW

Target Application

We showcase our two-step approach for two applications:

1 Machine learning inference models for edge devices 

2 Hybrid transactional/analytical processing databases 
for cloud systems 

88
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Why ML on Edge Devices?

Significant interest in pushing ML inference computation 
directly to edge devices

Privacy LatencyConnectivity Bandwidth
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Why Specialized ML Accelerator?

11

Edge devices have limited battery and computation budget

Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve 
inference latency and energy consumption

Apple Neural Engine (A12) Google Edge TPU
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Myriad of Edge Neural Network Models

Challenge: edge ML accelerators have to execute inference 
efficiently across a wide variety of NN models

CNN

RNNTransducers LSTMs

Face Detection

Speech Recognition

Image Captioning

Language Translation

RCNN
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Edge TPU: Baseline Accelerator

DRAM

ML Model

PE Array
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uf
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Dataflow

64x64 array
2TFLOP/s

4MB 
on-chip buffer

Output 
ActivationParameter

Input 
Activation

=*
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Google Edge NN Models

We analyze inference execution using 24 edge NN models 

13 CNN

Face Detection

6 RNNTransducers

Speech Recognition

2 LSTMs

Language Translation

Image Captioning

3 RCNNGoogle Edge TPU
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Major Edge TPU Challenges

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

We find that the accelerator suffers from 
three major challenges:

Question: Where do these challenges come from?
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Model Analysis:
Let’s Take a Deeper Look
Into the Google Edge NN 

Models
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Diversity Across the Models
Insight 1: there is significant variation in terms of 

layer characteristics across the models
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Diversity Within the Models

For example, our analysis of edge CNN models shows: 

1

2

Insight 2: even within each model, layers exhibit 
significant variation in terms of layer characteristics
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Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers
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Root Cause of Accelerator Challenges
The key components of Google Edge TPU are completely 

oblivious to layer heterogeneity

While this approach might work for a specific group of layers, it fails 
to efficiently execute inference across a wide variety of edge models

DRAM
PE Array

B
uf

fe
r

Dataflow

Off-chip 
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth
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Mensa Framework
Goal: design an edge accelerator that can efficiently run

inference across a wide range of different models and layers

1

2

Instead of running the entire NN model on 
a monolithic accelerator: 

Mensa: a new acceleration framework for edge NN inference
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Mensa High-Level Overview

Monolithic Accelerator

Model A

Family 2 Family 3

Edge TPU Accelerator Mensa
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Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
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Identifying Layer Families
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Key observation:  the majority of layers group into 
a small number of layer families

Family 1

Family 2

Family 3

Family 4

Family 5

Family 1

Family 2

Family 3 Family 4

Family 5

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity 
→ compute-centric layers 

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity 
→ data-centric layers 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 

Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline 
- Near-data accelerator 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 

Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline 
- Near-data accelerator 

-16x16 PE Array → 256 GFLOP/s
-128KB Act. Buffer → 16x Reduction
-128KB Param. Buffer → 32x Reduction
- Near-data accelerator 

Families 4&5 → non-LSTM data-centric layers
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Based on key characteristics of families, we design three accelerators
to efficiently execute inference across our Google NN models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 

Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline 
- Near-data accelerator 

-16x16 PE Array → 256 GFLOP/s
-128KB Act. Buffer → 16x Reduction
-128KB Param. Buffer → 32x Reduction
- Near-data accelerator 

Families 4&5 → non-LSTM data-centric layers
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Energy Analysis

Baseline Google Edge TPU accelerator

Baseline Google Edge TPU accelerator 
using a high-bandwidth off-chip memory 
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Energy Analysis

Mensa-G lowers on-chip/off-chip parameter traffic energy by 
15.3x by scheduling layers on the accelerator with the most 

appropriate dataflow and memory bandwidth

Mensa-G reduces the dynamic energy of the on-chip 
buffer and NoC by 49.8x over Base+HB by avoiding

overprovisioning and catering to specialized dataflows

Mensa-G improves energy efficiency by 3.0X
compared to the Baseline
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Throughput Analysis
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Mensa-G improves throughput by 3.1X
compared to the Baseline
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Conclusion
Context:  We extensively analyze a state-of-the-art edge ML accelerator 
(Google Edge TPU) using 24 Google edge models

– Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem:  The Edge TPU accelerator suffers from three challenges:
– It operates significantly below its peak throughput
– It operates significantly below its theoretical energy efficiency
– It inefficiently handles memory accesses

Key Insight:  These shortcomings arise from the monolithic design of the 
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity 

Key Mechanism:  A new framework called Mensa
– Mensa consists of heterogeneous accelerators whose dataflow and hardware 

are specialized for specific families of layers

Key Results:  We design a version of Mensa for Google edge ML models
– Mensa improves performance and energy by 3.0X and 3.1X
– Mensa reduces cost and improves area efficiency
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Real-Time Analysis
An explosive interest in many applications domains to 

perform data analytics on the most recent version of data 
(real-time analysis) 

Use transactions to record
each periodic sample of data 

from all sensors

Run analytics across 
sensor data to make 

real-time steering decisions

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

Self-Driving Cars
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Traditionally, new transactions (updates) are propagated to the 
analytical database using a periodic and costly process

To support real-time analysis: a single hybrid DBMS is used 
to execute both transactional and analytical workloads

Transactions

Hybrid DBMS 
(HTAP System)

Analytics

Data
Migration

Analytics

Transactional 
DBMS

Transactions

Analytical
DBMS

hours/days

HTAP: Supporting Real-Time Analysis
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Ideal HTAP System Properties

2 Data Freshness and Consistency Guarantees
• Guarantee access to the most recent version of data for 

analytics while ensuring that transactional and analytical 
workloads have a consistent view of data

1 Workload-Specific Optimizations
• Transactional and analytical workloads must benefit from their 

own specific optimizations

3 Performance Isolation
• Latency and throughput of  transactional and analytical 

workloads are the same as if they were run in isolation

An ideal HTAP system should have three properties:

Achieving all three properties at the same time
is very challenging

40Introduction HTAP Systems Characterization Polynesia Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Outline
Introduction1

Mensa: Accelerating Google Neural Networks2
Edge TPU and Model Characterization

Mensa Framework 

Evaluation

Conclusion

Polynesia: Accelerating HTAP Systems 3
HTAP Systems Characterization

Polynesia: Overview

Evaluation

Conclusion
41Introduction HTAP Systems Characterization Polynesia Evaluation Conclusion 

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



1

1
2

Main Replica

Transactions Analytics

Single-Instance

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance

We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation 

because of high main memory contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:
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We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation 

because of high main memory contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:

Main Replica

Transactions Analytics

Single-Instance
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Since both analytics and transactions work on the same data 
concurrently, we need to ensure that the data is consistent 

There are two major mechanisms to ensure consistency:

1 Snapshotting

2
Multi-Version 
Concurrency 

Control (MVCC)

Main Replica

Transactions

Transactional 
Data

Column

Snapshot

Analytical 
Snapshot

Analytics

Transactions
Analytics

Main Replica

T3: 84

4
1

8
3

2
3

T1: 54

T1: 12 T2: 13

T1: 10 T2: 7

Transaction 
Updates

Time-stamped 
version chain

Single-Instance: Data Consistency
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Drawbacks of Snapshotting and MVCC

Throughput loss comes from 
memcpy operation: 

generates a large amount of 
data movement0
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42%
Throughput loss comes from 

long version chains: 

expensive time-stamp 
comparison and 

a large number of random 
memory accesses

We evaluate the throughput loss caused by Snapshotting and MVCC:
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We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation 

because of high main memory contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:

Main Replica

Transactions Analytics

Single-Instance

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance
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One of the major challenges in multiple-instance systems is 
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from 
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation 
and apply those updates to analytical replicas

Replica

Analytical 
Replica

Analytical 
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness 
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Transactional throughput reduces by up to 21.2% during the 
update gathering & shipping process
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Cost of Update Propagation

