
Architectural Techniques to

Enhance DRAM Scaling

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Yoongu Kim

B.S., Electrical Engineering, Seoul National University

Carnegie Mellon University

Pittsburgh, PA

June, 2015

Abstract

For decades,mainmemory has enjoyed the continuous scaling of its physical substrate:

DRAM(DynamicRandomAccessMemory). But now,DRAMscaling has reached a thresh-

oldwhereDRAMcells cannot bemade smaller without jeopardizing their robustness. This

thesis identifies two specific challenges to DRAM scaling, and presents architectural tech-

niques to overcome them.

First, DRAMcells are becoming less reliable. AsDRAMprocess technology scales down

to smaller dimensions, it is more likely for DRAM cells to electrically interfere with each

other’s operation. We confirm this by exposing the vulnerability of the latest DRAM chips

to a reliability problem called disturbance errors. By reading repeatedly from the same

cell in DRAM, we show that it is possible to corrupt the data stored in nearby cells. We

demonstrate this phenomenon on Intel and AMD systems using a malicious program that

generates many DRAM accesses. We provide an extensive characterization of the errors,

as well as their behavior, using a custom-built testing platform. After examining various

potential ways of addressing the problem, we propose a low-overhead solution that effec-

tively prevents the errors through a collaborative effort between the DRAM chips and the

DRAM controller.

Second, DRAM cells are becoming slower due to worsening variation in DRAMprocess

technology. To alleviate the latency bottleneck, we propose to unlock fine-grained paral-

lelism within a DRAM chip so that many accesses can be served at the same time. We

take a close look at how a DRAM chip is internally organized, and find that it is divided

ii

into small partitions of DRAM cells called subarrays. Although the subarrays are mostly

independent, they occasionally rely upon some global circuit components that force the

subarrays to be operated one at a time. To overcome this limitation, we devise a series of

non-intrusive changes to DRAM architecture that increases the autonomy of the subar-

rays and allows them to be accessed concurrently. We show that such parallelism across

subarrays provides large performance gains at low cost.

Lastly, we present a powerful DRAM simulator that facilitates the design space ex-

ploration of main memory. Unlike previous simulators, our simulator is easy to modify,

allowing DRAM architectural changes to be modeled quickly and accurately. This is why

our simulator is able to provide out-of-the-box support for a wide array of contemporary

DRAM standards. Our simulator is also the fastest, outperforming the next fastest simu-

lator by more than a factor of two.

iii

Acknowledgments

First and foremost, Iwould like to thankmy advisor, ProfessorOnurMutlu. He embod-

ies the quotation from Quintilian, the Roman rhetorician who said, “We should not write

so that it is possible for the reader to understand us, but so that it is impossible for him to

misunderstand us.” He always strived for the highest level of clarity and thoroughness in

research, and propelled me to become a better thinker, writer, and presenter. He gave me

the opportunities, the resources, and the guidance that allowed me to be who I am today.

This thesis was only made possible by his encouragement and nurturing throughout all of

my years in the SAFARI research group.

I am grateful to the members of my thesis committee: Professor Onur Mutlu, Profes-

sor James Hoe, Professor Todd Mowry, and Professor Trevor Mudge. They truly cared

about my research and me as an individual. I also thank Professor Mor Harchol-Balter

who introducedme to research, and taught me how to use precise language and high-level

abstractions in technical prose.

I am grateful to my internship mentors, who gave me the freedom to pursue my ideas,

the counsel to achieve my goals, and their friendship in my times of turmoil: Chris Wilk-

erson, Moin Qureshi, Sangyeun Choi, Konrad Lai, Uksong Kang, Suresh Chittor, Suneeta

Sah, andMichele Franceschini. I thank the Korea Foundation for Advanced Studies, Intel

Corporation, and Samsung Electronics for their generous financial support.

I am grateful to Samantha Goldstein and Elaine Lawrence, ECE departmental advisors

who sent me many a reminder to make sure that I turned in my paperwork on time, and

iv

who took a personal interest in my academic progress.

During graduate school, members of the SAFARI research group have been like family

to me. Justin Meza was a force for calm in my life with his even-keeled, zen-like out-

look on everything and everyone. Chris Fallin was a source of inspiration for me with his

computer wizardry, self discipline, and engaging insights about technology and research.

Chris Craik would never fail to catch me off-guard with his dry, situational one-liners that

made me burst out in laughter. Rachata Ausavarungnirun was not only a gifted chef, but

was also one of the nicest persons I have ever met, and I am grateful for the countless oc-

casions when he lent me a helping hand. Donghyuk Lee was our resident DRAM expert,

who ever so graciously and patiently gave me indispensable guidance on many facets of

my research. Hongyi Xin spiced up my dinners by introducing me to the newest Chinese

restaurants, where he taught me somuch about Chinese history and politics. Kevin Chang

was always kind enough to tolerate my dumb jokes, and we had lots of fun hanging out to-

gether — especially when drunk. Samira Khan was a thoughtful and empathetic listener,

who — with her sidekick Omar Chowdhury — could also be hilariously and mercilessly

self-deprecating. Vivek Seshadri was never hesitant to offer incisive criticism that would

invariably rescue me from an impasse in writing. Lavanya Subramanian is a genuinely

caring person who would always look out for everyone around her. Gennady Pekhimenko

tempered me in my thoughts and opinions by challenging my biases and preventing me

from jumping to conclusions. Jamie Liu was a talented programmer who brought depth

and clarity to every discussion. I also thank other members of the SAFARI research group

for their companionship and assistance: HanBin Yoon, Ben Jaiyen, Yixin Luo, Nandita

Vijaykumar, Yang Li, Kevin Hsieh, Amirali Boroumand, and Saugata Ghose.

At Carnegie Mellon, I had the privilege of making many great friends. Michael Pa-

pamichael blew me away with his work ethic and detail-orientedness, and I am indebted

to him for themany all-nighters that we pulled together for that one paper. Michelle Good-

stein and I were often the only ones to be left in the office during the late evenings, and

v

she was my shoulder to cry on when I was particularly stressed over a looming deadline.

Eric Chung was the wise and senior graduate student whom I wanted to grow up and be

like. Peter Klemperer had the most fascinating stories to tell about his escapades andmis-

demeanors from a previous life. Evangelos Vlachos was a party animal whom I sorely

missed after he left for Switzerland. I thank Ross Daly, Weikun Yang, Jeremie Kim, and Ji

Hye Lee for their tremendous research contributions as undergraduate/masters interns.

I thank Seungil Huh, Jee Eun Song, Sung Won Park, and Dongsu Han for helping me get

settled into Pittsburgh when I first arrived, and Jane Seo for her care and understand-

ing. I also thankMei Chen, Michael Kozuch, Varun Gupta, PeterMilder, Olatunji Ruwase,

Anshul Gandhi, Gabe Weisz, Alexey Tumanov, Berkin Akin, and Eugene Wang.

Although our paths diverged geographically, it was comforting to know that my old

buddies —Heeyoung Lee andHongsup Shin—were always there to support me with their

camaraderie and solidarity. Lastly, I would like to acknowledge the unwavering love from

my family: my grandmother Worsoon Kim, my parents Hyosoon and Dohyun Kim, and

my sister Taeyeun Kim.

