
Data-Centric	and	Data-Aware	Frameworks
for	Fundamentally	Efficient	Data	Handling

in	Modern	Computing	Systems

Nastaran	Hajinazar
PhD	Thesis	Defense	Presentation		- 4	June	2021	

Prof.	Onur Mutlu (Co-Senior	Supervisor)
Prof.	Arrvindh Shriraman (Co-Senior	Supervisor)
Prof.	Saugata Ghose
Dr.	Vivek	Seshadri	(Microsoft)
Prof.	Alaa	Alameldeen
Prof.	Myoungsoo Jung

Committee:

Motivation

Outline

2

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach

Conclusion	and	Future	Work

Motivation

3

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Conclusion	and	Future	Work

Our	Approach

Data	Is	Increasing

• There	is	an	explosive	growth in	the	amount	of	
data	processed	in	modern	computing	systems

• Important	applications	and	workloads	of	a	wide	
range	of	domains	are	all	data	intensive

• Efficient and	fast accessing,	moving,	and	
processing	of	large	amounts	of	data	is	critical

4

Question:

Do	We	Handle	DataWell?!

5

Motivation

6

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach

Conclusion	and	Future	Work

Motivation

7

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach

Conclusion	and	Future	Work

Computing	Systems	Today

• Are	overwhelmingly	processor-centric
- Computation	is	performed	only	in	the	processor
- Every	piece	of	data	needs	to	be	transferred to	the	processor	
enable	the	computation.

8

DRAM
L2L1

L3L2L1 L2L1 L2L1

CPUCPUCPUCPU

Data Movement
SoC

Processor-Centric	Design	Implications	

• High	data	movement	volume

- Energy overhead

- Performance	overhead

Computation	is	bottlenecked	by	
data	movement

9

Motivation

10

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach

Conclusion	and	Future	Work

Data	
Structures

Access	Patterns Integer Float

CharData	Type

Instructions
Memory	Addresses

100011111…
101010011…

Hardware

Software

Higher-Level	Information	Is	Not	Visible	to	HW

11

Virtual
Memory

Cache	
Management

Address	
Translation

Data	
Placement

Data-Oblivious	
Policies .	.	.

Data-Oblivious	Policies	Implications	

• Challenging	and	often	not	very	effective	

- Ineffective	policies

- Lost	performance	improvement	

opportunities

The	conventional	virtual	memory	frameworks	
are	not	efficient moving	forward

12

Question:
Do	We	Handle	DataWell?Answer:

No!

The	Problem

13

Motivation

14

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach

Conclusion	and	Future	Work

Overview	of	Our	Approach

Data and	the	efficient	computation	of	data	should	
be	the	ultimate	priority	of	the	system

• Data-Centric Architectures
- Enable	computation	with	minimal	data	movement
- Compute	where	data	resides

• Data-Aware Architectures
- Understand	what	they	can	do	with	and	to	each	piece	of	data
- Make	use	of	different	properties	of	data	to	improve	
performance,	efficiency,	etc.

15

Thesis	Statement
The	performance and	energy	efficiency of	
computing	systems	can	improve	significantly	
when	handling	large	amounts	of	data	by	
employing	data-centric and	data-aware
architectures	that	can	

- Remove	the	overheads	associated	with	data	
movement	by	processing	data	where	it	resides

- Efficiently	adopt	the	diversity	in	today’s	system	
configurations	and	memory	architectures

- Understand,	convey,	and	exploit	the	characteristics	
of	the	data to	make	more	intelligent	memory	
management	decisions

16

Contributions

17

• SIMDRAM:	A	Data-Centric Framework	for	Bit-Serial	
SIMD	Processing	using	DRAM	[ASPLOS	2021]
- Efficiently	implements	complex	operations
- Flexibly	supports	new	desired	operations
- Requires minimal	changes	to	the	DRAM	architecture

• The	Virtual	Block	Interface:	A	Flexible	Data-Aware
Alternative	to	the	Conventional	Virtual	Memory	
Framework	[ISCA	2020]
- Understands, conveys,	and	exploits	data	properties
- Efficiently	supports diverse	system	configurations
- Efficiently	handles	large	amounts	of	data

Motivation

18

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach

Conclusion	and	Future	Work

Processing-using-Memory:	Prior	Works

19

• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)

20

• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)

