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Executive Summary

Problem: time series analysis is bottlenecked by data
movement in conventional hardware platforms

Goal: enable high-performance and energy-efficient
time series analysis for a wide range of applications

Contributions: first near-data processing accelerator
for time series analysis based on matrix profile algo.

NATSA Evaluations:

e NATSA provides up to 14.2x higher performance and consumes up
to 27.2x less energy than a DDR4 platform with 8 000 cores

e NATSA outperforms an HBM-NDP platform with 64 in-order cores
by 6.3x while consuming 10.2x less energy
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Time Series Analysis

* Time series analysis has many applications

Monthly values for the AMO index, 1856 -2013

lert = 1 8 e

T T T T T T T T

ol e
g 02} (i14d .3 e = - =
2 ¢ P-R sT
g 02 - 2 segment
Climate change [1] Medicine [2]
CBOE Volatility Index +Amplitude
- 50
e 40
- 30|
; P PP P F PSP PP LR PIPELLLEPA PP -50! i
I I AL LLLLSLLLLELEI SIS LSS 60 = - - - Time (s)
Economics [3] Signal processing [4]

[1] M. Saker et al. “Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data”. Agr. Sys, 2012
[2] CK Peng et al. “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series”. Chaos, 1995
[3] Clive Granger and Paul Newbold. “Forecasting economic time series”, Academic Press, 2014

—o [4] 0. Rioul and M. Vetterly. “Wavelets and signal processing”. IEEE signal processing magazine, 1991
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Time Series Analysis

* Time series analysis has many applications
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Astronomy [5]

[5] Vio, R., et al. "Time series analysis in astronomy-an application to quasar variability studies.” The Astrophysical
Journal, 1992
[6] Shumway, R. and D. Stoffer. “Time series analysis and its applications: with R examples”. Springer, 2017
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Motifs and Discords

e Given a sliced time series into subsequences
o motif discovery focuses on finding similarities
o discord discovery focuses on finding anomalies

e Naive example of anomaly detection:
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Matrix Profile

e Matrix profile: an algorithm (and an open source
tool), intended for motif and discord discovery
e Easy to use: only subsequence length is needed
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SCRIMP

e SCRIMP: state-of-the-art CPU matrix profile
implementation (also GPU and CPU-GPU available)
e We characterize SCRIMP using an Intel Xeon Phi KNL
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SCRIMP

SCRIMP is heavily bottlenecked
by data movement




Our goal:
Enabling high-performance and energy-efficient
time series analysis for a wide range of applications
by minimizing the overheads of data movement

To this end, we propose NATSA,
the first Near-data processing Accelerator for Time
Series Analysis that exploits 3D-stacked HBM
memories and specialized processing logic
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NATSA Overview

e NATSA is designed to
o Fully exploit the memory bandwidth of HBM
o Employ the required amount of computing
resources to provide a balanced solution

e NATSA consists of multiple processing units (PUs)
o Each PU includes energy-efficient floating-point
units and bitwise operators
o PUs are desighed to compute batches of
diagonals of the distance matrix following a
vectorized approach
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e NATSA PUs
consist of four
hardware

components:
o Dot Product
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NATSA PU Execution Flow

e The execution flow through the hardware
components of a PU includes the following steps:

1) Dot product
computation
of the first

element of
the diagonal
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NATSA PU Execution Flow

e The execution flow through the hardware
components of a PU includes the following steps:

2) Euclidean
distance
computation
of the first
element of
the diagonal
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NATSA PU Execution Flow

e The execution flow through the hardware

components of a PU includes the following steps:
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NATSA PU Execution Flow

e The execution flow through the hardware
components of a PU includes the following steps:

4) Dot product
update
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NATSA PU Execution Flow

e The execution flow through the hardware

components of a PU includes the following steps:

5) Second and
successive
Euclidean

distance

computations
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NATSA PU Execution Flow

e The execution flow through the hardware

components of a PU includes the following steps:

PUL

D
D

= DCU

m

—>
ti,m — :— — ql.J ﬁj ° °u >
x| OO0

control f

Qi+1,j+1

1KB Scratchpad Memory

6) Second and | -
successive 15: ree T~
profile .
updates . unit |
T DPUU B
@:E;iz:@qi" :
~ b =
S ALDEBARAN 20

=3

SAFARI




Workload Scheduling Scheme

e We ensure load balancing among PUs using a static
partition scheduling
o We assign pairs of diagonals to each PU that sum
the same number of cells to compute
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Programming Interface

e The user is responsible for 1) allocating the time
series and 2) providing the subsequence length

e NATSA will provide the user the computed profile
and profile index vectors as a result

NATSA API

1: function P, I < NATSA(T, m, exc, conf)

2:  w,0 < precalculate MeanDev(T, m)

3: PP, Il < allocatePrivateProfiles(T, m,exc)
4:  idx < diagonalScheduling(T, m,exc)

5:  START_ACCELERATOR(1',m, exc,conf,idx, PP, II)
6 P, I < reduction(PP,II)
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Simulation Environment

e We use an in-house integration of ZSim and
Ramulator to simulate general-purpose hardware
platforms

e We use McPAT to obtain area and power for the
general-purpose hardware platforms

e We use the integration of Aladdin and gem5 to
obtain performance, power and area of NATSA

e We obtain the memory side power consumption
using Micron Power Calculator
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Hardware Platforms

e We define several representative simulated
hardware platforms for the evaluation:

Hardware Platform Cores / PUs Caches (L1/L2/L3) Memory
DDR4-000 8 000 @ 3.75 GHz | 32KB / 256KB / 8MB 16 GB DDR4-2400
DDR4-inOrder 64 in-order @2.5GHz 32KB/ - /| - 16 GB DDR4-2400
HBM-000 8 000 @ 3.75 GHz | 32KB / 256KB / 8MB 4 GB HBM2
HBM-inOrder 64 in-order @2.5GHz 32KB/ - /| - 4 GB HBM2
NATSA 48PUs @ 1GHz 48KB (Scratchpad) 4 GB HBM2

e We also evaluate NATSA against real hardware
platforms (Intel Xeon Phi KNL, NVIDIA Tesla K40c
and NVIDIA GTX 1050)
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Performance of NATSA

e We compare the performance of NATSA with
respect to the general-purpose hardware platforms
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Performance of NATSA

NATSA outperforms the baseline
(DDR4-000) by up to 14.2x
(9.9x on average)




Power Consumption

e We compare the power consumption of NATSA
with respect to simulated and real hardware

platforms
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Power Consumption

NATSA has the lowest power
consumption
Most of NATSA’s power is consumed
by memory




Energy Consumption

e We compare the energy consumption of NATSA

with respect to simulated and real hardware
platforms
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Energy Consumption

NATSA reduces energy consumption
. by up to 27.2x over DDR4-000

. by up to 10.2x over HBM-inOrder
. by up to 1.7x over an NVIDIA K40c




Area

e We compare the area of NATSA with respect to
simulated and real hardware platforms
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NATSA (even at 45nm technology
node) requires the least area




Talk Outline

Motivation

NATSA Design

NATSA Evaluation

Conclusions

34

SAFARI



Executive Summary

Problem: time series analysis is bottlenecked by data
movement in conventional hardware platforms

Goal: enable high-performance and energy-efficient
time series analysis for a wide range of applications

Contributions: first near-data processing accelerator
for time series analysis based on matrix profile algo.

NATSA Evaluations:

e NATSA provides up to 14.2x higher performance and consumes up
to 27.2x less energy than a DDR4 platform with 8 000 cores

e NATSA outperforms an HBM-NDP platform with 64 in-order cores
by 6.3x while consuming 10.2x less energy
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