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Executlve Summary

Data movement between memory/storage units and compute units is a major contributor to execution time and
energy consumptlon

* Processing-in-Memory (PIM) is a paradigm that can tackle the data movement bottleneck
* Though explored for +50 years, technology challenges prevented the successful materialization

¢ UPMEM has designed and fabricated the first publicly-available real-world PIM architecture
* DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

e Our work:
* Introduction to UPMEM programming model and PIM architecture
* Microbenchmark-based characterization of the DPU
¢ Benchmarking and workload suitability study

* Main contributions:
* Comprehensive characterization and analysis of the first commercially-available PIM architecture

* PrIM (Processing-In-Memory) benchmarks:
* |6 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

* Comparison to state-of-the-art CPU and GPU

* Takeaways:
*  Workload characteristics for PIM suitability
* Programming recommendations
 Suggestions and hints for hardware and architecture designers of future PIM systems
* PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Data Movement in Computing Systems

* Data movement dominates performance and is a major system energy bottleneck

* Total system energy: data movement accounts for
* 62% in consumer applications™,
* 40% in scientific applications*,

. o/ : . . . *
35% in mobile applications Data Movement

o | €——>

Video ‘ ‘ Video ‘ Display
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N\
*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018

* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
SRC * Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” ISWC 2014
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Data Movement in Computing Systems

dominates and is a major system energy bottleneck

* Total system energy: data movement accounts for
* 62% in consumer applications™,
o 40% inguu——
e 35% i

Compute systems should be more data-centric

B~
Processing-In-Memory proposes
computing where it makes sense

(where data resides)

Viaeo Viaeo a r
Encoder Decoder Audio Engine
\ /

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” 1ISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” 1ISWC 2014
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UPMEM Processing-in-DRAM Engine (2019)

* Processing in DRAM Engine

* Includes standard DIMM modules, with a large number of DPU
processors combined with DRAM chips.

* Replaces standard DIMMs

* DDR4 R-DIMM modules

* 8GB+128 DPUs (16 PIM chips)
 Standard 2x-nm DRAM process

* Large amounts of compute & memory bandwidth

% 8GB/128xDPU PIM R-DIMM Module

C P U DDR UPMEM UPMEM UPME N UPMEN UPMEM LIPMEN
PIM PN PIM PiMt PIM
(x86, ARM, RV...) Data bus t:fl1ip dhip chip chip chip fl.“:

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 7
Task ID: 2946.001 https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/ SA FA Rl



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Short Paper Version

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gémez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

https://doi.org/10.1109/1GSC54211.2021.9651614
https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SRC
Task ID: 2946.001 SA FAR' ’


https://doi.org/10.1109/IGSC54211.2021.9651614
https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Long Paper Version
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Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)

portions of parallel code that are as long as possible.

Split the workload into independent data blocks,

which the DPUs operate on independently.

Use as many working DPUs in the system as possible.

Launch at least 11 tasklets (i.e., software threads) PROGRAMMING RECOMMENDATION 1

per DPU.
For data movement between the DPU’s MRAM bank and the
WRAM, use large DMA transfer sizes when all the accessed
data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing

Unit’s Main memory (MRAM) banks KEY TAKEAWAY 1

result in higher sustained bandwidth. The UPMEM PIM architecture is fundamentally compute

bound. As a result, the most suitable work- loads are
memory-bound.
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* Accelerator Model

* UPMEM-based PIM System Overview
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UPMEM PIM Programming
Vector Addition
e CPU-DPU Data Transfers
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(e DRAM Processing Unit

* Arithmetic Throughput
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Accelerator Model

« UPMEM DIMMs coexist with conventional DIMMs

* Integration of UPMEM DIMMs in a system follows an accelerator model

* UPMEM DIMMs can be seen as a loosely coupled accelerator

* Explicit data movement between the main processor (host CPU) and the accelerator
(UPMEM)

* Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

& ske
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System Organization (I)

* In a UPMEM-based PIM system UPMEM DIMMs coexist with regular DDR4
DIMMs

Main Memory
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System Organization (II)

* A UPMEM DIMM contains 8 or |6 chips

* Thus, | or 2 ra

* |nside each PIM

nks of 8 chips each

chip there are:

* 8 64MB banks per chip: Main RAM (MRAM) banks
* 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per rank
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2.560-DPU System

* UPMEM-based PIM system with 20
UPMEM DIMMs of |6 chips each
(40 ranks)

