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Abstract

Multiple applications executing concurrently on a multicore system interfere with each other at

different shared resources such as main memory and shared caches. Such inter-application inter-

ference, if uncontrolled, results in high system performance degradation and unpredictable appli-

cation slowdowns. While previous work has proposed application-aware memory scheduling as

a solution to mitigate inter-application interference and improve system performance, previously

proposed memory scheduling techniques incur high hardware complexity and unfairly slowdown

some applications. Furthermore, previously proposed memory-interference mitigation techniques

are not designed to precisely control application performance.

This dissertation seeks to achieve high and controllable performance in multicore systems by

mitigating and quantifying the impact of shared resource interference. First, towards mitigating

memory interference and achieving high performance, we propose the Blacklisting memory sched-

uler. We observe that ranking applications individually with a total order based on memory access

characteristics, like previous schedulers do, leads to high hardware cost, while also causing un-

fair application slowdowns. The Blacklisting memory scheduler overcomes these shortcomings

based on two key observations. First, we observe that, to mitigate interference, it is sufficient

to separate applications into only two groups, one containing applications that are vulnerable to

interference and another containing applications that cause interference, instead of ranking in-

dividual applications with a total order. Vulnerable-to-interference group is prioritized over the

interference-causing group. Second, we show that this grouping can be efficiently performed by

simply counting the number of consecutive requests served from each application – an application

that has a large number of consecutive requests served is dynamically classified as interference-
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causing. The Blacklisting memory scheduler, designed based on these insights, achieves high sys-

tem performance and fairness, while incurring significantly lower complexity than state-of-the-art

application-aware schedulers.

Next, towards quantifying the impact of memory interference and achieving controllable per-

formance in the presence of memory bandwidth interference, we propose the Memory Interference

induced Slowdown Estimation (MISE) model. The MISE model estimates application slowdowns

due to memory interference based on two observations. First, the performance of a memory-bound

application is roughly proportional to the rate at which its memory requests are served, suggesting

that request-service-rate can be used as a proxy for performance. Second, when an application’s

requests are prioritized over all other applications’ requests, the application experiences very lit-

tle interference from other applications. This provides a means for estimating the uninterfered

request-service-rate of an application while it is run alongside other applications. Using the above

observations, MISE estimates the slowdown of an application as the ratio of its uninterfered and

interfered request service rates. We propose simple changes to the above model to estimate the

slowdown of non-memory-bound applications. We propose and demonstrate two use cases that

can leverage MISE to provide soft performance guarantees and high overall performance/fairness.

Finally, we seek to quantify the impact of shared cache interference on application slowdowns,

in addition to memory bandwidth interference. Towards this end, we propose the Application

Slowdown Model (ASM). ASM builds on MISE and observes that the performance of an applica-

tion is strongly correlated with the rate at which the application accesses the shared cache. This is

a more general observation than that of MISE and holds for all applications, thereby enabling the

estimation of slowdown for any application as the ratio of the uninterfered to the interfered shared

cache access rate. This reduces the problem of estimating slowdown to estimating the shared cache

access rate of the application had it been run alone on the system. ASM periodically estimates each

application’s cache-access-rate-alone by minimizing interference at the main memory and quanti-

fying interference at the shared cache. We propose and demonstrate several use cases of ASM that

leverage it to provide soft performance guarantees and improve performance and fairness.
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Chapter 1

Introduction

1.1 Problem

Applications executing concurrently on a multicore chip contend with each other to access shared

resources such as main memory and shared caches. The main memory has limited bandwidth,

driven by constraints on pin counts. If the available shared cache capacity and memory bandwidth

are not managed well, different applications can harmfully interfere with each other, resulting

in significant degradation in both system performance and individual application performance.

Furthermore, the slowdown experienced by an application due to inter-application interference at

these shared resources depends on the other concurrently running applications and the available

memory bandwidth and shared cache capacity. Hence, different applications experience different

and unpredictable slowdowns.

Figure 1.1 shows leslie3d, an application from the SPEC CPU 2006 suite when it is run with

two different applications, gcc and mcf, on a simulated two-core system where the cores share a

main memory channel. As can be seen, leslie3d and mcf slow down significantly due to shared

resource interference (gcc does not slow down since it is largely compute-bound and does not

access the main memory much). Furthermore, leslie3d slows down by 1.9x when it is run with
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gcc, an application that rarely accesses the main memory. However, leslie3d slows down by 5.4x

when it is run with mcf, which frequently accesses the main memory. This is one representative

example demonstrating that an application experiences different slowdowns when run with appli-

cations that have different shared resource access characteristics. We observe this behavior across

a variety of applications, as also observed by previous works [82, 86, 87, 89], resulting in high and

unpredictable applications slowdowns.
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(a) leslie3d co-running with gcc
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(b) leslie3d co-running with mcf

Figure 1.1: leslie3d’s slowdown compared to when run alone

Inter-application interference and the resultant high application slowdowns are a major prob-

lem in most multicore systems, where multiple applications share resources. Furthermore, the

unpredictable nature of the slowdowns is particularly undesirable in several scenarios where some

applications are critical and need to meet requirements on their performance. For instance, in a

data center/virtualized environment where multiple applications, each potentially from a different

user, are consolidated on the same machine, it is common for each user to require a certain guar-

anteed performance for their application. Another example is in mobile systems where interactive

and non-interactive jobs share resources and the interactive jobs need to meet deadlines/frame rate

requirements. Our main research objective is to mitigate and quantify shared resource interfer-

ence, towards the end of achieving high and controllable application performance, through simple

and implementable slowdown estimation and shared resource management techniques.
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1.2 Our Solutions

1.2.1 The Blacklisting Memory Scheduler

Towards achieving our goal of high system performance and fairness, we propose the Blacklisting

memory scheduler, a simple memory scheduler design that is able to achieve high performance

and fairness at low cost by mitigating interference at the main memory. Although the problem of

memory interference mitigation has been much explored, with memory request scheduling being

the prevalent solution direction, we observe that previously proposed memory schedulers are both

complex and unfair. The main source of this complexity and unfairness is the notion of ranking

applications individually, with a total rank order, based on applications’ memory access character-

istics. Computing and enforcing ranks incurs high hardware complexity, both in terms of logic and

storage overhead. As a result, the critical path latency and chip area of ranking-based application-

aware memory schedulers is significantly higher compared to application-unaware schedulers.

For example, Thread Cluster Memory Scheduler (TCM) [61], a state-of-the-art application-aware

scheduler is 8x slower and 1.8x larger than a commonly-employed application-unaware scheduler,

FRFCFS [97]. Furthermore, when a total order based ranking is employed, applications that are at

the bottom of the ranking stack get heavily deprioritized and unfairly slowed down. This greatly

degrades system fairness.

In order to overcome these shortcomings of previous ranking-based schedulers, we propose

the Blacklisting memory scheduler (BLISS) [108, 109] based on two new observations. First, in

contrast to forming a total rank order of all applications (as done in prior works), we find that,

to mitigate interference, it is sufficient to i) separate applications into only two groups, one group

containing applications that are vulnerable to interference and another containing applications that

cause interference, and ii) prioritize the requests of the vulnerable-to-interference group over the

requests of the interference-causing group. Second, we observe that applications can be efficiently

classified as either vulnerable-to-interference or interference-causing by simply counting the num-
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ber of consecutive requests served from an application in a short time interval.

BLISS achieves better system performance and fairness than the best-performing previous

schedulers, while incurring significantly low complexity. However, BLISS does not tackle the

problem of unpredictable application slowdowns.

1.2.2 The Memory Interference induced Slowdown Estimation (MISE) Model

Towards tackling the problem of unpredictable application slowdowns, we first propose to esti-

mate/quantify and control application slowdowns in the presence of interference at the main mem-

ory. First, we estimate application slowdowns using the Memory Interference induced Slowdown

Estimation (MISE) model [111]. The MISE model accurately estimates application slowdowns

based on two key observations. First, the performance of a memory-bound application is roughly

proportional to the rate at which its memory requests are served. This observation suggests that

we can use request-service-rate as a proxy for performance, for memory-bound applications. As

a result, slowdown of such an application can be computed as the ratio of the request-service-rate

when the application is run alone on a system to that when it is run alongside other interfering ap-

plications. Second, the alone-request-service-rate of an application can be estimated by giving the

application’s requests the highest priority in accessing memory. Giving an application’s requests

the highest priority in accessing memory results in very little interference from other applica-

tions’ requests. As a result, most of the application’s requests are served as though the application

has all the memory bandwidth for itself, allowing the system to gather a good estimate for the

alone-request-service-rate of the application. We adapt these observations and extend the model to

estimate slowdowns of applications that are not bound at memory too.

Accurate slowdown estimates from the MISE model can enable several mechanisms to achieve

both high and controllable performance. We build two such mechanisms on top of our proposed

model to demonstrate its effectiveness.
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1.2.3 The Application Slowdown Model (ASM)

The MISE model estimates slowdowns due to interference at the main memory. However, it does

not take into account interference at the shared caches and assumes caches are private. The Ap-

plication Slowdown Model (ASM) [110] estimates slowdowns due to both shared cache and main

memory interference. ASM does so by exploiting the observation that the performance of each

application is roughly proportional to the rate at which it accesses the shared cache. This ob-

servation builds on MISE’s observation on correlation between memory request service rate and

performance. However, it is more general and applies to all applications, unlike MISE’s observa-

tion that applies only to memory-bound applications. ASM estimates alone-cache-access-rate in

two steps. First, ASM minimizes interference for an application at the main memory by giving the

application’s requests the highest priority at the memory controller, similar to MISE. Doing so also

enables ASM to get an accurate estimate of the average cache miss service time of the application

had it been run alone (to be used in the next step). Second, ASM quantifies the effect of interfer-

ence at the shared cache by using an auxiliary tag store to determine the number of shared cache

misses that would have been hits if the application did not share the cache with other applications

(contention misses). This aggregate contention miss count is used along with the average miss

service time (from the previous step) to estimate the actual time it would have taken to serve the

application’s requests had it been run alone.

We present and evaluate several mechanisms that can leverage ASM’s slowdown estimates to-

wards achieving different goals such as high performance, fairness, bounded application slow-

downs and fair billing, thereby demonstrating the model’s effectiveness.

1.3 Thesis Statement

High and controllable performance can be achieved in multicore systems through simple and im-

plementable mechanisms to mitigate and quantify shared resource interference.
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1.4 Contributions

This dissertation makes the following major contributions:

• This dissertation makes the observation that it is not necessary to rank individual applica-

tions with a total rank order, like most previous ranking-based application-aware memory

schedulers do, in order to mitigate interference between applications. This observation en-

ables the design of the Blacklisting memory scheduler, a low-complexity memory schedul-

ing technique that is able to achieve high performance and fairness, by simply categorizing

applications as interference-causing or vulnerable.

• This dissertation makes the observation that an application’s performance is roughly pro-

portional to the rate at which requests are generated to/served at a shared resource. This

observation can serve as a general principle enabling the estimation of progress/slowdowns

at different shared resources.

• This dissertation presents the Memory Interference induced Slowdown Estimation (MISE)

model that accurately estimates application slowdowns in the presence of memory interfer-

ence as the ratio of uninterfered to interfered request service rates, based on the correlation

between request service rate and performance.

• This dissertation presents the Application Slowdown Model (ASM) that accurately estimates

application slowdowns due to both shared cache and main memory interference, by minimiz-

ing interference at the main memory and quantifying interference at the shared cache.

• This dissertation builds several resource management mechanisms on top of MISE and ASM

that leverage their slowdown estimates to provide high performance, fairness and bounded

slowdowns, demonstrating MISE/ASM’s effectiveness in estimating slowdowns.
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1.5 Dissertation Outline

This dissertation is organized into eight chapters. Chapter 2 presents background on memory sys-

tem organization and discusses related prior work on shared resource management and providing

Quality of Service (QoS). Chapter 3 presents the design of the Blacklisting memory scheduler

(BLISS) and evaluates it against state-of-the-art memory request schedulers. Chapter 4 presents

the Memory Interference induced Slowdown Estimation (MISE) model and its evaluation against

previous slowdown estimation techniques. Chapter 5 presents memory bandwidth management

schemes that leverage the MISE model to provide bounded application slowdowns and fairness.

Chapter 6 presents the Application Slowdown Model (ASM) and compares it against previous

schemes that estimate slowdown due to both shared cache and main memory interference. Chap-

ter 7 presents several use cases that leverage slowdown estimates from ASM to provide high per-

formance, fairness and bounded slowdowns. Finally, Chapter 8 presents conclusions and future

research directions that are enabled by this dissertation.
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Chapter 2

Background and Related Prior Work

The problem of shared resource interference has been a significant deterrent to achieving high

and controllable system performance. Not surprisingly, several previous works have attempted

to mitigate interference at both the shared caches and main memory, with the goal of improving

system performance. However, few previous works have tackled the problem of unpredictable

application slowdowns in the presence of shared resource interference.

In this chapter, we will first provide a brief background on DRAM main memory organization

and discuss previous proposals in different related areas, namely memory interference mitigation,

DRAM optimizations to improve system performance, shared cache capacity management, Quality

of Service (QoS) and slowdown estimation.

2.1 DRAM Main Memory Organization

The DRAM main memory system is organized as channels, ranks and banks hierarchically as

shown in Figure 2.1. Channels are independent and can operate completely in parallel. Each

channel consists of ranks (typically 1 - 4) that share the command and data bus of the channel.

A rank consists of multiple banks. The banks can operate in parallel. However, all banks within

8



Memory
Controller

Shared
Cache

Processor

Memory
Controller

Core Core

Core Core

Channel

Channel

Rank

Bank

Rank

Bank

Figure 2.1: DRAM main memory organization

a channel share the command and data bus of the channel. Each bank, in turn, is organized as an

array of rows and columns. On a data access, the entire row containing the data is brought into

an internal structure called the row-buffer. Therefore, a subsequent access to the same row can be

served in the row-buffer itself and need not access the array. This is called a row hit. On an access

to a different row though, the array needs to be accessed. Such an access is called a row miss. A

row hit is served ∼2x faster than a row miss [47]. Please refer to [62, 70, 66] for more detail on

DRAM operation.

Commonly employed memory controllers employ a memory scheduling policy called First

Ready First Come First Served (FRFCFS) [129, 97] that leverages the row buffer by prioritiz-

ing row hits over row misses/conflicts. Older requests are then prioritized over newer requests.

FRFCFS aims to maximize DRAM throughput by prioritizing row hits. However, it unfairly prior-

itizes requests of applications that generate a large number of requests to the same row (high-row-

buffer-locality) and access memory frequently (high-memory-intensity) [82, 86].
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2.2 Related Work on Memory Scheduling

Much prior work has focused on mitigating this unfairness and inter-application interference at the

main memory, with the goals of improving system performance and fairness, of which a predom-

inant solution direction is memory request scheduling. Several previous works [86, 87, 83, 60,

61, 41, 34] have proposed application-aware memory scheduling techniques that take into account

the memory access characteristics of applications and schedule requests appropriately in order to

mitigate inter-application interference and improve system performance and fairness.

Mutlu and Moscibroda propose PARBS [87], an application-aware memory scheduler that

batches the oldest requests from applications and prioritizes the batched requests, with the goals

of preventing starvation and improving fairness. Within each batch, PARBS ranks individual ap-

plications based on the number of outstanding requests from the application and, using this total

rank order, prioritizes requests of applications that have low-memory-intensity to improve system

throughput. Kim et al. [60] observe that applications that receive low memory service tend to expe-

rience interference from applications that receive high memory service. Based on this observation,

they propose ATLAS, an application-aware memory scheduler that ranks individual applications

based on the amount of long-term memory service each application receives and prioritizes appli-

cations that receive low memory service, with the goal of improving overall system throughput.

Another recently proposed memory scheduling technique, Thread cluster memory scheduling

(TCM) [61] ranks individual applications by memory intensity such that low-memory-intensity

applications are prioritized over high-memory-intensity applications (to improve system through-

put). Kim et al. [61] also observed that ranking all applications based on memory intensity and

prioritizing low-memory-intensity applications could slow down the deprioritized high-memory-

intensity applications significantly and unfairly. This is because when all applications are ranked

by memory service, applications with high memory intensities are ranked lower, as they inherently

tend to have high memory service, as compared to other applications. With the goal of mitigat-
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ing this unfairness, TCM clusters applications into low- and high-memory-intensity clusters. In

the low-memory-intensity cluster, applications are ranked by memory- intensity, whereas, in the

high-memory-intensity cluster, applications’ ranks are shuffled randomly to provide fairness. Both

clusters employ a total rank order among applications at any given time.

More recently, Ghose et al. [34] propose a memory scheduler that aims to prioritize critical

memory requests that stall the instruction window for long lengths of time. The scheduler predicts

the criticality of a load instruction based on how long it has stalled the instruction window in the

past (using the instruction address (PC)) and prioritizes requests from load instructions that have

large total and maximum stall times measured over a period of time. Although this scheduler is

not application-aware, we compare to it as it is the most recent scheduler that aims to maximize

performance by mitigating memory interference.

All these state-of-the-art schedulers incur significant hardware complexity and cost to rank ap-

plications based on their memory access characteristics and prioritize requests based on this rank-

ing. This results in significant increase in critical path latency and area, as we discuss in Chapter 3.

2.3 Related Complementary Memory Scheduling Proposals

Parallel Application Memory Scheduling (PAMS) [28] tackles the problem of mitigating inter-

ference between different threads of a multithreaded application, while Staged Memory Schedul-

ing (SMS) [10] attempts to mitigate interference between the CPU and GPU in CPU-GPU sys-

tems. Principles from our work can be employed in both of these contexts to identify and de-

prioritize interference-causing threads, thereby mitigating interference experienced by vulnerable

threads/applications. Complexity effective memory access scheduling [124] attempts to achieve

the performance of FRFCFS using a First Come First Served scheduler in GPU systems, by pre-

venting row-buffer locality from being destroyed when data is transmitted over the on-chip net-

work. This proposal is complementary to our proposals and can be combined with our techniques

that prevent threads from hogging the row-buffer and banks. Ipek et al. [41] propose a memory
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controller design that employs machine learning techniques (reinforcement learning) to maximize

DRAM throughput. While such a policy could learn applications’ memory access characteristics

over time and appropriately optimize its scheduling policy to improve performance, implementing

machine learning techniques in the memory controller hardware could increase complexity.

Several previous works have tackled the problem of scheduling write back requests to memory.

Stuecheli et al. [107] and Lee et al. [64] propose to schedule write backs such that requests to the

same row are scheduled together to exploit row-buffer locality. Seshadri et al. [100] exploit their

proposed dirty-block index structure to identify dirty cache blocks from the same row, enabling

a simpler implementation of row-locality-aware write back. Zhao et al. [126] propose request

scheduling mechanisms to tackle the problem of heavy write traffic in persistent memory systems.

Our techniques can be combined with these different write handling mechanisms to achieve better

fairness and performance.

Previous works have also tackled the problem of memory management and request scheduling

in the presence of prefetch requests. Lee et al. [63] propose to dynamically prioritize/deprioritize

prefetch requests based on prefetcher accuracy. Lee et al. [65] also propose to schedule requests

accordingly to take advantage of the memory-level parallelism in the system, in the presence of

prefetch requests. Ebrahimi et al. [26] propose to incorporate prefetcher awareness, based on

monitoring prefetcher accuracy, into previously proposed fair memory schedulers such as PARBS.

These mechanisms can be combined with our proposals such as BLISS and the memory bandwidth

allocation policies we build on top of MISE and ASM, to incorporate prefetch-awareness.

2.4 Other Related Work on Memory Interference Mitigation

While memory scheduling is a major solution direction towards mitigating interference, previous

works have also explored other approaches such as address interleaving [53], memory bank/channel

partitioning [84, 50, 71, 122, 57], source throttling [27, 113, 13, 20, 91, 90, 55] and thread schedul-

ing [128, 112, 21, 118] to mitigate interference.
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Subrow Interleaving: Kaseridis et al. [53] propose minimalist open page, a data mapping policy

that interleaves data at the granularity of a sub-row across channels and banks such that applications

with high row-buffer locality are prevented from hogging the row buffer, while still preserving

some amount of row-buffer-locality.

Memory Channel/Bank Partitioning: Previous works [84, 50, 71, 122, 57] propose techniques

to mitigate inter-application interference by partitioning channels/banks among applications such

that the data of interfering applications are mapped to different channels/banks.

Source Throttling: Source throttling techniques (e.g., [27, 113, 13, 20, 91, 90, 55, 11]) propose

to throttle the memory request injection rates of interference-causing applications at the processor

core itself rather than regulating an application’s access behavior at the memory, unlike memory

scheduling, partitioning or interleaving. Other previous work by Ebrahimi et al. [26] proposes to

tune shared resource management policies such as FST [27] to be aware of prefetch requests.

OS Thread Scheduling: Previous works [128, 112, 118] propose to mitigate shared resource

contention by co-scheduling threads that interact well and interfere less at the shared resources.

Such a solution relies on the presence of enough threads with such symbiotic properties. Other

techniques [21] propose to map applications to cores to mitigate memory interference.

Our proposals to mitigate memory interference, with the goals of providing high performance

and fairness, can be combined with these solution approaches in a synergistic manner to achieve

better mitigation and consequently, higher performance and fairness.