Need	a	framework	that	aids	general	adoption	of	PuM,	by:
- Efficiently	implementing	complex	operations
- Providing	flexibility	to	support	new	operations

Processing-using-Memory:	Prior	Works

Goal

Goal:	Design	a	PuM	framework	that	

- Efficiently implements	complex operations

- Provides	the	flexibility to	support	new	desired	
operations

- Minimally changes	the	DRAM	architecture

21

Key	Idea:
Provide	the	programming	interface,	the	ISA,	and	the	
hardware	support	for:

- Efficiently computing	complex operations	in	DRAM

- Providing	the	ability	to	implement	arbitrary operations	as	
required

- Requiring	minimal changes	to	DRAM	architecture
23

SIMDRAM:	PuM Substrate
• SIMDRAM	framework	is	built	around	a	DRAM	substrate	
that	enables	two	techniques:

(1)	Vertical	data	layout

4-
bi
t	e
le
m
en
t	s
iz
e

Ro
w
		D
ec
od
er

most	significant	bit	(MSB)

least	significant	bit	(LSB)

A

B Cout

Cin

MAJ

(2)	Majority-based	computation

Pros compared	to	the	
conventional horizontal	layout:

• Implicit	shift	operation
• Massive	parallelism

Cout=	AB	+	ACin +	BCin

Pros compared	to AND/OR/NOT-
based	computation:

• Higher	performance
• Higher	throughput
• Lower	energy	consumption 24

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

}
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

25

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

}
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

𝜇Program

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

Step	1:	
• Builds	an	efficient	MAJ/NOT	representation of	a	given	desired	
operation	from	its	AND/OR/NOT-based	implementation

26

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

foo () {

bbop_new

}
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

Step	2:	Generate	
sequence	of	DRAM

commands

𝝁Program

27

Step	2:	
• Allocates	DRAM	rows	to	the	operation’s	inputs	and	outputs
• Generates	the	sequence	of	DRAM	commands (𝝁Program)	to	
execute	the	desired	operation

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

}
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

Step	3:	Execution	according	to	𝛍Program

Memory	Controller

28

Step	3:	
• Executes	the	μProgram	to	perform	the	operation
• Uses	a	control	unit in	the	memory	controller

More	in	the	Thesis

• Detailed	reference	implementation	and	
microarchitecture	of	the	SIMDRAM	control	unit

…

…𝜇Op	0 𝜇Op	63𝜇Op	62

1024

𝛍Program	
Scratchpad

+1
bbop_op

/
…	

𝜇Op	0
𝜇Op	1

𝜇Op	63	

µPC

16

µOp	
Proccessing

FSMbranch
target

AAP/AP

µOp	Memory

shift	
amount	

1 size

dst,	src_1,	src_2,	n

𝝁Program
𝝁Op

decrement	is_zero

reg	dst.
reg	src.

1024

Loop	
Counter

bbop
FIFO	

µRegister
Addressing	

Unit

µRegister
File…𝜇Op	0 𝜇Op	63𝜇Op	62

…𝜇Op	0 𝜇Op	63𝜇Op	62

From	𝛍Program	
Memory	

From	
CPU

To	Memory	
Controller

2

3

4

5

67

29

System	Integration

Efficiently	transposing	data

Programming	interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework

30

System	Integration

Efficiently	transposing	data

Programming	interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework

31

Transposing	Data

32

• SIMDRAM operates	on	vertically-laid-out data

• Other	system	components expect	data	to	be	laid	
out	horizontally

Challenging to	share	data	between	SIMDRAM	and	CPU

Transposition	Unit

Last–Level	Cache

Tr
an
sp
os
it
io
n	
U
ni
t

Memory	Controller

Object	Tracker	
(OT)

Fetch	Unit

Vertical		→	Horizontal
Transpose

Transpose	Buffer

Store	Unit

Horizontal		→	Vertical
Transpose

Transpose	Buffer

33

Transforms	the	data	layout	from	horizontal to	vertical,	and	vice	versa

Efficiently	Transposing	Data
Last–Level	Cache

Tr
an
sp
os
iti
on
	U
ni
t

Memory	Controller

Object	Tracker	
(OT)

Fetch	Unit

Vertical		→	Horizontal
Transpose

Transpose	Buffer

Store	Unit

Horizontal		→	Vertical
Transpose

Transpose	Buffer
Low	impact	on	the	throughput	of	

SIMDRAM	operations

Low	area	cost	(0.06	mm2	in	22nm	tech.	node)		