* P2]1 DIMMs

e Dual x86 socket

e UPMEM DIMMs coexist with
regular DDR4 DIMMs

* 2 memory controllers/socket (3
channels each)

e 2 conventional DDR4 DIMMs on
one channel of one controller

SRC
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* There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 15
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640-DPU System

* UPMEM-based PIM system with |0
UPMEM DIMMs of 8 chips each
(10 ranks)

* EI9 DIMMs

>

|

* x86 socket
* 2 memory controllers (3 channels e
each)
* 2 conventional DDR4 DIMMs on N

one channel of one controller
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Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
* DPUs
* Tasklets, i.e., software threads running on a DPU

SRC
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CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
* Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

* Serial CPU-DPU/DPU-CPU transfers: ( 09Q£—§E %E%E W

+ A single DPU (i.e., | MRAM bank) &7 EA
+ Parallel CPU-DPU/DPU-CPU transfers: | \\ pruon 2

* Multiple DPUs (i.e., many MRAM banks) \ ;—> D ER W
* Broadcast CPU-DPU transfers: 888| /xN

PIM-enabled Memory

* Multiple DPUs with a single buffer
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Inter-DPU Communication

* There is no direct communication
channel between DPUs

* Inter-DPU communication takes places
via the host CPU using CPU-DPU and

DPU-CPU transfers

* Example communication patterns:

* Merging of partial results to obtain the final
result

* Only DPU-CPU transfers
e Redistribution of intermediate results for
further computation
 DPU-CPU transfers and CPU-DPU transfers

SRC
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How Fast are these Data Transfers?

* With a microbenchmark, we obtain the sustained bandwidth of all types of
CPU-DPU and DPU-CPU transfers

* Two experiments:
* | DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes to 32 MB)

* | rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of | to 64 MRAM
banks within the same rank

* Experiments with more than one rank
* Channel-level parallelism

SRC
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DRAM Processing Unit
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DPU Pipeline

* In-order pipeline
* Up to 350 MHz

* Fine-grain multithreaded
* 24 hardware threads
* |4 pipeline stages
: Thread selection

: Instruction fetch

 READOP: Register file
: Operand formatting

* ALU: Operation and WRAM
* MERGE: Result formatting

DISPATCH )

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine

READOP3

gister File

ipeline(Re

P

. MERGE2 J

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

(

64-KB
WRAM
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Arithmetic Throughput: Microbenchmark
* Goal

* Measure the maximum arithmetic throughput for different datatypes and operations

e Microbenchmark

* We stream over an array in WRAM and perform read-modify-write operations
* Experiments on one DPU

* We vary the number of tasklets from | to 24

* Arithmetic operations: add, subtract, multiply, divide

* Datatypes: int32, int64, float, double

* We measure cycles with an accurate cycle counter that the SDK provides
* We include WRAM accesses (including address calculation) and arithmetic operation

& ske
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Arithmetic Throughput: 11 Tasklets

| (a) INT32 (oPu)

(o]
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(o2}

o
1
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o
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KEY OBSERVATION 1

The arithmetic
throughput of a DRAM
Processing Unit
saturates at 11 or more
tasklets.
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Arithmetic Throughput (MOPS)

This observation is
consistent for different
datatypes (INT32, INT64,
UINT32, UINT64, FLOAT,
DOUBLE) and operations
(ADD, SUB, MUL, DIV).
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Arithmetic Throughput: Native Support

Arithmetic Throughput (MQP

I (a) INT32 (1 DPU)
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KEY OBSERVATION 2

* DPUs provide native hardware
support for 32- and 64-bit
integer addition and
subtraction, leading to high
throughput for these operations.

* DPUs do not natively support
32- and 64-bit multiplication
and division, and floating point
operations. These operations
are emulated by the UPMEM
runtime library, leading to
much lower throughput.
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DPU: WRAM Bandwidth
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DPU: MRAM Latency and Bandwidth

PIM Chip
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)
c
= " 64-MB
IE 64 bit DRAM
S (I\E;RII:I)
64-KB =
wrAM € ©
\
SRC '™ J

Task ID: 2946.001

SAFARI™®



MRAM Bandwidth

* Goal
* Measure MRAM bandwidth for different access patterns

* Microbenchmarks
[' Latency of a single DMA transfer for different transfer sizes J

e mram read(); // MRAM-WRAM DMA transfer
* mram write(); // WRAM-MRAM DMA transfer