2.5 Related Work on DRAM Optimizations to Improve Perfor-

mance

Several prior works have proposed optimizations to DRAM (internals) to enable more parallelism

within DRAM, thereby improving performance. Kim et al. [62] propose techniques to enable

access to multiple DRAM sub-arrays in parallel, thereby overlapping the latencies of these paral-
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lel accesses. Lee et al. in [66] observe that long bitlines contribute to high access latencies and

propose to split bitlines into two shorter segments (using an isolation transistor), enabling faster

access to one of the shorter segments. More recently, Lee at al. [67] propose to relax DRAM

timing constraints in order to optimize for performance in the common case. Multiple previous

works [127, 7, 8] have proposed to partition a DRAM rank, enabling parallel access to these parti-

tioned ranks. These techniques are complementary to memory interference mitigation techniques

and can be combined with them to achieve high performance benefits.

2.6 Related Work on Shared Cache Capacity Management

The management of shared cache capacity among multiple contending applications is a much

explored area. A large body of previous research has focused on improving the shared cache

replacement policy [38, 46, 56, 99]. These proposals use different techniques to predict which

cache blocks would have high reuse and try to retain such blocks in the cache. Furthermore, some

of these proposals also attempt to retain at least part of the working set in the cache when an

application’s working set is much larger than the cache size. A number of cache insertion policies

have also been studied by previous proposals [51, 101, 94, 121, 45]. These policies use information

such as the memory region of an accessed address, instruction pointer to predict the reuse behavior

of a missed cache block and insert blocks with higher reuse closer to the most recently used position

such that these blocks are not evicted immediately. Other previous works [95, 9, 106, 19, 43, 59]

propose to partition the cache between applications such that applications that have better utility for

the cache are allocated more cache space. While these previous proposals aim to improve system

performance, they are not designed with the objective of providing controllable performance.
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2.7 Related Work on Coordinated Cache and Memory Man-

agement

While several previous works have proposed techniques to manage the shared cache capacity and

main memory bandwidth independently, there have been few previous works that have coordinated

the management of these resources. Bitirgen et al. [14] propose a coordinated resource manage-

ment scheme that employs machine learning, specifically, an artificial neural network, to predict

each application’s performance for different possible resource allocations. Resources are then al-

located appropriately to different applications such that a global system performance metric is

optimized. More recently, Wang et al. [119] employ a market-dynamics-inspired mechanism to

coordinate allocation decisions across resources. We take a different and more general approach

and propose a model that accurately estimates application slowdowns. Our model can be used as

an effective substrate to build coordinated resource allocation policies that leverage our slowdown

estimates to achieve different goals such as high performance, fairness and controllable perfor-

mance.

2.8 Related Work on Cache and Memory QoS

Several prior works have attempted to provide QoS guarantees in shared memory multicore sys-

tems. Previous works have proposed techniques to estimate applications’ sensitivity to interfer-

ence/propensity to cause interference by profiling applications offline (e.g., [77, 31, 29, 30]). How-

ever, in several scenarios, such offline profiling of applications might not be feasible or accurate.

For instance, in a cloud service, where any user can run a job using the available resources in a

pay-as-you-go manner, profiling every application offline to gain a priori application knowledge

can be prohibitive. In other cases, where the resource usage of an application is heavily input

set dependent, the profile may not be representative. Mars et al. [123] also attempt to estimate
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applications’ sensitivity to/propensity to cause interference online. However, they assume that ap-

plications run by themselves at different points in time, allowing for such profiling, which might

not necessarily be true for all applications and systems. Our techniques, on the other hand, strive to

control and bound application slowdowns without relying on any offline profiling and are therefore

more generally applicable to different systems and scenarios.

Iyer et al. [39, 43, 44], Guo et al. [37] propose mechanisms to provide guarantees on shared

cache space, memory bandwidth or IPC for different applications. Kasture and Sanchez [54]

propose to partition shared caches with the goal of reducing the tail latency of latency critical

workloads. Nesbit et al. [89] propose a mechanism to enforce a memory bandwidth allocation

policy – partition the available memory bandwidth across concurrently running applications based

on a given bandwidth allocation. Most of these policies aim to provide guarantees on resource

allocation. Our goal, on the other hand, is to provide soft guarantees on application slowdowns.

2.9 Related Work on Storage QoS

A large body of previous work has tackled the challenge of providing QoS in the presence of con-

tention between different applications for storage bandwidth. Several systems employ bandwidth-

based throttling (e.g., [16, 18, 120, 52]) to ensure that some applications do not hog storage band-

width, at the cost of degrading other applications’ performance. One such system, YFQ [16]

controls the proportions of bandwidth different applications receive by assigning priority. Other

systems such as SLEDS [18] and Zygaria [120] employ a leaky bucket type model that controls

the bandwidth of each workload, while provisioning for some burstiness.

Other systems employ deadline-based throttling (e.g., [81, 102, 74]) that attempts to provide

latency guarantees for each request. RT-FS [81] uses the notion of slack to provide more resources

to other applications. Cello [102] deals with two kinds of requests, ones that need to meet real-time

latency requirements and others that do not need to meet such requirements. Cello tries to balance

the needs of these two kinds of requests. Facade [74] tailors its latency guarantees depending on
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an application’s demand in terms of number of requests. More recent work such as Argon [116]

takes into account that the system could be oversubscribed and determines feasibility of meeting

utilization requirements and then seeks to provide guarantees in terms of utilization.

While all these previous works are effective in providing different kinds of QoS at the storage,

they do not take into account main memory bandwidth and shared cache capacity contention, which

is the focus of our work.

2.10 Related Work on Interconnect QoS

Several previous works have tackled the problem of achieving QoS in the context of both off-chip

and on-chip networks. Fair queueing [24] emulates round-robin service order among different

flows. Virtual clock [125] provides a deadline-based scheme that effectively time-division multi-

plexes slots among different flows. While these approaches are rate-based, other previous works

are frame-based. Time is divided into epochs or frames and different flows reserve slots within

a frame. Some examples of frame-based policies are rotated combined queueing [58] and glob-

ally synchronized frames [68]. Other previous work [105] proposes simple bandwidth allocation

schemes that reduce the complexity of allocation in the intermediate router nodes.

Grot et al. [36] propose the preemptive virtual clock mechanism that enables reclamation of

idle resources, without adding significant buffer overhead. This mechanism preempts low-priority

requests in order to provide better QoS to higher priority requests. Grot et al. also propose Kilo-

NOC [35], an NoC architecture designed to be scalable to large systems. This proposal reduces

the amount of hardware changes required at every node, achieving low router complexity. Das et

al. in [22] propose to employ stall time criticality information to distinguish between and prioritize

different applications’ packets at routers. Das et al. also propose Aergia [23] to further distinguish

between packets of the same application, based on slack.

Our work on cache and memory QoS can be combined with these previous works on intercon-
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nect QoS to achieve comprehensive and effective QoS at the system level.

2.11 Related Work on Online Slowdown Estimation

Eyerman and Eeckhout [33] and Cazorla et al. [17] propose mechanisms to determine an applica-

tion’s slowdown while it is running alongside other applications on an SMT processor. Luque et

al. [76] estimate application slowdowns in the presence of shared cache interference. Both these

studies assume a fixed latency for accessing main memory, and hence do not take into account

interference at the main memory.

While a large body of previous work has focused on main memory and shared cache interfer-

ence reduction techniques, few previous works have proposed techniques to estimate application

slowdowns in the presence of main memory and cache interference.

Li et al [69] propose a scheme to estimate the impact of memory stall times on performance,

for different applications, in the context of hybrid memory system with DRAM and phase change

memory (PCM). The goal of this work is to leverage this performance estimation scheme to map

pages appropriately to DRAM and PCM with the goal of improving performance. Hence, this

scheme does not focus much on very accurate performance estimation.

Stall Time Fair Memory Scheduling (STFM) [86] is one previous work that attempts to estimate

each application’s slowdown induced by memory interference, with the goal of improving fairness

by prioritizing the most slowed down application. STFM estimates an application’s slowdown as

the ratio of its memory stall time when it is run alone versus when it is concurrently run alongside

other applications.

Fairness via Source Throttling (FST) [27] and Per-thread cycle accounting (PTCA) [25] es-

timate application slowdowns due to both shared cache capacity and main memory bandwidth

interference. They compute slowdown as the ratio of alone and shared execution times and esti-

mate alone execution time by determining the number of cycles by which each request is delayed.

18



Both FST and PTCA use a mechanism similar to STFM to quantify interference at the main mem-

ory. To quantify interference at the shared cache, both mechanisms determine which accesses of an

application miss in the shared cache but would have been hits had the application been run alone

on the system (contention misses), and compute the number of additional cycles taken to serve

each contention miss. The main difference between FST and PTCA is in the mechanism they use

to identify a contention miss. FST uses a pollution filter for each application that tracks the blocks

of the application that were evicted by other applications. Any access that misses in the cache

and hits in the pollution filter is considered a contention miss. On the other hand, PTCA uses an

auxiliary tag store for each application that tracks the state of the cache had the application been

running alone on the system. PTCA classifies any access that misses in the cache and hits in the

auxiliary tag store as a contention miss.

The challenge in all these approaches is in determining the alone stall time or execution time

of an application while the application is actually running alongside other applications. STFM,

FST and PTCA attempt to address this challenge by counting the number of cycles by which each

individual request that stalls execution impacts execution time. This is fundamentally difficult

and results in high inaccuracies in slowdown estimation, as we will describe in more detail in

Chapters 4 and 6.
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Chapter 3

Mitigating Memory Bandwidth Interference

Towards Achieving High Performance

The prevalent solution direction to tackle the problem of memory bandwidth interference is

application-aware memory request scheduling, as we describe in Chapter 2. State-of-the-art

application-aware memory schedulers attempt to achieve two main goals - high system perfor-

mance and high fairness. However, previous schedulers have two major shortcomings. First, these

schedulers increase hardware complexity in order to achieve high system performance and fair-

ness. Specifically, most of these schedulers rank individual applications with a total order, based

on their memory access characteristics (e.g., [87, 83, 60, 61]). Scheduling requests based on a

total rank order incurs high hardware complexity, slowing down the memory scheduler signifi-

cantly. For instance, the critical path latency for TCM increases by 8x (area increases by 1.8x)

compared to an application-unaware FRFCFS scheduler, as we demonstrate in Section 3.5.2. Such

high critical path delays in the scheduler directly increase the time it takes to schedule a request,

potentially making the memory controller latency a bottleneck. Second, a total-order ranking is

unfair to applications at the bottom of the ranking stack. Even shuffling the ranks periodically (like

TCM does) does not fully mitigate the unfairness and slowdowns experienced by an application

when it is at the bottom of the ranking stack, as we describe in more detail in Section 3.1.
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Figure 3.1 compares four major previous schedulers using a three-dimensional plot with perfor-

mance, fairness and simplicity on three different axes.1 On the fairness axis, we plot the negative

of maximum slowdown, and on the simplicity axis, we plot the negative of critical path latency.

Hence, the ideal scheduler would have high performance, fairness and simplicity, as indicated by

the black triangle. As can be seen, previous ranking-based schedulers, PARBS, ATLAS and TCM,

increase complexity significantly, compared to the currently employed FRFCFS scheduler, in order

to achieve high performance and/or fairness.

Performance 

Simplicity 

FRFCFS 

PARBS 

ATLAS 

TCM 

Fairness 
(negative of  

maximum slowdown) 

(negative of critical 
path latency) 

(weighted speedup) 

Ideal 

Figure 3.1: Performance vs. fairness vs. simplicity

Our goal, in this work, is to design a new memory scheduler that does not suffer from these

shortcomings: one that achieves high system performance and fairness while incurring low hard-

ware cost and complexity. To this end, we seek to overcome these shortcomings by exploring an

alternative means to protecting vulnerable applications from interference and propose the Black-

listing memory scheduler (BLISS).
1Results across 80 simulated workloads on a 24-core, 4-channel system. Section 3.4 describes our methodology

and metrics.
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3.1 Key Observations

We build our Blacklisting memory scheduler (BLISS) based on two key observations.

Observation 1. Separating applications into only two groups (interference-causing and

vulnerable-to-interference), without ranking individual applications using a total order, is suffi-

cient to mitigate inter-application interference. This leads to higher performance, fairness and

lower complexity, all at the same time.

We observe that applications that are vulnerable to interference can be protected from

interference-causing applications by simply separating them into two groups, one containing

interference-causing applications and another containing vulnerable-to-interference applications,

rather than ranking individual applications with a total order as many state-of-the-art schedulers

do. To motivate this, we contrast TCM [61], which clusters applications into two groups and

employs a total rank order within each cluster, with a simple scheduling mechanism (Grouping)

that simply groups applications only into two groups, based on memory intensity (as TCM does),

and prioritizes the low-intensity group without employing ranking in each group. Grouping uses

the FRFCFS policy within each group. Figure 3.2 shows the number of requests served during a

100,000 cycle period at intervals of 1,000 cycles, for three representative applications, astar, hm-

mer and lbm from the SPEC CPU2006 benchmark suite [6], using these two schedulers.2 These

three applications are executed with other applications in a simulated 24-core 4-channel system.3

Figure 3.2 shows that TCM has high variance in the number of requests served across time, with

very few requests being served during several intervals and many requests being served during a

few intervals. This behavior is seen in most applications in the high-memory-intensity cluster since

TCM ranks individual applications with a total order. This ranking causes some high-memory-

intensity applications’ requests to be prioritized over other high-memory-intensity applications’

2All these three applications are in the high-memory-intensity group. We found very similar behavior in all other
such applications we examined.

3See Section 3.4 for our methodology.
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requests, at any point in time, resulting in high interference. Although TCM periodically shuffles

this total-order ranking, we observe that an application benefits from ranking only during those

periods when it is ranked very high. These very highly ranked periods correspond to the spikes

in the number of requests served (for TCM) in Figure 3.2 for that application. During the other

periods of time when an application is ranked lower (i.e., most of the shuffling intervals), only

a small number of its requests are served, resulting in very slow progress. Therefore, most high-

memory-intensity applications experience high slowdowns due to the total-order ranking employed

by TCM.
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Figure 3.2: Request service distribution over time with TCM and Grouping schedulers

On the other hand, when applications are separated into only two groups based on memory

intensity and no per-application ranking is employed within a group, some interference exists

among applications within each group (due to the application-unaware FRFCFS scheduling in

each group). In the high-memory-intensity group, this interference contributes to the few low-

request-service periods seen for Grouping in Figure 3.2. However, the request service behavior of

Grouping is less spiky than that of TCM, resulting in lower memory stall times and a more steady

and overall higher progress rate for high-memory-intensity applications, as compared to when

applications are ranked in a total order. In the low-memory-intensity group, there is not much of

a difference between TCM and Grouping, since applications anyway have low memory intensities

and hence, do not cause significant interference to each other. Therefore, Grouping results in higher

system performance and significantly higher fairness than TCM, as shown in Figure 3.3 (across 80

24-core workloads on a simulated 4-channel system).
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Figure 3.3: Performance and fairness of Grouping vs. TCM

Grouping applications into two groups also requires much lower hardware overhead than ranking-

based schedulers that incur high overhead for computing and enforcing a total rank order for all

applications. Therefore, grouping can not only achieve better system performance and fairness

than ranking, but it also can do so while incurring lower hardware cost. However, classifying ap-

plications into two groups at coarse time granularities, on the order of a few million cycles, like

TCM’s clustering mechanism does (and like what we have evaluated in Figure 3.3), can still cause

unfair application slowdowns. This is because applications in one group would be deprioritized

for a long time interval, which is especially dangerous if application behavior changes during the

interval. Our second observation, which we describe next, minimizes such unfairness and at the

same time reduces the complexity of grouping even further.

Observation 2. Applications can be classified into interference-causing and vulnerable-to-

interference groups by monitoring the number of consecutive requests served from each application

at the memory controller. This leads to higher fairness and lower complexity, at the same time, than

grouping schemes that rely on coarse-grained memory intensity measurement.

Previous work actually attempted to perform grouping, along with ranking, to mitigate inter-

ference. Specifically, TCM [61] ranks applications by memory intensity and classifies applica-

tions that make up a certain fraction of the total memory bandwidth usage into a group called the

low-memory-intensity cluster and the remaining applications into a second group called the high-

memory-intensity cluster. While employing such a grouping scheme, without ranking individual
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applications, reduces hardware complexity and unfairness compared to a total order based rank-

ing scheme (as we show in Figure 3.3), it i) can still cause unfair slowdowns due to classifying

applications into groups at coarse time granularities, which is especially dangerous if application

behavior changes during an interval, and ii) incurs additional hardware overhead and schedul-

ing latency to compute and rank applications by long-term memory intensity and total memory

bandwidth usage.

We propose to perform application grouping using a significantly simpler, novel scheme: simply

by counting the number of requests served from each application in a short time interval. Appli-

cations that have a large number (i.e., above a threshold value) of consecutive requests served are

classified as interference-causing (this classification is periodically reset). The rationale behind

this scheme is that when an application has a large number of consecutive requests served within a

short time period, which is typical of applications with high memory intensity or high row-buffer

locality, it delays other applications’ requests, thereby stalling their progress. Hence, identifying

and essentially blacklisting such interference-causing applications by placing them in a separate

group and deprioritizing requests of this blacklisted group can prevent such applications from hog-

ging the memory bandwidth. As a result, the interference experienced by vulnerable applications

is mitigated. The blacklisting classification is cleared periodically, at short time intervals (on the

order of 1000s of cycles) in order not to deprioritize an application for too long of a time period

to cause unfairness or starvation. Such clearing and re-evaluation of application classification at

short time intervals significantly reduces unfair application slowdowns (as we quantitatively show

in Section 3.5.7), while reducing complexity compared to tracking per-application metrics such as

memory intensity.

Summary of Key Observations. In summary, we make two key novel observations that lead

to our design in Section 3.2. First, separating applications into only two groups can lead to a less

complex and more fair and higher performance scheduler. Second, the two application groups can

be formed seamlessly by monitoring the number of consecutive requests served from an application

and deprioritizing the ones that have too many requests served in a short time interval.
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3.2 Mechanism

The design of our Blacklisting scheduler (BLISS) is based on the two key observations described

in the previous section. The basic idea behind BLISS is to observe the number of consecutive

requests served from an application over a short time interval and blacklist applications that have

a relatively large number of consecutive requests served. The blacklisted (interference-causing)

and non-blacklisted (vulnerable-to-interference) applications are thus separated into two different

groups. The memory scheduler then prioritizes the non-blacklisted group over the blacklisted

group. The two main components of BLISS are i) the blacklisting mechanism and ii) the memory

scheduling mechanism that schedules requests based on the blacklisting mechanism. We describe

each in turn.

3.2.1 The Blacklisting Mechanism

The blacklisting mechanism needs to keep track of three quantities: 1) the application (i.e., hard-

ware context) ID of the last scheduled request (Application ID)4, 2) the number of requests served

from an application (#Requests Served), and 3) the blacklist status of each application.

When the memory controller is about to issue a request, it compares the application ID of the

request with the Application ID of the last scheduled request.

• If the application IDs of the two requests are the same, the #Requests Served counter is

incremented.

• If the application IDs of the two requests are not the same, the #Requests Served counter is

reset to zero and the Application ID register is updated with the application ID of the request

that is being issued.

4An application here denotes a hardware context. There can be as many applications executing actively as there are
hardware contexts. Multiple hardware contexts belonging to the same application are considered separate applications
by our mechanism, but our mechanism can be extended to deal with such multithreaded applications.
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If the #Requests Served exceeds a Blacklisting Threshold (4 in most of our evaluations):

• The application with ID Application ID is blacklisted (classified as interference-causing).

• The #Requests Served counter is reset to zero.

The blacklist information is cleared periodically after every Clearing Interval (set to 10000

cycles in our major evaluations).

3.2.2 Blacklist-Based Memory Scheduling

Once the blacklist information is computed, it is used to determine the scheduling priority of a

request. Memory requests are prioritized in the following order:

1. Non-blacklisted applications’ requests

2. Row-buffer hit requests

3. Older requests

Prioritizing requests of non-blacklisted applications over requests of blacklisted applications miti-

gates interference. Row-buffer hits are then prioritized to optimize DRAM bandwidth utilization.

Finally, older requests are prioritized over younger requests for forward progress.

3.3 Implementation

The Blacklisting memory scheduler requires additional storage (flip flops) and logic over an FR-

FCFS scheduler to 1) perform blacklisting and 2) prioritize non-blacklisted applications’ requests.

We analyze the storage and logic cost of it.
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3.3.1 Storage Cost

In order to perform blacklisting, the memory scheduler needs the following storage components:

• one register to store Application ID (5 bits for 24 applications)

• one counter for #Requests Served (8 bits is more than sufficient for the values of request

count threshold N that we observe achieves high performance and fairness.)

• one register to store the Blacklisting Threshold that determines when an application should

be blacklisted

• a blacklist bit vector to indicate the blacklist status of each application (one bit for each

hardware context) (24 bits for 24 applications)

In order to prioritize non-blacklisted applications’ requests, the memory controller needs to

store the application ID (hardware context ID) of each request so it can determine the blacklist

status of the application and appropriately schedule the request.

3.3.2 Logic Cost

The memory scheduler requires comparison logic to

• determine when an application’s #Requests Served exceeds the Blacklisting Threshold and

set the bit corresponding to the application in the Blacklist bit vector.