vi

Contents

1 Introduction 2

1.1 The Problem: DRAM Scaling at Risk . 3

1.2 This Thesis: A Higher-Level Approach to DRAM Scaling 4

1.2.1 Improving DRAM Reliability . 5

1.2.2 Improving DRAM Performance . 7

1.2.3 Facilitating DRAM Research . 8

1.3 Thesis Contributions . 9

1.4 Outline . 10

2 Disturbance Errors: A New Reliability Problem in DRAM 12

2.1 Disturbance Errors in Today’s DRAM Chips 13

2.2 DRAM Background . 15

2.2.1 High-Level Organization . 15

2.2.2 Low-Level Organization . 15

2.2.3 Accessing DRAM . 16

2.2.4 Refreshing DRAM . 18

2.3 Mechanics of Disturbance Errors . 18

2.4 Real System Demonstration . 20

2.5 Experimental Methodology . 22

2.6 Characterization Results . 29

vii

2.6.1 Disturbance Errors are Widespread 29

2.6.2 Access Pattern Dependence . 30

2.6.3 Address Correlation: Aggressor & Victim 34

2.6.4 Data Pattern Dependence . 39

2.7 Sensitivity Results . 41

2.8 Solutions to Disturbance Errors . 43

2.8.1 Six Potential Solutions . 43

2.8.2 Seventh Solution: PARA . 45

2.9 Other Related Work . 47

2.10 Chapter Summary . 48

3 Subarray Parallelism: A High-Performance DRAM Architecture 49

3.1 Bank Conflicts Exacerbate DRAM Latency 49

3.2 Background: DRAM Organization . 53

3.2.1 Bank: Logical Organization & Operation 54

3.2.2 Timing Constraints . 57

3.2.3 Subarrays: Physical Organization of Banks 57

3.3 Motivation . 60

3.4 Overview of Proposed Mechanisms . 62

3.4.1 SALP-1: Subarray-Level-Parallelism-1 62

3.4.2 SALP-2: Subarray-Level-Parallelism-2 63

3.4.3 MASA: Multitude of Activated Subarrays 63

3.5 Implementation . 64

3.5.1 SALP-1: Relaxing tRP . 65

3.5.2 SALP-2: Per-Subarray Row-Address Latches 66

3.5.3 MASA: Designating an Activated Subarray 68

3.5.4 Exposing Subarrays to the Memory Controller 71

3.6 Power & Area Overhead . 72

viii

3.6.1 Additional Latches . 72

3.6.2 Multiple Activated Subarrays . 73

3.6.3 Additional SA_SEL Commands . 73

3.6.4 Comparison to Expensive Alternatives 73

3.7 Related Work . 74

3.8 Evaluation Methodology . 77

3.9 Results . 78

3.9.1 Individual Benchmarks (Single-Core) 78

3.9.2 Sensitivity to Number of Subarrays 80

3.9.3 Sensitivity to System Configuration 80

3.10 Chapter Summary . 84

4 Ramulator: A Fast and Extensible DRAM Simulator 86

4.1 Ramulator: High-Level Design . 89

4.1.1 Hierarchy of State-Machines . 89

4.1.2 Behavior of State-Machines . 90

4.1.3 A Closer Look at a State-Machine 92

4.2 Extensibility of Ramulator . 95

4.3 Validation & Evaluation . 96

4.3.1 Validating the Correctness of Ramulator 97

4.3.2 Measuring the Performance of Ramulator 98

4.3.3 Cross-Sectional Study of DRAM Standards 98

4.4 Chapter Summary . 100

5 Conclusion & FutureWork 101

5.1 Future Work . 102

ix

List of Figures

2.1 DRAM consists of cells . 16

2.2 Memory controller, buses, rank, and banks 17

2.3 Normalized number of errors vs. manufacture date 31

2.4 Number of errors as the refresh interval is varied 32

2.5 Number of errors as the activation interval is varied 34

2.6 Number of errors vs. number of activations 35

2.7 How many cells are affected by an aggressor row? 36

2.8 How many rows are affected by an aggressor row? 37

2.9 Which rows are affected by an aggressor row? 37

3.1 DRAM bank organization . 52

3.2 Logical hierarchy of main memory . 54

3.3 DRAM Bank: Logical organization . 55

3.4 DRAMbankoperation: Steps involved in serving amemory request [60] (VPP

> VDD) . 56

3.5 A DRAM bank consists of tiles and subarrays 59

3.6 DRAM Bank: Physical organization . 60

3.7 Service timeline of four requests to two different rows. The rows are in the

same bank (top) or in different banks (bottom). 61

3.8 Service timeline of four requests to two different rows. The rows are in the

same bank, but in different subarrays. 61

x

3.9 Relaxing tRP between two different subarrays. 65

3.10 SALP-2: Latched Subarray Row-Decoding 66

3.11 Activating/precharging wordline-0x20 of subarray-0x1. 67

3.12 MASA: Designated-bit latch and subarray-select signal 69

3.13 IPC improvement over the conventional subarray-oblivious baseline 79

3.14 Sensitivity to number of subarrays-per-bank 81

3.15 Row-interleaving and open-row policy. 82

3.16 Memory configuration sweep (line-interleaved, closed-row). IPC normal-

ized to: 1-channel, 1-RPC, 8-BPR, 8-SPB. 83

3.17 Multi-core weighted speedup improvement. Configuration: 2-channel, 2-

RPC, line-interleaved, closed-row policy. 84

4.1 Tree of DDR3 state-machines . 90

4.2 Performance comparison of DRAM standards 100

xi

List of Tables

2.1 DRAM commands and addresses [68] . 17

2.2 Bit-flips induced by disturbance on a 2GB module 21

2.3 DDR3DRAMmodules fromAmanufacturer (43 out of 129) sorted byman-

ufacture date . 26

2.4 DDR3DRAMmodules fromBmanufacturer (54 out of 129) sorted byman-

ufacture date . 27

2.5 DDR3DRAMmodules fromCmanufacturer (32 out of 129) sorted byman-

ufacture date . 28

2.6 Access patterns that induce disturbance errors 31

2.7 Uncorrectable multi-bit errors (in bold) . 35

2.8 Number of errors for different data patterns 41

2.9 Error probabilities for PARA when p=0.001 46

3.1 Summary of DDR3-SDRAM timing constraints [64] 55

3.2 Configuration of simulated system . 74

4.1 Landscape of DRAM-based memory . 86

4.2 Survey of popular DRAM simulators . 87

4.3 Comparison of five simulators using two traces 98

4.4 Configuration of nine DRAM standards used in study 99

1

Chapter 1

Introduction

Mainmemory is a fundamental building block of computing systems. As its name sug-

gests, main memory is the primary repository of data, storing the working set of software

applications which must be accessed quickly and frequently. For four decades and count-

ing, the overwhelmingly preferred physical substrate for implementing main memory has

been Dynamic Random Access Memory (DRAM) — so much so that they have come to be

synonymous with one another. Compared to other alternatives, DRAM strikes the most

suitable balance between cost and latency that is conducive for achieving both large capac-

ity and high performance at the same time. And with the seemingly inexorable march of

Moore’s Law, DRAM process technology too has scaled down to ever smaller dimensions,

providing main memory with compounded increases in capacity and performance over

the course of forty years. In fact, such scaling of DRAM — in the domain of circuits and

devices — has been the principal driving force behind the improvements to mainmemory,

allowing each successive generation of computing systems to satisfy the growing memory

requirements of increasingly data-intensive applications.

2

1.1. The Problem: DRAM Scaling at Risk

However, DRAM scaling — taken for granted for so long — has now reached a critical

juncture in which it faces difficult technological hurdles [21, 23, 77, 119, 165] that threaten

its future sustainability. In the past, the continuous scaling of DRAMwas achieved by the

winning combination of two important factors: (i) technological feasibility and (ii) eco-

nomic viability. Simply put, making smaller DRAM cells was both possible and worth-

while. But what has changed now is the second factor — although smaller cells are still

attainable, they are not as attractive as they once were. In fact, DRAM cells fabricated

using the latest generations of process technology (20–40 nanometers) are proving to be

significantly slower and faultier than they were in the past. This is because, at smaller

dimensions, cells are more susceptible to imperfections arising from process variation, as

well as being more vulnerable to data corruption caused by electrical noise. Importantly,

the severity of these problems is of the magnitude that — if left unaddressed — they have

the potential to have a detrimental impact on the reliability and performance of main

memory.

Consequently, this leaves DRAMmanufacturers in a position where they must choose

between two undesirable courses of action if they are to continue scaling DRAM: (i) sacri-

fice chip yield by throwing away a larger fraction of their faulty/slow chips, or (ii) sacrifice

chip area by implementing bulky components in their chips for protective/enhancement

purposes. Both these options, however, are self-defeating to a certain degree, because they

raise the effective cost-per-bit of DRAM, which runs counter to the very rationale behind

DRAM scaling: to lower the effective cost-per-bit. As a result, it is becomingmore difficult

for DRAMmanufacturers to justify the billions of dollars in capital expenditure that is re-

quired for upgrading to the latest generation of DRAM process technology. While having

served us so well in the past, the traditional approach of scaling DRAM — characterized

primarily by breakthroughs and innovations in circuits/devices — is now showing telltale

3

signs of declining effectiveness and diminishing returns.

