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The accuracy and speed of basecalling have critical implications

. ) Our goal is to develop a comprehensive framework for specializing and optimizing
for all the steps in genome analysis

a deep learning-based basecaller that provides high efficiency and performance

RUBICON provides five key modules:

(1) QABAS: Quantization-aware basecalling
architecture search

(2) SkipClip: Skip connection removal by
teaching

(3) Pruning: Structured and unstructed
pruning with knowledge distillation

(4) Training: Model training with knowledge
distillation

(5) Basecalling: Integrated official ONT

basecalling modules

RUBICALL: A Hardware-
Optimized Basecaller

QABAS: Quantization-Aware
Basecalling Architecture Search
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* QABAS automates the process of finding efficient and high-
performance hardware-aware genomics basecallers

* QABAS uses neural architecture search (NAS) to evaluate millions
of different basecaller architectures

/ 9 Quantized Basecaller Neural Architecture Search (QABAS) \

RUBICALL is the first hardware-
optimized basecaller that uses mixed-
precision computation

* RUBICALL is developed using QABAS
and SkipClip from RUBICON

SkipClip: Skip Connection Removal by Teaching
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4: Evaluation & Key Results

Comparison of RUBICALL with State-of-the-art Basecallers

Comparison to six state-of-the-art basecallers:
(1) Bonito-CTC, an expert-designed convolutional neural network-based
basecaller from ONT

We evaluate RUBICALL using:
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Explainability Into QABAS Results

Precision for weight and activation
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RUBICALL provides 301.92x higher basecalling throughput compared to the most
accurate basecaller (Bonito CRF-sup)

RUBICALL provides the highest-quality read mapping with largest number of
mapped bases and mapped reads than our evaluated basecallers

Neural network layers

KEY OBSERVATION
RUBICALL has every layer quantized to a different quantization domain. The state-of-the-art basecallers use the same

floating-point precision for all the neural network layers, which leads to high processing and memory demands.