• prioritize non-blacklisted applications’ requests.

We provide a detailed quantitative evaluation of the hardware area cost and logic latency of

implementing BLISS and previously proposed memory schedulers, in Section 3.5.2.
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3.4 Methodology

3.4.1 System Configuration

We model the DRAM memory system using a cycle-level in-house DDR3-SDRAM simulator. The

simulator was validated against Micron’s behavioral Verilog model [80] and DRAMSim2 [98].

This DDR3 simulator is integrated with a cycle-level in-house simulator that models out-of-order

execution cores, driven by a Pin [73] tool at the frontend, Each core has a private cache of 512

KB size. We present most of our results on a system with the DRAM main memory as the only

shared resource in order to isolate the effects of memory bandwidth interference on application

performance. We also present results with shared caches in Section 3.5.11. Table 6.2 provides

more details of our simulated system. We perform most of our studies on a system with 24 cores

and 4 channels. We provide a sensitivity analysis for a wide range of core and channel counts, in

Section 3.5.11. Each channel has one rank and each rank has eight banks. We stripe data across

channels and banks at the granularity of a row.

Processor 16-64 cores, 5.3GHz, 3-wide issue,
8 MSHRs, 128-entry instruction window

Last-level cache 64B cache-line, 16-way associative,
512KB private cache-slice per core

Memory controller 128-entry read/write request queue per controller

Memory Timing: DDR3-1066 (8-8-8) [79]
Organization: 1-8 channels, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

Table 3.1: Configuration of the simulated system

3.4.2 Workloads

We perform our main studies using 24-core multiprogrammed workloads made of applications

from the SPEC CPU2006 suite [6], TPC-C, Matlab and the NAS parallel benchmark suite [5].5 We

classify a benchmark as memory-intensive if it has a Misses Per Kilo Instruction (MPKI) greater

5Each benchmark is single threaded.

29



than 5 and memory-non-intensive otherwise. We construct four categories of workloads (with 20

workloads in each category), with 25, 50, 75 and 100 percent of memory-intensive applications.

This makes up a total of 80 workloads with a range of memory intensities, constructed using ran-

dom combinations of benchmarks, modeling a cloud computing like scenario where workloads

of various types are consolidated on the same node to improve efficiency. We also evaluate 16-,

32- and 64- core workloads, with different memory intensities, created using a similar methodol-

ogy as described above for the 24-core workloads. We simulate each workload for 100 million

representative cycles, as done by previous studies in memory scheduling [87, 60, 61].

3.4.3 Metrics

We quantitatively compare BLISS with previous memory schedulers in terms of system perfor-

mance, fairness and complexity. We use the weighted speedup [22, 32, 104] metric to measure

system performance. We use the maximum slowdown metric [22, 60, 61, 115] to measure un-

fairness. We report the harmonic speedup metric [75] as another measure of system performance.

The harmonic speedup metric also serves as a measure of balance between system performance

and fairness [75]. We report area in micrometer2 (um2) and scheduler critical path latency in

nanoseconds (ns) as measures of complexity.

3.4.4 RTL Synthesis Methodology

In order to obtain timing/area results for BLISS and previous schedulers, we implement them in

Register Transfer Level (RTL), using Verilog. We synthesize the RTL implementations with a

commercial 32 nm standard cell library, using the Design Compiler tool from Synopsys.

30



3.4.5 Mechanism Parameters

For BLISS, we use a value of four for Blacklisting Threshold, and a value of 10000 cycles for

Clearing Interval. These values provide a good balance between performance and fairness, as we

observe from our sensitivity studies in Section 3.5.12. For the other schedulers, we tuned their

parameters to achieve high performance and fairness on our system configurations and workloads.

We use a Marking-Cap of 5 for PARBS, cap of 4 for FRFCFS-Cap, HistoryWeight of 0.875 for

ATLAS, ClusterThresh of 0.2 and ShuffleInterval of 1000 cycles for TCM.

3.5 Evaluation

We compare BLISS with five previously proposed memory schedulers, FRFCFS, FRFCFS with a

cap (FRFCFS-Cap) [86], PARBS, ATLAS and TCM. FRFCFS-Cap is a modified version of FR-

FCFS that caps the number of consecutive row-buffer hitting requests that can be served from an

application [86]. Figure 3.4 shows the average system performance (weighted speedup and har-

monic speedup) and unfairness (maximum slowdown) across all our workloads. Figure 3.5 shows

a pareto plot of weighted speedup and maximum slowdown. We draw three major observations.

First, BLISS achieves 5% better weighted speedup, 25% lower maximum slowdown and 19% bet-

ter harmonic speedup than the best performing previous scheduler (in terms of weighted speedup),

TCM, while reducing the critical path and area by 79% and 43% respectively (as we will show in

Section 3.5.2). Therefore, we conclude that BLISS achieves both high system performance and

fairness, at low hardware cost and complexity.

Second, BLISS significantly outperforms all these five previous schedulers in terms of system

performance, however, it has 10% higher unfairness than PARBS, the previous scheduler with the

least unfairness. PARBS creates request batches containing the oldest requests from each appli-

cation. Older batches are prioritized over newer batches. However, within each batch, individual

applications’ requests are ranked and prioritized based on memory intensity. PARBS aims to pre-
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Figure 3.4: System performance and fairness of BLISS compared to previous schedulers

serve fairness by batching older requests, while still employing ranking within a batch to prioritize

low-memory-intensity applications. We observe that the batching aspect of PARBS is quite ef-

fective in mitigating unfairness, although it increases complexity. This unfairness reduction also

contributes to the high harmonic speedup of PARBS. However, batching restricts the amount of re-

quest reordering that can be achieved through ranking. Hence, low-memory-intensity applications

that would benefit from prioritization via aggressive request reordering have lower performance.

As a result, PARBS has 8% lower weighted speedup than BLISS. Furthermore, PARBS has a 6.5x

longer critical path and ~2x greater area than BLISS, as we will show in Section 3.5.2. Therefore,

we conclude that BLISS achieves better system performance than PARBS, at much lower hardware

cost, while slightly trading off fairness.

Figure 3.5: Pareto plot of system performance and fairness

Third, BLISS has 4% higher unfairness than FRFCFS-Cap, but it also 8% higher performance

than FRFCFS-Cap. FRFCFS-Cap has higher fairness than BLISS since it restricts the length of

32



only the ongoing row hit streak, whereas blacklisting an application can deprioritize the application

for a longer time, until the next clearing interval. As a result, FRFCFS-Cap slows down high-row-

buffer-locality applications to a lower degree than BLISS. However, restricting only the on-going

streak rather than blacklisting an interfering application for a longer time causes more interference

to other applications, degrading system performance compared to BLISS. Furthermore, FRFCFS-

Cap is unable to mitigate interference due to applications with high memory intensity yet low-

row-buffer-locality, whereas BLISS is effective in mitigating interference due to such applications

as well. Hence, we conclude that BLISS achieves higher performance (weighted speedup) than

FRFCFS-Cap, while slightly trading off fairness.

3.5.1 Analysis of Individual Workloads

In this section, we analyze the performance and fairness for individual workloads, when employ-

ing different schedulers. Figure 3.6 shows the performance and fairness normalized to the baseline

FRFCFS scheduler for all our 80 workloads, for BLISS and previous schedulers, in the form of

S-curves [101]. The workloads are sorted based on the performance improvement of BLISS. We

draw three major observations. First, BLISS achieves the best performance among all previous

schedulers for most of our workloads. For a few workloads, ATLAS achieves higher performance,

by virtue of always prioritizing applications that receive low memory service. However, always

prioritizing applications that receive low memory service can unfairly slow down applications with

high memory intensities, thereby degrading fairness significantly (as shown in the maximum slow-

down plot, Figure 3.6 bottom). Second, BLISS achieves significantly higher fairness than ATLAS

and TCM, the best-performing previous schedulers, while also achieving higher performance than

them and approaches the fairness of the fairest previous schedulers, PARBS and FRFCFS-Cap. As

described in the analysis of average performance and fairness results above, PARBS, by virtue of

request batching and FRFCFS-Cap, by virtue of restricting only the current row hit streak achieve

higher fairness (lower maximum slowdown) than BLISS for a number of workloads. However,
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Figure 3.6: System performance and fairness for all workloads

these schedulers achieve higher fairness at the cost of lower system performance, as shown in

Figure 3.6. Third, for some workloads with very high memory intensities, the default FRFCFS

scheduler achieves the best fairness. This is because memory bandwidth becomes a very scarce re-

source when the memory intensity of a workload is very high. Hence, prioritizing row hits utilizes

memory bandwidth efficiently for such workloads, thereby resulting in higher fairness. Based on

these observations, we conclude that BLISS achieves the best performance and a good trade-off

between fairness and performance for most of the workloads we examine.

3.5.2 Hardware Complexity

Figures 3.7 and 3.8 show the critical path latency and area of five previous schedulers and BLISS

for a 24-core system for every memory channel. We draw two major conclusions. First, previ-

ously proposed ranking-based schedulers, PARBS/ATLAS/TCM, greatly increase the critical path

latency and area of the memory scheduler: by 11x/5.3x/8.1x and 2.4x/1.7x/1.8x respectively, com-

pared to FRFCFS and FRFCFS-Cap, whereas BLISS increases latency and area by only 1.7x and

3.2% over FRFCFS/FRFCFS-Cap.6 Second, PARBS, ATLAS and TCM cannot meet the stringent

worst-case timing requirements posed by the DDR3 and DDR4 standards [48, 49]. In the case

where every request is a row-buffer hit, the memory controller would have to schedule a request

6The area numbers are for the lowest value of critical path latency that the scheduler is able to meet.
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every read-to-read cycle time (tCCD), the minimum value of which is 4 cycles for both DDR3 and

DDR4. TCM and ATLAS can meet this worst-case timing only until DDR3-800 (read-to-read cy-

cle time of 10 ns) and DDR3-1333 (read-to-read cycle time of 6 ns) respectively, whereas BLISS

can meet the worst-case timing all the way down to the highest released frequency for DDR4,

DDR4-3200 (read-to-read time of 2.5 ns). Hence, the high critical path latency of PARBS, ATLAS

and TCM is a serious impediment to their adoption in today’s and future memory interfaces. Tech-

niques like pipelining could potentially be employed to reduce the critical path latency of these

previous schedulers. However, the additional flops required for pipelining would increase area,

power and design effort significantly. Therefore, we conclude that BLISS, with its greatly lower

complexity and cost as well as higher system performance and competitive or better fairness, is a

more effective alternative to state-of-the-art application-aware memory schedulers.
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3.5.3 Trade-offs Between Performance, Fairness and Complexity

In the previous sections, we studied the performance, fairness and complexity of different sched-

ulers individually. In this section, we will analyze the trade-offs between these metrics for differ-

ent schedulers. Figure 3.9 shows a three-dimensional radar plot with performance, fairness and

simplicity on three different axes. On the fairness axis, we plot the negative of the maximum slow-

down numbers, and on the simplicity axis, we plot the negative of the critical path latency numbers.
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Hence, the ideal scheduler would have high performance, fairness and simplicity, as indicated by

the encompassing, dashed black triangle.

Performance 

Simplicity 

FRFCFS 

FRFCFS-Cap 

PARBS 

ATLAS 

TCM 

Blacklisting 

Fairness 
(negative of  

maximum slowdown) 

(negative of critical 
path latency) 

(weighted speedup) 

Ideal 

Figure 3.9: Performance, fairness and simplicity trade-offs

We draw three major conclusions about the different schedulers we study. First, application-

unaware schedulers, such as FRFCFS and FRFCFS-Cap, are simple. However, they have low

performance and/or fairness. This is because, as described in our performance analysis above,

FRFCFS allows long streaks of row hits from one application to cause interference to other appli-

cations. FRFCFS-Cap attempts to tackle this problem by restricting the length of the current row hit

streak. While such a scheme improves fairness, it still does not improve performance significantly.

Second, application-aware schedulers, such as PARBS, ATLAS and TCM, improve performance

or fairness by ranking based on applications’ memory access characteristics. However, they do so

at the cost of increasing complexity (reducing simplicity) significantly, since they employ a full

ordered ranking across all applications. Third, BLISS, achieves high performance and fairness,

while keeping the design simple, thereby approaching the ideal scheduler design (i.e., leading to

a triangle that is closer to the ideal triangle). This is because BLISS requires only simple hard-
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ware changes to the memory controller to blacklist applications that have long streaks of requests

served, which effectively mitigates interference. Therefore, we conclude that BLISS achieves the

best trade-off between performance, fairness and simplicity.

3.5.4 Understanding the Benefits of BLISS

We present the distribution of the number of consecutive requests served (streaks) from individual

applications to better understand why BLISS effectively mitigates interference. Figure 3.10 shows

the distribution of requests served across different streak lengths ranging from 1 to 16 for FRFCFS,

PARBS, TCM and BLISS for six representative applications from the same 24-core workload.7

The figure captions indicate the memory intensity, in misses per kilo instruction (MPKI) and row-

buffer hit rate (RBH) of each application when it is run alone.
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Figure 3.10: Distribution of streak lengths

7A value of 16 captures streak lengths 16 and above.
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Figures 3.10a, 3.10b and 3.10c show the streak length distributions of applications that have a

tendency to cause interference (libquantum, mcf and lbm). All these applications have high mem-

ory intensity and/or high row-buffer locality. Figures 3.10d, 3.10e and 3.10f show applications

that are vulnerable to interference (calculix, cactusADM and sphinx3). These applications have

lower memory intensities and row-buffer localities, compared to the interference-causing appli-

cations. We observe that BLISS shifts the distribution of streak lengths towards the left for the

interference-causing applications, while it shifts the streak length distribution to the right for the

interference-prone applications. Hence, BLISS breaks long streaks of consecutive requests for

interference-causing applications, while enabling longer streaks for vulnerable applications. This

enables such vulnerable applications to make faster progress, thereby resulting in better system

performance and fairness. We have observed similar results for most of our workloads.

3.5.5 Average Request Latency

In this section, we evaluate the average memory request latency (from when a request is generated

until when it is served) metric and seek to understand its correlation with performance and fairness.

Figure 3.11 presents the average memory request latency (from when the request is generated un-

til when it is served) for the five previously proposed memory schedulers and BLISS. Two major

observations are in order. First, FRFCFS has the lowest average request latency among all the

schedulers. This is expected since FRFCFS maximizes DRAM throughput by prioritizing row-

buffer hits. Hence, the number of requests served is maximized overall (across all applications).

However, maximizing throughput (i.e., minimizing overall average request latency) degrades the

performance of low-memory-intensity applications, since these applications’ requests are often de-

layed behind row-buffer hits and older requests. This results in degradation in system performance

and fairness, as shown in Figure 3.4.

Second, ATLAS and TCM, memory schedulers that prioritize requests of low-memory-intensity

applications by employing a full ordered ranking achieve relatively low average latency. This is
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Figure 3.11: The Average Request Latency Metric

because these schedulers reduce the latency of serving requests from latency-critical, low-memory-

intensity applications significantly. Furthermore, prioritizing low-memory-intensity applications’

requests does not increase the latency of high-memory-intensity applications significantly. This

is because high-memory-intensity applications already have high memory access latencies (even

when run alone) due to queueing delays. Hence, average request latency does not increase much

from deprioritizing requests of such applications. However, always prioritizing such latency-

critical applications results in lower memory throughput for high-memory-intensity applications,

resulting in unfair slowdowns (as we show in Figure 3.4). Third, memory schedulers that provide

the best fairness, PARBS, FRFCFS-Cap and BLISS have high average memory latencies. This

is because these schedulers, while employing techniques to prevent requests of vulnerable appli-

cations with low memory intensity and low row-buffer locality from being delayed, also avoid

unfairly delaying requests of high-memory-intensity applications. As a result, they do not reduce

the request service latency of low-memory-intensity applications significantly, at the cost of deny-

ing memory throughput to high-memory-intensity applications, unlike ATLAS or TCM. Based

on these observations, we conclude that while some applications benefit from low memory ac-

cess latencies, other applications benefit more from higher memory throughput than lower latency.

Hence, average memory latency is not a suitable metric to estimate system performance or fairness.
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3.5.6 Impact of Clearing the Blacklist Asynchronously

The Blacklisting scheduler design we have presented and evaluated so far clears the blacklisting

information periodically (every 10000 cycles in our evaluations so far), such that all applications

are removed from the blacklist at the end of a Clearing Interval. In this section, we evaluate an

alternative design where an individual application is removed from the blacklist Clearing Interval

cycles after it has been blacklisted (independent of the other applications). In order to implement

this alternative design, each application would need an additional counter to keep track of the num-

ber of remaining cycles until the application would be removed from the blacklist. This counter

is set (to the Clearing Interval) when an application is blacklisted and is decremented every cycle

until it becomes zero. When it becomes zero, the corresponding application is removed from the

blacklist. We use a Clearing Interval of 10000 cycles for this alternative design as well.

Table 3.2 shows the system performance and fairness of the original BLISS design (BLISS)

and the alternative design in which individual applications are removed from the blacklist asyn-

chronously (BLISS-Individual-Clearing). As can be seen, the performance and fairness of the two

designs are similar. Furthermore, the first design (BLISS) is simpler since it does not need to

maintain an additional counter for each application. We conclude that the original BLISS design

is more efficient, in terms of performance, fairness and complexity.

Metric BLISS BLISS-Individual-Clearing
Weighted Speedup 9.18 9.12

Maximum Slowdown 6.54 6.60

Table 3.2: Clearing the blacklist asynchronously

3.5.7 Comparison with TCM’s Clustering Mechanism

Figure 3.12 shows the system performance and fairness of BLISS, TCM and TCM’s clustering

mechanism (TCM-Cluster). TCM-Cluster is a modified version of TCM that performs clustering,

but does not rank applications within each cluster. We draw two major conclusions. First, TCM-
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Cluster has similar system performance as BLISS, since both BLISS and TCM-Cluster prioritize

vulnerable applications by separating them into a group and prioritizing that group rather than

ranking individual applications. Second, TCM-Cluster has significantly higher unfairness com-

pared to BLISS. This is because TCM-Cluster always deprioritizes high-memory-intensity appli-

cations, regardless of whether or not they are causing interference (as described in Section 3.1).

BLISS, on the other hand, observes an application at fine time granularities, independently at every

memory channel and blacklists an application at a channel only when it is generating a number of

consecutive requests (i.e., potentially causing interference to other applications).
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Figure 3.12: Comparison with TCM’s clustering mechanism

3.5.8 Evaluation of Row Hit Based Blacklisting

BLISS, by virtue of restricting the number of consecutive requests that are served from an ap-

plication, attempts to mitigate the interference caused by both high-memory-intensity and high-

row-buffer-locality applications. In this section, we attempt to isolate the benefits from restricting

consecutive row-buffer hitting requests vs. non-row-buffer hitting requests. To this end, we evalu-

ate the performance and fairness benefits of a mechanism that places an application in the blacklist

when a certain number of row-buffer hitting requests (N) to the same row have been served for an

application (we call this FRFCFS-Cap-Blacklisting as the scheduler essentially is FRFCFS-Cap

with blacklisting). We use an N value of 4 in our evaluations.