1.2. This Thesis: A Higher-Level Approach to DRAM Scaling

In this thesis, our research objective is to answer the following question. Can we tol-

erate the deteriorating physical characteristics of DRAM cells — especially with respect

to reliability and performance — by developing mitigation techniques at a higher level

of abstraction? By doing so, we would be able to enjoy the traditional benefits of DRAM

scaling, while we separately address its emerging drawbacks at the architectural/systems

level.

As a matter of fact, such an approach has already been employed to great success in

a different type of memory technology: NAND flash. Despite the fact that flash chips are

highly unreliable and difficult to manage, their shortcomings are effectively hidden when

they are used as part of a modern flash drive, which contains an intelligent flash controller

that performs a wide variety of recovery and optimization duties to compensate for the

weaknesses of flash. Instead of placing the burden of reliability and performance entirely

on the flash chips, this approach allows some of it to be shifted onto the flash controller,

thereby easing the path for further scaling.

DRAM chips too have their own controller, which is most often implemented as part

of the processor itself. However, there are two distinguishing features of DRAM that re-

strict its controller from employing the same strategy to the extent of the flash controller.

First, DRAM operates under a very constrained latency budget — tens of nanoseconds as

opposed to tens of microseconds — which leaves little time for the DRAM controller to

take any remedial action. Second, for compatibility reasons, the interface between the

DRAM controller and the DRAM chips is not only rigidly standardized, but is done so in a

minimalistic fashion that does not easily allow for a close cooperation between them. As

a result, complexity-effectiveness and cost-consciousness are crucial factors to consider

when taking an architectural approach to DRAM scaling. In this thesis, we seek out to

4

demonstrate the following.

The reliability and performance of main memory can be improved by mak-

ing low-overhead, non-intrusive modifications to how DRAM chips and con-

trollers are designed.

In particular, we show the effectiveness of such an approach by identifying and tackling

two critical problems that affect the reliability and performance of DRAM at advanced

process technology generations. First, we expose a new type of failure that is found in

only the most recently manufactured DRAM chips [84]. We then propose architectural

solutions to prevent these failures, which pose a risk to not just memory reliability, but

also to system security. Second, we highlight a critical component of the DRAM access

latency that is expected to increase bymore than 5x in the coming years, as projected by the

DRAM industry [77]. We then propose a new, parallel DRAM architecture that overlaps

the latency ofmultiple accesses and reduces the effective latency of DRAM [87]. Lastly, we

present a new DRAM simulator that allows us to examine the strengths and weaknesses

of different DRAM architectures quickly and easily [88].

1.2.1. Improving DRAM Reliability

As process technology scales down to smaller dimensions, DRAM becomes more vul-

nerable to disturbance, a phenomenon in which nearby cells interfere with each other’s

operation. For the first time in academic literature, we expose the widespread existence

of disturbance errors in commodity DRAM chips that are sold and used today [84]. By

reading repeatedly from the one cell, we show that it is possible to corrupt the data stored

in adjacent cells.

After testing a large sample population of DRAM modules (the oldest of which dates

back to 2008), we determine that the problem first arose in 2010 and that it still persists

to this day. We found disturbance errors in modules from all three major manufacturers,

as well as in all of their modules assembled between 2012–2013.

5

We demonstrate that disturbance errors are an actual hardware vulnerability affecting

real systems. We construct a user-level kernel which induces many errors on general-

purpose processors from Intel (Sandy Bridge, Ivy Bridge, Haswell) and AMD (Piledriver).

With its ability to bypass memory protection (OS/VMM), the kernel can be deployed as a

disturbance attack to corrupt the memory state of a system and its software.

We characterize the cause and symptoms of disturbance errors based on a large-scale

study, involving 129 DRAM modules (972 DRAM chips) sampled from a time span of six

years. We extensively test themodules using a custom-built FPGA infrastructure to deter-

mine the specific conditions under which the errors occur, as well as the specific manner

in which they occur. From this, we build a comprehensive understanding of disturbance

errors that serves as the foundation for developing a solution against them.

We examine a total of seven solutions that could be employed to prevent disturbance

errors. We find that the most cost-efficient approaches are the ones that involve a collab-

orative effort between the DRAM chips and the DRAM controller. This is because only the

DRAMchip knowswhich of its cells are physically adjacent to each other, whereas only the

DRAM controller knows which cells have been accessed the most frequently. Both pieces

of information are needed in order to identify the cells that are likely to be at risk from

disturbance errors. According to our analysis, our solutions provide a strong reliability

guarantee even under the worst-case conditions.

Related Work. As a generalized class of DRAM faults, disturbance errors are not

new. They can occur whenever there is a strong enough interaction between two circuit

components that weremeant to be isolated from each other. In fact, disturbance errors are

known to have manifested in the very first DRAM chips [115, 134]. Nevertheless, DRAM

manufacturers in the past have achieved success in containing the errors, and have pre-

vented them from being released into the wild. They were able to do so by improving

circuit-level isolation [36, 59, 110, 146, 166] and subsequently screening for the errors af-

ter the chips have been fabricated [7, 8, 153]. Despite their efforts, however, this thesis

6

demonstrates that a new type of disturbance error is now plaguing DRAM chips from all

three major manufacturers of DRAM. One of the main reasons why this error has escaped

early detection is because it requires a very large number of accesses (>100K) to the same

address before it occurs. This is unlike disturbance errors from the past, which had mani-

fested only after a much smaller number of accesses. In addition, the fact that this error is

being experienced by all three manufacturers — and also at a similar timeframe — points

to amore fundamental issue in DRAM scaling as the cause, rather than it being an isolated

incidence of failure in quality control or circuit design. We provide more detail on related

work in Chapter 2.

1.2.2. Improving DRAM Performance

To be able to servemultiple memory accesses in parallel, DRAM chips consist of multi-

ple bankswhich can be accessed independently of each other. Nevertheless, if twomemory

accesses converge on the same bank, they must be served one after the other, experienc-

ing what is referred to as a bank conflict. In the worst case, bank conflicts could delay a

memory request by thousands of nanoseconds.

Bank conflicts cause three specific problems that degrade the performance of main

memory. First, bank conflicts serialize accesses that could potentially have been served in

parallel. Second, bank conflicts are likely to induce thrashing the row-buffer, which is a

small cache that is included in every bank. Third, an access that follows awrite access to the

same bank experiences an extra delay called the write-recovery penalty. Critically, this

penalty is expected to increase by more than 5x in the near future as a result of worsening

variation in process technology [77].

A naive solution to bank conflicts would be to increase the number of banks in each

DRAM chip. However, this is expensive because it wastes a large amount of chip area for

implementing the extra support structures that are required by every new bank.

Instead, as a cost-effective solution to this problem, we propose to extract an additional

7

degree of parallelism from DRAM banks called subarray parallelism [87]. This is based

on two key observations that we make about modern DRAM architecture. First, a DRAM

bank is physically implemented as a collection of smaller tiles (i.e., subarrays) — similar

to how a city consists of urban blocks. Second, subarrays are mostly independent from

each other except when being operated by the support structures which are globally shared

by all subarrays within a bank. We then devise a set of small, non-intrusive changes to

DRAM architecture that increases the autonomy of each subarray. Some of these changes

transform a global structure to a local structure at each subarray, while other changes

allow a subarray to relinquish a global structure more quickly, so that it can be used by

another subarray. By enabling subarray parallelism at the DRAM chips and exploiting it

at the DRAM controller, we achieve large performance improvements at low cost.

Related Work. While there have been many prior approaches for modifying the or-

ganization of DRAM to improve its performance, most of them are costly to implement be-

cause they increase the chip size by a significant amount. For example, Fujitsu [136] and

Micron [80] have proposed latency-optimized DRAM chips which include a larger num-

ber of row-buffers that allow electrical charge to be driven more quickly into or out of the

cells. Unfortunately, this increases the chip size by 30-80% [136, 80]. On the other hand,

many in the past have proposed to augment DRAM chips with an additional SRAM cache

for storing the most recently accessed pieces of data [34, 44, 46, 49, 79, 121, 135, 159, 170].

