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Data	Is	Increasing

• There	is	an	explosive	growth in	the	amount	of	
data	processed	in	modern	computing	systems

• Important	applications	and	workloads	of	a	wide	
range	of	domains	are	all	data	intensive

• Efficient and	fast accessing,	moving,	and	
processing	of	large	amounts	of	data	is	critical
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Question:

Do	We	Handle	DataWell?!
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Computing	Systems	Today

• Are	overwhelmingly	processor-centric
- Computation	is	performed	only	in	the	processor
- Every	piece	of	data	needs	to	be	transferred to	the	processor	
enable	the	computation.
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Processor-Centric	Design	Implications	

• High	data	movement	volume

- Energy overhead

- Performance	overhead

Computation	is	bottlenecked	by	
data	movement
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Data	
Structures
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Data-Oblivious	Policies	Implications	

• Challenging	and	often	not	very	effective	

- Ineffective	policies

- Lost	performance	improvement	

opportunities

The	conventional	virtual	memory	frameworks	
are	not	efficient moving	forward
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Question:
Do	We	Handle	DataWell?Answer:

No!

The	Problem
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Overview	of	Our	Approach

Data and	the	efficient	computation	of	data	should	
be	the	ultimate	priority	of	the	system

• Data-Centric Architectures
- Enable	computation	with	minimal	data	movement
- Compute	where	data	resides

• Data-Aware Architectures
- Understand	what	they	can	do	with	and	to	each	piece	of	data
- Make	use	of	different	properties	of	data	to	improve	
performance,	efficiency,	etc.
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Thesis	Statement
The	performance and	energy	efficiency of	
computing	systems	can	improve	significantly	
when	handling	large	amounts	of	data	by	
employing	data-centric and	data-aware
architectures	that	can	

- Remove	the	overheads	associated	with	data	
movement	by	processing	data	where	it	resides

- Efficiently	adopt	the	diversity	in	today’s	system	
configurations	and	memory	architectures

- Understand,	convey,	and	exploit	the	characteristics	
of	the	data to	make	more	intelligent	memory	
management	decisions
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Contributions
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• SIMDRAM:	A	Data-Centric Framework	for	Bit-Serial	
SIMD	Processing	using	DRAM	[ASPLOS	2021]
- Efficiently	implements	complex	operations
- Flexibly	supports	new	desired	operations
- Requires minimal	changes	to	the	DRAM	architecture

• The	Virtual	Block	Interface:	A	Flexible	Data-Aware
Alternative	to	the	Conventional	Virtual	Memory	
Framework	[ISCA	2020]
- Understands, conveys,	and	exploits	data	properties
- Efficiently	supports diverse	system	configurations
- Efficiently	handles	large	amounts	of	data
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Processing-using-Memory:	Prior	Works

19

• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)
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• DRAM	and	other	memory	technologies	that	are	capable	
of	performing	computation	using	memory

Shortcomings:

• Support	only	basic operations	(e.g.,	Boolean	
operations,	addition)
- Not	widely	applicable	

• Support	a	limited set	of	operations
- Lack	the	flexibility	to	support	new	operations

• Require	significant	changes to	the	DRAM
- Costly	(e.g.,	area,	power)

Need	a	framework	that	aids	general	adoption	of	PuM,	by:
- Efficiently	implementing	complex	operations
- Providing	flexibility	to	support	new	operations

Processing-using-Memory:	Prior	Works



Goal

Goal:	Design	a	PuM	framework	that	

- Efficiently implements	complex operations

- Provides	the	flexibility to	support	new	desired	
operations

- Minimally changes	the	DRAM	architecture
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Key	Idea:
Provide	the	programming	interface,	the	ISA,	and	the	
hardware	support	for:

- Efficiently computing	complex operations	in	DRAM

- Providing	the	ability	to	implement	arbitrary operations	as	
required

- Requiring	minimal changes	to	DRAM	architecture
23



SIMDRAM:	PuM Substrate
• SIMDRAM	framework	is	built	around	a	DRAM	substrate	
that	enables	two	techniques:

(1)	Vertical	data	layout
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(2)	Majority-based	computation

Pros compared	to	the	
conventional horizontal	layout:

• Implicit	shift	operation
• Massive	parallelism

Cout=	AB	+	ACin +	BCin

Pros compared	to AND/OR/NOT-
based	computation:

• Higher	performance
• Higher	throughput
• Lower	energy	consumption 24
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Step	1:	
• Builds	an	efficient	MAJ/NOT	representation of	a	given	desired	
operation	from	its	AND/OR/NOT-based	implementation
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Step	2:	
• Allocates	DRAM	rows	to	the	operation’s	inputs	and	outputs
• Generates	the	sequence	of	DRAM	commands (𝝁Program)	to	
execute	the	desired	operation
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Step	3:	
• Executes	the	μProgram	to	perform	the	operation
• Uses	a	control	unit in	the	memory	controller



More	in	the	Thesis

• Detailed	reference	implementation	and	
microarchitecture	of	the	SIMDRAM	control	unit
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System	Integration

Efficiently	transposing	data

Programming	interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework
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Transposing	Data

32

• SIMDRAM operates	on	vertically-laid-out data

• Other	system	components expect	data	to	be	laid	
out	horizontally

Challenging to	share	data	between	SIMDRAM	and	CPU
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Transforms	the	data	layout	from	horizontal to	vertical,	and	vice	versa



Efficiently	Transposing	Data
Last–Level	Cache
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Transpose
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Transpose

Transpose	Buffer
Low	impact	on	the	throughput	of	

SIMDRAM	operations

Low	area	cost	(0.06	mm2	in	22nm	tech.	node)		
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More	in	the	Paper

Efficiently	transposing	data

Programming	interface

Handling	page	faults,	address	translation,	
coherence,	and	interrupts

Handling	limited	subarray	size

Security	implications

Limitations	of	our	framework
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Key	Results
Evaluated	on:

- 16	complex	in-DRAM	operations
- 7	commonly-used	real-world	applications

SIMDRAM	provides:

• 88× and	5.8× the	throughput of	a	CPU and	a high-end	
GPU,	respectively,	over	16	operations

• 257× and	31× the	energy	efficiency of	a	CPU and	a	
high-end	GPU,	respectively,	over 16	operations

• 21× and	2.1× the	performance of	a	CPU an	a high-end	
GPU,	over	seven	real-world	applications

36



Conclusion
• SIMDRAM:

- Enables	efficient computation	of	a	flexible set	and	wide	range	
of	operations	in	a	PuM	massively	parallel SIMD	substrate

- Provides	the	hardware,	programming,	and	ISA	support,	to:
• Address	key	system	integration	challenges
• Allow	programmers	to	define	and	employ	new	operations	without	
hardware	changes

37

SIMDRAM is	a	promising	PuM	framework
• Can	ease	the	adoption	of	processing-using-DRAM	

architectures	
• Improve	the	performance	and efficiency of	processing-

using-DRAM	architectures
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Prior	Works
• Optimizations	that	alleviate the	overheads of
the	conventional	virtual	memory	framework

Shortcomings:

• Based	on	specific system	or	workload	characteristics
• Are	applicable	to	only	limited problems	or	applications

• Require	specialized and	not	necessarily	compatible
changes	to	both	the	OS	and	hardware
• Implementing	all	in	a	system	is	a	daunting prospect

39
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Need a	holistic	solution	to efficiently	support	
modern	applications,	by:
• Efficiently	handling	large	amount	of	data
• Exploiting	diverse	properties	of	modern	
applications	data



Design	an	alternative	virtual	memory	framework	that

• Efficiently and	flexibly supports	increasingly	diverse
data	properties	and	system	configurations	that	come	with	it

• Provides the	key	features of	conventional	virtual	memory	
frameworks	while	eliminating its	key	inefficiencies	when	
handling	large	amount	of	data

Goal

41



Key	idea:

Delegate physical	memory	allocation	and	address	translation	
to	dedicated	hardware	in	the	memory	controller

42



VBI:	Guiding	Principles

• Size	virtual	address	spaces	appropriately	for	processes

- Mitigates translation	overheads of	unnecessarily	large	address	spaces

• Decouple	address	translation	and	access	protection
- Defers address	translation	until	necessary	to	access	memory
- Enables	the	flexibility of	managing	them	by	separate	structures

• Communicate	data	semantic	to	the	hardware
- Enables	intelligent resource	management
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VBI:	Overview

44

Virtual Address Space (VAS)
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VBI:	Overview
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VBI:	Overview

VBI Address Space
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.    .    .Processes
• Globally-visible VBI	address	space
• Consists	of	a	set	of	virtual	blocks (VBs)
of	different	sizes
• Example	size	classes:	4	KB,	128	KB,	4	MB,
128	MB,	4	GB,	128	GB,	4	TB,	128	TB