« STREAM benchmark
e COPY,COPY-DMA, ADD, SCALE, TRIAD

* Strided access pattern
* Coarse-grain/Fine-grain strided access

* Random access pattern (GUPS)
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MRAM Read and Write Latency (I)

1000 628.23 1000 633.22
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MRAM Latency

We can model the MRAM latency with a linear expression

B
MRAM Bandwidth (in E)

MRAM Latency (in cycles) = a + BXsize

In our measurements, g equals 0.5 cycles/byte.
@ SRC Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz
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MRAM Read and Write Latency (II)
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KEY OBSERVATION 4

* The DPU’s Main memory (MRAM) bank access latency increases

linearly with the transfer size.
* The maximum theoretical MRAM bandwidth is 2 bytes per cycle.
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MRAM Bandwidth

* Goal
* Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* Latency of a single DMA transfer for different transfer sizes
e mram read(); // MRAM-WRAM DMA transfer
* mram write(); // WRAM-MRAM DMA transfer

e STREAM benchmark
e COPY,COPY-DMA, ADD, SCALE, TRIAD

* Strided access pattern
* Coarse-grain/Fine-grain strided access

* Random access pattern (GUPS)
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STREAM Benchmark: Bandwidth Saturation

700 {STREAM (MRAM, INT64, 1DPU)
S ©600 -
< o
°§C S 500 - -0-COPY-DMA
= S0 | ~0—-COPY
R ~A-ADD
g E 300 - -3-SCALE
§ 2 200 TRIAD 61.59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HTasklets
KEY OBSERVATION 5

 When the access latency to an MRAM banKk for a streaming benchmark (COPY-
DMA, COPY, ADD) is larger than the pipeline latency (i.e., execution latency of
arithmetic operations and WRAM accesses), the performance of the DPU saturates at a

number of tasklets smaller than 11. This is a memory-bound workload.

* When the pipeline latency for a streaming benchmark (SCALE, TRIAD) is larger
than the MRAM access latency, the performance of a DPU saturates at 11 tasklets.
This is a compute-bound workload.
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MRAM Bandwidth

* Goal
* Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* Latency of a single DMA transfer for different transfer sizes
e mram read(); // MRAM-WRAM DMA transfer
* mram write(); // WRAM-MRAM DMA transfer

e STREAM benchmark
e COPY,COPY-DMA, ADD, SCALE, TRIAD

« Strided access pattern h
* Coarse-grain/Fine-grain strided access
* Random access pattern (GUPS) )
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DPU: Arithmetic Throughput vs. Operational Intensity
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Arithmetic Throughput vs. Operational Intensity (I)
* Goal

* Characterize memory-bound regions and compute-bound regions for different
datatypes and operations

e Microbenchmark

* We load one chunk of an MRAM array into WRAM
* Perform a variable number of operations on the data
* Write back to MRAM

* The experiment is inspired by the Roofline model*

* We define operational intensity (Ol) as the number of arithmetic operations
performed per byte accessed from MRAM (OP/B)

* The pipeline latency changes with the operational intensity, but the MRAM
access latency is fixed
SRC *S. Williams et al., “Roofline: An Insightful Visual Performance Model for Multi-core Architectures,” CACM, 2009 37
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Arithmetic Throughput vs. Operational Intensity (II)
4

In the memory-bound R
region, the arithmetic
throughput increases with
\_ the operational intensity )

_64.00
< 32.00 -
2 16.00 -
8.00 -
4.00 -
2.00 -
1.00 -
0.50 -
0.25 -
0.13 -
0.06 -
0.03

(a) INT32, ADD (1 DPU)

cale

Compute-bound
region region (

In the compute-bound R
region, the arithmetic
throughput is flat at its
Operational Intensity (OP/B) k maXimum )

Arithmetic Throughput (MOPS, lo

N R VS R © *x D
VN \e) V@ v > O Vv N Y
Q" O ¢ >\

The throughput saturation point is the operational intensity
where the transition between

kthe memory-bound region and the compute-bound region happensj

The throughput saturation point is as low as ¥ OP/B,
i.e., 1integer addition per every 32-bit element fetched

SRC — g
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The arithmetic throughput of a DRAM Processing Unit (DPU) saturates at
low or very low operational intensity (e.g., 1 integer addition per 32-bit
element). Thus, the DPU is fundamentally a compute-bound processor.
We expect most real-world workloads be compute-bound in the UPMEM PIM
architecture.