But this approach also incurs a large chip size overhead — according to our analysis, 5.0%

for just 64Kbits of SRAM. We provide more detail on related work in Chapter 3.

1.2.3. Facilitating DRAM Research

Architectural design space exploration of DRAM requires a powerful and expressive

DRAM simulator. However, existing DRAM simulators are slow and inflexible, primar-

ily due to the fact that they are verbosely hardcoded for one specific DRAM system (e.g.,

DDR3). As an alternative, we develop a new simulator, called Ramulator, to aid us in our

8

own research [88]. In brief, Ramulator is a fast and cycle-accurate DRAM simulator that

is built from the ground up for extensibility.

Ramulator is based on our observation that a DRAM system can be modeled as a col-

lection of state-machines, whose state transitions are triggered by a main memory event,

such as aDRAMcommand being issued by theDRAMcontroller. By leveraging this obser-

vation, Ramulator defines a DRAM system by the number of its state-machines, how they

behave, and how they interact with one another. All of this information is then consoli-

dated into just a small number of lookup tables that become associatedwith that particular

DRAM system. In Ramulator, implementing a new DRAM system is easy as construct-

ing a new set of lookup tables, and populating their entries in a disciplined and localized

manner. Subsequently, Ramulator uses these lookup tables to instantiate as many state-

machines in however different configurations as is needed. Thanks to the modularity of

the lookup tables, Ramulator provides support for the largest number of contemporary

DRAM standards — DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, etc. — compared to

previous simulators.

Ramulator is also optimized to accelerate simulation. For example, when none of the

state-machines are yet ready to make a state transition, Ramulator fast-forwards the sim-

ulation into the future. In addition, Ramulator precomputes and memoizes important in-

formation about the state-machines that are frequently accessed. As a result, Ramulator

is able to outperform the next fastest DRAM simulator by a factor of 2.5x.

Related Work. In the domain of CPU simulation, there are many simulators that

have been developed to allow other researchers to implement their ideas easily (e.g., [16,

18]). However, there has been considerably less development in the domain of DRAM

simulation. We provide more detail on related work in Chapter 4.

1.3. Thesis Contributions

This thesis makes the following contributions.

9

1. We show that DRAM scaling is negatively affecting reliability. We do so by exposing

a new type of failure — called disturbance errors — that manifests in only the most

recently manufactured DRAM chips. We demonstrate the errors on real systems to

prove that they could potentially be exploited as a security vulnerability. We build a

deep understanding of the errors by extensively characterizing their behavior under

a wide variety of experimental conditions. We then propose a cost-effective solu-

tion at the architectural level that can be employed to prevent the errors with strong

reliability guarantees.

2. We propose a highly parallel DRAM architecture that mitigates the large latency of

DRAM access. We do so by clarifying many aspects of DRAMmicroarchitecture that

were not well understood by computer architects, and identifying what are called

subarrays as the smallest unit of DRAM internal organization. Although they exist

in abundance, we observe that the subarrays cannot be accessed at the same time due

to some structural bottlenecks that serialize their operation. We then propose a set of

small circuit modifications that alleviates the bottlenecks and allows the subarrays

to operate more independently. We show that such subarray parallelism provides

large performance gains at low cost.

3. We develop a fast and extensible DRAM simulator for facilitating main memory re-

search. Due to the modularity of its design, Ramulator can easily be modified to

model new and experimental DRAM architectures. Compared to existing simula-

tors, Ramulator provides not only the most comprehensive support for contempo-

rary DRAM standards, but also the highest simulation speed.

1.4. Outline

This thesis is organized into five chapters. Chapter 2 discusses disturbance errors in

DRAM. Chapter 3 discusses subarray parallelism. Chapter 4 discusses Ramulator. Chap-

10

ter 5 concludes this thesis.

11

Chapter 2

Disturbance Errors: A New

Reliability Problem in DRAM

The continued scaling of DRAM process technology has enabled smaller cells to be

placed closer to each other. Cramming more DRAM cells into the same area has the well-

known advantage of reducing the cost-per-bit ofmemory. Increasing the cell density, how-

ever, also has a negative impact on memory reliability due to three reasons. First, a small

cell can hold only a limited amount of charge, which reduces its noise margin and renders

it more vulnerable to data loss [21, 101, 165]. Second, the close proximity of cells intro-

duces electromagnetic coupling effects between them, causing them to interact with each

other in undesirable ways [21, 91, 101, 129]. Third, higher variation in process technol-

ogy increases the number of outlier cells that are exceptionally susceptible to inter-cell

crosstalk, exacerbating the two effects described above.

As a result, high-densityDRAMismore likely to suffer fromdisturbance, a phenomenon

in which different cells interfere with each other’s operation. If a cell is disturbed beyond

its noisemargin, itmalfunctions and experiences adisturbance error. Historically, DRAM

manufacturers have been aware of disturbance errors since as early as the Intel 1103, the

first commercialized DRAM chip [115, 134]. Tomitigate disturbance errors, DRAMmanu-

12

facturers have been employing a two-pronged approach: (i) improving inter-cell isolation

through circuit-level techniques [36, 59, 110, 146, 166] and (ii) screening for disturbance

errors during post-production testing [7, 8, 153]. In this chpater, we demonstrate that

their efforts to contain disturbance errors have not always been successful, and that erro-

neous DRAM chips have been slipping into the field.1

2.1. Disturbance Errors in Today’s DRAM Chips

In this chapter, we expose the existence and the widespread nature of disturbance er-

rors in commodity DRAM chips sold and used today. Among 129 DRAM modules we

analyzed (comprising 972 DRAM chips), we discovered disturbance errors in 110modules

(836 chips). In particular, allmodulesmanufactured in the past two years (2012 and 2013)

were vulnerable, which implies that the appearance of disturbance errors in the field is a

relatively recent phenomenon affectingmore advanced generations of process technology.

We show that it takes as few as 139K reads to aDRAMaddress (more generally, to a DRAM

row) to induce a disturbance error. As a proof of concept, we construct a user-level pro-

gram that continuously accesses DRAM by issuing many loads to the same address while

flushing the cache-line in between. We demonstrate that such a program induces many

disturbance errors when executed on Intel or AMDmachines.

We identify the root cause of DRAMdisturbance errors as voltage fluctuations on an in-

ternal wire called thewordline. DRAM comprises a two-dimensional array of cells, where

each row of cells has its own wordline. To access a cell within a particular row, the row’s

wordline must be enabled by raising its voltage — i.e., the row must be activated. When

there are many activations to the same row, they force the wordline to toggle on and off

repeatedly. According to our observations, such voltage fluctuations on a row’s wordline

have a disturbance effect on nearby rows, inducing some of their cells to leak charge at an

1The industry has been aware of this problem since at least 2012, which is when a number of patent
applications were filed by Intel regarding the problem of “row hammer” [13, 11, 12, 10, 40, 39].

13

accelerated rate. If such a cell loses too much charge before it is restored to its original

value (i.e., refreshed), it experiences a disturbance error.

We comprehensively characterize DRAMdisturbance errors on an FPGA-based testing

platform to understand their behavior and symptoms. Based on our findings, we examine

a number of potential solutions (e.g., error-correction and frequent refreshes), which all

have some limitations. We propose an effective and low-overhead solution, called PARA,

that prevents disturbance errors by probabilistically refreshing only those rows that are

likely to be at risk. In contrast to other solutions, PARA does not require expensive hard-

ware structures or incur large performance penalties. This chapter makes the following

contributions.

• To our knowledge, we are the first to expose the widespread existence of disturbance

errors in commodity DRAM chips from recent years.

• We construct a user-level program that induces disturbance errors on real systems (In-

tel/AMD). Simply by reading from DRAM, we show that such a program could poten-

tially breach memory protection and corrupt data stored in pages that it should not be

allowed to access.