Transactional throughput reduces by up to 64.2% during the
update application process

We evaluate the throughput loss caused by Update Propagation:
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11 State-of-the-art HTAP systems do not achieve 
all of the desired HTAP properties1

Data freshness and consistency mechanisms are 
data-intensive and cause a drastic reduction in throughput2
These systems fail to provide performance isolation 

because of high main memory contention3

Take advantage of custom algorithm and 
processing-in-memory (PIM) to address these challenges

Problem and Goal
Problems:

Goal:
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Key idea: partition computing resources into 
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high main memory contention2
Design efficient data freshness and consistency 
mechanisms without incurring high data movement costs 3

Polynesia

• Leverage processing-in-memory (PIM) to reduce data movement
• PIM mitigates data movement overheads by 

placing computation units nearby or inside memory
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Designed to sustain
bursts of updates  

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate 
data movement bottleneck Conventional multicore CPUs 

with multi-level caches

Polynesia: High-Level Overview
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One of the major challenges in multiple-instance systems is 
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from 
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation 
and apply those updates to analytical replicas

Replica

Analytical 
Replica

Analytical 
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness 
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2nd and 3rd stages generate a large amount of data movement 
and account for 87.2% of our algorithm’s execution time

Update Gathering & Shipping:  Algorithm

2 3

Update gathering & shipping algorithm has three major stages:

Scan and Merge
Transactional Updates

Merge
+ Sort

Update Logs

…

Tnx. 1

Tnx. N

Tnx. 2

Transfer Updates
to Analytical Replica

Copy

Columni
Buffer

Updatek

Find Target Column 
at Analytical Replica

Hash
Table

Target 
Column

Updatek

Final 
Update Log
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To avoid these bottlenecks, we design a new hardware accelerator, 
called update gathering & shipping unit

Update Gathering & Shipping:  Hardware

Merge Unit
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Tracking Buffer

Write-Back UnitWrite-Back UnitWrite-Back Unit
Writeback 

Unit

Mem. Ctrl.

Memory Address

A 3-level comparator 
tree to merge 

updates
Decoupled hash computation from 

the hash bucket traversal to allow for 
concurrent hash lookups

Multiple fetch and write-back units 
to issue multiple memory accesses 

concurrently
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Methodology
• We adapt previous transactional/analytical engines with 

our new algorithms
– DBx1000 for transactional engine
– C-store for analytical engine 

• We use gem5 to simulate Polynesia
– Available at: https://github.com/CMU-SAFARI/Polynesia

• We compare Polynesia against: 
– Single-Instance-Snapshotting (SI-SI)
– Single-Instance-MVCC (SI-MVCC)
– Multiple-Instance + Polynesia’s new algorithms (MI+SW)
– MI+SW+HB: MI+SW with a 256 GB/s main memory device
– Ideal-Txn: the peak transactional throughput if transactional 

workloads run in isolation  
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End-to-End System Analysis (1/3)

Polynesia comes within 8.4% of ideal Txn
because it uses custom PIM logic for 

data freshness/consistency mechanisms,
significantly reducing main memory contention and data movement
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End-to-End System Analysis (2/3)

Polynesia improves over MI+SW+HB by 63.8%, 
by eliminating data movement, and using 
custom logic for update propagation and 

consistency
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End-to-End System Analysis (3/3)

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x) 

over prior HTAP systems
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Energy Analysis 
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Polynesia is an energy-efficient HTAP system, 
reducing energy consumption by 48%, 

on average across prior works 

Polynesia consumes 0.4x/0.38x/0.5x the energy of SI-SS/SI-MVCC/MI+SW since
Polynesia eliminates a large fraction (30%) of off-chip DRAM accesses 
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Conclusion
• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  
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Executive Summary
Context:  We extensively analyze a state-of-the-art edge ML accelerator 
(Google Edge TPU) using 24 Google edge models

– Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem:  The Edge TPU accelerator suffers from three challenges:
– It operates significantly below its peak throughput
– It operates significantly below its theoretical energy efficiency
– It inefficiently handles memory accesses

Key Insight:  These shortcomings arise from the monolithic design of the 
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity 

Key Mechanism:  A new framework called Mensa
– Mensa consists of heterogeneous accelerators whose dataflow and 

hardware are specialized for specific families of layers

Key Results:  We design a version of Mensa for Google edge ML models
– Mensa improves performance and energy by 3.0X and 3.1X
– Mensa reduces cost and improves area efficiency
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Why ML on Edge Devices?