34

More	in	the	Paper

Efficiently	transposing	data

Programming	interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework

35

Key	Results
Evaluated	on:

- 16	complex	in-DRAM	operations
- 7	commonly-used	real-world	applications

SIMDRAM	provides:

• 88× and	5.8× the	throughput of	a	CPU and	a high-end	
GPU,	respectively,	over	16	operations

• 257× and	31× the	energy	efficiency of	a	CPU and	a	
high-end	GPU,	respectively,	over 16	operations

• 21× and	2.1× the	performance of	a	CPU an	a high-end	
GPU,	over	seven	real-world	applications

36

Conclusion
• SIMDRAM:

- Enables	efficient computation	of	a	flexible set	and	wide	range	
of	operations	in	a	PuM	massively	parallel SIMD	substrate

- Provides	the	hardware,	programming,	and	ISA	support,	to:
• Address	key	system	integration	challenges
• Allow	programmers	to	define	and	employ	new	operations	without	
hardware	changes

37

SIMDRAM is	a	promising	PuM	framework
• Can	ease	the	adoption	of	processing-using-DRAM	

architectures	
• Improve	the	performance	and efficiency of	processing-

using-DRAM	architectures

Motivation

38

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Conclusion	and	Future	Work

Our	Approach

Prior	Works
• Optimizations	that	alleviate the	overheads of
the	conventional	virtual	memory	framework

Shortcomings:

• Based	on	specific system	or	workload	characteristics
• Are	applicable	to	only	limited problems	or	applications

• Require	specialized and	not	necessarily	compatible
changes	to	both	the	OS	and	hardware
• Implementing	all	in	a	system	is	a	daunting prospect

39

Prior	Works
• Optimizations	that	alleviate the	overheads of
the	conventional	virtual	memory	framework

Shortcomings:

• Based	on	specific system	or	workload	characteristics
• Are	applicable	to	only	limited problems	or	applications

• Require	specialized and	not	necessarily	compatible
changes	to	both	the	OS	and	hardware
• Implementing	all	in	a	system	is	a	daunting prospect

40

Need a	holistic	solution	to efficiently	support	
modern	applications,	by:
• Efficiently	handling	large	amount	of	data
• Exploiting	diverse	properties	of	modern	
applications	data

Design	an	alternative	virtual	memory	framework	that

• Efficiently and	flexibly supports	increasingly	diverse
data	properties	and	system	configurations	that	come	with	it

• Provides the	key	features of	conventional	virtual	memory	
frameworks	while	eliminating its	key	inefficiencies	when	
handling	large	amount	of	data

Goal

41

Key	idea:

Delegate physical	memory	allocation	and	address	translation	
to	dedicated	hardware	in	the	memory	controller

42

VBI:	Guiding	Principles

• Size	virtual	address	spaces	appropriately	for	processes

- Mitigates translation	overheads of	unnecessarily	large	address	spaces

• Decouple	address	translation	and	access	protection
- Defers address	translation	until	necessary	to	access	memory
- Enables	the	flexibility of	managing	them	by	separate	structures

• Communicate	data	semantic	to	the	hardware
- Enables	intelligent resource	management

43

VBI:	Overview

44

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

VBIconventional virtual memory

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

VBI:	Overview

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space

45

VBI:	Overview

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space
• Consists	of	a	set	of	virtual	blocks (VBs)
of	different	sizes
• Example	size	classes:	4	KB,	128	KB,	4	MB,
128	MB,	4	GB,	128	GB,	4	TB,	128	TB

46

VBI:	Overview

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space
• Consists	of	a	set	of	virtual	blocks (VBs)
of	different	sizes
• Example	size	classes:	4	KB,	128	KB,	4	MB,
128	MB,	4	GB,	128	GB,	4	TB,	128	TB

• All	VBs	are	visible	to	all	processes

47

VBI:	Overview

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space
• Consists	of	a	set	of	virtual	blocks (VBs)
of	different	sizes
• Example	size	classes:	4	KB,	128	KB,	4	MB,
128	MB,	4	GB,	128	GB,	4	TB,	128	TB

• All	VBs	are	visible	to	all	processes

• Processes	map	each	semantically	
meaningful	unit	of	information	
to	a	separate	VB
- e.g.,	a	data	structure,	a	shared	library