• All	VBs	are	visible	to	all	processes

• Processes	map	each	semantically	
meaningful	unit	of	information	
to	a	separate	VB
- e.g.,	a	data	structure,	a	shared	library

48



Hardware-Managed	Memory
• VBI	address	space	provides
system-wide unique VBI	addresses

• VBI	addresses are	directly used	to	
access	on-chip	caches
- No	longer	require	address	translation

• Memory	management	is	delegated to	
the	Memory	Translation	Layer	(MTL)
at	the	memory	controller
- Address	translation
- Physical	memory	allocation

49
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OS-Managed	Access	Protection

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

.    .    .Processes

• OS	controls	which	processes	access	
which	VBs

• Each	process	has	its	own	permissions
(read/write/execute)	when	
attaching to	a	VB

• OS	maintains	a	list	of	VBs	attached
to	each	process
- Stored	in	a	per-process	table
- Used	during	permission	checks
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Process	Address	Space	in	VBI

VBI Address Space
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Memory Translation Layer
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• A	process'	VBs	define	its	address	space

- i.e.,	by	the	process’	actualmemory	
needs

the	address	space	of	
process	P1
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Virtual Address Space (VAS)
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First	guiding	principle

Appropriately-sized	virtual	address	spaces



Decoupled	Protection	and	Translation

Address	mapping
managed	by	OS
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Second	guiding	principle

Decoupling	address	translation	from	access	protection



Address	Translation	Structures	in	VBI

VBI Address Space
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Memory Translation Layer
in the memory controller

Physical Memory
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• Separate structures	for	translation	
and	permission	information
• Translation	structures	are	not	
sharedwith	the	OS

• Allows	flexible translation	
structures

• Per-VB	translation	structure

• Tuned to	the	VB’s	characteristics

• e.g.,	single-level	tables	for	small	VBs	
or	those	with	many	large	
contiguously	allocated	regions



VB	Information

VBI Address Space
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- Properties	bit	vector
semantic	information	about	VB	contents,
e.g.,	access	pattern,	latency	sensitive	vs.	bandwidth	sensitive

X
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Third	guiding	principle	
Communicating	data	semantics	to	the	hardware



More	in	the	Thesis
•More	details	on	the	challenges	of	adapting
conventional	virtual	memory

• Detailed	reference	implementation	and	
microarchitecture
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• Benefits:Many	optimizations	not	easily	attainable	before.	Examples:
- Appropriately	sized	process	address	space
- Flexible	address	translation	structures
- Communicating	data	semantics	to	the	hardware
- Inherently	virtual	caches
- Eliminating	2D	page	walks	in	virtual	machines
- Delayed	physical	memory	allocation
- Early	memory	reservation	mechanism

• Evaluation:	Two	example	use	cases
- VBI	significantly	improves	performance	in	both	native	execution	and	
virtual	machines	(by	2.4x	and	4.3x	on	average,	respectively)

- Increases	the	effectiveness	of	managing	heterogeneous	memory	
architectures

Key	Optimizations	and	Results
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VBI	is	a	promising	new	virtual	memory	framework
• Can	enable	several	important	optimizations
• Increases	design	flexibility	for	virtual	memory
• A	new	direction	for	future	work	in	novel	virtual	memory	frameworks

Inherent to VBI design

Covered in the paper



Motivation
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Computing	Architectures	Today
Processor-Centric	Design	
Data-Oblivious	Policies

Conclusion	and	Future	Work

Outline

SIMDRAM:	A	Data-Centric	Framework	
VBI:	A	Data-Aware	Framework

Our	Approach



Conclusion
Efficient	data	handling	can	be	enabled	by	
fundamental	rethinking	of	the	computing	
paradigm and	key	concepts	and	components in	
modern	computing	systems	

• Data-centric	architectures	that	minimize	data	
movement	and	compute	data	in	or	near	where	the	data	
resides

• Data-aware	frameworks	that	makes	use	of	different	
properties	of	data	to	improve	performance,	efficiency	
and	other	metrics
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Future	Directions
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The	ideas	and	approaches	presented	in	this	thesis	can	be	
extended to	tackle	other	issues	in	modern	computing	
systems.	For	example:

• Data-Aware	Memory	Architectures
- Memory	architectures	that	understand	and	exploit	the	
properties	of	the	data	to	make	intelligent	utilization	
decisions

• Virtual	Memory	Support	for	Processing-Using-Memory	
architectures
- Efficient	support	in	processing-using-memory	architectures	
for	critical	virtual	memory	functionalities
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