• We provide an extensive characterization of DRAM disturbance errors using an FPGA-

based testing platform and 129 DRAM modules. We identify the root cause of distur-

bance errors as the repeated toggling of a row’s wordline. We observe that the resulting

voltage fluctuation could disturb cells in nearby rows, inducing them to lose charge at

an accelerated rate. Among our key findings, we show that (i) disturbable cells exist in

110 out of 129 modules, (ii) up to one in 1.7K cells is disturbable, and (iii) toggling the

wordline as few as 139K times causes a disturbance error.

• After examining a number of possible solutions, we propose PARA (probabilistic ad-

jacent row activation), a low-overhead way of preventing disturbance errors. Every

14

time a wordline is toggled, PARA refreshes the nearby rows with a very small probabil-

ity (p≪1). As a wordline is toggled many times, the increasing disturbance effects are

offset by the higher likelihood of refreshing the nearby rows.

2.2. DRAM Background

In this section, we provide the necessary background on DRAM organization and op-

eration to understand the cause and symptoms of disturbance errors.

2.2.1. High-Level Organization

DRAM chips are manufactured in a variety of configurations [68], currently ranging in

capacities of 1–8 Gbit and in data-bus widths of 4–16 pins. (A particular capacity does not

imply a particular data-bus width.) By itself, an individual DRAM chip has only a small

capacity and a narrow data-bus. That is why multiple DRAM chips are commonly ganged

together to provide a large capacity and a wide data-bus (typically 64-bit). Such a “gang”

of DRAM chips is referred to as a DRAM rank. One or more ranks are soldered onto a

circuit board to form a DRAMmodule.

2.2.2. Low-Level Organization

As Figure 2.1a shows, DRAM comprises a two-dimensional array of DRAM cells, each

of which consists of a capacitor and an access-transistor. Depending on whether its ca-

pacitor is fully charged or fully discharged, a cell is in either the charged state or the dis-

charged state, respectively. These two states are used to represent a binary data value.

As Figure 2.1b shows, every cell lies at the intersection of two perpendicular wires: a

horizontalwordline and a vertical bitline. A wordline connects to all cells in the horizontal

direction (row) and a bitline connects to all cells in the vertical direction (column). When

a row’s wordline is raised to a high voltage, it enables all of the access-transistors within

the row, which in turn connects all of the capacitors to their respective bitlines. This allows

15

cell
row 4
row 3
row 2
row 1
row 0

row-buffer

(a) Rows of cells

wordline

b
it
li
n
e

(b) A single cell

Figure 2.1. DRAM consists of cells

the row’s data (in the form of charge) to be transferred into the row-buffer shown in Fig-

ure 2.1a. Better known as sense-amplifiers, the row-buffer reads out the charge from the

cells — a process that destroys the data in the cells — and immediately writes the charge

back into the cells [80, 87, 96]. Subsequently, all accesses to the row are served by the row-

buffer on behalf of the row. When there are no more accesses to the row, the wordline is

lowered to a low voltage, disconnecting the capacitors from the bitlines. A group of rows

is called a bank, each of which has its own dedicated row-buffer. (The organization of a

bank is similar to what was shown in Figure 2.1a.) Finally, multiple banks come together

to form a rank. For example, Figure 2.2 shows a 2GB rank whose 256K rows are vertically

partitioned into eight banks of 32K rows, where each row is 8KB (=64Kb) in size [68].

Having multiple banks increases parallelism because accesses to different banks can be

served concurrently.

2.2.3. Accessing DRAM

An access to a rank occurs in three steps: (i) “opening” the desired rowwithin a desired

bank, (ii) accessing the desired columns from the row-buffer, and (iii) “closing” the row.

1. Open Row. A row is opened by raising its wordline. This connects the row to the bit-

lines, transferring all of its data into the bank’s row-buffer.

2. Read/Write Columns. The row-buffer’s data is accessed by reading or writing any of its

16

Processor

MemCtrl

data
cmd
addr C

h
ip

0

C
h

ip
7

Bank7

•••
Bank0

Rank

64K cells

2
5

6
K

Figure 2.2. Memory controller, buses, rank, and banks

columns as needed.

3. Close Row. Before a different row in the same bank can be opened, the original row

must be closed by lowering its wordline. In addition, the row-buffer is cleared.

The memory controller, which typically resides in the processor (Figure 2.2), guides

the rank through the three steps by issuing commands and addresses as summarized in

Table 2.1. After a rank accepts a command, some amount of delay is required before it

becomes ready to accept another command. This delay is referred to as a DRAM timing

constraint [68]. For example, the timing constraint defined between a pair of ACTIVATEs

to the same row (in the same bank) is referred to as tRC (row cycle time), whose typical

value is∼50 nanoseconds [68]. When trying to open and close the same row as quickly as

possible, tRC becomes the bottleneck — limiting the maximum rate to once every tRC.

Operation Command Address(es)

1. Open Row ACTIVATE (ACT) Bank, Row
2. Read/Write Column READ/WRITE Bank, Column
3. Close Row PRECHARGE (PRE) Bank

Refresh (Section 2.2.4) REFRESH (REF) —

Table 2.1. DRAM commands and addresses [68]

17

2.2.4. Refreshing DRAM

The charge stored in aDRAMcell is not persistent. This is due to various leakagemech-

anisms by which charge can disperse: e.g., subthreshold leakage [132] and gate-induced

drain leakage [133]. Eventually, the cell’s charge-level would deviate beyond the noise

margin, causing it to lose data — in other words, a cell has only a limited retention time.

Before this time expires, the cell’s charge must be restored (i.e., refreshed) to its original

value: fully charged or fully discharged. The DDR3 DRAM specifications [68] guarantee

a retention time of at least 64milliseconds, meaning that all cells within a rank need to be

refreshed at least once during this time window. Refreshing a cell can be accomplished by

opening the row to which the cell belongs. Not only does the row-buffer read the cell’s al-

tered charge value but, at the same time, it restores the charge to full value (Section 2.2.2).

In fact, refreshing a row and opening a row are identical operations from a circuits per-

spective. Therefore, one possible way for the memory controller to refresh a rank is to

issue an ACT command to every row in succession. In practice, there exists a separate REF

command which refreshes many rows at a time (Table 2.1). When a rank receives a REF, it

automatically refreshes several of its least-recently-refreshed rows by internally generat-

ing ACT and PREpairs to them. Within any given 64ms timewindow, thememory controller

issues a sufficient number of REF commands to ensure that every row is refreshed exactly

once. For a DDR3 DRAM rank, the memory controller issues 8192 REF commands during

64ms, once every 7.8us (=64ms/8192) [68].

2.3. Mechanics of Disturbance Errors

In general, disturbance errors occur whenever there is a strong enough interaction be-

tween two circuit components (e.g., capacitors, transistors, wires) that should be isolated

from each other. Depending on which component interacts with which other component

and also how they interact, many different modes of disturbance are possible.

18

Among them, we identify one particular disturbance mode that afflicts commodity

DRAM chips from all three major manufacturers. When a wordline’s voltage is toggled

repeatedly, some cells in nearby rows leak charge at a much faster rate. Such cells can-

not retain charge for even 64ms, the time interval at which they are refreshed. Ultimately,

this leads to the cells losing data and experiencing disturbance errors.

Without analyzing DRAM chips at the device-level, we cannot make definitive claims

about how a wordline interacts with nearby cells to increase their leakiness. We hypothe-

size, based on past studies and findings, that theremay be threeways of interaction.2 First,

changing the voltage of a wordline could inject noise into an adjacent wordline through

electromagnetic coupling [25, 110, 129]. This partially enables the adjacent row of access-

transistors for a short amount of time and facilitates the leakage of charge. Second, bridges

are a well-known class of DRAM faults in which conductive channels are formed between

unrelated wires and/or capacitors [7, 8]. One study on embedded DRAM (eDRAM) found

that toggling a wordline could accelerate the flow of charge between two bridged cells [50].

Third, it has been reported that toggling awordline for hundreds of hours can permanently

damage it by hot-carrier injection [29]. If some of the hot-carriers are injected into the

neighboring rows, this could modify the amount of charge in their cells or alter the char-

acteristic of their access-transistors to increase their leakiness.