Figure 3.13 compares the system performance and fairness of BLISS with FRFCFS-Cap-

Blacklisting. We make three major observations. First, FRFCFS-Cap-Blacklisting has similar
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system performance as BLISS. On further analysis of individual workloads, we find that FRFCFS-

Cap-Blacklisting blacklists only applications with high row-buffer locality, causing requests of

non-blacklisted high-memory-intensity applications to interfere with requests of low-memory-

intensity applications. However, the performance impact of this interference is offset by the per-

formance improvement of high-memory-intensity applications that are not blacklisted. Second,

FRFCFS-Cap-Blacklisting has higher unfairness (higher maximum slowdown and lower harmonic

speedup) than BLISS. This is because the high-memory-intensity applications that are not black-

listed are prioritized over the blacklisted high-row-buffer-locality applications, thereby interfering

with and slowing down the high-row-buffer-locality applications significantly. Third, FRFCFS-

Cap-Blacklisting requires a per-bank counter to count and cap the number of row-buffer hits,

whereas BLISS needs only one counter per-channel to count the number of consecutive requests

from the same application. Therefore, we conclude that BLISS is more effective in mitigating

unfairness while incurring lower hardware cost, than the FRFCFS-Cap-Blacklisting scheduler that

we build combining principles from FRFCFS-Cap and BLISS.
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Figure 3.13: Comparison with FRFCFS-Cap combined with blacklisting

3.5.9 Comparison with Criticality-Aware Scheduling

We compare the system performance and fairness of BLISS with those of criticality-aware memory

schedulers [34]. The basic idea behind criticality-aware memory scheduling is to prioritize mem-

ory requests from load instructions that have stalled the instruction window for long periods of time

in the past. Ghose et al. [34] evaluate prioritizing load requests based on both maximum stall time
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(Crit-MaxStall) and total stall time (Crit-TotalStall) caused by load instructions in the past. Fig-

ure 3.14 shows the system performance and fairness of BLISS and the criticality-aware scheduling

mechanisms, normalized to FRFCFS, across 40 workloads. Two observations are in order. First,

BLISS significantly outperforms criticality-aware scheduling mechanisms in terms of both system

performance and fairness. This is because the criticality-aware scheduling mechanisms unfairly

deprioritize and slow down low-memory-intensity applications that inherently generate fewer re-

quests, since stall times tend to be low for such applications. Second, criticality-aware scheduling

incurs hardware cost to prioritize requests with higher stall times. Specifically, the number of

bits to represent stall times is on the order of 12-14, as described in [34]. Hence, the logic for

comparing stall times and prioritizing requests with higher stall times would incur even higher

cost than per-application ranking mechanisms where the number of bits to represent a core’s rank

grows only as as log2NumberOfCores (e.g. 5 bits for a 32-core system). Therefore, we conclude

that BLISS achieves significantly better system performance and fairness, while incurring lower

hardware cost.
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Figure 3.14: Comparison with criticality-aware scheduling

3.5.10 Effect of Workload Memory Intensity and Row-buffer Locality

In this section, we study the impact of workload memory intensity and row-buffer locality on per-

formance and fairness of BLISS and five previous schedulers.
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Workload Memory Intensity. Figure 3.15 shows system performance and fairness for workloads

with different memory intensities, classified into different categories based on the fraction of high-

memory-intensity applications in a workload.8 We draw three major conclusions. First, BLISS

outperforms previous memory schedulers in terms of system performance across all intensity cate-

gories. Second, the system performance benefits of BLISS increase with workload memory inten-

sity. This is because as the number of high-memory-intensity applications in a workload increases,

ranking individual applications, as done by previous schedulers, causes more unfairness and de-

grades system performance. Third, BLISS achieves significantly lower unfairness than previous

memory schedulers, except FRFCFS-Cap and PARBS, across all intensity categories. Therefore,

we conclude that BLISS is effective in mitigating interference and improving system performance

and fairness across workloads with different compositions of high- and low-memory-intensity ap-

plications.
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Figure 3.15: Sensitivity to workload memory intensity

Workload Row-buffer Locality. Figure 3.16 shows the system performance and fairness of five

previous schedulers and BLISS when the number of high row-buffer locality applications in a

workload is varied.9 We draw three observations. First, BLISS achieves the best performance

and close to the best fairness in most row-buffer locality categories. Second, BLISS’ performance

and fairness benefits over baseline FRFCFS increase as the number of high-row-buffer-locality

applications in a workload increases. As the number of high-row-buffer-locality applications in a
8We classify applications with MPKI less than 5 as low-memory-intensity and the rest as high-memory-intensity.
9We classify an application as having high row-buffer locality if its row-buffer hit rate is greater than 90%.
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workload increases, there is more interference to the low-row-buffer-locality applications that are

vulnerable. Hence, there is more opportunity for BLISS to mitigate this interference and improve

performance and fairness. Third, when all applications in a workload have high row-buffer local-

ity (100%), the performance and fairness improvements of BLISS over baseline FRFCFS are a

bit lower than the other categories. This is because, when all applications have high row-buffer

locality, they each hog the row-buffer in turn and are not as susceptible to interference as the other

categories in which there are vulnerable low-row-buffer-locality applications. However, the per-

formance/fairness benefits of BLISS are still significant since BLISS is effective in regulating how

the row-buffer is shared among different applications. Overall, we conclude that BLISS is effective

in achieving high performance and fairness across workloads with different compositions of high-

and low-row-buffer-locality applications.
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Figure 3.16: Sensitivity to row-buffer locality

3.5.11 Sensitivity to System Parameters

Core and channel count. Figures 3.17 and 3.18 show the system performance and fairness of FR-

FCFS, PARBS, TCM and BLISS for different core counts (when the channel count is 4) and differ-

ent channel counts (when the core count is 24), across 40 workloads for each core/channel count.

The numbers over the bars indicate percentage increase or decrease compared to FRFCFS. We did

not optimize the parameters of different schedulers for each configuration as this requires months of
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simulation time. We draw three major conclusions. First, the absolute values of weighted speedup

increase with increasing core/channel count, whereas the absolute values of maximum slowdown

increase/decrease with increasing core/channel count respectively, as expected. Second, BLISS
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Figure 3.17: Sensitivity to number of cores
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Figure 3.18: Sensitivity to number of channels

achieves higher system performance and lower unfairness than all the other scheduling policies

(except PARBS, in terms of fairness) similar to our results on the 24-core, 4-channel system, by

virtue of its effective interference mitigation. The only anomaly is that TCM has marginally higher

weighted speedup than BLISS for the 64-core system. However, this increase comes at the cost of

significant increase in unfairness. Third, BLISS’ system performance benefit (as indicated by the

percentages on top of bars, over FRFCFS) increases when the system becomes more bandwidth

constrained, i.e., high core counts and low channel counts. As contention increases in the system,

BLISS has greater opportunity to mitigate it.10

10Fairness benefits reduce at very high core counts and very low channel counts, since memory bandwidth becomes
highly saturated.
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Cache size. Figure 6.8 shows the system performance and fairness for five previous schedulers

and BLISS with different last level cache sizes (private to each core).

 4

 6

 8

 10

 12

 14

512KB

1M
B

2M
B

W
e
ig

h
te

d
 S

p
e
e
d
u
p

17%

15%

17%

FRFCFS
FRFCFS-Cap

PARBS

ATLAS
TCM

BLISS

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

512KB

1M
B

2M
B

M
a
x
im

u
m

 S
lo

w
d
o
w

n

-21%

-22% -21%

FRFCFS
FRFCFS-Cap

PARBS

ATLAS
TCM

BLISS

Figure 3.19: Sensitivity to cache size

We make two observations. First, the absolute values of weighted speedup increase and maxi-

mum slowdown decrease, as the cache size becomes larger for all schedulers, as expected. This is

because contention for memory bandwidth reduces with increasing cache capacity, improving per-

formance and fairness. Second, across all the cache capacity points we evaluate, BLISS achieves

significant performance and fairness benefits over the best-performing previous schedulers, while

approaching close to the fairness of the fairest previous schedulers.
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Figure 3.20: Performance and fairness with a shared cache

Shared Caches. Figure 3.20 shows system performance and fairness with a 32 MB shared cache

(instead of the 512 KB per core private caches used in our other experiments). BLISS achieves
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5%/24% better performance/fairness compared to TCM, demonstrating that BLISS is effective in

mitigating memory interference in the presence of large shared caches as well.

3.5.12 Sensitivity to Algorithm Parameters

Tables 3.3 and 3.4 show the system performance and fairness respectively of BLISS for different

values of the Blacklisting Threshold and Clearing Interval. Three major conclusions are in order.

First, a Clearing Interval of 10000 cycles provides a good balance between performance and fair-

ness. If the blacklist is cleared too frequently (1000 cycles), interference-causing applications are

not deprioritized for long enough, resulting in low system performance. In contrast, if the blacklist

is cleared too infrequently, interference-causing applications are deprioritized for too long, result-

ing in high unfairness. Second, a Blacklisting Threshold of 4 provides a good balance between

performance and fairness. When Blacklisting Threshold is very small, applications are blacklisted

as soon as they have very few requests served, resulting in poor interference mitigation as too

many applications are blacklisted. On the other hand, when Blacklisting Threshold is large, low-

and high-memory-intensity applications are not segregated effectively, leading to high unfairness.

XXXXXXXXXXXXThreshold
Interval

1000 10000 100000

2 8.76 8.66 7.95
4 8.61 9.18 8.60
8 8.42 9.05 9.24

Table 3.3: Performance sensitivity to threshold and interval

XXXXXXXXXXXXThreshold
Interval

1000 10000 100000

2 6.07 6.24 7.78
4 6.03 6.54 7.01
8 6.02 7.39 7.29

Table 3.4: Unfairness sensitivity to threshold and interval
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3.5.13 Interleaving and Scheduling Interaction

In this section, we study the impact of the address interleaving policy on the performance and fair-

ness of different schedulers. Our analysis so far has assumed a row-interleaved policy, where data

is distributed across channels, banks and rows at the granularity of a row. This policy optimizes

for row-buffer locality by mapping a consecutive row of data to the same channel, bank, rank. In

this section, we will consider two other interleaving policies, cache block interleaving and sub-row

interleaving.

Interaction with cache block interleaving. In a cache-block-interleaved system, data is striped

across channels, banks and ranks at the granularity of a cache block. Such a policy optimizes for

bank level parallelism, by distributing data at a small (cache block) granularity across channels,

banks and ranks.

Figure 3.21 shows the system performance and fairness of FRFCFS with row interleaving

(FRFCFS-Row), as a comparison point, five previous schedulers, and BLISS with cache block

interleaving. We draw three observations. First, system performance and fairness of the baseline

FRFCFS scheduler improve significantly with cache block interleaving, compared to with row in-

terleaving. This is because cache block interleaving enables more requests to be served in parallel

at the different channels and banks, by distributing data across channels and banks at the small

granularity of a cache block. Hence, most applications, and particularly, applications that do not

have very high row-buffer locality benefit from cache block interleaving.

Second, as expected, application-aware schedulers such as ATLAS and TCM achieve the best

performance among previous schedulers, by means of prioritizing requests of applications with

low memory intensities. However, PARBS and FRFCFS-Cap do not improve fairness over the

baseline, in contrast to our results with row interleaving. This is because cache block interleaving

already attempts to provide fairness by increasing the parallelism in the system and enabling more

requests from across different applications to be served in parallel, thereby reducing unfair appli-

cations slowdowns. More specifically, requests that would be row-buffer hits to the same bank,
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Figure 3.21: Scheduling and cache block interleaving

with row interleaving, are now distributed across multiple channels and banks, with cache block

interleaving. Hence, applications’ propensity to cause interference reduces, providing lower scope

for request capping based schedulers such as FRFCFS-Cap and PARBS to mitigate interference.

Third, BLISS achieves within 1.3% of the performance of the best performing previous sched-

uler (ATLAS), while achieving 6.2% better fairness than the fairest previous scheduler (PARBS).

BLISS effectively mitigates interference by regulating the number of consecutive requests served

from high-memory-intensity applications that generate a large number of requests, thereby achiev-

ing high performance and fairness.

Interaction with sub-row interleaving. While memory scheduling has been a prevalent approach

to mitigate memory interference, previous work has also proposed other solutions, as we describe

in Chapter 2. One such previous work by Kaseridis et al. [53] proposes minimalist open page, an

interleaving policy that distributes data across channels, ranks and banks at the granularity of a

sub-row (partial row), rather than an entire row, exploiting both row-buffer locality and bank-level

parallelism. We examine BLISS’ interaction with such a sub-row interleaving policy.

Figure 3.22 shows the system performance and fairness of FRFCFS with row interleaving

(FRFCFS-Row), FRFCFS with cache block interleaving (FRFCFS-Block) and five previously pro-

posed schedulers and BLISS, with sub-row interleaving (when data is striped across channels,

ranks and banks at the granularity of four cache blocks).

50



 8

 8.5

 9

 9.5

 10

 10.5

W
e
ig

h
te

d
 S

p
e
e
d
u
p

FRFCFS-Row
FRFCFS-Block

FRFCFS
FRFCFS-Cap

PARBS
ATLAS

TCM
BLISS

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

M
a
x
im

u
m

 S
lo

w
d
o
w

n

FRFCFS-Row
FRFCFS-Block

FRFCFS
FRFCFS-Cap

PARBS
ATLAS

TCM
BLISS

Figure 3.22: Scheduling and sub-row interleaving

Three observations are in order. First, sub-row interleaving provides significant benefits over

row interleaving, as can be observed for FRFCFS (and other scheduling policies by comparing with

Figure 3.4). This is because sub-row interleaving enables applications to exploit both row-buffer

locality and bank-level parallelism, unlike row interleaving that is mainly focused on exploiting

row-buffer locality. Second, sub-row interleaving achieves similar performance and fairness as

cache block interleaving. We observe that this is because cache block interleaving enables ap-

plications to exploit parallelism effectively, which makes up for the lost row-buffer locality from

distributing data at the granularity of a cache block across all channels and banks. Third, BLISS

achieves close to the performance (within 1.5%) of the best performing previous scheduler (TCM),

while reducing unfairness significantly and approaching the fairness of the fairest previous sched-

ulers. One thing to note is that BLISS has higher unfairness than FRFCFS, when a sub-row-

interleaved policy is employed. This is because the capping decisions from sub-row interleav-

ing and BLISS could collectively restrict high-row-buffer locality applications to a large degree,

thereby slowing them down and causing higher unfairness. Co-design of the scheduling and in-

terleaving policies to achieve different goals such as performance/fairness is an important area of

future research. We conclude that a BLISS-like scheduler, with its high performance and low com-

plexity is a significantly better alternative to schedulers such as ATLAS/TCM in the pursuit of such

scheduling-interleaving policy co-design.
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3.6 Summary

In summary, the Blacklisting memory scheduler (BLISS) is a new and simple approach to mem-

ory scheduling in systems with multiple threads. We observe that the per-application ranking

mechanisms employed by previously proposed application-aware memory schedulers incur high

hardware cost, cause high unfairness, and lead to high scheduling latency to the point that the

scheduler cannot meet the fast command scheduling requirements of state-of-the-art DDR proto-

cols. BLISS overcomes these problems based on the key observation that it is sufficient to group

applications into only two groups, rather than employing a total rank order among all applications.

Our evaluations across a variety of workloads and systems demonstrate that BLISS has better sys-

tem performance and fairness than previously proposed ranking-based schedulers, while incurring

significantly lower hardware cost and latency in making scheduling decisions.
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Chapter 4

Quantifying Application Slowdowns Due to

Main Memory Interference

In a multicore system, an application’s performance and slowdowns depend heavily on its corun-

ning applications and the amount of shared resource interference they cause, as we demonstrated

and discussed in Chapter 1. While the Blacklisting Scheduler (BLISS) is able to achieve high

system performance and fairness at low hardware complexity in the presence of main memory

interference, it does not have the ability to estimate and control application slowdowns.

The ability to accurately estimate application slowdowns can enable several use cases. For

instance, estimating the slowdown of each application may enable a cloud service provider [4,

2] to estimate the performance provided to each application in the presence of consolidation on

shared hardware resources, thereby billing the users appropriately. Perhaps more importantly,

accurate slowdown estimates may enable allocation of shared resources to different applications in

a slowdown-aware manner, thereby satisfying different applications’ performance requirements.

Mechanisms and models to accurately estimate application slowdowns due to shared resource

interference have not been explored as much as shared resource interference mitigation techniques

have. Furthermore, the few previous works on slowdown estimation, STFM [86], FST [27] and
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PTCA [25] are inaccurate, as we briefly discuss in Section 2.11. These works estimate slowdown

as the ratio of uninterfered to interfered stall/execution times. The uninterfered stall/execution

times are computed by estimating the number of cycles by which the interference experienced

by each individual request impacts execution time. Given the abundant parallelism available in

the memory subsystem, service of different requests overlap significantly. As a result, accurately

estimating the number of cycles by which each request is delayed due to interference is inherently

difficult, thereby resulting in high inaccuracies in the slowdown estimates.

We seek to accurately estimate application slowdowns due to memory bandwidth interference,

as a key step towards controlling application slowdowns. Towards this end, we first build the Mem-

ory Interference induced Slowdown Estimation (MISE) model to accurately estimate application

slowdowns in the presence of memory bandwidth interference.

4.1 The MISE Model

In this section, we provide a detailed description of our Memory Interference induced Slowdown

Estimation (MISE) model that estimates application slowdowns due to memory bandwidth inter-

ference. For ease of understanding, we first describe the observations that lead to a simple model

for estimating the slowdown of a memory-bound application when it is run concurrently with other

applications (Section 4.1.1). In Section 4.1.2, we describe how we extend the model to accommo-

date non-memory-bound applications. Section 4.2 describes the detailed implementation of our

model in a memory controller.

4.1.1 Memory-bound Application

A memory-bound application is one that spends an overwhelmingly large fraction of its execution

time stalling on memory accesses. Therefore, the rate at which such an application’s requests

are served has significant impact on its performance. More specifically, we make the following

54



observation about a memory-bound application.

Observation 1: The performance of a memory-bound application is roughly propor-

tional to the rate at which its memory requests are served.

For instance, for an application that is bottlenecked at memory, if the rate at which its requests

are served is reduced by half, then the application will take twice as much time to finish the same

amount of work. To validate this observation, we conducted a real-system experiment where we

ran memory-bound applications from SPEC CPU2006 [6] on a 4-core Intel Core i7 [40]. Each

SPEC application was run along with three copies of a microbenchmark whose memory intensity

can be varied.1 By varying the memory intensity of the microbenchmark, we can change the rate

at which the requests of the SPEC application are served.

Figure 6.2 plots the results of this experiment for three memory-intensive SPEC benchmarks,

namely, mcf, omnetpp, and astar. The figure shows the performance of each application vs. the

rate at which its requests are served. The request service rate and performance are normalized to

the request service rate and performance respectively of each application when it is run alone on

the same system.
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Figure 4.1: Request service rate vs. performance

1The microbenchmark streams through a large region of memory (one block at a time). The memory intensity
of the microbenchmark (LLC MPKI) is varied by changing the amount of computation performed between memory
operations.
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The results of our experiments validate our observation. The performance of a memory-bound

application is directly proportional to the rate at which its requests are served. This suggests that we

can use the request-service-rate of an application as a proxy for its performance. More specifically,

we can compute the slowdown of an application, i.e., the ratio of its performance when it is run

alone on a system vs. its performance when it is run alongside other applications on the same

system, as follows:

Slowdown of an App. =
alone-request-service-rate
shared-request-service-rate

(4.1)

Estimating the shared-request-service-rate (SRSR) of an application is straightforward. It just

requires the memory controller to keep track of how many requests of the application are served

in a given number of cycles. However, the challenge is to estimate the alone-request-service-rate

(ARSR) of an application while it is run alongside other applications. A naive way of estimating

ARSR of an application would be to prevent all other applications from accessing memory for a

length of time and measure the application’s ARSR. While this would provide an accurate estimate

of the application’s ARSR, this approach would significantly slow down other applications in the

system. Our second observation helps us to address this problem.

Observation 2: The ARSR of an application can be estimated by giving the requests

of the application the highest priority in accessing memory.

Giving an application’s requests the highest priority in accessing memory results in very little

interference from the requests of other applications. Therefore, many requests of the application

are served as if the application were the only one running on the system. Based on the above

observation, the ARSR of an application can be computed as follows:

ARSR of an App. =
# Requests with Highest Priority
# Cycles with Highest Priority

(4.2)
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where # Requests with Highest Priority is the number of requests served when the application is

given highest priority, and # Cycles with Highest Priority is the number of cycles an application is

given highest priority by the memory controller.

The memory controller can use Equation 4.2 to periodically estimate the ARSR of an appli-

cation and Equation 4.1 to measure the slowdown of the application using the estimated ARSR.

Section 4.2 provides a detailed description of the implementation of our model inside a memory

controller.

4.1.2 Non-memory-bound Application

So far, we have described our MISE model for a memory-bound application. We find that the

model presented above has low accuracy for non-memory-bound applications. This is because a

non-memory-bound application spends a significant fraction of its execution time in the compute

phase (when the core is not stalled waiting for memory). Hence, varying the request service rate

for such an application will not affect the length of the large compute phase. Therefore, we take

into account the duration of the compute phase to make the model accurate for non-memory-bound

applications.

Let α be the fraction of time spent by an application at memory. Therefore, the fraction of time

spent by the application in the compute phase is 1 − α. Since changing the request service rate

affects only the memory phase, we augment Equation 4.1 to take into account α as follows:

Slowdown of an App. = (1− α) + α
ARSR

SRSR
(4.3)

In addition to estimating ARSR and SRSR required by Equation 4.1, the above equation requires

estimating the parameter α, the fraction of time spent in memory phase. However, precisely com-

puting α for a modern out-of-order processor is a challenge since such a processor overlaps com-

putation with memory accesses. The processor stalls waiting for memory only when the oldest
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instruction in the reorder buffer is waiting on a memory request. For this reason, we estimate α as

the fraction of time the processor spends stalling for memory.

α =
# Cycles spent stalling on memory requests

Total number of cycles
(4.4)

Setting α to 1 reduces Equation 4.3 to Equation 4.1. We find that even when an application is

moderately memory-intensive, setting α to 1 provides a better estimate of slowdown. Therefore,

our final model for estimating slowdown takes into account the stall fraction (α) only when it is

low. Algorithm 1 shows our final slowdown estimation model.

Compute α;
if α < Threshold then

Slowdown = (1− α) + αARSR
SRSR

else
Slowdown = ARSR

SRSR
end

Algorithm 1: The MISE model

4.2 Implementation

In this section, we describe a detailed implementation of our MISE model in a memory controller.

For each application in the system, our model requires the memory controller to compute three pa-

rameters: 1) shared-request-service-rate (SRSR), 2) alone-request-service-rate (ARSR), and 3) α

(stall fraction).2 First, we describe the scheduling algorithm employed by the memory controller.

Then, we describe how the memory controller computes each of the three parameters.

