

Towards Extreme-Scale Agent-Based Simulation with BioDynaMo

Lukas Breitwieser, ACAT 2022

Introduction to Agent-Based Simulation

Modeling complex systems – e.g. a swarm of birds

The agent-based model

- · Agent: bird
 - position
 - velocity
 - shape
- Behaviors:

Source: Craig Reynolds, 1987, https://doi.org/10.1145/37401.37406, images from: http://www.red3d.com/cwr/boids/

Agent-based simulation

)

Agent-based simulation is very versatile

Rising Number of Publications in this field

--- Publications (total)

Source: https://app.dimensions.ai Exported: October 14, 2022 Criteria: "agent-based model" OR "agent-based simulation" in full data.

© 2022 Digital Science and Research Solutions Inc. All rights reserved. Non-commercial redistribution / external re-use of this work is permitted subject to appropriate acknowledgement. This work is sourced from Dimensions® at www.dimensions.ai.

Performance considerations

The problem

Existing simulation platforms do not always take full advantage of modern hardware.

Impact of low performance

- Limitation of the size and complexity of models
- Longer development time
- Limited capability to explore parameter space
 - → less optimal solution
- Increased cost

Our solution: BioDynaMo

BioDynaMo is a modular and high-performance agent-based simulation platform written in C++.

https://biodynamo.org

Developed by the BioDynaMo collaboration:

and other universities:

CERN Knowledge Transfer

Source: https://kt.cern

Features and abstraction layers

Simulation Simulation Agent geometry: sphere, cylinder Agents: Cell, NeuronSoma, NeuriteElement Behaviors: Secretion, Chemotaxis, Proliferation, BioDynaMo's model GeneRegulation building blocks Extraculluar diffusion Agent interaction force Generation of agent populations Parameter management Agent reproduction & mortality Parameter optimization BioDynaMo's high-level Hierarchical model support **Environment search** Multi-scale simulations Hybrid-modeling features Dynamic scheduling Space boundary conditions Statistical analysis Parallelism & thread-safety Web-based interface BioDynaMo's low-level Performance optimizations Backup & restore of simulations features **GPU** support **Quality assurance** Visualization infrastructure **Others** Libraries ROOT **ParaView OpenMP Operating System** Linux / MacOS (Multi-core) CPUs **GPU Hardware** 13

Source: Breitwieser et al. 2021, https://doi.org/10.1093/bioinformatics/btab649

Demo: Neuroscience use case

14

Demo: Neuroscience use case

Demo: Neuroscience use case

Performance Challenges and Improvements

Maximize parallelization

- Optimized algorithm to search for neighbors
- Parallelize the addition and removal of agents

Efficient thread synchronization during agent updates

Minimize data transfers and memory access latency

- NUMA-aware iteration
- Agent Sorting and Balancing
- Pool-based memory allocator

Avoid unnecessary work

• Pair-wise force calculation for static regions

Offload computation to the GPU

Challenge: Agent-based workload is memory-bound

Minimize Memory Access Latency

NUMA-aware iteration

Agent sorting and balancing mechanism

BioDynaMo memory allocator

Performance Evaluation

Benchmark simulations

Benchmark simulations characteristics

Characteristic	Cell proliferation	Cell clustering	Epidemiology use case	Neuroscience use case	Oncology use case
Create new agents during simulation	X			X	Х
Delete agents during simulation					X
Agents modify neighbors				X	
Load imbalance			X	X	
Agents move randomly			Х		X
Simulation uses diffusion		X		X	
Simulation has static regions				X	
Number of iterations	500	1000	1000	500	288
Number of agents (in millions)	12.6	2	10	9	10
Number of diffusion volumes	0	54m	0	65k	0

Benchmark hardware

TABLE II: Benchmark hardware

System	Main memory	CPU	OS
A	504 GB	Server with four Intel(R) Xeon(R) E7-8890 v3 CPUs	CentOS 7.9.2009
В	1008 GB	@ 2.50GHz with a total of 72 physical cores, two threads per core and four NUMA nodes.	
С	62 GB	Server with two Intel(R) Xeon(R) E5-2683 v3 CPUs @ 2.00GHz with a total of 28 physical cores, two threads per core and two NUMA nodes.	CentOS Stream 8

Runtime and Memory Complexity

Comparison with Biocellion

- Single-node 16 CPU cores; 13.4 million cells
 - → BioDynaMo is **4.15x faster**
- BioCellion: 21 nodes, 672 CPU cores, 281 million cells BioDynaMo: one node, 72 CPU cores
 - → same runtime, but 9.3x fewer CPU cores used

28

Comparison with Cortex3D and NetLogo

Strong scaling

Publications about BioDynaMo

2021

- Lukas Breitwieser et al. BioDynaMo: a modular platform for highperformance agent-based simulation. In: Bioinformatics, 2021. DOI: 10.1093/bioinformatics/btab649.
- Ahmad Hesam et al. "GPU Acceleration of 3D Agent-Based Biological Simulations. In: arXiv, 2021. arXiv:2105.00039v1.