@ SRC
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PrIM Benchmarks

e Goal

e A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,

* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
* Selected workloads from different application domains
* Memory-bound workloads on processor-centric architectures

* |4 different workloads, |6 different benchmarks*

SRC

Task ID: 2946.001

*There are two versions for two of the workloads (HST, SCAN).
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PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
SRC Matrix transposition TRNS

Task ID: 2946.001 SAFAR’ -



Rootline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU

16 - -~ 7 Peak compute performance
> | / G- MLP /
% 8
e / GEMVy OV
e ¢ 1 BS
é : /M < Lcjal\lflT(Ralzl;\l "
- \@
o G
a O SCAN
0.25 - &
0.125 | T
0.01 0.1 1

Arithmetic Intensity (OP/B)

10

[ All workloads fall in the memory-bound area of the Roofline ]

SRC

Task ID: 2946.001

SAFARI™



PrIM Benchmarks: Diversity

* PrIM benchmarks are diverse:
* Memory access patterns

* Operations and datatypes
* Communication/synchronization

. Memory access pattern Computation pattern Communication/synchronization
Domain Benchmark Short name Sequential T Stridedp| Random OperaI;ions I]’ Datatype Intra-DPU |Y Inter-DPU
Dense linear algebra Vector Addition VA Yes add int32_t

Matrix-Vector Multiply GEMV Yes add, mul uint32_t
Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float
Databases Select SEL Yes add, compare int64 _t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes
Data analytics Binary Search BS Yes Yes compare int64_t
Time Series Analysis TS Yes add, sub, mul, div int32_t
Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes
Neural networks Multilayer Perceptron MLP Yes add, mul, compare int32_t
Bioinformatics Needleman-Wunsch NwW Yes Yes add, sub, compare int32_t barrier Yes
Image processing Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes
Reduction RED Yes Yes add int64_t barrier Yes
Parallel primitives Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t | handshake, barrier Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t § handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64 t mutex

@ SRC
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-based system:s:
* 2,556-DPU system
* 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU system
* | DPU with different numbers of tasklets
* | rank (strong and weak)
* Up to 32 ranks

Strong scaling refers to how the execution time of a program solving a particular problem varies |

with the number of processors for a fixed problem size )

~

Weak scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size per processor

SRC * -
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-based system:s:
* 2,556-DPU system
* 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU system
* | DPU with different numbers of tasklets
* | rank (strong and weak)
* Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to state-of-the-art CPU
and GPU

* Intel Xeon E3-1240 CPU
* NVIDIATitanV GPU

SRC
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Strong Scaling: 1 DPU (I)

* Strong scaling experiments on | DPU

* We set the number of tasklets to [, 2, 4,
8,and |6

* We show the breakdown of execution
time:
¢« DPU: Execution time on the DPU

* Inter-DPU:Time for inter-DPU
communication via the host CPU

e CPU-DPU:Time for CPU to DPU transfer
of input data

e DPU-CPU:Time for DPU to CPU transfer
of final results

* Speedup over | tasklet

SRC
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VA, GEMV, SpMV, SEL, UNI, TS, MLP, NW, HST-
S, RED, SCAN-SSA (Scan kernel), SCAN-RSS
(both kernels), and TRNS (Step 2 kernel), the
best performing number of tasklets is 16

#tasklets per DPU

. DPU (Step 3)
e Speedup (Step 3)

Speedups 1.5-2.0x as we double the number of
tasklets from 1to 8.

Speedups 1.2-1.5x from 8 to 16, since the
pipeline throughput saturates at 11 tasklets

KEY OBSERVATION 10

A number of tasklets greater than
11 is a good choice for most real-

world workloads we tested (16
kernels out of 19 kernels from 16
benchmarks), as it fully utilizes the
DPU’s pipeline.

#tasklets per DPU
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Strong Scaling: 1 Rank

* Strong scaling experiments on | rank

* We

set the number of tasklets to the

best performing one

* The
* We

number of DPUs is 1,4, 16, 64
show the breakdown of execution

time:

DPU: Execution time on the DPU

Inter-DPU: Time for inter-DPU
communication via the host CPU

CPU-DPU:Time for CPU to DPU transfer of
input data

DPU-CPU:Time for DPU to CPU transfer of
final results

* Speedup over | DPU

@ SRC
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Strong Scaling: 32 Ranks

* Strong scaling experiments on 32 ranks

* We set the number of tasklets to the
best performing one

e The number of DPUs is 256,512, 1024,
2048

* We show the breakdown of execution
time:
« DPU: Execution time on the DPU

* Inter-DPU:Time for inter-DPU
communication via the host CPU

* We do not show CPU-DPU/DPU-CPU
transfer times

* Speedup over 256 DPUs
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Weak Scaling: 1 Rank
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CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to state-of-the-art CPU
and GPU