4.2.1 Memory Scheduling Algorithm

In order to implement our model, each application needs to be given the highest priority period-

ically, such that its alone-request-service-rate can be measured. This can be achieved by sim-
2These three parameters need to be computed only for the active applications in the system. Hence, these need to

be tracked only per hardware thread context.
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ply assigning each application’s requests highest priority in a round-robin manner. However, the

mechanisms we build on top of our model allocate bandwidth to different applications to achieve

QoS/fairness. Therefore, in order to facilitate the implementation of our mechanisms, we employ

a lottery-scheduling-like approach [93, 117] to schedule requests in the memory controller. The

basic idea of lottery scheduling is to probabilistically enforce a given bandwidth allocation, where

each application is allocated a certain share of the bandwidth. The exact bandwidth allocation

policy depends on the goal of the system – e.g., QoS, high performance, high fairness, etc. In

this section, we describe how a lottery-scheduling-like algorithm works to enforce a bandwidth

allocation.

The memory controller divides execution time into intervals (of M processor cycles each).

Each interval is further divided into small epochs (of N processor cycles each). At the beginning

of each interval, the memory controller estimates the slowdown of each application in the system.

Based on the slowdown estimates and the final goal, the controller may change the bandwidth al-

location policy – i.e., redistribute bandwidth amongst the concurrently running applications. At

the beginning of each epoch, the memory controller probabilistically picks a single application and

prioritizes all the requests of that particular application during that epoch. The probability distri-

bution used to choose the prioritized application is such that an application with higher bandwidth

allocation has a higher probability of getting the highest priority. For example, consider a system

with two applications, A and B. If the memory controller allocates A 75% of the memory band-

width and B the remaining 25%, then A and B get the highest priority with probability 0.75 and

0.25, respectively.

4.2.2 Computing shared-request-service-rate (SRSR)

The shared-request-service-rate of an application is the rate at which the application’s requests are

served while it is running with other applications. This can be directly computed by the memory

controller using a per-application counter that keeps track of the number of requests served for that
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application. At the beginning of each interval, the controller resets the counter for each application.

Whenever a request of an application is served, the controller increments the counter corresponding

to that application. At the end of each interval, the SRSR of an application is computed as

SRSR of an App =
# Requests served
M (Interval Length)

4.2.3 Computing alone-request-service-rate (ARSR)

The alone-request-service-rate (ARSR) of an application is an estimate of the rate at which the

application’s requests would have been served had it been running alone on the same system. Based

on our observation (described in Section 4.1.1), the ARSR can be estimated by using the request-

service-rate of the application when its requests have the highest priority in accessing memory.

Therefore, the memory controller estimates the ARSR of an application only during the epochs in

which the application has the highest priority.

Ideally, the memory controller should be able to achieve this using two counters: one to keep

track of the number of epochs during which the application received highest priority and another

to keep track of the number of requests of the application served during its highest-priority epochs.

However, it is possible that even when an application’s requests are given highest priority, they may

receive interference from other applications’ requests. This is because, our memory scheduling is

work conserving – if there are no requests from the highest priority application, it schedules a ready

request from some other application. Once a request is scheduled, it cannot be preempted because

of the way DRAM operates.

In order to account for this interference, the memory controller uses a third counter for each

application to track the number of cycles during which an application’s request was blocked due to

some other application’s request, in spite of the former having highest priority. For an application

with highest priority, a cycle is deemed to be an interference cycle if during that cycle, a command

corresponding to a request of that application is waiting in the request buffer and the previous
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command issued to any bank, was for a request from a different application.

Based on the above discussion, the memory controller keeps track of three counters to compute

the ARSR of an application: 1) number of highest-priority epochs of the application (# HPEs),

2) number of requests of that application served during its highest-priority epochs (# HPE Re-

quests), and 3) number of interference cycles of the application during its highest-priority epochs

(# Interference cycles). All these counters are reset at the start of an interval and the ARSR is

computed at the end of each interval as follows:

ARSR of an App. =
# HPE Requests

N .(# HPEs)− (# Interference cycles)

Our model does not take into account bank level parallelism (BLP) or row-buffer interference

when estimating # Interference cycles. We observe that this does not affect the accuracy of our

model significantly. because we eliminate most of the interference by measuring ARSR only when

an application has highest priority. We leave a study of the effects of bank-level parallelism and

row-buffer interference on the accuracy of our model as part of future work.

4.2.4 Computing stall-fraction α

The stall-fraction (α) is the fraction of the cycles spent by the application stalling for memory

requests. The number of stall cycles can be easily computed by the core and communicated to the

memory controller at the end of each interval.

4.2.5 Hardware Cost

Our implementation incurs additional storage cost due to 1) the counters that keep track of param-

eters required to compute slowdown (five per hardware thread context), and 2) a register that keeps

track of the current bandwidth allocation policy (one per hardware thread context). We find that

using four byte registers for each counter is more than sufficient for the values they keep track of.
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Therefore, our model incurs a storage cost of at most 24 bytes per hardware thread context.

4.3 Methodology

Simulation Setup. We model the memory system using an in-house cycle-accurate DDR3-SDRAM

simulator. We have integrated this DDR3 simulator into an in-house cycle-level x86 simulator with

a Pin [73] frontend, which models out-of-order cores with a limited-size instruction window. Each

core has a 512 KB private cache. We model main memory as the only shared resource, in or-

der to isolate and analyze the effect of memory interference on application slowdowns. Table 4.1

provides more details of the simulated systems.

Unless otherwise specified, the evaluated systems consist of 4 cores and a memory subsystem

with 1 channel, 1 rank/channel and 8 banks/rank. We use row-interleaving to map the physical

address space onto DRAM channels, ranks and banks. Data is striped across different channels,

ranks and banks, at the granularity of a row. Our workloads are made up of 26 benchmarks from

the SPEC CPU2006 [6] suite.

Workloads. We form multiprogrammed workloads using combinations of these 26 benchmarks.

We extract a representative phase of each benchmark using PinPoints [92] and run that phase for

200 million cycles. We will provide more details about our workloads as and when required.

Processor 4-16 cores, 5.3GHz, 3-wide issue,
8 MSHRs, 128-entry instruction window

Last-level cache 64B cache-line, 16-way associative,
512KB private cache-slice per core

Memory controller 64/64-entry read/write request queues per controller

Memory Timing: DDR3-1066 (8-8-8) [79]
Organization: 1 channel, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

Table 4.1: Configuration of the simulated system

Metrics. We use average error to compare the accuracy of MISE and previously proposed models.

We compute slowdown estimation error for each application, at the end of every quantum (Q), as
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the absolute value of

Error =
Estimated Slowdown− Actual Slowdown

Actual Slowdown
× 100%

Actual Slowdown =
IPCalone

IPCshared

We compute IPCalone for the same amount of work as the shared run for each quantum. For each

application, we compute the average slowdown estimation error across all quanta in a workload

run and then compute the average across all occurrences of the application in all of our workloads.

Parameters. We use an interval length (M) of 5 million cycles and an epoch length (N ) of 10000

cycles for all our evaluations. Section 4.5 evaluates sensitivity of our model to these parameters.

4.4 Comparison to STFM

Stall-Time-Fair Memory scheduling (STFM) [86] is one of the few previous works that attempt to

estimate main-memory-induced slowdowns of individual applications when they are run concur-

rently on a multicore system. As we described in Section 2.11 and earlier in this chapter, STFM

estimates the slowdown of an application by estimating the number of cycles it stalls due to inter-

ference from other applications’ requests. Other previous works on slowdown estimation [27, 25]

estimate slowdown due to memory bandwidth interference in a similar manner as STFM and in

addition, estimate slowdown due to shared cache interference as well. Since MISE’s focus is

on slowdown estimation in the presence of memory bandwidth interference, we qualitatively and

quantitatively compare MISE with STFM.

There are two key differences between MISE and STFM for estimating slowdown. First, MISE

uses request service rates rather than stall times to estimate slowdown. As we mentioned in Sec-

tion 4.1, the alone-request-service-rate of an application can be fairly accurately estimated by
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giving the application highest priority in accessing memory. Giving the application highest pri-

ority in accessing memory results in very little interference from other applications. In contrast,

STFM attempts to estimate the alone-stall-time of an application while it is receiving significant

interference from other applications. Second, MISE takes into account the effect of the compute

phase for non-memory-bound applications. STFM, on the other hand, has no such provision to

account for the compute phase. As a result, MISE’s slowdown estimates for non-memory-bound

applications are significantly more accurate than STFM’s estimates.

Figure 4.2 compares the accuracy of the MISE model with STFM for six representative memory-

bound applications from the SPEC CPU2006 benchmark suite. Each application is run on a 4-core

system along with three other applications: sphinx3, leslie3d, and milc. The figure plots three

curves: 1) actual slowdown, 2) slowdown estimated by STFM, and 3) slowdown estimated by

MISE. For most applications in the SPEC CPU2006 suite, the slowdown estimated by MISE is

significantly more accurate than STFM’s slowdown estimates. All applications whose slowdowns

are shown in Figure 4.2, except sphinx3, are representative of this behavior. For a few applica-

tions and workload combinations, STFM’s estimates are comparable to the slowdown estimates

from our model: sphinx3 is an example of such an application. However, as we will show below,

across all workloads, the MISE model provides lower average slowdown estimation error for all

applications.

Figure 4.3 compares the accuracy of MISE with STFM for three representative non-memory-

bound applications, when each application is run on a 4-core system along with three other appli-

cations: sphinx3, leslie3d, and milc. As shown in the figure, MISE’s estimates are significantly

more accurate compared to STFM’s estimates. As mentioned before, STFM does not account for

the compute phase of these applications. However, these applications spend significant amount of

their execution time in the compute phase. This is the reason why our model, which takes into

account the effect of the compute phase of these applications, is able to provide more accurate

slowdown estimates for non-memory-bound applications.
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(b) leslie3d
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(c) sphinx3
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(f) cactusADM

Figure 4.2: Comparison of our MISE model with STFM for representative memory-bound appli-
cations
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Figure 4.3: Comparison of our MISE model with STFM for representative non-memory-bound
applications

Table 4.2 shows the average slowdown estimation error for each benchmark, with STFM and

MISE, across all 300 4-core workloads of different memory intensities.3 As can be observed,

MISE’s slowdown estimates have significantly lower error than STFM’s slowdown estimates across

most benchmarks. Across 300 workloads, STFM’s estimates deviate from the actual slowdown by

29.8%, whereas, our proposed MISE model’s estimates deviate from the actual slowdown by only

8.1%. Therefore, we conclude that our slowdown estimation model provides better accuracy than

STFM.
3See Table 5.1 and Section 5.1.3 for more details about these 300 workloads.
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Benchmark STFM MISE Benchmark STFM MISE
453.povray 56.3 0.1 473.astar 12.3 8.1
454.calculix 43.5 1.3 456.hmmer 17.9 8.1

400.perlbench 26.8 1.6 464.h264ref 13.7 8.3
447.dealII 37.5 2.4 401.bzip2 28.3 8.5

436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8
450.soplex 29.8 3.5 433.milc 26.4 9.5
444.namd 43.6 3.7 481.wrf 33.6 11.1

437.leslie3d 26.4 4.3 429.mcf 83.74 11.5
403.gcc 25.4 4.5 445.gobmk 23.1 12.5

462.libquantum 48.9 5.3 483.xalancbmk 18.0 13.6
459.GemsFDTD 21.6 5.5 435.gromacs 31.4 15.6

470.lbm 6.9 6.3 482.sphinx3 21 16.8
473.astar 12.3 8.1 471.omnetpp 26.2 17.5

456.hmmer 17.9 8.1 465.tonto 32.7 19.5

Table 4.2: Average error for each benchmark (in %)

4.5 Sensitivity to Algorithm Parameters

We evaluate the sensitivity of the MISE model to epoch and interval lengths. Table 4.3 presents

the average error (in %) of the MISE model for different values of epoch and interval lengths. Two

major conclusions are in order. First, when the interval length is small (1 million cycles), the error

is very high. This is because the request service rate is not stable at such small interval lengths

and varies significantly across intervals. Therefore, it cannot serve as an effective proxy for perfor-

mance. On the other hand, when the interval length is larger, request service rate exhibits a more

stable behavior and can serve as an effective measure of application slowdowns. Therefore, we

conclude that except at very low interval lengths, the MISE model is robust. Second, the average

error is high for high epoch lengths (1 million cycles) because the number of epochs in an interval

reduces. As a result, some applications might not be assigned highest priority for any epoch during

an interval, preventing estimation of their alone-request-service-rate. Note that the effect of this is

mitigated as the interval length increases, as with a larger interval length the number of epochs in

an interval increases. For smaller epoch length values, however, the average error of MISE does

not exhibit much variation and is robust. The lowest average error of 8.1% is achieved at an inter-

val length of 5 million cycles and an epoch length of 10000 cycles. Furthermore, we observe that
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estimating slowdowns at an interval length of 5 million cycles also enables enforcing QoS at fine

time granularities, although, higher interval lengths exhibit similar average error. Therefore, we

use these values of interval and epoch lengths for our evaluations.

HHH
HHH

HHH

Epoch
Length

Interval
Length

1 mil. 5 mil. 10 mil. 25 mil. 50 mil.

1000 65.1% 9.1% 11.5% 10.7% 8.2%
10000 64.1% 8.1% 9.6% 8.6% 8.5%

100000 64.3% 11.2% 9.1% 8.9% 9%
1000000 64.5% 31.3% 14.8% 14.9% 11.7%

Table 4.3: Sensitivity of average error to epoch and interval lengths

4.6 Summary

In summary, we propose MISE, a new and simple model to estimate application slowdowns due

to inter-application interference in main memory. MISE is based on two simple observations:

1) the rate at which an application’s memory requests are served can be used as a proxy for the

application’s performance, and 2) the uninterfered request-service-rate of an application can be

accurately estimated by giving the application’s requests the highest priority in accessing main

memory. Compared to state-of-the-art approaches for estimating main memory slowdowns, MISE

is simpler and more accurate, as our evaluations show.
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Chapter 5

Applications of the MISE Model

Accurate slowdown estimates from the MISE model can be leveraged in multiple possible ways.

On the one hand, they can be leveraged in hardware, to perform allocation of memory bandwidth to

different applications, such that the overall system performance/fairness is improved or different

applications’ performance guarantees are met. On the other hand, MISE’s slowdown estimates

can be communicated to the system software/hypervisor, enabling virtual machine migration and

admission control schemes.

We propose and evaluate two such use cases of MISE: 1) a mechanism to provide soft QoS

guarantees (MISE-QoS) and 2) a mechanism that attempts to minimize maximum slowdown to

improve overall system fairness (MISE-Fair).

5.1 MISE-QoS: Providing Soft QoS Guarantees

MISE-QoS is a mechanism to provide soft QoS guarantees to one or more applications of inter-

est in a workload with many applications, while trying to maximize overall performance for the

remaining applications. By soft QoS guarantee, we mean that the applications of interest (AoIs)

should not be slowed down by more than an operating-system-specified bound. One way of achiev-
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ing such a soft QoS guarantee is to always prioritize the AoIs. However, such a mechanism has two

shortcomings. First, it would work when there is only one AoI. With more than one AoI, prioritiz-

ing all AoIs will cause them to interfere with each other making their slowdowns uncontrollable.

Second, even with just one AoI, a mechanism that always prioritizes the AoI may unnecessarily

slow down other applications in the system. MISE-QoS addresses these shortcomings by using

slowdown estimates of the AoIs to allocate them just enough memory bandwidth to meet their

specified slowdown bound. We present the operation of MISE-QoS with one AoI and then de-

scribe how it can be extended to multiple AoIs.

5.1.1 Mechanism Description

The operation of MISE-QoS with one AoI is simple. As we describe in Section 4.2.1, the memory

controller divides execution time into intervals of lengthM. The controller maintains the current

bandwidth allocation for the AoI. At the end of each interval, it estimates the slowdown of the

AoI and compares it with the specified bound, say B. If the estimated slowdown is less than

B, then the controller reduces the bandwidth allocation for the AoI by a small amount (2% in

our experiments). On the other hand, if the estimated slowdown is more than B, the controller

increases the bandwidth allocation for the AoI (by 2%).1 The remaining bandwidth is used by all

other applications in the system in a free-for-all manner. The above mechanism attempts to ensure

that the AoI gets just enough bandwidth to meet its target slowdown bound. As a result, the other

applications in the system are not unnecessarily slowed down.

In some cases, it is possible that the target bound cannot be met even by allocating all the mem-

ory bandwidth to the AoI – i.e., prioritizing its requests 100% of the time. This is because, even

the application with the highest priority (AoI) could be subject to interference, slowing it down by

some factor, as we describe in Section 4.2.3. Therefore, in scenarios when it is not possible to meet

the target bound for the AoI, the memory controller can convey this information to the operating

1We found that 2% increments in memory bandwidth work well empirically, as our results indicate. Better tech-
niques that dynamically adapt the increment are possible and are a part of our future work.
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system, which can then take appropriate action (e.g., deschedule some other applications from the

machine).

5.1.2 MISE-QoS with Multiple AoIs

The above described MISE-QoS mechanism can be easily extended to a system with multiple

AoIs. In such a system, the memory controller maintains the bandwidth allocation for each AoI.

At the end of each interval, the controller checks if the slowdown estimate for each AoI meets the

corresponding target bound. Based on the result, the controller either increases or decreases the

bandwidth allocation for each AoI (similar to the mechanism in Section 5.1.1).

With multiple AoIs, it may not be possible to meet the specified slowdown bound for any of

the AoIs. Our mechanism concludes that the specified slowdown bounds cannot be met if: 1) all

the available bandwidth is partitioned only between the AoIs – i.e., no bandwidth is allocated to

the other applications, and 2) any of the AoIs does not meet its slowdown bound after R intervals

(where R is empirically determined at design time). Similar to the scenario with one AoI, the

memory controller can convey this conclusion to the operating system (along with the estimated

slowdowns), which can then take an appropriate action. Note that other potential mechanisms for

determining whether slowdown bounds can be met are possible.

5.1.3 Evaluation with Single AoI

To evaluate MISE-QoS with a single AoI, we run each benchmark as the AoI, alongside 12 dif-

ferent workload mixes shown in Table 5.1. We run each workload with 10 different slowdown

bounds for the AoI: 10
1
, 10

2
, ..., 10

10
. These slowdown bounds are chosen so as to have more data

points between the bounds of 1× and 5×.2 In all, we present results for 3000 data points with dif-

ferent workloads and slowdown bounds. We compare MISE-QoS with a mechanism that always

prioritizes the AoI [44] (AlwaysPrioritize).

2Most applications are not slowed down by more than 5× for our system configuration.
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Mix No. Benchmark 1 Benchmark 2 Benchmark 3
1 sphinx3 leslie3d milc
2 sjeng gcc perlbench
3 tonto povray wrf
4 perlbench gcc povray
5 gcc povray leslie3d
6 perlbench namd lbm
7 hef bzip2 libquantum
8 hmmer lbm omnetpp
9 sjeng libquantum cactusADM

10 namd libquantum mcf
11 xalancbmk mcf astar
12 mcf libquantum leslie3d

Table 5.1: Workload mixes

Table 5.2 shows the effectiveness of MISE-QoS in meeting the prescribed slowdown bounds for

the 3000 data points. As shown, for approximately 79% of the workloads, MISE-QoS meets the

specified bound and correctly estimates that the bound is met. However, for 2.1% of the workloads,

MISE-QoS does meet the specified bound but it incorrectly estimates that the bound is not met.

This is because, in some cases, MISE-QoS slightly overestimates the slowdown of applications.

Overall, MISE-QoS meets the specified slowdown bound for close to 80.9% of the workloads,

as compared to AlwaysPrioritize that meets the bound for 83% of the workloads. Therefore, we

conclude that MISE-QoS meets the bound for 97.5% of the workloads where AlwaysPrioritize

meets the bound. Furthermore, MISE-QoS correctly estimates whether or not the bound was met

for 95.7% of the workloads, whereas AlwaysPrioritize has no provision to estimate whether or not

the bound was met.

Scenario # Workloads % Workloads
Bound Met and Predicted Right 2364 78.8%
Bound Met and Predicted Wrong 65 2.1%
Bound Not Met and Predicted Right 509 16.9%
Bound Not Met and Predicted Wrong 62 2.2%

Table 5.2: Effectiveness of MISE-QoS

To show the effectiveness of MISE-QoS, we compare the AoI’s slowdown due to MISE-QoS

and the mechanism that always prioritizes the AoI (AlwaysPrioritize) [44]. Figure 5.1 presents

representative results for 8 different AoIs when they are run alongside Mix 1 (Table 5.1). The
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label MISE-QoS-n corresponds to a slowdown bound of 10
n

. (Note that AlwaysPrioritize does not

take into account the slowdown bound). Note that the slowdown bound decreases (i.e., becomes

tighter) from left to right for each benchmark in Figure 5.1 (as well as in other figures). We draw

three conclusions from the results.
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Figure 5.1: AoI performance: MISE-QoS vs. AlwaysPrioritize

First, for most applications, the slowdown of AlwaysPrioritize is considerably more than one.

As described in Section 5.1.1, always prioritizing the AoI does not completely prevent other appli-

cations from interfering with the AoI.

Second, as the slowdown bound for the AoI is decreased (left to right), MISE-QoS gradually

increases the bandwidth allocation for the AoI, eventually allocating all the available bandwidth to

the AoI. At this point, MISE-QoS performs very similarly to the AlwaysPrioritize mechanism.