2017

 Roman Bauer et al. The BioDynaMo project: experience report. In: Advanced research on biologically inspired cognitive architectures, 2017. DOI: 10.4018/978-1-5225-1947-8.ch006.

Publications using BioDynaMo

2022

- Marios Demetriades et al. Interrogating and Quantifying In Vitro Cancer Drug Pharmacodynamics via Agent-Based and Bayesian Monte Carlo Modelling. In: Pharmaceutics 14(4), 2022. DOI 10.3390/pharmaceutics14040749.
- K. Gazeli et al. Interrogating an in silico model to determine helium plasma jet and chemotherapy efficacy against B16F10 melanoma cells.
 In: Applied Physics Letters, 120(5), 2022. DOI: 10.1063/5.0077694
- Nicolo Cogno et al. A 3D Agent-Based Model of Lung Fibrosis. In: Symmetry, 14(1), 2022. DOI 10.3390/sym14010090

2021

- Jean de Montigny et al. Retinal self-organization: a model of RGC and SAC mosaic formation. In: bioRxiv, 2021. DOI: 10.1101/2021.10.22.465398.
- Jean de Montigny et al. An in silico hybrid continuum-/agent-based procedure to modelling cancer development: Interrogating the interplay amongst glioma invasion, vascularity and necrosis. In: Methods 185, 2021.
 DOI: 10.1016/j.ymeth.2020.01.006.

Summary

- · Agent-based simulation can be used to model many complex systems
- · BioDynaMo is up to three orders of magnitude faster than state-of-the-art tools.
- These improvements allow BioDynaMo simulating **billions of agents** on a single server.
- · BioDyanaMo is currently being used in:
 - neurosience
 - oncology
 - epidemiology
 - cryobiology
 - socioeconomics
 - finance
 - •
- BioDynaMo is **open-source** and we would be very happy to welcome new users and contributors.

Thank you for your attention!

Lukas.Breitwieser@cern.ch

Backup Slides

Distributed simulation engine

Agent-based simulation algorithm

```
1 ModelInitialization()
   for i \in iterations do
3
         for op \in pre\_standalone\_operations do
               op();
         end
         wait()
         parallel for a \in agents do
              for op \in agent\_operations do
                     op(a);
10
               end
11
         end
         for op \in standalone\_operations do
12
13
               op();
14
         end
15
         wait()
16
         for op \in post\_standalone\_operations do
17
               op();
18
         end
   end
```

The process of developing an ABM

38

Important building blocks

Divide

Substance

Secretion

Run standalone_operation()

Agents inside environment

Agents outside environment

Modular software design

Neuroscience use case

Oncology use case

Epidemiology use case

Cell clustering model

- · Agent: Cell
 - Spherical shape
 - cell type
- . Behaviors
 - Secrete a substance into the extracellular matrix
 - Follow the concentration gradient (chemotaxis)
- Initial condition
 - Randomly distributed in 3D space

Cell clustering result

Maximize parallelization

Optimized uniform grid to search for neighbors

Source: Ahmad Hesam

Parallel agent removal mechanism

Optimize Thread-Synchronization

Thread-synchronization (TS) during agent-updates

Algorithm 1: Agent-based simulation algorithm

```
ModelInitialization()
   for i \in iterations do
         for op \in pre\_standalone\_operations do
               op();
         end
         parallel for a \in agents do
               for op \in agent\_operations do
                    op(a);
10
               end
11
         for op \in standalone\_operations do
12
13
14
         end
15
16
         for op \in post\_standalone\_operations do
17
               op();
19 end
```


- Only necessary if agents modify their local environment.
 - Two agents (updated by two different threads) could attempt to modify the same neighbor.
- BioDynaMo provides two TS mechanisms
 - Automatic TS
 - User-defined TS

Automatic thread-synchronization

User-defined thread-synchronization


```
void NeuronSoma::CriticalRegion(std::vector<AgentPointer<>>* aptrs->reserve(daughters_.size() + 1);
  aptrs->push_back(Agent::GetAgentPtr<>());
  for (auto& daughter : daughters_) {
    aptrs->push_back(daughter);
  }
}
```

