
SparseP
Towards Efficient Sparse Matrix Vector Multiplication

on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna,

Nectarios Koziris, Georgios Goumas, Onur Mutlu

2

Our Work
Efficient Algorithmic Designs
• The first open-source Sparse Matrix Vector Multiplication

(SpMV) software package, SparseP, for real Processing-In-
Memory (PIM) systems

Extensive Characterization
• The first comprehensive analysis of SpMV on the first real

commercial PIM architecture

Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Recommendations for Architects and Programmers

SparseP: https://github.com/CMU-SAFARI/SparseP

SparseP is Open-Source

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

3

Sparse Matrix Vector Multiplication
Sparse Matrix Vector Multiplication (SpMV):
§ Widely-used kernel in graph processing,

machine learning, scientific computing …

§ A highly memory-bound kernel

Operational Intensity

Pe
rf

or
m

an
ce

Peak Compute Performance

Pe
ak

 M
em

or
y B

an
dw

idt
h

SpMV

Roofline Model

4

Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

Host
CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryMain Memory
DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
BankBus

5

Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

Host
CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryMain Memory
DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
BankBusKwon+, [ISSCC 2021] Lee+, [ISSCC 2022]

https://www.upmem.com

6

SparseP: SpMV Library for Real PIMs
Our Contributions:
1. Design efficient SpMV kernels for current and future PIM

systems
§ 25 SpMV kernels

§ 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
§ 6 data types
§ 4 data partitioning techniques
§ Various load balancing schemes among PIM cores/threads
§ 3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first
commercially-available real PIM system
§ 26 sparse matrices
§ Comparisons to state-of-the-art CPU and GPU systems
§ Recommendations for software, system and hardware

designers

7

Outline

Key Takeaways from Our Study

Conclusion

8

SpMV Execution on a PIM System

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

Host CPU

+

Load the
input vector

Execute the
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM
Bank

DRAM
Bank

9

Data Partitioning Techniques

1D Partitioning

=

1x
ou

tp
ut

 v
ec

to
r

*

4x
in

pu
t

ve
ct

or Core 1
Core 2
Core 3
Core 4

perform the complete
SpMV computation
only on PIM cores

2D Partitioning

2x
ou

tp
ut

 v
ec

to
r

=

2x
in

pu
t

ve
ct

or

*
Core 1 Core 2

Core 3 Core 4

trade-off
computation vs

data transfer costs

SparseP supports two types of data partitioning techniques:

10

1D Partitioning Technique
Load-Balancing Approaches:
• CSR, COO:
• Balance Rows
• Balance NNZs *

• BCSR, BCOO:
• Balance Blocks ^
• Balance NNZs ^

* row-granularity for CSR
^ block-row-granularity for BCSR

11

1D Partitioning Technique
Load-Balancing of #NNZs:
• CSR (row-granularity), COO

CSR

0 1 3 5 7 7 8 8 9
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowptr
colind
values

0 1 1 2 2 3 3 5 7
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowind
colind
values

COO

row-order nnz-order

Core 1

Core 2

Core 3

Core 1
Core 2

Core 3

row-
granularity

nnz-
granularity

12

1D Partitioning Technique
Load-Balancing of #NNZs:
• CSR (row-granularity), COO
• BCSR (block-row-granularity), BCOO

ΒCSR

0 1 3 5 7 7 8 8 9
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowptr
colind
values

0 1 1 2 2 3 3 5 7
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowind
colind
values

ΒCOO

block-row-order block-order

Core 1

Core 2

Core 3

Core 1
Core 2

Core 3

block-row-
granularity

block-
granularity

13

2D Partitioning Technique
Equally-Sized Tiles

output
vector

+
Core 1 Core 3

Core 2 Core 4

4x 4x
2x

input vector

4x 4x

output
vector

Core 1

Core 3

Core 2
Core 4

2x

input vector

+

output
vector

+

Core 1
Core 3

Core 2
Core 4

3x 5x

2x

input vector

Equally-Wide Tiles Variable-Sized Tiles

High NNZ imbalance
across PIM cores

High NNZ balance
across PIM cores of the
same vertical partition

High NNZ balance
across all PIM cores

14

Parallelization across Threads
Multithreaded PIM Cores:

DRAM
Bank

Multithreaded
PIM Core

Core 1

Core 2

Core 4
Core 3

Core 1 Core 2

Core 4Core 3

1D Partitioning 2D Partitioning

Thread 2
Thread 1

Thread 2

Thread 1

• Various load-balance schemes across threads
• Various synchronization approaches among threads