Third, in almost all cases (in this figure and across all our 3000 data points), MISE-QoS meets

the specified slowdown bound if AlwaysPrioritize is able to meet the bound. One exception to

this is benchmark gromacs. For this benchmark, MISE-QoS meets the slowdown bound for values
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ranging from 10
1

to 10
6

.3 For slowdown bound values of 10
7

and 10
8

, MISE-QoS does not meet the

bound even though allocating all the bandwidth for gromacs would have achieved these slowdown

bounds (since AlwaysPrioritize can meet the slowdown bound for these values). This is because

our MISE model underestimates the slowdown for gromacs. Therefore, MISE-QoS incorrectly

assumes that the slowdown bound is met for gromacs.

Overall, MISE-QoS accurately estimates the slowdown of the AoI and allocates just enough

bandwidth to the AoI to meet a slowdown bound. As a result, MISE-QoS is able to significantly

improve the performance of the other applications in the system (as we show next).

System Performance and Fairness. Figure 5.2 compares the system performance (harmonic

speedup) and fairness (maximum slowdown) of MISE-QoS and AlwaysPrioritize for different val-

ues of the bound. We omit the AoI from the performance and fairness calculations. The results are

categorized into four workload categories (0, 1, 2, 3) indicating the number of memory-intensive

benchmarks in the workload. For clarity, the figure shows results only for a few slowdown bounds.

Three conclusions are in order.
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Figure 5.2: Average system performance and fairness across 300 workloads of different memory
intensities

First, MISE-QoS significantly improves performance compared to AlwaysPrioritize, especially

when the slowdown bound for the AoI is large. On average, when the bound is 10
3

, MISE-QoS

improves harmonic speedup by 12% and weighted speedup by 10% (not shown due to lack of

3Note that the slowdown bound becomes tighter from left to right.
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space) over AlwaysPrioritize, while reducing maximum slowdown by 13%. Second, as expected,

the performance and fairness of MISE-QoS approach that of AlwaysPrioritize as the slowdown

bound is decreased (going from left to right for a set of bars). Finally, the benefits of MISE-

QoS increase with increasing memory intensity because always prioritizing a memory intensive

application will cause significant interference to other applications.

Based on our results, we conclude that MISE-QoS can effectively ensure that the AoI meets the

specified slowdown bound while achieving high system performance and fairness across the other

applications. In Section 5.1.4, we discuss a case study of a system with two AoIs.

Using STFM’s Slowdown Estimates to Provide QoS. We evaluate the effectiveness of STFM

in providing slowdown guarantees, by using slowdown estimates from STFM’s model to drive our

QoS-enforcement mechanism. Table 5.3 shows the effectiveness of STFM’s slowdown estimation

model in meeting the prescribed slowdown bounds for the 3000 data points. We draw two ma-

jor conclusions. First, the slowdown bound is met and estimated as met for only 63.7% of the

workloads, whereas MISE-QoS meets the slowdown bound and estimates it right for 78.8% of

the workloads (as shown in Table 5.2). The reason is STFM’s high slowdown estimation error.

Second, the percentage of workloads for which the slowdown bound is met/not-met and is esti-

mated wrong is 18.4%, as compared to 4.3% for MISE-QoS. This is because STFM’s slowdown

estimation model overestimates the slowdown of the AoI and allocates it more bandwidth than

is required to meet the prescribed slowdown bound. Therefore, performance of the other applica-

tions in a workload suffers, as demonstrated in Figure 5.3 which shows the system performance for

different values of the prescribed slowdown bound, for MISE and STFM. For instance, when the

slowdown bound is 10
3

, STFM-QoS has 5% lower average system performance than MISE-QoS.

Therefore, we conclude that the proposed MISE model enables more effective enforcement of QoS

guarantees for the AoI, than the STFM model, while providing better average system performance.

74



Scenario # Workloads % Workloads
Bound Met and Predicted Right 1911 63.7%
Bound Met and Predicted Wrong 480 16%
Bound Not Met and Predicted Right 537 17.9%
Bound Not Met and Predicted Wrong 72 2.4%

Table 5.3: Effectiveness of STFM-QoS
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Figure 5.3: Average system performance using MISE and STFM’s slowdown estimation models
(across 300 workloads)

5.1.4 Case Study: Two AoIs

So far, we have discussed and analyzed the benefits of MISE-QoS for a system with one AoI.

However, there could be scenarios with multiple AoIs each with its own target slowdown bound.

One can think of two naive approaches to possibly address this problem. In the first approach,

the memory controller can prioritize the requests of all AoIs in the system. This is similar to

the AlwaysPrioritize mechanism described in the previous section. In the second approach, the

memory controller can equally partition the memory bandwidth across all AoIs. We call this

approach EqualBandwidth. However, neither of these mechanisms can guarantee that the AoIs

meet their target bounds. On the other hand, using the mechanism described in Section 5.1.2,

MISE-QoS can be used to achieve the slowdown bounds for multiple AoIs.

To show the effectiveness of MISE-QoS with multiple AoIs, we present a case study with two

AoIs. The two AoIs, astar and mcf are run in a 4-core system with leslie and another copy of mcf.

Figure 5.4 compares the slowdowns of each of the four applications with the different mechanisms.
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The same slowdown bound is used for both AoIs.
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Figure 5.4: Meeting a target bound for two applications

Although AlwaysPrioritize prioritizes both AoIs, mcf (the more memory-intensive AoI) inter-

feres significantly with astar (slowing it down by more than 7×). EqualBandwidth mitigates this

interference problem by partitioning the bandwidth between the two applications. However, MISE-

QoS intelligently partitions the available memory bandwidth equally between the two applications

to ensure that both of them meet a more stringent target bound. For example, for a slowdown

bound of 10
4

, MISE-QoS allocates more than 50% of the bandwidth to astar, thereby reducing

astar’s slowdown below the bound of 2.5, while EqualBandwidth can only achieve a slowdown

of 3.4 for astar, by equally partitioning the bandwidth between the two AoIs. Furthermore, as a

result of its intelligent bandwidth allocation, MISE-QoS significantly reduces the slowdowns of

the other applications in the system compared to AlwaysPrioritize and EqualBandwidth (as seen

in Figure 5.4).

We conclude, based on the evaluations presented above, that MISE-QoS manages memory

bandwidth efficiently to achieve both high system performance and fairness while meeting per-

formance guarantees for one or more applications of interest.
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5.2 MISE-Fair: Minimizing Maximum Slowdown

The second mechanism we build on top of our MISE model is one that seeks to improve overall

system fairness. Specifically, this mechanism attempts to minimize the maximum slowdown across

all applications in the system. Ensuring that no application is unfairly slowed down while main-

taining high system performance is an important goal in multicore systems where co-executing

applications are similarly important.

5.2.1 Mechanism

At a high level, our mechanism works as follows. The memory controller maintains two pieces

of information: 1) a target slowdown bound (B) for all applications, and 2) a bandwidth alloca-

tion policy that partitions the available memory bandwidth across all applications. The memory

controller enforces the bandwidth allocation policy using the lottery-scheduling technique as de-

scribed in Section 4.2.1. The controller attempts to ensure that the slowdown of all applications is

within the bound B. To this end, it modifies the bandwidth allocation policy so that applications

that are slowed down more get more memory bandwidth. Should the memory controller find that

bound B is not possible to meet, it increases the bound. On the other hand, if the bound is easily

met, it decreases the bound. We describe the two components of this mechanism: 1) bandwidth

redistribution policy, and 2) modifying target bound (B).

Bandwidth Redistribution Policy. As described in Section 4.2.1, the memory controller di-

vides execution into multiple intervals. At the end of each interval, the controller estimates the

slowdown of each application and possibly redistributes the available memory bandwidth amongst

the applications, with the goal of minimizing the maximum slowdown. Specifically, the controller

divides the set of applications into two clusters. The first cluster contains those applications whose

estimated slowdown is less than B. The second cluster contains those applications whose esti-

mated slowdown is more than B. The memory controller steals a small fixed amount of bandwidth
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allocation (2%) from each application in the first cluster and distributes it equally among the appli-

cations in the second cluster. This ensures that the applications that do not meet the target bound

B get a larger share of the memory bandwidth.

Modifying Target Bound. The target bound B may depend on the workload and the different

phases within each workload. This is because different workloads, or phases within a workload,

have varying demands from the memory system. As a result, a target bound that is easily met for

one workload/phase may not be achievable for another workload/phase. Therefore, our mechanism

dynamically varies the target bound B by predicting whether or not the current value of B is

achievable. For this purpose, the memory controller keeps track of the number of applications that

met the slowdown bound during the past N intervals (3 in our evaluations). If all the applications

met the slowdown bound in all of the N intervals, the memory controller predicts that the bound

is easily achievable. In this case, it sets the new bound to a slightly lower value than the estimated

slowdown of the application that is the most slowed down (a more competitive target). On the

other hand, if more than half the applications did not meet the slowdown bound in all of the N

intervals, the controller predicts that the target bound is not achievable. It then increases the target

slowdown bound to a slightly higher value than the estimated slowdown of the most slowed down

application (a more achievable target).

5.2.2 Interaction with the OS

As we will show in Section 5.2.3, our mechanism provides the best fairness compared to three

state-of-the-art approaches for memory request scheduling [60, 61, 86]. In addition to this, there is

another benefit to using our approach. Our mechanism, based on the MISE model, can accurately

estimate the slowdown of each application. Therefore, the memory controller can potentially com-

municate the estimated slowdown information to the operating system (OS). The OS can use this

information to make more informed scheduling and mapping decisions so as to further improve

system performance or fairness. Since prior memory scheduling approaches do not explicitly
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attempt to minimize maximum slowdown by accurately estimating the slowdown of individual

applications, such a mechanism to interact with the OS is not possible with them. Evaluating the

benefits of the interaction between our mechanism and the OS is beyond the scope of this thesis.

5.2.3 Evaluation

Figure 5.5 compares the system fairness (maximum slowdown) of different mechanisms with

increasing number of cores. The figure shows results with four previously proposed memory

scheduling policies (FRFCFS [97, 129], ATLAS [60], TCM [61], and STFM [86]), and our pro-

posed mechanism using the MISE model (MISE-Fair). We draw three conclusions from our results.
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Figure 5.5: Fairness with different core counts

First, MISE-Fair provides the best fairness compared to all other previous approaches. The re-

duction in the maximum slowdown due to MISE-Fair when compared to STFM (the best previous

mechanism) increases with increasing number of cores. With 16 cores, MISE-Fair provides 7.2%

better fairness compared to STFM.

Second, STFM, as a result of prioritizing the most slowed down application, provides better

fairness than all other previous approaches. While the slowdown estimates of STFM are not as

accurate as those of our mechanism, they are good enough to identify the most slowed down appli-
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cation. However, as the number of concurrently-running applications increases, simply prioritizing

the most slowed down application may not lead to better fairness. MISE-Fair, on the other hand,

works towards reducing maximum slowdown by stealing bandwidth from those applications that

are less slowed down compared to others. As a result, the fairness benefits of MISE-Fair compared

to STFM increase with increasing number of cores.

Third, ATLAS and TCM are more unfair compared to FRFCFS. As shown in prior work [60,

61], ATLAS trades off fairness to obtain better performance. TCM, on the other hand, is designed

to provide high system performance and fairness. Further analysis showed us that the cause of

TCM’s unfairness is the strict ranking employed by TCM. TCM ranks all applications based on

its clustering and shuffling techniques [61] and strictly enforces these rankings. We found that

such strict ranking destroys the row-buffer locality of low-ranked applications. This increases the

slowdown of such applications, leading to high maximum slowdown.
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Figure 5.6: Fairness for 16-core workloads

Effect of Workload Memory Intensity on Fairness. Figure 5.6 shows the maximum slow-

down of the 16-core workloads categorized by workload intensity. While most trends are similar

to those in Figure 5.5, we draw the reader’s attention to a specific point: for workloads with

non-memory-intensive applications (25%, 50% and 75% in the figure), STFM is more unfair than

MISE-Fair. As shown in Figure 4.3, STFM significantly overestimates the slowdown of non-
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memory-bound applications. Therefore, for these workloads, we find that STFM prioritizes such

non-memory-bound applications which are not the most slowed down. On the other hand, MISE-

Fair, with its more accurate slowdown estimates, is able to provide better fairness for these work-

load categories.

System Performance. Figure 5.7 presents the harmonic speedup of the four previously pro-

posed mechanisms (FRFCFS, ATLAS, TCM, STFM) and MISE-Fair, as the number of cores is

varied. The results indicate that STFM provides the best harmonic speedup for 4-core and 8-core

systems. STFM achieves this by prioritizing the most slowed down application. However, as the

number of cores increases, the harmonic speedup of MISE-Fair matches that of STFM. This is

because, with increasing number of cores, simply prioritizing the most slowed down application

can be unfair to other applications. In contrast, MISE-Fair takes into account slowdowns of all

applications to manage memory bandwidth in a manner that enables good progress for all appli-

cations. We conclude that MISE-Fair achieves the best fairness compared to prior approaches,

without significantly degrading system performance.
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5.3 Summary

We present two new main memory request scheduling mechanisms that use MISE to achieve two

different goals: 1) MISE-QoS aims to provide soft QoS guarantees to one or more applications of

interest while ensuring high system performance, 2) MISE-Fair attempts to minimize maximum

slowdown to improve overall system fairness. Our evaluations show that our proposed mecha-

nisms are more effective than the state-of-the-art memory scheduling approaches [44, 60, 61, 86]

in achieving their respective goals, thereby demonstrating the MISE model’s effectiveness in esti-

mating and controlling application slowdowns.
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Chapter 6

Quantifying Application Slowdowns Due to

Both Shared Cache Interference and Shared

Main Memory Interference

In a multicore system, the shared cache is a key source of contention among applications. Applica-

tions that share the cache contend for its limited capacity. The shared cache capacity allocated to an

application directly determines its memory intensity and hence, the degree of memory interference

in a system.

Figure 6.1 shows the slowdown of two representative applications, bzip2 and soplex, when they

share main memory alone and when they share both shared caches and main memory. As can be

seen, when the two applications share the cache, their slowdown increases significantly compared

to when they share main memory alone. We observe such shared cache interference across several

applications and workloads.

While the MISE model focuses on estimating slowdowns due to contention for main memory

bandwidth, it does not take into account interference at the the shared caches. We propose to

take into account the effect of shared cache capacity interference, in addition to main memory
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Figure 6.1: Impact of shared cache interference on application slowdowns

bandwidth interference, in estimating application slowdowns.

Previous works, FST [27] and PTCA [25] attempt to estimate slowdown due to both shared

cache and main memory interference. However, they are inaccurate, since they quantify the impact

of interference at a per-request granularity, as we described in Chapters 1 and 4. The presence of a

shared cache only makes the problem worse as the request stream of an application to main memory

could be completely different depending on whether or not the application shares the cache with

other applications. We strive to estimate an application’ slowdown accurately in the presence of

interference at both the shared cache and the main memory. Towards this end, we propose the

Application Slowdown Model (ASM).

6.1 Overview of the Application Slowdown Model (ASM)

In contrast to prior works which quantify interference at a per-request granularity, ASM uses ag-

gregate request behavior to quantify interference, based on the following observation.

6.1.1 Observation: Access rate as a proxy for performance

The performance of each application is proportional to the rate at which it accesses

the shared cache.
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Intuitively, an application can make progress when its data accesses are served. The faster

its accesses are served, the faster it makes progress. In the steady state, the rate at which an

application’s accesses are served (service rate) is almost the same as the rate at which it generates

accesses (access rate). Therefore, if an application can generate more accesses to the cache in a

given period of time (higher access rate), then it can make more progress during that time (higher

performance).

MISE observes that the performance of a memory-bound application is proportional to the rate

at which its main memory accesses are served. However, this observation is stronger than MISE’s

observation because this observation relates performance to the shared cache access rate and not

just main memory access rate, thereby accounting for the impact of both shared cache and main

memory interference. Hence, it holds for a broader class of applications that are sensitive to cache

capacity and/or main memory bandwidth, and not just memory-bound applications.

To validate our observation, we conducted an experiment in which we run each application

of interest alongside a hog program on an Intel Core-i5 processor with 6MB shared cache. The

cache and memory access behavior of the hog can be varied to cause different amounts of inter-

ference to the main program. Each application is run multiple times with the hog with different

characteristics. During each run, we measure the performance and shared cache access rate of the

application.

Figure 6.2 plots the results of our experiment for three applications from the SPEC CPU2006

suite [6]. The plot shows cache access rate vs. performance of the application normalized to when

it is run alone. As our results indicate, the performance of each application is indeed proportional

to the cache access rate of the application, validating our observation. We observed the same

behavior for a wide range of applications.

ASM exploits our observation to estimate slowdown as a ratio of cache access rates, instead of

as a ratio of performance.
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performance ∝ cache-access-rate (CAR)

Slowdown =
performancealone

performanceshared
=

CARalone

CARshared

While CARshared/ performanceshared are both easy to measure. the challenge is in estimating

performancealone or CARalone.

CARalone vs. performancealone. In order to estimate an application’s slowdown during a given

interval, prior works such as FST and PTCA estimate its alone execution time (performancealone)

by tracking the interference experienced by each of the application’s requests served during this

interval and subtracting these interference cycles from the application’s shared execution time

(performanceshared). This approach leads to inaccuracy, since estimating per-request interference

is difficult due to the parallelism in the memory system. CARalone, on the other hand, can be esti-

mated more accurately by exploiting the observation made by several prior works that applications’

phase behavior does not change significantly over time scales on the order of a few million cycles

(e.g., [103, 42]). Hence, CARalone can be estimated periodically over short time periods during

which main memory interference is minimized (thereby implicitly accounting for memory level

parallelism) and shared cache interference is quantified, rather than throughout execution. We
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describe this in detail in the next section.

6.1.2 Challenge: Accurately Estimating CARalone

A naive way of estimating CARalone of an application periodically is to run the application by

itself for short periods of time and measure CARalone. While such a scheme would eliminate main

memory interference, it would not eliminate shared cache interference, since the caches cannot

be warmed up at will in a short time duration. Hence, it is not possible to take this approach

to estimate CARalone accurately. Therefore, ASM takes a hybrid approach to estimate CARalone for

each application by 1) minimizing interference at the main memory, and 2) quantifying interference

at the shared cache.

Minimizing main memory interference. ASM minimizes interference for each application at

the main memory by simply giving each application’s requests the highest priority in the memory

controller periodically for short lengths of time, similar to MISE. This has two benefits. First,

it eliminates most of the impact of main memory interference when ASM is estimating CARalone

for the application (remaining minimal interference accounted for in Section 6.2.3). Second, it

provides ASM an accurate estimate of the cache miss service time for the application in the absence

of main memory interference. This estimate will be used in the next step, in quantifying shared

cache interference for the application.

Quantifying shared cache interference. To quantify the effect of cache interference, we need

to identify the excess cycles that are spent in serving shared cache misses that are contention

misses—those that would have otherwise hit in the cache had the application run alone on the

system. We use an auxiliary tag store for each application to first identify contention misses. Once

we determine the aggregate number of contention misses, we use the average cache miss service

time (computed in the previous step) and average cache hit service time to estimate the excess

number of cycles spent serving the contention misses—essentially quantifying the effect of shared

cache interference.
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6.1.3 ASM vs. Prior Work

ASM is better than prior work due to three reasons. First, as we describe in Section 2.11 and in

the beginning of this chapter, prior works aim to estimate the effect of main memory interference

on each contention miss individually, which is difficult and inaccurate. In contrast, our approach

eliminates most of the main memory interference for an application by giving the application’s

requests the highest priority, which also allows ASM to gather a good estimate of the average cache

miss service time. Second, to quantify the effect of shared cache interference, ASM only needs to

identify the number of contention misses, unlike prior approaches that need to determine whether

or not every individual request is a contention miss. This makes ASM more amenable to hardware-

overhead-reduction techniques like set sampling (more details in Sections 6.2.4 and 6.2.5). In

other words, the error introduced by set sampling in estimating the number of contention misses

is far lower than the error it introduces in estimating the actual number of cycles by which each

contention miss is delayed due to interference. Third, as we describe in Section 7.1, ASM enables

estimation of slowdowns for different cache allocations in a straightforward manner, which is non-

trivial using prior models.

In summary, ASM estimates application slowdowns as a ratio of cache access rates. ASM over-

comes the challenge of estimating CARalone by minimizing interference at the main memory and

quantifying interference at the shared cache. In the next section, we describe the implementation

of ASM.

6.2 Implementing ASM

ASM divides execution into multiple quanta, each of length Q cycles (a few million cycles). At

the end of each quantum, ASM 1) measures CARshared, and 2) estimates CARalone for each appli-

cation, and reports the slowdown of each application as the ratio of the application’s CARalone and

CARshared.
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6.2.1 Measuring CARshared

Measuring CARshared for each application is fairly straightforward. ASM keeps a per-application

counter that tracks the number of shared cache accesses for the application. The counter is cleared

at the beginning of each quantum and is incremented whenever there is a new shared cache access

for the application. At the end of each quantum, the CARshared for each application can be computed

as

cache-access-rateshared =
# Shared Cache Accesses

Q

6.2.2 Estimating CARalone

As we described in Section 6.1.2, during each quantum, ASM periodically estimates the CARalone of

each application by minimizing interference at the main memory and quantifying the interference

at the shared cache. Towards this end, ASM divides each quantum into epochs of length E cycles

(thousands of cycles), similar to MISE. Each epoch is probabilistically assigned to one of the

co-running applications. During each epoch, ASM collects information for the corresponding

application that will later be used to estimate CARalone for the application. Each application has

equal probability of being assigned an epoch. Assigning epochs to applications in a round-robin

fashion could also achieve similar effects. However, we build mechanisms on top of ASM that

allocate bandwidth to applications in a slowdown-aware manner (Section 7.2), similar to MISE-

QoS and MISE-Fair. Therefore, in order to facilitate building such mechanisms on top of ASM,

we employ a policy that probabilistically assigns an application to each epoch.