BioDynaMo's GPU capabilities

- Operations can have implementations for different compute targets (CPU, GPU, and FPGA).
- If an operation has multiple implementations, the scheduler decides which one to use.
- Currently, BioDynaMo provides a GPU operation to calculate mechanical forces between spheres.

$$\delta = r_1 + r_2 - \|\mathbf{p}_1 - \mathbf{p}_2\|$$

$$r = \frac{r_1 \cdot r_2}{r_1 + r_2}$$

$$\mathbf{F} = (\kappa \cdot \delta - \gamma \cdot \sqrt{r \cdot \delta}) \cdot \frac{\mathbf{p}_1 - \mathbf{p}_2}{\|\mathbf{p}_1 - \mathbf{p}_2\|}$$

Collision force computation

(Ongoing) Use Cases

Oncology use case

Epidemiology use case

Cancer modeling article

Methods 185 (2021) 94-104

An *in silico* hybrid continuum-/agent-based procedure to modelling cancer development: Interrogating the interplay amongst glioma invasion, vascularity and necrosis

Jean de Montigny^a, Alexandros Iosif^b, Lukas Breitwieser^{c,d}, Marco Manca^e, Roman Bauer^{f,a}, Vasileios Vavourakis^{b,g,*}

Retinal self-organization

Understand the mechanisms of cells self-organization during early development which is pivotal for their function.

Radiation-induced lung injury simulation

Simulate onset of radiation pneumonitis and/or lung fibrosis in normal tissue after exposition to thoracic irradiation.

56

Spatial Spread of HIV in Malawi

- Collaboration with UniGE
- Original simulation written in R (Runtime: ~5.5h)
- Goal: speed up execution time
- Preliminary runtime
 with BioDynaMo:
 less than 2 minutes
- Further work
 needed to make
 models equivalent

The spatial spread of HIV in Malawi: An individual-based mathematical model

Janne Estill, Wingston Ng'ambi, Liudmila Rozanova, Olivia Keiser doi: https://doi.org/10.1101/2020.12.23.20248757

Evaluation

Use cases performance data

Table 6. **Performance data**. The values in column "Agents" and "Diffusion volumes" are taken from the end of the simulation. Runtime measures the wall-clock time to simulate the number of iterations. It excludes the time for simulation setup and visualization.

Simulation	Agents	Diffusion	Iterations	System	Physical	Runtime	Memory
		volumes		(Table 5)	CPUs		
Neuroscience use case							
Single (Figure 4A in the main manuscript)	1 494	250	500	A	1	0.16 s	382 MB
				D	1	0.12 s	479 MB
Large-scale (Figure 4C in the main manuscript)	9 036 986	65 536	500	A	72	35 s	6.47 GB
				D	2	11 min 28 s	5.37 GB
Very-large-scale	1 018 644 154	5 606 442	500	В	72	1 h 24 min	438 GB
Oncology use case (Figure 5 in the main manuscript)							
2000 initial cells	4 177	0	312	A	1	1.05 s	382 MB
				D	1	0.832 s	$480~\mathrm{MB}$
4000 initial cells	5 341	0	312	A	1	1.76 s	382 MB
				D	1	1.34 s	$480~\mathrm{MB}$
8000 initial cells	7 861	0	288	A	1	3.27 s	384 MB
				D	1	2.60 s	482 MB
Large-scale	1 000 3925	0	288	A	72	1 min 42 s	7.42 GB
				D	2	43 min 56 s	5.84 GB
Very-large-scale	986 054 868	0	288	В	72	6 h 21 min	604 GB
Epidemiology use case (Figure 6C in the main manuscript)							
Measles	2 010	0	1000	A	1	0.53 s	381 MB
				D	1	0.42 s	479 MB
Se asonal Influenza	20 200	0	2500	A	1	16.41 s	383 MB
				D	1	16.40 s	479 GB
Medium-scale (measles)	100 500	0	1000	A	72	1.36 s	1 GB
Large-scale (measles)	10 050 000	0	1000	A	72	59.19 s	5.87 GB
				D	2	19 min 18 s	5.41 GB
Very-large-scale (measles)	1 005 000 000	0	1000	В	72	2 h 0 min	495 GB
Soma clustering (Figure 2)	32 000	1 240 000	6 000	A	72	12.91 s	1.02 GB
				D	2	2 min 7 s	522 MB

Agent sorting and balancing

Operation breakdown

Optimization overview

Environment algorithm comparison

(a) Whole simulation

(b) Build time

(c) Search time (indirect)

(d) Memory consumption

Memory allocator comparison