Balance NNZs
Balance NNZs

15

SparseP Software Package
25 SpMV kernels for PIM Systems à

https://github.com/CMU-SAFARI/SparseP

Load-balance
across PIM cores/threads:
* row-granularity (CSR)
^ block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
▵ lb-cg, lb-fb, lf (COO, BCOO)

Data Types:
• 8-bit integer
• 16-bit integer
• 32-bit integer
• 64-bit integer
• 32-bit float
• 64-bit float

Partitioning Matrix Format Load-Balancing

9x
1D

Kernels

CSR rows, nnzs *

COO▵ rows, nnzs *, nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

4x
2D

Equally-Sized Tiles

CSR --

COO▵ --

BCSR --

BCOO▵ --

6x
2D

Equally-Wide Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

6x
2D

Variable-Sized Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnz

https://github.com/CMU-SAFARI/SparseP

16

Outline

SpMV Kernels for Real PIM Systems

Conclusion

17

UPMEM-based PIM System
• 20 UPMEM PIM DIMMs with 2560 PIM cores in total
• Each multithreaded PIM core supports 24 threads

Host CPU
(2-socket,
Intel Xeon) PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory160 GB PIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory128 GB Main Memory
DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
BankBus

DISPATCH
FETCH
ALU

MERGE14
-s

ta
ge

Pi

pe
lin

e 24 KB
Instr. Mem.

64 KB
Data Mem.

D
M

A
En

gi
ne 64 MB

DRAM
Bank

64
bits24x

threads

18

Sparse Matrix Data Set
26 sparse matrices*:
• Diverse sparsity patterns
• Variability on irregular patterns
• Variability on block patterns

Regular Matrix Scale-Free Matrix

* Suite Sparse Matrix Collection: https://sparse.tamu.edu/

https://sparse.tamu.edu/

19

Kernel Execution on PIM Cores

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

Host CPU

+

Load the
input vector

Execute the
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM
Bank

DRAM
Bank

2048 PIM Cores, 32-bit integer

20

Comparison of Compressed Formats

0
1
2
3
4
5
6
7
8

regular matrices scale-free
matrices

Sp
ee

du
p

CSR COO

BCSR BCOO

6.86x
13.66x

Core 1

In scale-free matrices, COO + BCOO provide higher non-zero
element balance across PIM cores than CSR + BCSR, respectively.

Core 2

Core 1

Core 2

COOCSR
(row-granularity)

1D
Scale-free: COO, BCOO à

10.26x CSR, BCSR

2048 PIM Cores, 32-bit integer

21

Comparison of Compressed Formats

0

0.2

0.4

0.6

0.8

1

1.2

1.4

regular matrices scale-free
matrices

Sp
ee

du
p

CSR COO

BCSR BCOO
1.23x

1.55x

In scale-free matrices, COO + BCOO provide higher non-zero
element balance across threads than CSR + BCSR, respectively.

Core 1 Core 3

Core 2 Core 4

CSR
(row-granularity)

COO

Thread 1

Thread 2

Thread 1

Thread 2

2D Equally-Sized Tiles

Scale-free:
COO, BCOO à

1.39x CSR, BCSR

2048 PIM Cores, 32-bit integer

22

Comparison of Compressed Formats

0

10

20

30

40

50

regular matrices scale-free
matrices

Sp
ee

du
p

2D Equally-Wide Tiles

CSR COO

BCSR BCOO

0
5

10
15
20
25
30
35
40
45

regular matrices scale-free
matrices

Sp
ee

du
p

2D Variable-Sized Tiles

CSR COO
BCSR BCOO

44x 42x 40x46x

22x 24x 20x 21x

COO + BCOO formats provide higher non-zero element balance
across PIM cores + threads than CSR + BCSR, respectively.

COO, BCOO à 32.38x CSR, BCSR

2048 PIM Cores, 32-bit integer

23

Comparison of Compressed Formats

0
2
4
6
8

regular matrices scale-free
matrices

Sp
ee

du
p

1D
CSR COO

BCSR BCOO

0

0.5

1

1.5

regular matrices scale-free
matrices

Sp
ee

du
p

2D Equally-Sized
CSR COO
BCSR BCOO

0
10
20
30
40
50

regular matrices scale-free
matrices

Sp
ee

du
p

2D Equally-Wide
CSR COO
BCSR BCOO

0
10
20
30
40
50

regular matrices scale-free
matrices

Sp
ee

du
p

2D Variable-Sized
CSR COO

The compressed matrix format used to store the input matrix
determines the data partitioning across DRAM banks of PIM-enabled
memory. As a result, it affects the load-balance across PIM cores (and
threads of a PIM core) with corresponding performance implications.

Key Takeaway 1

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high
computation balance across PIM cores (and threads of a PIM core).