Disturbance errors occur only when the cumulative interference effects of a wordline

become strong enough to disrupt the state of nearby cells. In the next section, we demon-

strate a small piece of software that achieves this by continuously reading from the same

row in DRAM.
2At least one major DRAM manufacturer has confirmed these hypotheses as potential causes of distur-

bance errors.

19

2.4. Real System Demonstration

We induce DRAM disturbance errors on Intel (Sandy Bridge, Ivy Bridge, and Haswell)

and AMD (Piledriver) systems using a 2GB DDR3 module. We do so by running Code 1a,

which is a program that generates a read to DRAM on every data access. First, the two

mov instructions read from DRAM at address X and Y and install the data into a register

and also the cache. Second, the two clflush instructions evict the data that was just in-

stalled into the cache. Third, the mfence instruction ensures that the data is fully flushed

before any subsequent memory instruction is executed.3 Finally, the code jumps back to

the first instruction for another iteration of reading from DRAM. (Note that Code 1a does

not require elevated privileges to execute any of its instructions.)

1 code1a:

2 mov (X), %eax

3 mov (Y), %ebx

4 clflush (X)

5 clflush (Y)

6 mfence

7 jmp code1a

a. Induces errors

1 code1b:

2 mov (X), %eax

3 clflush (X)

4

5

6 mfence

7 jmp code1b

b. Does not induce errors

Code 1. Assembly code executed on Intel/AMDmachines

On out-of-order processors, Code 1a generates multiple DRAM read requests, all of

which queue up in the memory controller before they are sent out to DRAM: (reqX, reqY,

reqX, reqY, · · ·). Importantly, we chose the values of X and Y so that they map to the same

bank, but to different rows within the bank.4 As we explained in Section 2.2.3, this forces

3Without the mfence instruction, there was a large number of hits in the processor’s fill-buffer [56] as
shown by hardware performance counters [57].

4Whereas AMD discloses which bits of the physical address are used and how they are used to compute
the DRAMbank address [9], Intel does not. We partially reverse-engineered the addressing scheme for Intel
processors using a technique similar to prior work [99, 145] and determined that setting Y to X+8M achieves

20

thememory controller to open and close the two rows repeatedly: (ACTX, READX, PREX, ACTY,

READY, PREY, · · ·). Using the address-pair (X, Y), we then executed Code 1a for millions of

iterations. Subsequently, we repeated this procedure using many different address-pairs

until every row in the 2GB module was opened/closed millions of times. In the end, we

observed that Code 1a caused many bits to flip. For each processor, Table 2.2 reports the

total number of bit-flips induced by Code 1a for two different initial states of the module:

all ‘0’s or all ‘1’s.5,6 Since Code 1a does not write any data into DRAM, we conclude that the

bit-flips are the manifestation of disturbance errors. We will show later in Section 2.6.1

that this particularmodule—which we namedA19 (Section 2.5) — yieldsmillions of errors

under certain testing conditions.

Bit-Flip Sandy Bridge Ivy Bridge Haswell Piledriver

‘0’ � ‘1’ 7,992 10,273 11,404 47
‘1’ � ‘0’ 8,125 10,449 11,467 12

Table 2.2. Bit-flips induced by disturbance on a 2GB module

As a control experiment, we also ran Code 1b which reads from only a single address.

Code 1b did not induce any disturbance errors as we expected. For Code 1b, all of its reads

are to the same row in DRAM: (reqX, reqX, reqX, · · ·). In this case, the memory controller

minimizes the number of DRAM commands by opening and closing the row just once,

while issuing many column reads in between: (ACTX, READX, READX, READX, · · ·, PREX). As we

explained in Section 2.3, DRAM disturbance errors are caused by the repeated opening/-

closing of a row, not by column reads — which is precisely why Code 1b does not induce

any errors.

our goal for all four processors. We ran Code 1a within a customizedMemtest86+ environment [1] to bypass
address translation.

5The faster a processor accesses DRAM, the more bit-flips it has. Expressed in the unit of accesses-
per-second, the four processors access DRAM at the following rates: 11.6M, 11.7M, 12.3M, and 6.1M. (It is
possible that not all accesses open/close a row.)

6We initialize the module by making the processor write out all ‘0’s or all ‘1’s to memory. But before this
data is actually sent to the module, it is scrambled by the memory controller to avoid electrical resonance
on the DRAM data-bus [57]. In other words, we do not know the exact “data” that is received by the module.
We examine the significance of this in Section 2.6.4.

21

Disturbance errors violate two invariants that memory should provide: (i) a read ac-

cess should notmodify data at any address and (ii) a write access shouldmodify data only

at the address being written to. As long as a row is repeatedly opened, both read and write

accesses can induce disturbance errors (Section 2.6.2), all of which occur in rows other

than the one being accessed (Section 2.6.3). Since different DRAM rows are mapped (by

the memory controller) to different software pages [75], Code 1a — just by accessing its

own page — could corrupt pages belonging to other programs. Left unchecked, distur-

bance errors can be exploited by a malicious program to breach memory protection and

compromise the system. With some engineering effort, we believe we can develop Code 1a

into a disturbance attack that injects errors into other programs, crashes the system, or

perhaps even hijacks control of the system. We leave such research for the future since the

primary objective in this thesis is to understand and prevent DRAM disturbance errors.

2.5. Experimental Methodology

To develop an understanding of disturbance errors, we characterize 129 DRAM mod-

ules on an FPGA-based testing platform. Our testing platform grants us precise control

over how and when DRAM is accessed on a cycle-by-cycle basis. Also, it does not scramble

the data it writes to DRAM.6

Testing Platform. We programmed eight Xilinx FPGA boards [162] with a DDR3-

800 DRAMmemory controller [163], a PCIe 2.0 core [161], and a customized test engine.

After equipping each FPGA board with a DRAM module, we connected them to two host

computers using PCIe extender cables. We then enclosed the FPGA boards inside a heat

chamber along with a thermocouple and a heater that are connected to an external tem-

perature controller. Unless otherwise specified, all tests were run at 50±2.0◦C (ambient).

Tests. Wedefine a test as a sequence of DRAMaccesses specifically designed to induce

disturbance errors in a module. Most of our tests are derived from two snippets of pseu-

docode listed above (Code 2): TestBulk and TestEach. The goal of TestBulk is to quickly

22

identify the union of all cells that were disturbed after toggling every row many times. On

the other hand, TestEach identifies which specific cells are disturbed when each row is

toggled many times. Both tests take three input parameters: AI (activation interval), RI

(refresh interval), and DP (data pattern). First, AI determines how frequently a row is

toggled — i.e., the time it takes to execute one iteration of the inner for-loop. Second, RI

determines how frequently the module is refreshed during the test. Third, DP determines

the initial data values with which themodule is populated before errors are induced. Test-

Bulk (Code 2a) starts by writing DP to the entire module. It then toggles a row at the rate

of AI for the full duration of RI — i.e., the row is toggled N = (2 × RI)/AI times.7 This

procedure is then repeated for every row in the module. Finally, TestBulk reads out the

entiremodule and identifies all of the disturbed cells. TestEach (Code 2b) is similar except

that lines 6, 12, and 13 are moved inside the outer for-loop. After toggling just one row,

TestEach reads out the module and identifies the cells that were disturbed by the row.

7Refresh intervals for different rows are not aligned with each other (Section 2.2.4). Therefore, we toggle
a row for twice the duration of RI to ensure that we fully overlap with at least one refresh interval for the
row.

23

1 TestBulk(AI,RI,DP)

2 setAI(AI)

3 setRI(RI)

4 N � (2× RI)/AI

5

6 writeAll(DP)

7 for r � 0 · · ·ROWMAX

8 for i � 0 · · ·N

9 ACT rth row

10 READ 0th col.

11 PRE rth row

12 readAll()

13 findErrors()

a. Test all rows at once

1 TestEach(AI,RI,DP)

2 setAI(AI)

3 setRI(RI)

4 N � (2× RI)/AI

5

6 for r � 0 · · ·ROWMAX

7 writeAll(DP)

8 for i � 0 · · ·N

9 ACT rth row

10 READ 0th col.

11 PRE rth row

12 readAll()

13 findErrors()

b. Test one row at a time

Code 2. Two types of tests synthesized on the FPGA

Test Parameters. In most of our tests, we set AI=55ns and RI=64ms, for which the

corresponding value ofN is 2.33× 106. We chose 55ns for AI since it approaches the max-

imum rate of toggling a row without violating the tRC timing constraint (Section 2.2.3).