At the beginning of each epoch, ASM communicates the ID of the application assigned to the

epoch to the memory controller. During that epoch, the memory controller gives the corresponding

application’s requests the highest priority in accessing main memory.

To track contention misses, ASM maintains an auxiliary tag store for each application that

tracks the state of the cache had the application been running alone. The auxiliary tag store of an
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Name Definition

epoch-count Number of epochs assigned to the application

epoch-hits
Total number of shared cache hits for the application during its assigned
epochs

epoch-misses
Total number of shared cache misses for the application during its assigned
epochs

epoch-hit-time
Number of cycles during which the application has at least one outstanding
hit during its assigned epochs

epoch-miss-time
Number of cycles during which the application has at least one outstanding
miss during its assigned epochs

epoch-ATS-hits
Number of auxiliary tag store hits for the application during its assigned
epochs

epoch-ATS-misses
Number of auxiliary tag store misses for the application during its assigned
epochs

Table 6.1: Quantities measured by ASM for each application to estimate CARalone

application holds the tag entries alone (not the data) of cache blocks. When a request from another

application evicts an application’s block from the shared cache, the tag entry corresponding to the

evicted block still remains in the application’s auxiliary tag store. Hence, the auxiliary tag store

effectively tracks the state of the cache had the application been running alone on the system.

In this section, we will assume a full auxiliary tag store for ease of description. However, as we

will describe in Section 6.2.4, our final implementation uses set sampling to significantly reduce

the overhead of the auxiliary tag store with negligible loss in accuracy.

Table 6.1 lists the quantities that are measured by ASM for each application during the epochs

that are assigned to the application. At the end of each quantum, ASM uses these quantities to

estimate the CARalone of the application. These metrics can be measured using a counter for each

quantity while the application is running with other applications.

The CARalone of an application is given by,

CARalone =
# Requests served during application’s epochs
Time to serve above requests when run alone

=
epoch-hits + epoch-misses

(epoch-count ∗ E)− epoch-excess-cycles
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where, epoch-count ∗E represents the actual time the system spent serving those requests from the

application, and epoch-excess-cycles is the number of excess cycles spent serving the application’s

contention misses—those that would have been hits had the application run alone.

At a high level, for each contention miss, the system spends the time of serving a miss as

opposed to a hit had the application been running alone. Therefore,

epoch-excess-cycles = (# Contention Misses) × (avg-miss-time − avg-hit-time)

where, avg-miss-time is the average miss service time and avg-hit-time is the average hit service

time for the application for requests served during the application’s epochs. Each of these terms

can be computed using the quantities measured by ASM, as follows.

# Contention Misses = epoch-ATS-hits− epoch-hits

Average Miss Service Time =
epoch-miss-time

epoch-misses

Average Hit Service Time =
epoch-hit-time

epoch-hits

6.2.3 Accounting for Memory Queueing

During each epoch, when there are no requests from the highest priority application, the memory

controller may schedule requests from other applications. If a high priority request arrives after

another application’s request is scheduled, it may be delayed. To address this problem, we ap-

ply a similar mechanism as the interference cycle estimation mechanism in MISE (Section 4.2.3),

wherein ASM measures the number of queueing cycles for each application using a counter. A cy-

cle is deemed a queueing cycle if a request from the highest priority application is outstanding and

the previous command issued by the memory controller was from another application. At the end

of each quantum, the counter represents the queueing delay for all epoch-misses. However, since

ASM has already accounted for the queueing delay of the contention misses during its previous

estimate by removing the epoch-excess-cycles taken to serve contention misses, it only needs to

account for the queueing delay for the remaining true misses, i.e., epoch-ATS-misses. In order to
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do this, ASM computes the average queueing cycle for each miss from the application.

avg-queueing-delay =
# queueing cycles

epoch-misses

and computes its final CARalone estimate as

CARalone =
epoch-hits + epoch-misses

(epoch-count ∗ E)− epoch-excess-cycles− (epoch-ATS-misses ∗ avg-queueing-delay)

6.2.4 Sampling the Auxiliary Tag Store

As we mentioned before, in our final implementation, we use set sampling to reduce the overhead

of the auxiliary tag store (ATS). Using this approach, the ATS is maintained only for a few sampled

sets. The only two quantities that are affected by sampling are epoch-ATS-hits and epoch-ATS-

misses. With sampling enabled, we first measure the fraction of hits/misses in the sampled ATS.

We then compute epoch-ATS-hits/epoch-ATS-misses as a product of the hit/miss fraction with the

total number of cache accesses.

epoch-ATS-hits = ats-hit-fraction× epoch-accesses

epoch-ATS-misses = ats-miss-fraction× epoch-accesses

where epoch-accesses = epoch-hits + epoch-misses

6.2.5 Hardware Cost

ASM tracks the seven quantities in Table 6.1 and # queueing cycles using registers. We find that

using a four byte register for each of these counters is more than sufficient for the values they

keep track of. Hence, the counter overhead is 32 bytes for each application. In addition to these

counters, an auxiliary tag store (ATS) is maintained for each application. The ATS size depends

on the number of sets that are sampled. For 64 sampled sets and 16 ways per set, assuming four

bytes for each entry, the overhead is 4KB per-application, which is 0.2% the size of a 2MB cache

(used in our main evaluations).
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6.3 Methodology

System Configuration. We model the main memory system using a cycle-level in-house DDR3-

SDRAM simulator. We validated the simulator against DRAMSim2 [98] and Micron’s behavioral

Verilog model [80]. We integrate our DRAM simulator with an in-house simulator that models

out-of-order cores with a Pin [73] frontend. Each system consists of a per-core private L1 cache

and a shared L2 cache. Table 6.2 lists the main system parameters. Our main evaluations use a

4-core system with a 2MB shared cache and 1-channel main memory.

Processor 4-16 cores, 5.3GHz, 3-wide issue, 128-entry instruction window

L1 cache 64KB, private, 4-way associative, LRU, line size = 64B,
latency = 1 cycle

Last-level cache 1MB-4MB, shared, 16-way associative, LRU, line size = 64B,
latency = 20 cycles

Memory controller 128-entry request buffer per controller, FR-FCFS [97] scheduling
policy

Main Memory DDR3-1333 (10-10-10) [79], 1-4 channels, 1 rank/channel,
8 banks/rank, 8KB rows

Table 6.2: Configuration of the simulated system

Workloads. For our multiprogrammed workloads, we use applications from the SPEC CPU2006 [6]

and NAS Parallel Benchmark [5] suites (run single-threaded). We construct workloads with vary-

ing memory intensity—applications for each workload are chosen randomly. We run each work-

load for 100 million cycles. In all, we present results for 100 4-core, 100 8-core and 100 16-core

workloads.

Metrics. We use average error to compare the accuracy of ASM and previously proposed models

(similar to MISE). We compute slowdown estimation error for each application, at the end of every

quantum (Q), as the absolute value of

Error =
Estimated Slowdown− Actual Slowdown

Actual Slowdown
× 100%
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Actual Slowdown =
IPCalone

IPCshared

We compute IPCalone for the same amount of work as the shared run for each quantum. For each

application, we compute the average slowdown estimation error across all quanta in a workload

run and then compute the average across all occurrences of the application in all of our workloads.

Parameters. We compare ASM with two previous slowdown estimation models: Fairness via

Source Throttling (FST) [27] and Per-Thread Cycle Accounting (PTCA) [25]. For ASM, we set the

quantum length (Q) to 5,000,000 cycles and the epoch length (E) to 10,000 cycles. For ASM and

PTCA, we present results both with sampled and unsampled auxiliary tag stores (ATS). For FST,

we present results with various pollution filter sizes that match the size of the ATS. Section 6.4.5

evaluates the sensitivity of ASM to sampling, quantum and epoch lengths.

6.4 Evaluation of the Model

6.4.1 Slowdown Estimation Accuracy

Figure 6.3 compares the average slowdown estimation error from FST, PTCA, and ASM, with no

sampling in the auxiliary tag store for PTCA and ASM, and equal-overhead pollution filter for FST.

The benchmarks on the left are from SPEC CPU2006 suite and those on the right are from NAS

benchmark suite. Benchmarks within each suite are sorted based on memory intensity. Figure 6.4

presents the corresponding results with a sampled auxiliary tag store (64 cache sets) for PTCA and

ASM, and an equal-size pollution filter for FST.

We draw three major conclusions. First, even without sampling, ASM has significantly lower

slowdown estimation error (9%) compared to FST (18.5%) and PTCA (14.7%) (error in estimating

perfalone is very similar). This is because, as described in Section 6.2, prior works attempt to

quantify the effect of interference on a per-request basis, which is inherently difficult and inaccurate

given the abundant parallelism in the memory subsystem. ASM, in contrast, uses aggregate request
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Figure 6.3: Slowdown estimation accuracy with no sampling
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Figure 6.4: Slowdown estimation accuracy with sampling

behavior to quantify the effect of interference, and hence is more accurate. Our error estimates for

PTCA are higher than what is reported in their paper [25]. This is because they use first-come-

first-served scheduling at the memory controller. It is easier to estimate the effect of interference

using this policy than with the FR-FCFS [97] policy which can dynamically reorder requests from

different applications.

Second, sampling the auxiliary tag store and reducing the size of the pollution filter significantly

increase the slowdown estimation error of PTCA and FST respectively, while it has negligible im-

pact on the slowdown estimation error of ASM. PTCA’s error increases from 14.7% to 40.4% and

FST’s error increases from 18.5% to 29.4%, whereas ASM’s error increases from 9% to only 9.9%.

PTCA’s error increases from sampling is because it estimates the number of cycles by which each

contention miss (from the sampled sets) is delayed, and scales up this number to the entire cache.

However, since different requests may experience different levels of interference, this scaling in-

troduces more error in PTCA’s estimates. FST’s slowdown estimation error also increases from
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sampling, but the increase is not as significant as PTCA’s increase from sampling, because it uses

a pollution filter that is implemented using a Bloom filter [15], which is robust to size reductions.

ASM’s slowdown estimation error does not increase much from sampling, since the slowdown of

an application is estimated only when an application has highest priority and is experiencing min-

imal interference at the main memory. Quantifying the impact of shared cache interference using

aggregate contention miss counts and average high priority miss service time estimates, is easier

and more accurate when an application’s memory interference is minimized, rather than tracking

per-request interference when an application is experiencing interference at both the shared cache

and main memory. Section 6.4.5 presents more detailed evaluations demonstrating the impact of

sampling.

Third, FST and PTCA’s slowdown estimates are particularly inaccurate for applications with

high memory intensity (e.g., soplex, libquantum, mcf ) and high cache sensitivity (e.g., NPBft,

dealII, bzip2). This is because applications with high memory intensity generate a large number

of requests to memory, and accurately modeling the overlap in service of such large number of

requests is difficult, resulting in inaccurate slowdown estimates. Similarly, an application with high

cache sensitivity is severely affected by shared cache interference. Hence, the request streams to

main memory of the application will be drastically different when it is run alone vs. when it shares

the cache with other applications. This makes it hard to estimate per-request interference. ASM

simplifies the problem by minimizing main memory interference and tracking aggregate rather

than per-request behavior when memory interference is minimized, resulting in significantly lower

error than prior work for applications with high memory intensity and/or cache sensitivity.

In summary, with reasonable hardware overhead, ASM estimates slowdowns more accurately

than prior work and is more robust to applications with varying access behaviors.
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6.4.2 Distribution of Slowdown Estimation Error

Figure 6.5 shows a distribution of slowdown estimation error for FST, PTCA (unsampled) and

ASM (sampled), across all the 400 instances of different applications in our 100 4-core workloads.

The x-axis shows error ranges and the y-axis shows what fraction of points lie in each range. Two

observations are in order. First, 95.25% of ASM’s slowdown estimates have an error less than

20%, whereas only 76.25% and 79.25% of FST and PTCA’s estimates respectively lie within the

20% mark. Second, ASM’s maximum error is only 36%, while FST and PTCA have maximum

errors of 133% and 87% respectively. We observe that ASM’s maximum error is for astar, which

has moderate memory intensity. When astar is run with other higher intensity applications, it

is difficult to account for memory queueing accurately for astar, despite employing the technique

described in Section 6.2.3, leading to inaccuracy. The highest errors for FST/PTCA are for lbm/mcf

respectively, which are among the most memory-intensive of the applications we evaluate. As

described in Section 6.4.1, the request overlap when run alone vs. together is particularly dissimilar

for such applications, making it difficult to estimate alone behavior accurately by tracking per-

request interference. We conclude that ASM’s slowdown estimates have much lower variance than

FST and PTCA’s estimates and are more robust.
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Figure 6.5: Error distribution
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6.4.3 Impact of Prefetching

Figure 6.6 shows the average slowdown estimation error for FST, PTCA and ASM, across 100

4-core workloads (unsampled), with a stride prefetcher [12] of degree four. ASM achieves a sig-

nificantly low error of 7.5%, compared to 20% and 15% for FST and PTCA respectively. ASM’s

error reduces compared to not employing a prefetcher, since memory interference induced stalls

reduce with prefetching, thereby reducing the amount of interference whose impact on slowdowns

needs to be estimated. This reduction in interference is true for FST and PTCA as well. However,

their error increases slightly compared to not employing a prefetcher, since they estimate interfer-

ence at a per-request granularity. The introduction of prefetch requests causes more disruption and

hard-to-estimate overlap behavior among requests going to main memory, making it even more

difficult to estimate interference at a per-request granularity. In contrast, ASM uses aggregate re-

quest behavior to estimate slowdowns, which is more robust, resulting in more accurate slowdown

estimates with prefetching.
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Figure 6.6: Prefetching impact

6.4.4 Sensitivity to System Parameters

Core Count. Figure 6.7 presents the sensitivity of slowdown estimates from FST, PTCA and ASM

to the number of cores. Since PTCA and FST’s slowdown estimation error degrades significantly
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with sampling, for all studies from now on, we present results for prior works with no sampling.

However, for ASM, we still present results with a sampled auxiliary tag store. We evaluate 100

workloads for each core count. We draw two conclusions. First, ASM’s slowdown estimates are

significantly more accurate than slowdown estimates from FST and PTCA across all core counts.

Second, ASM’s accuracy gains over FST and PTCA increase with increasing core count. As core

count increases, interference at the shared cache and main memory increases and consequently,

request behavior at the shared cache and main memory is even more different from alone run

behavior. ASM tackles this problem by tracking aggregate request behavior, thereby scaling more

effectively to larger systems with more number of cores.

Cache Capacity. Figure 6.8 shows the sensitivity of slowdown estimates from ASM and previous

schemes to cache capacity across all our 4-core workloads. ASM’s slowdown estimates are signif-

icantly more accurate than slowdown estimates from FST and PTCA, across all cache capacities.
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6.4.5 Sensitivity to Algorithm Parameters

ATS/Pollution Filter Size. As we already explained in Section 6.4.1, ASM is robust to reduction

in the size of the auxiliary tag store (ATS). In contrast, FST and PTCA are significantly affected

when the size of the pollution filter and ATS respectively are reduced. Figure 6.9 illustrates this

further by plotting the sensitivity of slowdown estimates from ASM, FST and PTCA to size of the
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auxiliary tag store (ATS)/pollution filter. The left most bar for PTCA and ASM corresponds to no

sampling (128KB ATS) and as we move to the right, we decrease the number of sampled sets. The

right most bar corresponds to 64 sampled sets (4KB ATS). For FST, we set the size of the pollution

filter to be the same as the corresponding ATS. As expected, varying the size of the ATS has no

visible impact on the estimation error of ASM, whereas the estimation error of FST and PTCA

increase with more aggressive sampling.

Epoch and Quantum Lengths. Table 6.3 shows the average slowdown estimation error, across all

our workloads, for different values of the quantum (Q) and epoch lengths (E). As the table shows,

the estimation error increases with decreasing quantum length and increasing epoch length. This

is because the number of epochs (Q/E) decreases as quantum length (Q) decreases and/or epoch

length (E) increases. With fewer epochs, certain applications may not be assigned enough epochs

to enable ASM to reliably estimate their CARalone. For our main evaluations, we use a quantum

length of 5,000,000 cycles and epoch length of 10,000 cycles.
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hhhhhhhhhhhhhhhQuantum Length
Epoch Length

10000 50000 100000

1000000 12% 14% 16.6%

5000000 9.9% 10.6% 11.5%

10000000 9.2% 9.9% 10.5%

Table 6.3: Sensitivity to epoch and quantum lengths

6.5 Summary

We present the Application Slowdown Model (ASM) to estimate the slowdowns of applications

running concurrently on a multicore system due to both shared cache and main memory interfer-

ence. We observe that the performance of each application is proportional to the rate at which the

application accesses the shared cache. ASM exploits this observation to quantify interference using

the aggregate request behavior of each application, by minimizing interference at the main mem-

ory and quantifying interference at the shared cache. As a result, ASM estimates slowdown more

accurately than prior works, which rely on quantifying interference at a much finer per-request

granularity.
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Chapter 7

Applications of ASM

ASM’s ability to estimate application slowdowns due to both shared cache and main memory inter-

ference can be leveraged to build various hardware, software and hardware-software-cooperative

slowdown-aware resource management mechanisms to improve performance, fairness, and pro-

vide soft slowdown guarantees. Furthermore, accurate slowdown estimates can be used to drive

fair pricing schemes based on slowdowns, rather than just resource allocation or virtual machine

migration, in a cloud computing setting [3, 1]. We explore five such use cases of ASM, in this

chapter.

7.1 ASM Cache Partitioning (ASM-Cache)

ASM-Cache partitions the shared cache capacity among applications with the goal of minimizing

slowdown. The basic idea is to allocate more cache ways to applications whose slowdowns reduce

the most when given additional cache capacity.
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7.1.1 Mechanism

ASM-Cache consists of two main components. First, to partition the cache in a slowdown-aware

manner, we estimate the slowdown of each application when the application is given different

number of cache ways. Next, we determine the cache way allocation for each application based on

the slowdown estimates using a mechanism similar to Utility-based Cache Partitioning [95].

Slowdown Estimation. Using the observation described in Section 6.1, we estimate slowdown of

an application when it is allocated n ways as

slowdownn =
CARalone

CARn

where, CARn is the cache access rate of the application when n ways are allocated for the appli-

cation. We estimate CARalone using the mechanism described in Section 6.2. While CARn can be

estimated by measuring it while giving all possible way allocations to each application, such an

approach is expensive and detrimental to performance as the search space is huge. Therefore, we

propose to estimate CARn using a mechanism similar to estimating CARalone.

Let quantum-hits and quantum-misses be the number of shared cache hits and misses for the

application during a quantum. At the end of the quantum,

CARn =
quantum-hits + quantum-misses

# Cycles to serve above accesses with n ways
The challenge is in estimating the denominator, i.e., the number of cycles taken to serve an ap-

plication’s shared cache accesses during the quantum, if the application had been given n ways.

To estimate this, we first determine the number of shared cache accesses that would have hit in

the cache had the application been given n ways (quantum-hitsn). This can be directly obtained

from the auxiliary tag store. (We use a sampling auxiliary tag store and scale up the sampled

quantum-hitsn value using the mechanism described in Section 6.2.4.)

There are three cases: 1) quantum-hitsn = quantum-hits, 2) quantum-hitsn > quantum-hits, and

3) quantum-hitsn < quantum-hits. In the first case, when the number of hits with n ways is the

same as the number of hits during the quantum, we expect the system to take the same number of
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cycles to serve the requests even with n ways, i.e., Q cycles. In the second case, when there are

more hits with n ways, we expect the system to serve the requests in fewer than Q cycles. Finally,

in the third case, when there are fewer hits with n ways, we expect the system to take more than Q

cycles to serve the requests. Let ∆hits denote quantum-hitsn − quantum-hits. If quantum-hit-time

and quantum-miss-time are the average cache hit service time and average cache miss service time

for the accesses of the application during the quantum, we estimate the number of cycles to serve

the requests with n ways as,

cyclesn = Q−∆hits(quantum-miss-time− quantum-hit-time)

wherein we remove/add the estimated excess cycles spent in serving the additional hits/misses

respectively for the application with n ways. Hence, CARn is,
quantum-hits + quantum-misses

Q−∆hits(quantum-miss-time− quantum-hit-time)

It is important to note that extending ASM to estimate application slowdowns for different

possible cache allocations is straightforward since we use aggregate cache access rates to esti-

mate slowdowns. Cache access rates for different cache capacity allocations can be estimated in a

straightforward manner. In contrast, extending previous slowdown estimation techniques such as

FST and PTCA to estimate slowdowns for different possible cache allocations would require esti-

mating if every individual request would have been a hit/miss for every possible cache allocation,

which is non-trivial.