Recommendation 1

24

End-to-End Performance

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

Host CPU

+

Load the
input vector

Execute the
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM
Bank

DRAM
Bank

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

25

Scalability

1D: #bytes to load the input vector grows linearly to #PIM cores

The scalability is limited
by the load time

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

26

Scalability

The 1D-partitioned kernels are severely bottlenecked by the high
data transfer costs to broadcast the whole input vector into DRAM
banks of all PIM cores, through the narrow off-chip memory bus.

Key Takeaway 2

Optimize the broadcast collective collective in data transfers to
PIM-enabled memory to efficiently copy the input data into DRAM
banks in the PIM system.

Recommendation 2

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

27

Scalability

2D Equally-Sized: kernel time is limited by only
a few PIM cores assigned to the 2D tiles with the largest #NNZs

The scalability is limited
by the kernel time

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

28

Scalability

2D Equally-Wide + 2D Variable-Sized:
high amount of zero padding to gather the output vector à

parallel transfers supported at rank granularity = 64 PIM cores

> 88% of data is zeros

The scalability is limited
by the retrieve time

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

29

Scalability

88.6% 88.0%

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve
the output results to the host CPU.

Recommendation 3

The 2D equally-wide and variable-sized kernels need fine-grained
parallel data transfers at DRAM bank granularity (zero padding) to
be supported by the PIM system to achieve high performance.

Key Takeaway 3

Up to 2528 PIM Cores, 32-bit float

30

1D vs 2D

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

hg
c

m
c2

pf
m rt
n

rj
t

as
h

de
l

td
k

m
em am

z

ft
h

w
bg ld

r

ps
b

bn
s

w
bs in

pk
s

cm
b

sx
w sk
t

as
k

G
M

 (
1)

G
M

 (
2)

Sp
ee

du
p

1D 2D (equally-sized)

1.45x

1.31x

regular scale-free

>1100 Idle Cores >2200 Idle Cores

Best-performing SpMV execution:
trades off computation with lower data transfer costs

2528 PIM Cores, 32-bit float

31

1D vs 2D

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

hg
c

m
c2

pf
m rt
n

rj
t

as
h

de
l

td
k

m
em am

z

ft
h

w
bg ld

r

ps
b

bn
s

w
bs in

pk
s

cm
b

sx
w sk
t

as
k

G
M

 (
1)

G
M

 (
2)

Sp
ee

du
p

1D 2D (equally-sized)

1.45x

1.31x

regular scale-free

1329 Cores 253 Cores

Expensive data transfers to/from PIM-enabled memory performed
via the narrow memory bus impose significant performance
overhead to end-to-end SpMV execution. Thus, it is hard to fully
exploit all available PIM cores of the system.

Key Takeaway 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in
the PIM system, and/or integrate PIM-enabled memory as the main
memory of the system.

Recommendation 4

32

SpMV Execution on Various Systems

Real PIM
System

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core Host CPU

+

Load the
input vector

Execute
the kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory
DRAM
Bank

DRAM
Bank

bus

Main Memory
DRAM
Bank

DRAM
Bank

Host
CPU

Execute the kernel1
CPU System

GPU System

SMX2 SMX2

Load the
input vector

Execute the kernel

Retrieve
the final vector

1
2

3

GPU Global
Memory

DRAM
Bank

DRAM
Bank

Host
CPU

GPU Cores
bus

Main Memory
DRAM
Bank

DRAM
Bank

33

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

34

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

35

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU = 4.08 GFlop/s
• GPU = 1.92 GFlop/s
• PIM (1D) = 0.11 GFlop/s

36

CPU/GPU Comparisons
• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU = 4.08 GFlop/s
• GPU = 1.92 GFlop/s
• PIM (1D) = 0.11 GFlop/s

Many more results in the full paper:
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf

37

Outline

SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study

38

Conclusion
• SpMV is a fundamental linear algebra kernel for important

applications (HPC, machine learning, graph analytics…)

• SpMV is a highly memory-bound kernel in processor-centric
systems (e.g., CPU and GPU systems)

• Real near-bank PIM systems can tackle the data movement
bottleneck (high parallelism, large aggregate memory bandwidth)

• Key Contributions:
• SparseP : first open-source SpMV library for real PIM systems
• Comprehensive characterization and analysis of SPMV on the first

real PIM system
• Recommendations to improve multiple aspects of future PIM

hardware and software

SparseP: https://github.com/CMU-SAFARI/SparseP
Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Our Work

https://github.com/CMU-SAFARI/SparseP
https://arxiv.org/pdf/2201.05072.pdf

SparseP
Towards Efficient Sparse Matrix Vector Multiplication

on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna,

Nectarios Koziris, Georgios Goumas, Onur Mutlu