In some tests, we also sweep AI up to 500ns. We chose 64ms for RI since it is the de-

fault refresh interval specified by the DDR3 DRAM standard (Section 2.2.4). In some

tests, we also sweep RI down to 10ms and up to 128ms. For DP, we primarily use two

data patterns [154]: RowStripe (even/odd rows populated with ‘0’s/‘1’s) and its inverse

∼RowStripe. As Section 2.6.4 will show, these two data patterns induce the most errors.

In some tests, we also use Solid, ColStripe, Checkered, as well as their inverses [154].

DRAMModules. As listed in Tables 2.3, 2.4, and 2.5, we tested for disturbance errors

in a total of 129 DDR3 DRAMmodules. They comprise 972 DRAM chips from three man-

24

ufacturers whose names have been anonymized to A, B, and C.8 The three manufacturers

represent a large share of the global DRAM market [32]. We use the following notation

to reference the modules: Myyww
i (M for the manufacturer, i for the numerical identifier,

and yyww for themanufacture date in year and week).9 Some of themodules are indistin-

guishable from each other in terms of the manufacturer, manufacture date, and chip type

(e.g., A3-5). We collectively refer to such a group of modules as a family. For multi-rank

modules, only the first rank is reflected in Tables 2.3, 2.4, and 2.5, which is also the only

rank that we test. We will use the terms module and rank interchangeably.

8We tried to avoid third-party modules since they sometimes obfuscate the modules, making it difficult
to determine the actual chip manufacturer or the exact manufacture date. Modules B14-31 are engineering
samples.

9Manufacturers do not explicitly provide the technology node of the chips. Instead, we interpret recent
manufacture dates and higher die versions as rough indications of more advanced process technology.

25

Manufacturer Module
Date∗ Timing† Organization Chip Victims-per-Module RIth (ms)

(yy-ww) Freq (MT/s) tRC (ns) Size (GB) Chips Size (Gb)‡ Pins Die§ Average Minimum Maximum Min

A1 10-08 1066 50.625 0.5 4 1 ×16 B 0 0 0 –

A2 10-20 1066 50.625 1 8 1 ×8 F 0 0 0 –

A3-5 10-20 1066 50.625 0.5 4 1 ×16 B 0 0 0 –

A6-7 11-24 1066 49.125 1 4 2 ×16 D 7.8× 101 5.2 × 101 1.0× 102 21.3

A8-12 11-26 1066 49.125 1 4 2 ×16 D 2.4 × 102 5.4 × 101 4.4 × 102 16.4

A13-14 11-50 1066 49.125 1 4 2 ×16 D 8.8× 101 1.7 × 101 1.6 × 102 26.2

A15-16 12-22 1600 50.625 1 4 2 ×16 D 9.5 9 1.0× 101 34.4

A17-18 12-26 1600 49.125 2 8 2 ×8 M 1.2 × 102 3.7 × 101 2.0× 102 21.3

A19-30 12-40 1600 48.125 2 8 2 ×8 K 8.6 × 106 7.0× 106 1.0× 107 8.2

A31-34 13-02 1600 48.125 2 8 2 ×8 – 1.8× 106 1.0× 106 3.5 × 106 11.5

A35-36 13-14 1600 48.125 2 8 2 ×8 – 4.0× 101 1.9 × 101 6.1 × 101 21.3

A37-38 13-20 1600 48.125 2 8 2 ×8 K 1.7 × 106 1.4 × 106 2.0× 106 9.8

A39-40 13-28 1600 48.125 2 8 2 ×8 K 5.7 × 104 5.4 × 104 6.0× 104 16.4

A41 14-04 1600 49.125 2 8 2 ×8 – 2.7 × 105 2.7 × 105 2.7 × 105 18.0

A

Total of

43

Modules

A42-43 14-04 1600 48.125 2 8 2 ×8 K 0.5 0 1 62.3

∗We report the manufacture date marked on the chip packages, which is more accurate than other dates that can be gleaned from a module.

†We report timing constraints stored in the module’s on-board ROM [71], which is read by the system BIOS to calibrate the memory controller.

‡ The maximum DRAM chip size supported by our testing platform is 2Gb.

§We report DRAM die versions marked on the chip packages, which typically progress in the following manner: M � A � B � C � · · ·.

Table 2.3. DDR3 DRAMmodules from A manufacturer (43 out of 129) sorted by manufacture date

26

Manufacturer Module
Date∗ Timing† Organization Chip Victims-per-Module RIth (ms)

(yy-ww) Freq (MT/s) tRC (ns) Size (GB) Chips Size (Gb)‡ Pins Die§ Average Minimum Maximum Min

B1 08-49 1066 50.625 1 8 1 ×8 D 0 0 0 –

B2 09-49 1066 50.625 1 8 1 ×8 E 0 0 0 –

B3 10-19 1066 50.625 1 8 1 ×8 F 0 0 0 –

B4 10-31 1333 49.125 2 8 2 ×8 C 0 0 0 –

B5 11-13 1333 49.125 2 8 2 ×8 C 0 0 0 –

B6 11-16 1066 50.625 1 8 1 ×8 F 0 0 0 –

B7 11-19 1066 50.625 1 8 1 ×8 F 0 0 0 –

B8 11-25 1333 49.125 2 8 2 ×8 C 0 0 0 –

B9 11-37 1333 49.125 2 8 2 ×8 D 1.9 × 106 1.9 × 106 1.9 × 106 11.5

B10-12 11-46 1333 49.125 2 8 2 ×8 D 2.2 × 106 1.5 × 106 2.7 × 106 11.5

B13 11-49 1333 49.125 2 8 2 ×8 C 0 0 0 –

B14 12-01 1866 47.125 2 8 2 ×8 D 9.1 × 105 9.1 × 105 9.1 × 105 9.8

B15-31 12-10 1866 47.125 2 8 2 ×8 D 9.8× 105 7.8× 105 1.2 × 106 11.5

B32 12-25 1600 48.125 2 8 2 ×8 E 7.4 × 105 7.4 × 105 7.4 × 105 11.5

B33-42 12-28 1600 48.125 2 8 2 ×8 E 5.2 × 105 1.9 × 105 7.3 × 105 11.5

B43-47 12-31 1600 48.125 2 8 2 ×8 E 4.0× 105 2.9 × 105 5.5 × 105 13.1

B48-51 13-19 1600 48.125 2 8 2 ×8 E 1.1 × 105 7.4 × 104 1.4 × 105 14.7

B52-53 13-40 1333 49.125 2 8 2 ×8 D 2.6 × 104 2.3 × 104 2.9 × 104 21.3

B

Total of

54

Modules

B54 14-07 1333 49.125 2 8 2 ×8 D 7.5 × 103 7.5 × 103 7.5 × 103 26.2

Table 2.4. DDR3 DRAMmodules from B manufacturer (54 out of 129) sorted by manufacture date

27

Manufacturer Module
Date∗ Timing† Organization Chip Victims-per-Module RIth (ms)

(yy-ww) Freq (MT/s) tRC (ns) Size (GB) Chips Size (Gb)‡ Pins Die§ Average Minimum Maximum Min