* Intel Xeon E3-1240 CPU
* NVIDIATitanV GPU

* We use state-of-the-art CPU and GPU counterparts of PrIM benchmarks
* https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU memory

* We show overall execution time, including DPU kernel time and inter DPU
communication

SRC
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https://github.com/CMU-SAFARI/prim-benchmarks

CPU/GPU: Performance Comparison (I)
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The 2,556-DPU and the 640-DPU systems outperform the CPU for
all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x
SRC faster than the CPU for 13 of the PrIM benchmarks
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Performance Comparison (II)
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The 2,556-DPU outperforms the GPU
for 10 PriM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%
the performance of the GPU for the same 10 PrIM benchmarks
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CPU/GPU: Performance Comparison (IIT)
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OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU

on workloads with three key characteristics:

1. Streaming memory accesses

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

~
SRC the UPMEM PIM architecture.
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CPU/GPU: Energy Comparison
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More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

The 640-DPU system consumes on average 1.64x less energy than
the CPU for all 16 PriIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings
SRC of 5.23x over the CPU
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* |ntroduction
* Accelerator Model

. * UPMEM-based PIM System Overview
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(« UPMEM PIM Programming
Vector Addition
e CPU-DPU Data Transfers

Inter-DPU Communication
CPU-DPU/DPU-CPU Transfer Bandwidth

J\L

(e DRAM Processing Unit

* Arithmetic Throughput
. * WRAM and MRAM Bandwidth

J\.

(+ PrIM Benchmarks
* Roofline Model
L. * Benchmark Diversity

(e Evaluation

* Strong and Weak Scaling
. * Comparison to CPU and GPU
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* Key Takeaways
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Key Takeaway 1
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KEY TAKEAWAY 1

The UPMEM PIM architecture is fundamentally compute bound.
As aresult, the most suitable workloads are memory-bound.
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Key Takeaway 2
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use no arithmetic operations or use only simple operations (e.g.,

bitwise operations and integer addition/subtraction).
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Key Takeaway 3
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KEY TAKEAWAY 3

The most well-suited workloads for the UPMEM PIM

architecture require little or no communication across DPUs

(inter-DPU communication).
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Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in terms of
performance (by 23.2x on 2,556 DPUs for 16 PrIM benchmarks) and energy
efficiency on most of PrIM benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on a majority

of PrIM benchmarks (by 2.54x on 2,556 DPUs for 10 PrIM benchmarks), and the
outlook is even more positive for future PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-of-the-art
CPUs and GPUs on workloads that they provide performance improvements
over the CPUs and the GPUs.
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Executlve Summary

Data movement between memory/storage units and compute units is a major contributor to execution time and
energy consumptlon

* Processing-in-Memory (PIM) is a paradigm that can tackle the data movement bottleneck
* Though explored for +50 years, technology challenges prevented the successful materialization

¢ UPMEM has designed and fabricated the first publicly-available real-world PIM architecture
* DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

e Our work:
* Introduction to UPMEM programming model and PIM architecture
* Microbenchmark-based characterization of the DPU
¢ Benchmarking and workload suitability study

* Main contributions:
* Comprehensive characterization and analysis of the first commercially-available PIM architecture

* PrIM (Processing-In-Memory) benchmarks:
* |6 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

* Comparison to state-of-the-art CPU and GPU

* Takeaways:
*  Workload characteristics for PIM suitability
* Programming recommendations
 Suggestions and hints for hardware and architecture designers of future PIM systems
* PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Short Paper Version

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gémez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

https://doi.org/10.1109/1GSC54211.2021.9651614
https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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https://doi.org/10.1109/IGSC54211.2021.9651614
https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Long Paper Version

Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture

Juan Gémez-Luna! Izzat El Hajj? Ivan Fernandez!® Christina Giannoula®4

Geraldo F. Oliveira!  Onur Mutlu!
1ETH Ziirich  ?American University of Beirut  3University of Malaga *National Technical University of Athens

https://doi.org/10.1109/ACCESS.2022.3174101
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern PIM Architecture

ETH:urich S/

Understanding a Modern
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gémez Luna, Izzat El Hajj,

Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

5 I

<« P Pl o) 226725710

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 GP 0 ) SHARE =+ SAVE
@ Onur MutlulLectures SUBSCRIBED Q
18.7K subscribers =