48

Hardware-Managed	Memory
• VBI	address	space	provides
system-wide unique VBI	addresses

• VBI	addresses are	directly used	to	
access	on-chip	caches
- No	longer	require	address	translation

• Memory	management	is	delegated to	
the	Memory	Translation	Layer	(MTL)
at	the	memory	controller
- Address	translation
- Physical	memory	allocation

49

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

OS-Managed	Access	Protection

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

• OS	controls	which	processes	access	
which	VBs

• Each	process	has	its	own	permissions
(read/write/execute)	when	
attaching to	a	VB

• OS	maintains	a	list	of	VBs	attached
to	each	process
- Stored	in	a	per-process	table
- Used	during	permission	checks

50

Process	Address	Space	in	VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes• Any	process	can	attach	to	any	VB

• A	process'	VBs	define	its	address	space

- i.e.,	by	the	process’	actualmemory	
needs

the	address	space	of	
process	P1

51

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

First	guiding	principle

Appropriately-sized	virtual	address	spaces

Decoupled	Protection	and	Translation

Address	mapping
managed	by	OS

52

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .ProcessesAccess	protection	
managed	by	OS

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .ProcessesAccess	protection
managed	by	OS

Address	mapping
managed	by	the	MTL

Second	guiding	principle

Decoupling	address	translation	from	access	protection

Address	Translation	Structures	in	VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

53

• Separate structures	for	translation	
and	permission	information
• Translation	structures	are	not	
sharedwith	the	OS

• Allows	flexible translation	
structures

• Per-VB	translation	structure

• Tuned to	the	VB’s	characteristics

• e.g.,	single-level	tables	for	small	VBs	
or	those	with	many	large	
contiguously	allocated	regions

VB	Information

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

VB

Enable

Reference
Counter

Properties

Size

• Each	VB	is	associated	with
- System-wide	unique	ID
- Size
i.e.,	which	size	class

- Enable	bit
- Reference	counter
number	of	processes	attached	to	the	VB

- Properties	bit	vector
semantic	information	about	VB	contents,
e.g.,	access	pattern,	latency	sensitive	vs.	bandwidth	sensitive

X

54

VB	Information

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

VB

Enable

Reference
Counter

Properties

Size

• Each	VB	is	associated	with
- System-wide	unique	ID
- Size
i.e.,	which	size	class

- Enable	bit
- Reference	counter
number	of	processes	attached	to	the	VB

- Properties
semantic	information	about	VB	contents,
e.g.,	access	pattern,	latency	sensitive	vs.	bandwidth	sensitive

X

55

Third	guiding	principle	
Communicating	data	semantics	to	the	hardware

More	in	the	Thesis
•More	details	on	the	challenges	of	adapting
conventional	virtual	memory

• Detailed	reference	implementation	and	
microarchitecture

56

Memory Controller

Memory Translation Layer (MTL)

L1
miss

VBUID offset

L2

Last-Level
Cache
(LLC)

index =
request_vb(...);
x = malloc(index, size);

.

.

.
y = (*x); Virtual

Address

Application

index offset

miss

VBI
Address

CPU Physical Memory

VITs
CVTs

enable_vb attach

CVT
(Client–VB Table)

Cache Translation
Structures

Data

Translation
Walker

Physical AddressTLB

miss

hit

VIT
(VB Info Table)

Cache

• Benefits:Many	optimizations	not	easily	attainable	before.	Examples:
- Appropriately	sized	process	address	space
- Flexible	address	translation	structures
- Communicating	data	semantics	to	the	hardware
- Inherently	virtual	caches
- Eliminating	2D	page	walks	in	virtual	machines
- Delayed	physical	memory	allocation
- Early	memory	reservation	mechanism

• Evaluation:	Two	example	use	cases
- VBI	significantly	improves	performance	in	both	native	execution	and	
virtual	machines	(by	2.4x	and	4.3x	on	average,	respectively)

- Increases	the	effectiveness	of	managing	heterogeneous	memory	
architectures

Key	Optimizations	and	Results

57

VBI	is	a	promising	new	virtual	memory	framework
• Can	enable	several	important	optimizations
• Increases	design	flexibility	for	virtual	memory
• A	new	direction	for	future	work	in	novel	virtual	memory	frameworks