Significant interest in pushing ML inference computation 
directly to edge devices

Privacy LatencyConnectivity Bandwidth
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Why Specialized ML Accelerator?
Edge devices have limited battery and computation budget

Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve 
inference latency and energy consumption

Apple Neural Engine (A12) Google Edge TPU
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Myriad of Edge Neural Network Models

Challenge: edge ML accelerators have to execute inference 
efficiently across a wide variety of NN models

CNN

RNNTransducers LSTMs

Face Detection

Speech Recognition

Image Captioning

Language Translation

RCNN
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Edge TPU: Baseline Accelerator
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Google Edge NN Models

78

We analyze inference execution using 24 edge NN models 

13 CNN

Face Detection

6 RNNTransducers

Speech Recognition

2 LSTMs

Language Translation

Image Captioning

3 RCNNGoogle Edge TPU
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Major Edge TPU Challenges

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

We find that the accelerator suffers from 
three major challenges:
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(1) High Resource Underutilization

We find that the accelerator operates significantly below 
its peak throughput across all models
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(2) Low Energy Efficiency
The accelerator operates far below 
its upper bound energy efficiency
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(3) Inefficient Memory Access Handling 
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Parameter traffic (off-chip and on-chip) takes 
a large portion of the inference energy and performance

46% and 31% of total energy goes to off-chip parameter traffic
and distributing parameters across PE array
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Major Edge TPU Challenges

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

We find that the accelerator suffers from 
three major challenges:

Question: Where do these challenges come from?
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Model Analysis:
Let’s Take a Deeper Look

Into the Google Edge NN Models
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Diversity Across the Models
Insight 1: there is significant variation in terms of 

layer characteristics across the models
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Diversity Within the Models

For example, our analysis of edge CNN models shows: 

1

2

Insight 2: even within each model, layers exhibit 
significant variation in terms of layer characteristics
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Root Cause of Accelerator Challenges
The key components of Google Edge TPU are completely 

oblivious to layer heterogeneity

While this approach might work for a specific group of layers, it fails 
to efficiently execute inference across a wide variety of edge models

DRAM
PE Array

B
uf

fe
r

Dataflow

Off-chip 
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth
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Mensa Framework
Goal: design an edge accelerator that can efficiently run

inference across a wide range of different models and layers

1

2

Instead of running the entire NN model on 
a monolithic accelerator: 

Mensa: a new acceleration framework for edge NN inference
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Mensa High-Level Overview

Monolithic Accelerator
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Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
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Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
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Identifying Layer Families
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Key observation: the majority of layers group into 
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Families 1 & 2: low parameter footprint, high data reuse and MAC intensity 
→ compute-centric layers 

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity 
→ data-centric layers 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 

Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline 
- Near-data accelerator 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Mensa-G lowers on-chip/off-chip parameter traffic energy by 
15.3x by scheduling layers on the accelerator with the most 

appropriate dataflow and memory bandwidth

Mensa-G reduces the dynamic energy of the on-chip 
buffer and NoC by 49.8x over Base+HB by avoiding

overprovisioning and catering to specialized dataflows
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Mensa-G improves energy efficiency by 3.0X
compared to the Baseline



Throughput Analysis
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compared to the Baseline
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More in the Paper 
• Details about Mensa Runtime Scheduler

• Details about Pascal, Pavlov, and Jacquard’s 
dataflows

• Energy comparison with Eyeriss v2

• Mensa-G’s utilization results 

• Mensa-G’s inference latency results
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Conclusion
Context:  We extensively analyze a state-of-the-art edge ML accelerator 
(Google Edge TPU) using 24 Google edge models

– Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem:  The Edge TPU accelerator suffers from three challenges:
– It operates significantly below its peak throughput
– It operates significantly below its theoretical energy efficiency
– It inefficiently handles memory accesses

Key Insight:  These shortcomings arise from the monolithic design of the 
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity 

Key Mechanism:  A new framework called Mensa
– Mensa consists of heterogeneous accelerators whose dataflow and 

hardware are specialized for specific families of layers

Key Results:  We design a version of Mensa for Google edge ML models
– Mensa improves performance and energy by 3.0X and 3.1X
– Mensa reduces cost and improves area efficiency
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Executive Summary
• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  
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Real-Time Analysis
An explosive interest in many applications domains to 

perform data analytics on the most recent version of data 
(real-time analysis) 

Use transactions to record
each periodic sample of data 

from all sensors

Run analytics across 
sensor data to make 

real-time steering decisions

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

Self-Driving Cars

113Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Traditionally, new transactions (updates) are propagated to the 
analytical database using a periodic and costly process

To support real-time analysis: a single hybrid DBMS is used 
to execute both transactional and analytical workloads

Transactions

Hybrid DBMS 
(HTAP System)

Analytics

Data
Migration

Analytics

Transactional 
DBMS

Transactions

Analytical
DBMS

hours/days

HTAP: Supporting Real-Time Analysis
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Ideal HTAP System Properties

2 Data Freshness and Consistency Guarantees
• Guarantee access to the most recent version of data for 

analytics while ensuring that transactional and analytical 
workloads have a consistent view of data

1 Workload-Specific Optimizations
• Transactional and analytical workloads must benefit from their 

own specific optimizations

3 Performance Isolation
• Latency and throughput of  transactional and analytical 

workloads are the same as if they were run in isolation

An ideal HTAP system should have three properties:

Achieving all three properties at the same time
is very challenging
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1
2

Main Replica

Transactions Analytics

Single-Instance

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance

We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation 

because of high main memory contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:
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Since both analytics and transactions work on the same data 
concurrently, we need to ensure that the data is consistent 

There are two major mechanisms to ensure consistency:

1 Snapshotting

2
Multi-Version 
Concurrency 

Control (MVCC)
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Single-Instance: Data Consistency
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Drawbacks of Snapshotting and MVCC
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Throughput loss comes from 
memcpy operation: 
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long version chains: 
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We evaluate the throughput loss caused by Snapshotting and MVCC:

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



1

1
2

We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation 

because of high main memory contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:
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Transactions Analytics

Single-Instance
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One of the major challenges in multiple-instance systems is 
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from 
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation 
and apply those updates to analytical replicas

Replica

Analytical 
Replica

Analytical 
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness 
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Transactional throughput reduces by up to 21.2% during the 
update gathering & shipping process
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Transactional throughput reduces by up to 64.2% during the
update application process

We evaluate the throughput loss caused by Update Propagation:
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11 State-of-the-art HTAP systems do not achieve 
all of the desired HTAP properties1

Data freshness and consistency mechanisms are 
data-intensive and cause a drastic reduction in throughput2
These systems fail to provide performance isolation 

because of high main memory contention3

Take advantage of custom algorithm and 
processing-in-memory (PIM) to address these challenges

Problem and Goal
Problems:

Goal:
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Key idea: partition computing resources into 
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high main memory contention2
Design efficient data freshness and consistency 
mechanisms without incurring high data movement costs 3

Polynesia
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• Leverage processing-in-memory (PIM) to reduce data movement
• PIM mitigates data movement overheads by 

placing computation units nearby or inside memory



Designed to sustain
bursts of updates  

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate 
data movement bottleneck Conventional multicore CPUs 

with multi-level caches

Polynesia: High-Level Overview
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One of the major challenges in multiple-instance systems is 
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from 
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation 
and apply those updates to analytical replicas
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2nd and 3rd stages generate a large amount of data movement 
and account for 87.2% of our algorithm’s execution time

Update Gathering & Shipping:  Algorithm

2 3

Update gathering & shipping algorithm has three major stages:

Scan and Merge
Transactional Updates

Merge
+ Sort

Update Logs

…

Tnx. 1

Tnx. N

Tnx. 2

Transfer Updates
to Analytical Replica

Copy

Columni
Buffer

Updatek

Find Target Column 
at Analytical Replica

Hash
Table

Target 
Column

Updatek

Final 
Update Log

130Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



To avoid these bottlenecks, we design a new hardware accelerator, 
called update gathering & shipping unit

Update Gathering & Shipping:  Hardware

Merge Unit

Final 
Log

=

=

=

=

=

=

=

Comparator tree

Input log 
queues

Hash Lookup Unit

Front-End 
Engine

Reorder 
Buffer

Read/
Write

Probe Units

Copy Unit

Hash Index

Fetch 
Unit

Fetch 
Unit

Fetch 
Unit

Fetch 
Unit

Tracking Buffer

Write-Back UnitWrite-Back UnitWrite-Back Unit
Writeback 

Unit

Mem. Ctrl.

Memory Address
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A 3-level comparator 
tree to merge 

updates
Decoupled hash computation from 

the hash bucket traversal to allow for 
concurrent hash lookups

Multiple fetch and write-back units 
to issue multiple memory accesses 

concurrently



Analytical Replica
C1 C2 C3C1 C2 C3

Row 1
Row 2
Row 3

Transactional Replica

Update:  Row 2, Column 1 and 3

1 A simple tuple update in row-wise layout leads to 
multiple random accesses in column-wise layout

2 Updates change encoded value in the dictionary à (1) Need to 
reconstruct the dictionary, and (2) recompress the column

Compressed 
Column

Dictionary

2
1
0
3

ID Value
0
1
2
3

ann
car
cat
ear

Update Propagation: Update Application
Goal: perform the necessary format conversation and 

apply transactional updates to analytical replicas
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1

Build Update Dict.

Sort
Updates

Update Dict.

Build New Dict. and Index 

Update Dict.Dict.

New Dict. Index

New Compressed Col.

Location in
New Dict.

Old Col.
Value

Index

New Dict.

Encoded
Value

We design our update application algorithm to be aware of 
PIM logic characteristics and constraints

Avoids the need to decompress 
the column and add updates, 

eliminating data movement and 
random accesses to 3D DRAM

We maintain a hash index that 
links the old encoded value in a 

column to the new encoded value

Update Application:  Algorithm 
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We design a hardware implementation of our algorithm, and 
add it to each in-memory analytical island

Update Application: Hardware

Hash Lookup Unit

Front-End 
Engine

Probe Units

Merge Unit

=

=

=

=

=

=

=

Comparator TreeFIFOs

Sort Unit

1024-Bitonic 
Sorter Network

FIFOs
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A 1024-value bitonic sorter, 
whose basic building block is a 

network of comparators

Similar design as our
update gathering & shipping unit
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Consistency Mechanism:  Algorithm
For each column, there is a chain of snapshots where each

chain entry corresponds to a version of the column

Unlike chains in MVCC, each 
version is associated with a 

column, not a row

Snapshot
V1

Snapshot
V2

Compressed 
Column

Snapshot
V3

Updates

Polynesia creates a new snapshot only if 
(1) any of the columns are dirty, and

(2) no current snapshot exists for the same column 
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Polynesia does not create a snapshot 
every time a column is updated. 

Instead, Polynesia marks the column 
as dirty



Consistency Mechanism: Hardware
Our algorithm success at satisfying performance isolation relies 

on how fast we can do memcpy to minimize snapshotting latency

Look-ups at the tracking 
buffer

limit performance
à use a hash index to 
alleviate performance 

bottlenecks

Copy Unit

Hash Index

Fetch Unit
Fetch Unit

Fetch Unit

Fetch 
Unit

Tracking Buffer

Write-Back Unit
Write-Back Unit

Write-Back Unit
Writeback 

Unit

Mem. Ctrl.