SRC

https: .youtube. tch?v=D8Hijy2iU94&list=PL50250XY2Zi tOTAYm--dYByNPL7JhwR9 06
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PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks & Unwatch ~ 2 {7 star 2 % Fork 1

<> Code () Issues 1 Pull requests (*) Actions ["1] Projects [T wiki () Security [~ Insights 5 Settings

¥ main +  prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

A 1 contributor

:= 168 lines (132 sloc) 5.79 KB Raw Blame GJ 2 ]

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and

communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
S RC comparison purposes.
Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
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SparseP

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

QO O QO MNational Technical University of Athens
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Load-Balance across Threads

Multithreaded PIM Cores:
2D Partitioning

1D Partitioning
Core 1
[Multithreaded] Core 1 Core 2
Core 2 PIM Core

Core 3 DRAM Core 3
i Bank 1
I l \
7 1
. Balance |
(e.g., COO II #NNZs \\

y

ENNZs format) —
T T T W A~rhread 1 i h Y
mhreadz

 Various load-balance schemes across threads
 Various synchronization approaches among threads
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Synchronization Approaches readed

Multithreaded PIM Core:
Coarse-Grained (lb-cg) Fine-Grained (Lb-fg)

Thread 1 -:L: _GI Thread 1 -:L: EI

Thread 3 O

DRAM Bank
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output vector
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output vector

Thread 3 O

Lock-Free (lf)
partial results
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output vector

SRC ——  ——— Thread 3 L

Task ID: 2946.001 SA FAR’



SparseP Software Package

25 SpMV kernels for PIM Systems -
https://github.com/CMU-SAFARI/SparseP

SRC

Partitioning

Matrix Format

Load-Balancing

Load-balance

across PIM cores/threads:

* row-granularity (CSR)

* block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
a |b-cg, lb-fb, If (COO, BCOO)

4 )
Data Types:

8-bit integer
* 16-bit integer
« 32-bit integer
* 64-bit integer
« 32-bit float

e 64-bit float
\_ ),

CSR rows, nnzs *
‘19; CO0 a4 rows, nnzs *, nnzs
Kernels BCSR blocks *, nnzs
BCOO a blocks, nnzs
CSR
4x C00s
2D BCSR
Equally-Sized Tiles
BCOO a
CSR nnzs *
6x CO0 a4 nnzs
2D BCSR blocks * A
Equally-Wide Tiles OCKs ~, NNzs
BCOO a blocks, nnzs
CSR nnzs *
6x CO0 a4 nnzs
2D BCSR blocks * A
Variable-Sized Tiles OCKs ~, NNzs
BCOO & blocks, nnz

Task ID: 2944 .-

SAFARI


https://github.com/CMU-SAFARI/SparseP

SparseP Paper

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Systems

Christina Giannoula’*? Ivan Fernandez!® Juan Gémez-Luna!

Nectarios Koziris? Georgios Goumas* Onur Mutlu'
IETH Ziirich  ?National Technical University of Athens 3University of Malaga

https://doi.org/10.1145/3489048.3522661
https://arxiv.org/pdf/2204.00900.pdf
https://github.com/CMU-SAFARI/SparseP
https://youtu.be/5kaOsJKIGrE
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https://arxiv.org/pdf/2204.00900.pdf
https://github.com/CMU-SAFARI/SparseP
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A Framework for High-throughput Sequence Alignment using
Real Processing-in-Memory Systems

A Framework for High-throughput Sequence
Alignment using Real Processing-in-Memory
Systems

Safaa Diab', Amir Nassereldine!, Mohammed Alser?, Juan Gémez Luna?, Onur Mutlu?, Izzat El Hajj'

! American University of Beirut, Lebanon  *ETH Ziirich, Switzerland

https://arxiv.org/pdf/2204.02085.pdf
https://arxiv.org/pdf/2208.01243.pdf
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Machine Learning Training on a Real PIM System

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard? Julien Legriel?