Inherent to VBI design

Covered in the paper

Motivation

58

Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Conclusion	and	Future	Work

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach

Conclusion
Efficient	data	handling	can	be	enabled	by	
fundamental	rethinking	of	the	computing	
paradigm and	key	concepts	and	components in	
modern	computing	systems	

• Data-centric	architectures	that	minimize	data	
movement	and	compute	data	in	or	near	where	the	data	
resides

• Data-aware	frameworks	that	makes	use	of	different	
properties	of	data	to	improve	performance,	efficiency	
and	other	metrics

59

Future	Directions

60

The	ideas	and	approaches	presented	in	this	thesis	can	be	
extended to	tackle	other	issues	in	modern	computing	
systems.	For	example:

• Data-Aware	Memory	Architectures
- Memory	architectures	that	understand	and	exploit	the	
properties	of	the	data	to	make	intelligent	utilization	
decisions

• Virtual	Memory	Support	for	Processing-Using-Memory	
architectures
- Efficient	support	in	processing-using-memory	architectures	
for	critical	virtual	memory	functionalities

Thesis	Publications

61

• Enabling	efficient	data	handling	in	modern	
computing	systems

- “SIMDRAM:	An	End-to-End	Framework	for	Bit-Serial	
SIMD	Computing	in	DRAM”
Nastaran	Hajinazar*,	Geraldo	F.	Oliveira*,	Sven	Gregorio,	Joao	Dinis
Ferreira,	Nika	Mansouri	Ghiasi,	Minesh Patel,	Mohammed	Alser,	Saugata
Ghose,	Juan	Gomez-Luna,	and	Onur Mutlu [ASPLOS	2021]

- “The	Virtual	Block	Interface:	A	Flexible	Alternative	to	the	
Conventional	Virtual	Memory	Framework”
Nastaran	Hajinazar,	Pratyush Patel,	Minesh Patel,	Konstantinos	
Kanellopoulos,	Saugata Ghose,	Rachata Ausavarungnirun,	Geraldo	
Francisco	de	Oliveira	Jr.,	Jonathan	Appavoo,	Vivek	Seshadri,	and	Onur
Mutlu [ISCA	2020]

Other	PhD	Publications

62

• A	Case	for	Richer	Cross-layer	Abstractions:	Bridging	the	
Semantic	Gap	with	Expressive	Memory	[Vijaykumar+,	ISCA	
2018]

• CoNDA:	Efficient	Cache	Coherence	Support	for	Near-Data	
Accelerators	[Boroumand+,	ISCA	2019]

• Demystifying	complex	workload-DRAM	interactions:	An	
experimental	study	[Ghose+,	SIGMETRICS	2019]

• AirLift:	A	Fast	and	Comprehensive	Technique	for	Remapping	
Alignments	between	Reference	Genomes [Kim+,	Preprint	in		
bioRxiv]

Acknowledgement

63

• Onur Mutlu
• Arrvindh Shriraman,	Saugata Ghose,	and	Vivek	
Seshadri

• SAFARI	research	group	members	at	CMU	and	ETH:	
Giray Yaglikci,	Geraldo	De	Oliveira,	Juan Gómez	Luna,	Damla Senol Cali,	
Rachata Ausavarungnirun,	Minesh Patel,	Hasan Hassan,	João	Dinis Sanches
Ferreira,	Konstantinos	Kanellopoulos,	Mohammed	Alser,	Christian Rossi,	
Tracy Ewen,		Gagandeep Singh,	Jeremie Kim,	Can Firtina,	Nika	Mansourighiasi,	
Jisung Park,	Lois Orosa,	Kevin	Hsieh,	Kevin	Chang

• Friends: Rajesh,	Teena,	Amir,	Nasibeh,	Sogol,	…

• Family:	My	husband,	my	parents,	my	brothers,	and	my	soon-
to-be-born	son

Data-Centric	and	Data-Aware	Frameworks
for	Fundamentally	Efficient	Data	Handling

in	Modern	Computing	Systems

Nastaran	Hajinazar
PhD	Thesis	Defense	Presentation		- 4	June	2021	

Committee: Prof.	Onur Mutlu (Co-Senior	Supervisor)
Prof.	Arrvindh Shriraman (Co-Senior	Supervisor)
Prof.	Saugata Ghose
Dr.	Vivek	Seshadri	(Microsoft)
Prof.	Alaa	Alameldeen
Prof.	Myoungsoo Jung

Backup	Slides