Cache Partitioning. Once we have each application’s slowdown estimates for different way allo-

cations, we use the look-ahead algorithm used in Utility-based Cache Partitioning (UCP) [95] to

partition the cache ways such that the overall slowdown is minimized. Similar to the marginal miss

utility (used by UCP), we define marginal slowdown utility as the decrease in slowdown per extra

allocated way. Specifically, for an application with a current allocation of n ways, the marginal

slowdown utility of allocating k additional ways is,

Slowdown-Utilityn+k
n =

slowdownn − slowdownn+k

k

Starting from zero ways for each application, the marginal slowdown utility is computed for all
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possible way allocations for all applications. The application that has maximum slowdown utility

for a certain allocation is given those number of ways. This process is repeated until all ways are

allocated. For more details on the partitioning algorithm, please refer to the look-ahead algorithm

presented in [95].

7.1.2 Evaluation

Figure 7.1 compares the system performance and fairness of ASM-Cache against a baseline that

employs no cache partitioning (NoPart) and utility-based cache partitioning (UCP) [95], for differ-

ent core counts. We simulate 100 workloads for each core count. We use the harmonic speedup

metric to measure system performance and the maximum slowdown metric to measure unfairness.

Three observations are in order. First, ASM-Cache provides significantly better fairness and com-

parable/better performance across all core counts, compared to UCP. This is because ASM-Cache

explicitly takes into account application slowdowns in performing cache allocation, whereas UCP

uses miss counts as a proxy for performance. Second, ASM-Cache’s gains increase with increas-

ing core count, reducing unfairness by 12.5% on the 8-core system and reducing unfairness by

15.8% and improving performance by 5.8% on the 16-core system. This is because contention for

cache capacity increases with increasing core count, offering more opportunity for ASM-Cache to

mitigate unfair application slowdowns. Third, we see significant fairness improvements of 12.5%

with a larger (4 MB) cache, on a 16-core system (plots not presented due to space constraints).

We conclude that accurate slowdown estimates from ASM can enable effective cache partitioning

among contending applications, thereby improving fairness and performance.

7.2 ASM Memory Bandwidth Partitioning

In this section, we present ASM Memory Bandwidth Partitioning (ASM-Mem), a scheme to par-

tition memory bandwidth among applications, based on slowdown estimates from ASM, with the
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Figure 7.1: ASM-Cache: Fairness and performance

goal of improving fairness. The basic idea behind ASM-Mem is to allocate bandwidth to each

application proportional to its estimated slowdown, such that applications that have higher slow-

downs are given more bandwidth.

7.2.1 Mechanism

ASM is used to estimate all applications’ slowdowns at the end of every quantum, Q. These slow-

down estimates are then used to determine the bandwidth allocation of each application. Specifi-

cally, the probability with which an epoch is assigned to an application is proportional to its esti-

mated slowdown. The higher the slowdown of the application, the higher the probability that each

epoch is assigned to the application. For an application Ai, probability that an epoch is assigned to

the application is given by,

Probability of assigning an epoch to Ai =
slowdown(Ai)∑
k slowdown(Ak)

At the beginning of each epoch, the epoch is assigned to one of the applications based on the

above probability distribution and requests of the corresponding application are prioritized over

other requests during that epoch, at the memory controller.
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7.2.2 Evaluation

We compare ASM-Mem with three previously proposed memory schedulers, FRFCFS, PARBS

and TCM. FRFCFS [97, 129] is an application-unaware scheduler that prioritizes row-buffer hits

(to maximize bandwidth utilization) and older requests (for forward progress). FRFCFS tends to

unfairly slow down applications with low row-buffer locality and low memory intensity. To tackle

this problem, application-aware schedulers such as PARBS [87] and TCM [61] have been proposed

that reorder applications’ requests at the memory controller, based on their access characteristics.
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Figure 7.2: ASM-Mem: Fairness and performance

Figure 7.2 shows the fairness and performance of ASM-Mem, FRFCFS, PARBS and TCM, for

three core counts, averaged over 100 workloads for each core count. We draw three major obser-

vations. First, ASM-Mem achieves better fairness than the three previously proposed scheduling

policies, while achieving comparable/better performance. This is because ASM-Mem directly uses

ASM’s slowdown estimates to allocate more bandwidth to highly slowed down applications, while

previous works employ metrics such as memory intensity and row-buffer locality that are proxies

for performance/slowdown. Second, ASM-Mem’s gains increase as the number of cores increases,

achieving 5.5% and 12% improvement in fairness on the 8- and 16-core systems respectively.

Third, we see fairness gains on systems with larger channel counts as well – 6% on a 16-core

2-channel system (do not plots due to space constraints). We conclude that ASM-Mem is effective

in mitigating interference between applications at the main memory, thereby improving fairness.
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7.2.3 Combining ASM-Cache and ASM-Mem

We combine ASM-Cache and ASM-Mem to build a coordinated cache-memory management

scheme. ASM-Cache-Mem performs cache partitioning using ASM-Cache and conveys the slow-

down estimated by ASM-Cache for each application (corresponding to its cache way allocation) to

the memory controller. The memory controller uses these slowdowns to partition memory band-

width across applications using ASM-Mem. Figure 7.3 compares ASM-Cache-Mem with combi-

nations of FRFCFS, PARBS and TCM with UCP, across 100 16-core workloads with 4MB shared

cache and 1/2 memory channels. ASM-Cache-Mem improves fairness by 14.6%/8.8% on the 1/2

channel systems respectively, compared to the fairest previous mechanism (FRFCFS+UCP), while

achieving performance within 1% of the highest performing previous combination (PARBS+UCP).

We conclude that ASM-Cache-Mem is effective in mitigating interference at both the shared cache

and main memory, achieving significantly better fairness than combining previously proposed

cache partitioning/memory scheduling schemes.

 2

 4

 6

 8

 10

 12

1 2

U
n

fa
ir
n
e
s
s
 

 (
M

a
x
im

u
m

 S
lo

w
d
o
w

n
)

Number of Channels

FRFCFS-NoPart
FRFCFS+UCP

TCM+UCP
PARBS+UCP

ASM-Cache-Mem

 0

 0.1

 0.2

 0.3

 0.4

1 2

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e
 

 (
H

a
rm

o
n
ic

 S
p
e
e
d
u
p
)

Number of Channels

FRFCFS-NoPart
FRFCFS+UCP

TCM+UCP
PARBS+UCP

ASM-Cache-Mem

Figure 7.3: Combining ASM-Cache and ASM-Mem

7.3 Providing Soft Slowdown Guarantees

In a multi core system, multiple applications are consolidated on the same system. In such systems,

ASM’s slowdown estimates can be leveraged to bound the application slowdowns.
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Figure 7.4 shows the slowdowns of four applications in a workload using a naive cache allo-

cation scheme and a slowdown-aware scheme based on ASM. The goal is to achieve a specified

slowdown bound for the first application, h264ref. The Naive-QoS scheme, which is unaware of

application slowdowns, allocates all caches ways to h264ref, the application of interest. ASM-

QoS, on the other hand, allocates just enough cache ways to the application of interest, h264ref,

such that a specific slowdown bound (indicated by X in ASM-QoS-X) is met. Such a scheme is

enabled by ASM’s ability to estimate slowdowns for all possible cache allocations (Section 7.1).

Naive-QoS minimizes h264ref ’s slowdown enabling it to meet any slowdown bound greater than

2.17. However, it does so at the cost of slowing down other applications significantly. ASM-

QoS, on the other hand, allocates just enough cache ways to h264ref such that it meets the spec-

ified bound, while also reducing slowdowns for the other three applications, mcf, sphinx3 and

soplex, compared to Naive-QoS, thereby improving overall performance significantly (15%/20%

for ASM-QoS-2.5/ASM-QoS-4 over Naive-QoS).
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Figure 7.4: ASM-QoS: Slowdowns and performance

This is one example policy that leverages ASM’s slowdown estimates to partition the shared

cache capacity to achieve a specific slowdown bound. More sophisticated schemes can be built

on top of ASM’s slowdown estimates that control the allocation of both memory bandwidth and

cache capacity such that different applications’ slowdown bounds are met, while still achieving

high overall system performance. We propose to explore such schemes as part of future work.
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7.4 Fair Pricing in Cloud Systems

Applications from different users could be consolidated onto the same machine in a cloud server

cluster. Pricing schemes in cloud systems bill users based on CPU core, memory/storage capacity

allocation and run length of a job [4, 2]. However, they do not account for interference at the cache

and main memory. For instance, when two jobs A and B are run together on the same system, job A

runs for three hours due to cache/memory interference from job B, but would have run for only an

hour, had it been run alone. In this scenario, accurate slowdown estimates from ASM can enable

pricing based on how much an application is slowed down due to interference (especially since

profiling every application to get alone run times is not feasible). In the example above, ASM

would estimate job A’s slowdown to be 3x, enabling the user to be billed for only one hour, as

against three hours with a scheme that bills based only on resource allocation and run time.

7.5 Migration and Admission Control

ASM’s slowdown estimates could be leveraged by the system software to make migration and ad-

mission control decisions. Previous works monitor different metrics such as cache misses, memory

bandwidth utilization across machines in a cluster and and migrate applications across machines

based on these metrics [112, 72, 96, 118]. While such metrics serve as proxies for interference,

accurate slowdown estimates are a direct measure of the impact of interference on performance.

Hence, periodically communicating slowdown estimates from ASM to the system software could

enable better migration decisions. For instance, the system software could migrate applications

away from machines on which slowdowns are very high or it could perform admission control and

prevent new applications from being scheduled on machines where currently running applications

are experiencing significant slowdowns.

110



7.6 Summary

We present several use cases/mechanisms that can leverage accurate slowdown estimates from

ASM, towards different goals such as achieving high fairness, system performance and providing

soft slowdown guarantees. Our evaluations show that several of these mechanisms improve fair-

ness/performance over state-of-the-art schemes, thereby demonstrating the effectiveness of ASM

in enabling higher and more controllable performance. We conclude that ASM is a promising

substrate that can enable the design of effective mechanisms to estimate and control application

slowdowns in modern and future multicore systems.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

In a multicore system, interference between applications at shared resources is a major challenge

and degrades both overall system performance and fairness and individual application perfor-

mance. Furthermore, as we showed in Chapter 1, an application’s performance varies depending

on the co-running applications and the amount of available shared resources in a system.

Several previous works have tackled the problem of memory interference mitigation, with the

goal of achieving high performance, with the prevalent direction being memory request schedul-

ing. State-of-the-art memory schedulers rank individual applications with a total order based on

their memory access characteristics. Such a total order based ranking scheme increases hardware

complexity significantly, to the point that the scheduler cannot always meet the fast command

scheduling requirements of state-of-the-art DDR protocols. Furthermore, employing a total order

ranking across individual applications also causes unfair application slowdowns, as we demon-

strated in Chapter 3.

We presented the Blacklisting memory scheduler (BLISS) in Chapter 3, that tackles these short-

comings of previous schedulers and achieves high performance and fairness, while incurring low
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hardware complexity. BLISS does so based on two new observations. First, it is sufficient to i)

separate applications into only two groups, one containing applications that are vulnerable to in-

terference and another containing applications that cause interference, and ii) prioritize requests

of the vulnerable-to-interference group over the requests of the interference-causing group. Sec-

ond, we observe the applications can be classified as interference-causing or vulnerable by simply

monitoring the number of consecutive requests served from an application in a short time interval.

While BLISS is able to achieve high performance, it does not tackle the problem of provid-

ing performance guarantees in the presence of shared resource interference. Specifically, while

BLISS mitigates application slowdowns, it cannot precisely quantify and control application slow-

downs. Towards achieving the goal of quantifying and controlling slowdowns, we presented a

model to accurately estimate application slowdowns in the presence of memory interference in

Chapter 4. The Memory Interference induced Slowdown Estimation (MISE) model estimates ap-

plication slowdowns based on the observation that a memory-bound application’s performance is

roughly proportional to the rate at which its memory requests are served. This enables estimating

slowdown as a ratio of request service rates. The alone-request-service-rate of an application can

be estimated by giving its requests highest priority in accessing main memory.

Accurate slowdown estimates from the MISE model can be leveraged to drive various hardware,

software and hardware-software cooperative resource management techniques that strive to achieve

high performance, fairness and provide performance guarantees. We demonstrate two such use

cases of the MISE model in Chapter 5, one that bounds the slowdown of critical applications in

a workload, while also optimizing for overall system performance and another that minimizes

slowdowns across all applications in a workload.

The MISE model estimates slowdown accurately in the presence of main memory interference,

but does not take into account contention for shared cache capacity. The Application Slowdown

Model (ASM) that we presented in Chapter6 takes into account shared cache capacity interference,

in addition to memory bandwidth interference. ASM observes that an application’s performance
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is roughly proportional to the rate at which it accesses the shared cache. This observation is more

general than MISE’s observation that holds only for memory-bound applications. ASM exploits

this observation to estimate slowdown as a ratio of cache access rates and estimates alone-cache-

access-rate by minimizing interference at the main memory and quantifying interference at the

shared cache. Slowdown estimates from ASM can enable various resource management tech-

niques to manage both the shared cache and main memory. We discuss and evaluate several such

techniques in Chapter 7, demonstrating the effectiveness of ASM in estimating and controlling

application slowdowns.

We believe the mechanisms and models we proposed in this thesis could have wide applicability

both in terms of being effective in achieving high and controllable performance and also in terms

of inspiring future research. Furthermore, beyond the models and mechanisms, the key principles

and ideas that we conceive and employ in building our mechanisms could have applicability and

impact in several different contexts. Specifically,

• The principle of using request service/access rate as a proxy for performance is a general

observation that would hold in any closed loop system. This principle can be applied to

manage contention and estimate interference-induced slowdowns in the context of other re-

sources such as storage and network too, besides at the shared cache and main memory.

• The notion of achieving interference mitigation by simply classifying applications into two

groups, rather than employing a full ordered ranking across all applications can be applied

in the context of managing contention at other resources too.

8.2 Future Research Directions

Our models, mechanisms and principles can inspire future research in multiple different directions.

We describe some potential research directions in the next sections.

114



8.2.1 Leveraging Slowdown Estimates for Cluster Management

Slowdown estimates from our models can be leveraged to drive various resource management poli-

cies. The hardware resource management policies that we presented and evaluated in Chapters 5

and 7 partition resources such as caches and main memory bandwidth on a single node. Especially

in the context of providing soft slowdown guarantees, such a node-level management policy might

not be able to meet the required slowdown bounds/performance requirements. In this scenario,

communicating the slowdown estimates to the system software/hypervisor can enable various ap-

plication/virtual machine migration and admission control policies.

We have built one such policy that employs a simple linear model that relates performance of an

application to its memory bandwidth consumption to detect contention and drive virtual machine

migration decisions in our VEE 2015 paper [118] (part of Hui Wang’s PhD thesis). This policy

strives to achieve high performance.

We believe there is ample scope to explore and build several more virtual cluster management

policies that exploit slowdown estimates to achieve various different goals such as meeting per-

formance guarantees, improving system fairness etc. both in real systems and in the simulation

realm. For instance, we were relatively constrained by what counters are available in existing sys-

tems when designing our model and virtual machine migration policy. The new Haswell machines

provide more counters and support for monitoring and managing the shared cache capacity. This

would enable more effective cluster management policies and would also enable combining cluster

management policies with resource allocation policies.

8.2.2 Performance Guarantees in Heterogeneous Systems

While the focus of this thesis was on providing soft performance guarantees in the context of homo-

geneous multicore systems, meeting different kinds of performance requirements in heterogeneous

systems with different kinds of agents is an important research problem. We have explored this
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problem in the context of SoC systems with different agents such as CPU cores, GPUs and hard-

ware accelerators [114]. Our goal in this work is to meet the deadlines/frame rate requirements of

hardware accelerators and GPUs, while still achieving high CPU performance.

We believe there are several interesting and unsolved problems and challenges in this space.

For instance, different agents could have different kinds of performance requirements in a het-

erogeneous system. Some agents might need to meet deadlines, whereas other agents might have

requirements on resources such as memory bandwidth, while agents such as CPU cores might have

slowdown/latency requirements.

The design of a memory system and a memory controller that is able to take into account the

different and often, conflicting requirements of different agents and applications is a significant

challenge. Furthermore, building a memory system that can take in such requirements and strive

to meet them in a general manner and not be limited by the specific configuration of the agents and

the system is an even bigger challenge. We believe this is a rich area with ample scope for future

exploration.

8.2.3 Integration of Memory Interference Mitigation Techniques

The main focus of this thesis was on mitigating and quantifying memory interference with the goal

of building better resource management and allocation techniques. This thesis focused heavily

on memory request scheduling to perform slowdown estimation and resource management (e.g.,

BLISS, MISE and the mechanisms built on top of MISE). However, as mentioned in Section 2.4,

there are several other approaches to mitigate memory interference. For instance, we have explored

memory channel partitioning [84]. Other previous works have proposed bank partitioning [50, 71,

122], interleaving [53], source throttling [27, 20, 91, 90].

These different approaches could be effectively combined together rather than relying on one

approach, to address the memory interference problem, as we discuss in our papers describing the

challenges in the main memory system [85, 88]. For instance, channel partitioning maps applica-
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tions’ data onto different channels depending on their access patterns. In this context, the memory

request scheduling policy could be tailored to better match the access characteristics of the specific

applications that are mapped to the channel. We briefly explored this idea in our work on memory

channel partitioning [84] (part of Sai Prashanth Muralidhara’s thesis). However, there is plenty

of scope to explore this further. In fact, this could lead to the notion of programmable memory

controllers, where the memory request scheduling policy can be tuned at run time, depending on

the workload.

The address interleaving policy heavily influences the row-buffer locality and bank-level paral-

lelism of different applications’ accesses. Hence, co-design of the address interleaving policy along

with the memory scheduling policy can enable a memory controller design that is more amenable

to the access characteristics of different applications, given a specific address interleaving policy.

We expand more on some of these challenges in [88, 85]. We classify resource management

techniques into dumb vs. smart resource techniques. Dumb resources do not have the intelligence

to manage themselves and rely on a centralized agent to manage and allocate them. Smart re-

sources have the intelligence to manage and control their own allocation. We discuss the trade-offs

involved in the design and effectiveness of these different kinds of techniques and the challenges

in combining them effectively.

The interactions between these different memory interference mitigation techniques offer a wide

range of different choices and opportunities to design a memory system that leverages these dif-

ferent degrees of freedom in a synergistic manner. Hence, we believe this is an important and

promising direction for future exploration.

8.2.4 Resource Management for Multithreaded Applications

This thesis focused predominantly on estimating and managing contention between multiple single-

threaded applications when they are run together on a system. The problem of managing contention

between different threads in a multithreaded application and between multiple multithreaded ap-
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plications is an important challenge.

Multiple threads in a multithreaded application work towards achieving a common goal. This

is a different scenario than when multiple competing single threaded applications, each with a

different goal, are run together on a system. Although the different threads work towards the same

goal, it is still important to apportion resources accordingly among the different threads such that

the threads that lag the most are given more resources.

There are several different unaddressed research challenges in this space. For instance, accu-

rately estimating how much each thread is slowed down is an important aspect of determining

the amount of progress made by each thread. Once accurate metrics are developed to capture the

progress of multithreaded applications, they can be leveraged to build resource allocation policies

that partition resource among different threads of a multithreaded application. Furthermore, man-

aging resources between multiple multithreaded applications is yet another important and promis-

ing research area that has not been explored much.

8.2.5 Coordinated Management of Main Memory and Storage

The primary focus of this thesis was on managing main memory and shared caches. However, the

storage system is an important component that needs to be taken into account in order to build

a comprehensive resource management substrate. While there has been a large body of work on

storage QoS, as we describe in Section 2.9, the interactions between memory bandwidth, memory

capacity and storage bandwidth have not been explored much. Our ideas on coordinated shared

cache capacity and memory bandwidth management could potentially be leveraged in the context

of main memory capacity and storage bandwidth. Furthermore, our observations on request service

rate correlating linearly with performance could be leveraged to estimate progress and performance

in the context of other resources such as the storage bandwidth.

In the past decade, there has been a proliferation of storage class non-volatile memory tech-

nologies such as flash and phase change memory. In this context, the notion of how long storage
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accesses take changes. An application might potentially not need to be context switched on a page

fault. Furthermore, such fast non-volatile memory technologies provide the opportunity to manage

the DRAM main memory and the NVM storage system, as a single address space, as described by

Meza et al. in [78]. Coordinated management of main memory and such fast storage technologies,

in light of these advancements, presents new and rich opportunities. Furthermore, the coordinated

management of main memory and storage also opens up opportunities for more hardware-software

cooperative solutions, since both the hardware and software layers need to be involved for effec-

tive management of the main memory and storage in a coordinated manner. We believe there are

several very important and intriguing challenges in this space.

8.2.6 Comprehensive Slowdown Estimation

Estimating slowdown due to contention at all resources in a system enables understanding the im-

pact of contention at all resources in a comprehensive manner and consequently, the management

of these different resources. The previous section on expanding our work to include the storage

system was in this spirit. However, other resources such as the on-chip interconnect, the off-chip

network should be taken into account to build a comprehensive slowdown estimation model.

Our principles on request service rate correlating with performance can potentially be used to

estimate slowdown due to different shared resources. However, access characteristics and bot-

tleneck behavior at these different resources could be different, providing ample scope for new

insights and ideas in this space. Furthermore, once slowdown estimates are available, manag-

ing a large set of resources and specifically, doing do in a coordinated manner are important and

challenging problems.
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