RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

bioRxiv Preprint

To be presented at ISMB/ECCB 2023

Can Firtina¹, Nika Mansouri Ghiasi¹, Joel Lindegger¹, Gagandeep Singh¹, Meryem Banu Cavlak¹, Haiyu Mao¹ and Onur Mutlu¹

ETHzürich

Reference Genome

Source Code

SAFARI

7.1: Sequence-to-Event Conversion

Expected

Event Values

1. Efficient analysis

7.2: Signal-to-Event Conversion

signals to large reference genomes

Proposes a novel mechanism, Sequence Until, that can

dynamically decide if further sequencing of reads is

unnecessary to stop the entire sequencing run

6: RawHash

Normalized

10: Evaluation Methodology

- Datasets from very small (viral) to large genomes (human and metagenomics)
- Compared with UNCALLED and Sigmap
- Use cases
- Read mapping
- 2. Relative abundance estimation
- 3. Contamination analysis
- Evaluating
- 1. Throughput (bp/sec)
- 2. Overall Runtime (sec)
- 3. Memory usage (GB)
- 4. Number of sequenced bases before ejecting reads (bases)
- 5. Accuracy (baseline: minimap2 mappings)
- 6. Sequence Until benefits

require powerful computational resources (e.g., GPUs)

Fast Analysis: Both RawHash and UNCALLED can match the throughput of nanopore

Sigmap falls behind the throughput of nanopores for larger genomes

11: Results

UNCALLED more bases due as it cannot make accurate decisions for large genomes using fewer bases

Dataset		UNCALLED	Sigmap	RawHash
	R	ead Mapping		
 D1	Precision	0.9547	0.9929	0.9868
SARS-CoV-2	Recall	0.9910	0.5540	0.8735
	F_1	0.9725	0.7112	0.9267
D2	Precision	0.9816	0.9842	0.9573
E. coli	Recall	0.9647	0.9504	0.9009
	F_1	0.9731	0.9670	0.9282
D3	Precision	0.9459	0.9856	0.9862
Yeast	Recall	0.9366	0.9123	0.8412
	F_1	0.9412	0.9475	0.9079
D4	Precision	0.8836	0.9741	0.9691
Green Algae	Recall	0.7778	0.8987	0.7015
	F_1	0.8273	0.9349	0.8139
D5	Precision	0.4867	0.4287	0.8959
Human HG001	Recall	0.2379	0.2641	0.4054
	F_1	0.3196	0.3268	0.5582
	Relative A	Abundance Estima	ation	
	Precision	0.7683	0.7928	0.9484
D1-D5	Recall	0.1273	0.2739	0.3076
	F_1	0.2184	0.4072	0.4645
	Contai	mination Analysis	S	
	Precision	0.9378	0.7856	0.8733
D1. D5	Recall	0.9910	0.5540	0.8735

0.8734

32-bit Hash Value

Accurate Analysis: RawHash provides the best accuracy for large genomes

Sequence Until dynamically stops the entire sequencing after sequencing only 7% of the entire sample

Sequence Until least to almost as accurate relative abundance estimation as using the entire (100%) sample.