Remy Cimadomo? Geraldo F. Oliveira’ Gagandeep Singh! Onur Mutlu!
IETH Ziirich *UPMEM

https://arxiv.org/pdf/2206.06022.pdf
https://arxiv.org/pdf/2207.07886.pdf
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In-Memory Processing
ISVLSI 2022 Special Session

IEEE Computer Society Annual Symposium on VLSI

| S V L S | Adonis room
Ailathon resort, Paphos, Cyprus
2 O 2 July 4th, 2022

https://youtu.be/geukNs5XI3g
https://safari.ethz.ch/presentations/



https://youtu.be/qeukNs5XI3g
https://safari.ethz.ch/presentations/

Processing-in-Memory Course (Spring 2022)

* Short weekly lectures

* Hands-on projects

PLAY ALL

Livestream - P&S Exploring
the Processing-in-Memory
Paradigm for Future
Computing Systems (Spring
2022)

14 videos - 580 views * Updated 6 days ago

= % B

e Onur
Mutlu SUBSCRIBED 1

<>
Lectures

https://youtube.com/playlist?list=PL5Q2s0XY2Zi-ONK1C5vi2Zx9nmE_3-cKN

T
:l‘ <\
&%y (Spring 2022)

‘ W SAFARI Project & Seminars Courses il

Recent Changes Media Manager Sitemap

Trace: * heterogeneous_systems * processing_in_memory

Courses

SoftMC

Ramulator

Accelerating Genomics
Mobile Genomics
Processing-in-Memory
Heterogeneous Systems
Modern SSDs
Hardware/Software Co-design

Processing-in-Memory Course: Lecture 1: Exploring the PIM Paradigm for Future Systems - Spring 2022

Onur Mutlu Lectures

- Processing-in-Memory Course: Lecture 2: Real-world PIM: UPMEM PIM Architecture - Spring 2022

nur Mutlu Lectures

Processing-in-Memory Course: Lecture 3: Real- Id PIM: Mi

of UPMEM PIM - Spring 2022

Onur Mutlu Lectures

pie==E 1:00:04

in-M¢ y Course: Lecture 4: Real 1d PIM: HBM-PIM

- Spring 2022

Onur Mutlu Lectures

Processing-in-Memory Course: Lecture 5: How to Evaluate Data Movement Bottlenecks - Spring 2022

Onur Mutlu Lectures

““ Processing-in-Memory Course: Lecture 6: Real-world PIM: SK Hynix AiM - Spring 2022

Onur Mutlu Lectures.

Processing-in-Memory Course: Lecture 7: Programming PIM Architectures - Spring 2022

Onur Mutlu Lectures

Processing-in-Memory Course: Lecture 8: and on PIM - Spring 2022

=i Onur Mutlu Lectures

Processing-in-Memory Course: Lecture 9: Real-world PIM: Samsung AxDIMM - Spring 2022

Onur Mutlu Lectures

SRC

processing_in_memory
Table of Contents
Exploring the Processing-in-Memory
Paradigm for Future Computing Systems

Exploring the Processing-in-
Memory Paradigm for Future
Computing Systems

dit Course Description
Course Description Mentors
Lecture Video Playlists on
Data movement between the memory units and the compute units of YouTube

Spring 2022 Meetings/Schedule
Learning Materials
Assignments

current computing systems is a major performance and energy
bottleneck. From large-scale servers to mobile devices, data movement
costs dominate computation costs in terms of both performance and
energy consumption. For example, data movement between the main
memory and the processing cores accounts for 62% of the total system energy in consumer applications.
As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and
performance of modern computing systems. This phenomenon is an undesired effect of the dichotomy
between memory and the processor, which leads to the data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph
processing, databases, video analytics, and real-time data analytics suffer greatly from the data
movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data
reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and
large datasets that greatly exceed the main memory size. The computation in these workloads cannot
usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we
need a paradigm shift from the traditional processor-centric design, where all computation takes place in
the compute units, to a more data-centric design where processing elements are placed closer to or
inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent
“the next big thing” in Computer Architecture. You will work hands-on with the first real-world PIM
architecture, will explore different PIM architecture designs for important workloads, and will develop tools
to enable research of future PIM systems. Projects in this course span software and hardware as well as
the software/hardware interface. You can potentially work on developing and optimizing new workloads
for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that
can forward our understanding of the PIM paradigm.

https://safari.ethz.ch/projects and seminars/spring2022/doku.php?id=processing in_memory
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https://youtube.com/playlist?list=PL5Q2soXY2Zi-0NK1C5vi2Zx9nmE_3-cKN

Heterogeneous Systems Course (Spring 2022)

* Short weekly lectures

* Hands-on projects

Heterogeneous Computing Systems

HetSys Course: Lecture 1: Hand: ion on Ci ing Systems (Spring 2022)

Onur Mutly Lectures

HetSys Course: Lecture 2: SIMD Processing and GPUs (Spring 2022)

PLAY ALL Onur Mutlu Lectures

Livestream - P&S Hands-on
Acceleration on

- HetSys Course: Lecture 3: GPU Software Hierarchy (Spring 2022)

Onur Mutlu Lectures.