Memory Address

Track outstanding reads, as they may 
come back from memory out of order. 
Allows to immediately initiate a write 

after a read is complete

Multiple 
fetch and writeback units 
to issue multiple memory 

accesses concurrently
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Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

The execution of physical operators of analytical queries 
significantly benefit from PIM

Without PIM-aware data placement/task scheduler, 
PIM logic for operators alone cannot provide throughput

Analytical Engine: Query Execution
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1 Data layout and data placement



Colum
n 1

Colum
n 2

Colum
n 3

Colum
n 4

Interconnect

Vault 4Vault 3

Vault 1 Vault 2

Local

Interconnect

Vault 4Vault 3

Vault 1 Vault 2
Distributed

Interconnect

Vault 4Vault 3

Vault 1 Vault 2
Hybrid

Vault G
roup A 

Vault G
roup B 

Limits the area/power/bandwidth 
available to the 

analytical engine inside a vault 

Creates 
inter-vault communication overheads

Increases the aggregate bandwidth for 
servicing each query by 4 times, 

and provides up to 4 times the power/area 
for PIM logic compared to Local

Problem: how to partition analytical data 
across vaults of the 3D-stacked memory

Analytical Engine: Data Placement
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Other details in the paper:

Task scheduling policy

How each physical operator is executed

We design a pull-based task assignment strategy, where PIM threads 
cooperatively pull tasks from the task queue at runtime

We employ the top-down Volcano (Iterator) execution model to 
execute physical operations (e.g., scan, filter, join) while respecting 
operator’s dependencies  

Analytical Engine: Query Execution
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Methodology
• We adapt previous transactional/analytical engines with 

our new algorithms
– DBx1000 for transactional engine
– C-store for analytical engine 

• We use gem5 to simulate Polynesia
– Available at: https://github.com/CMU-SAFARI/Polynesia

• We compare Polynesia against: 
– Single-Instance-Snapshotting (SI-SI)
– Single-Instance-MVCC (SI-MVCC)
– Multiple-Instance + Polynesia’s new algorithms (MI+SW)
– MI+SW+HB: MI+SW with a 256 GB/s main memory device
– Ideal-Txn: the peak transactional throughput if transactional 

workloads run in isolation  
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End-to-End System Analysis (1/5)
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While SI-MVCC is the best baseline for transactional throughput, 
it degrades analytical throughput by 63.2%,  

due to its lack of workload-specific optimizations and consistency mechanism

145Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



0

0.2

0.4

0.6

0.8

1

8M 16M 32M

N
or

m
al

.  T
ra

ns
ac

ti
on

al
 

T
hr

ou
gh

pu
t

Number of  Transactions

SI-MVCC MI+SW MI+SW+HB Polynesia Ideal-Txn

0

0.5

1

1.5

2

8M 16M 32MN
or

m
al

. A
na

ly
ti

ca
l 

T
hr

ou
gh

pu
t

Number of  Transactions

End-to-End System Analysis (2/5)

Polynesia comes within 8.4% of ideal Txn
because it uses custom PIM logic for 

data freshness/consistency mechanisms,
significantly reducing main memory contention and data movement
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End-to-End System Analysis (3/5)

MI+SW+HB is the best software-only HTAP 
for analytical workloads, because it provides 
workload-specific optimizations, but it still 

loses 35.3% of the analytical throughput
due to high main memory contention
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End-to-End System Analysis (4/5)

Polynesia improves over MI+SW+HB by 63.8%, 
by eliminating data movement, and using 
custom logic for update propagation and 

consistency
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End-to-End System Analysis (5/5)

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x) 

over prior HTAP systems
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Energy Analysis 
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Polynesia is an energy-efficient HTAP system, 
reducing energy consumption by 48%, 

on average across prior works 

Polynesia consumes 0.4x/0.38x/0.5x the energy of SI-SS/SI-MVCC/MI+SW since
Polynesia eliminates a large fraction (30%) of off-chip DRAM accesses 
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More in the Paper 
• Real workload analysis

• Effect of the update propagation technique 

• Effect of the consistency mechanism

• Effect of the analytical engine

• Effect of the dataset size

• Area Analysis 
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Conclusion
• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  
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