Heterogeneous Computing

Systems (Spring 2022) h = B:‘ HetSys Course: Lecture 4: GPU Memory Hierarchy (Spring 2022)
4 & | onurMutuLectures

13 videos + 889 views - Updated 6 days ago = | 54:27 ]

=3

HetSys Course: Lecture 5: GPU Performance Considerations (Spring 2022)

Onur Mutlu Lectures.

@ Onur
& Mutl SUBSCRIBED [}

HetSys Course: Lecture 6: Parallel Patterns: Reduction (Spring 2022)
Lectures 6
Onur Mutly Lectures

HetSys Course: Lecture 7: Parallel Patterns: Histogram (Spring 2022)

7 i vl [

g |9 @ Onur Mutlu Lectures

HetSys Course: Lecture 8: Parallel Patterns: Convolution (Spring 2022)
g = Onur Mutly Lectures

— =

- HetSys Course: Lecture 9: Parallel Patterns: Prefix Sum (Scan) (Spring 2022)
9 T

m Onur Mutlu Lectures.

HetSys Course: Lecture 10: Parallel Patterns: Sparse Matrices (Spring 2022)

10 G e—

https://youtube.com/playlist?list=PL5Q2s0XY2Zi9XrgXR38IM FTimY6h7Gzm
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heterogeneous_systems

Home
Table of Contents
Courses .
Hands-on Acceleration on Heterogeneous Hands-on Acceleration on

= SoftMC H Heterogeneous Computing

« Ramulator Computing Systems Systems

= Accelerating Genomics o Edit Course Description

= Mobile Genomics Course Description Mentors

= Processing-in-Memory Lecture Video Playlists on

= Heterogeneous Systems The increasing difficulty of scaling the performance and efficiency of YouTube !

* Modem SSDs CPUs every year has created the need for turning computers into Spring|2022 Mestings/Schedule

Hardware/Software Co-design Learning Materials

heterogeneous systems, i.e., systems composed of multiple types of Assignments

processors that can suit better different types of workloads or parts of

them. More than a decade ago, Graphics Processing Units (GPUs)

became general-purpose parallel processors, in order to make their outstanding processing capabilities
available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Atrtificial Intelligence, which took unrealistic training times before the use of GPUs. Field-
Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive
benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of
specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing
architectures (i.e., placing compute capabilities near or inside memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many
challenges to tackle, for example:

= Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from
important fields such as bioinformatics, machine learning, graph processing, medical imaging,
personalized medicine, robotics, virtual reality, etc.

= Scheduling techniques for heterogeneous systems with different general-purpose processors and
accelerators, e.g., kernel offloading, memory scheduling, etc.

= Workload characterization and programming tools that enable easier and more efficient use of
heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture
projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
algorithmic changes to important applications to better leverage the compute power of heterogeneous
systems, understand different workloads and identify the most suitable device for their execution, design
optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance
reported for a given important application.

https://safari.ethz.ch/projects and seminars/spring2022/doku.php?id=heterogeneous systems
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More P&S Courses: SSDs, Memory, Bioinformatics...

Understanding and Improving Modern
DRAM Performance, Reliability, and
Security with Hands-On Experiments

\ SAFARI Project & Seminars Courses
"\‘\‘ N (Sprmg 2022) Recent Changes Media Manager ~Sitemap

* Designing and Evaluating Memory
Systems and Modern Software Workloads

with Ramulator . sonMc SAFARI Projects & Seminars Courses (Spring
Accelerating Genome Analysis with i 2022)

Mobile Genomics

F PGAS G P S an d N eW Exec uti o n = Processing-in-Memory Welcome to the wiki for Project and Seminar courses SAFARI offers.
9 9 = Heterogeneous Systems

= Modern SSDs Courses we offer:

Pa rad ig m s = Hardware/Software Co-design

= Understanding and Improving Modern DRAM Performance, Reliability, and Security with Hands-On
Experiments

® G e n O m e S eq u e n C i ng O n M O bi I e D eVi C es = Designing and Evaluating Memory Systems and Modern Software Workloads with Ramulator

= Accelerating Genome Analysis with FPGAs, GPUs, and New Execution Paradigms
= Genome Sequencing on Mobile Devices

* Understanding and Designing Modern Sl e Pocssnginensy Pt Corpung e
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