C1 10-18 1333 49.125 2 8 2 ×8 A 0 0 0 –

C2 10-20 1066 50.625 2 8 2 ×8 A 0 0 0 –

C3 10-22 1066 50.625 2 8 2 ×8 A 0 0 0 –

C4-5 10-26 1333 49.125 2 8 2 ×8 B 8.9 × 102 6.0× 102 1.2 × 103 29.5

C6 10-43 1333 49.125 1 8 1 ×8 T 0 0 0 –

C7 10-51 1333 49.125 2 8 2 ×8 B 4.0× 102 4.0× 102 4.0× 102 29.5

C8 11-12 1333 46.25 2 8 2 ×8 B 6.9 × 102 6.9 × 102 6.9 × 102 21.3

C9 11-19 1333 46.25 2 8 2 ×8 B 9.2 × 102 9.2 × 102 9.2 × 102 27.9

C10 11-31 1333 49.125 2 8 2 ×8 B 3 3 3 39.3

C11 11-42 1333 49.125 2 8 2 ×8 B 1.6 × 102 1.6 × 102 1.6 × 102 39.3

C12 11-48 1600 48.125 2 8 2 ×8 C 7.1 × 104 7.1 × 104 7.1 × 104 19.7

C13 12-08 1333 49.125 2 8 2 ×8 C 3.9 × 104 3.9 × 104 3.9 × 104 21.3

C14-15 12-12 1333 49.125 2 8 2 ×8 C 3.7 × 104 2.1 × 104 5.4 × 104 21.3

C16-18 12-20 1600 48.125 2 8 2 ×8 C 3.5 × 103 1.2 × 103 7.0× 103 27.9

C19 12-23 1600 48.125 2 8 2 ×8 E 1.4 × 105 1.4 × 105 1.4 × 105 18.0

C20 12-24 1600 48.125 2 8 2 ×8 C 6.5 × 104 6.5 × 104 6.5 × 104 21.3

C21 12-26 1600 48.125 2 8 2 ×8 C 2.3 × 104 2.3 × 104 2.3 × 104 24.6

C22 12-32 1600 48.125 2 8 2 ×8 C 1.7 × 104 1.7 × 104 1.7 × 104 22.9

C23-24 12-37 1600 48.125 2 8 2 ×8 C 2.3 × 104 1.1 × 104 3.4 × 104 18.0

C25-30 12-41 1600 48.125 2 8 2 ×8 C 2.0× 104 1.1 × 104 3.2 × 104 19.7

C31 13-11 1600 48.125 2 8 2 ×8 C 3.3 × 105 3.3 × 105 3.3 × 105 14.7

C

Total of

32

Modules

C32 13-35 1600 48.125 2 8 2 ×8 C 3.7 × 104 3.7 × 104 3.7 × 104 21.3

Table 2.5. DDR3 DRAMmodules from C manufacturer (32 out of 129) sorted by manufacture date

28

2.6. Characterization Results

Wenowpresent the results fromour characterization study. Section 2.6.1 explains how

the number of disturbance errors in amodule varies greatly depending on itsmanufacturer

and manufacture date. Section 2.6.2 confirms that repeatedly activating a row is indeed

the source of disturbance errors. In addition, we also measure the minimum number of

times a row must be activated before errors start to appear. Section 2.6.3 shows that the

errors induced by such a row (i.e., the aggressor row) are predominantly localized to two

other rows (i.e., the victim rows). We then provide arguments for why the victim rows are

likely to be the immediate neighbors. Section 2.6.4 demonstrates that disturbance errors

affect only the charged cells, causing them to lose data by becoming discharged.

2.6.1. Disturbance Errors are Widespread

For every module in Tables 2.3, 2.4, and 2.5, we tried to induce disturbance errors by

subjecting them to two runs of TestBulk:

1. TestBulk(55ns, 64ms, RowStripe)

2. TestBulk(55ns, 64ms, ∼RowStripe)

If a cell experienced an error in either of the runs, we refer to it as a victim cell for that

module. Interestingly, virtually no cell in any module had errors in both runs — meaning

that the number of errors summed across the two runs is equal to the number of unique

victims for a module.10 (This is an important observation that will be examined further in

Section 2.6.4.)

For each family of modules, three right columns in Tables 2.3, 2.4, and 2.5 report the

avg/min/max number of victims among the modules belonging to the family. As shown

in the table, we were able to induce errors in all but 19 modules, most of which are also

10In some of the B modules, there were some rare victim cells (≤15) that had errors in both runs. We will
revisit these cells in Section 2.6.3.

29

the oldest modules from each manufacturer. In fact, there exist date boundaries that sep-

arate the modules with errors from those without. For A, B, and C, their respective date

boundaries are 2011-24, 2011-37, and 2010-26. Except for A42, B13, and C6, every mod-

ule manufactured on or after these dates exhibits errors. These date boundaries are likely

to indicate process upgrades since they also coincide with die version upgrades. Using

manufacturer B as an example, 2Gb×8 chips before the boundary have a die version of

C, whereas the chips after the boundary (except B13) have die versions of either D or E .

Therefore, we conclude that disturbance errors are a relatively recent phenomenon, af-

fecting almost all modules manufactured within the past 3 years.

Using the data from Tables 2.3, 2.4, and 2.5, Figure 2.3 plots the normalized number

of errors for each family of modules versus their manufacture date. The error bars denote

the minimum and maximum for each family. From the figure, we see that modules from

2012 to 2013 are particularly vulnerable. For each manufacturer, the number of victims

per 109 cells can reach up to 5.9 × 105, 1.5 × 105, and 1.9 × 104. Interestingly, Figure 2.3

reveals a jigsaw-like trend in which sudden jumps in the number of errors are followed by

gradual descents. This may occur when a manufacturer migrates away from an old-but-

reliable process to a new-but-unreliable process. By making adjustments over time, the

new process may eventually again become reliable — which could explain why the most

recent modules from manufacturer A (A42-43) have little to no errors.

2.6.2. Access Pattern Dependence

So far, we have demonstrated disturbance errors by repeatedly opening, reading, and

closing the same row. We express this access pattern using the following notation, where

N is a large number: (open–read–close)N. However, this is not the only access pattern to

induce errors. Table 2.6 lists a total of four different access patterns, among which two

induced errors on the modules that we tested: A23, B11, and C19. These three modules

were chosen because they had the most errors (A23 and B11) or the second most errors

30

2008 2009 2010 2011 2012 2013 2014
Module Manufacture Date

0

100

101

102

103

104

105

106

E
rr

or
s

pe
r1

09
C

el
ls

A Modules B Modules C Modules

Figure 2.3. Normalized number of errors vs. manufacture date

(C19) among all modules from the same manufacturer. What is in common between the

first two access patterns is that they open and close the same row repeatedly. The other

two, in contrast, do so just once and did not induce any errors. From this we conclude that

the repeated toggling of the same wordline is indeed the cause of disturbance errors.11

Access Pattern Disturbance Errors?

1. (open–read–close)N Yes
2. (open–write–close)N Yes
3. open–readN–close No
4. open–writeN–close No

Table 2.6. Access patterns that induce disturbance errors

Refresh Interval (RI). As explained in Section 2.5, our tests open a row once every

55ns. For each row, we sustain this rate for the full duration of an RI (default: 64ms). This

is so that the row can maximize its disturbance effect on other cells, causing them to leak

the most charge before they are next refreshed. As the RI is varied between 10–128ms,

Figure 2.4 plots the numbers of errors in the three modules. Due to time limitations, we

11For write accesses, a row cannot be opened and closed once every tRC due to an extra timing constraint
called tWR (write recovery time) [68]. As a result, the second access pattern in Table 2.6 induces fewer errors.

31

tested only the first bank. For shorter RIs, there are fewer errors due to two reasons: (i) a

victim cell has less time to leak charge between refreshes; (ii) a row is opened fewer times

between those refreshes, diminishing the disturbance effect it has on the victim cells. At a

sufficiently short RI — which we refer to as the threshold refresh interval (RIth) — errors

are completely eliminated not in just the first bank, but for the entire module. For each

family of modules, the rightmost column in Tables 2.3, 2.4, and 2.5 reports the minimum

RIth among the modules belonging to the family. The family with the most victims at RI =

64ms is also likely to have the lowest RIth: 8.2ms, 9.8ms, and 14.7ms. This translates into

7.8×, 6.5×, and 4.3× increase in the frequency of refreshes.

0 16 32 48 64 80 96 112 128
Refresh Interval (ms)

0
100
101
102
103
104
105
106
107
108

E
rr

or
s

A1240
23 B1146

11 C1223
19

yA = 4.39e-6× x6.23

yB = 1.23e-8× x7.3

yC = 8.11e-10× x7.3

Figure 2.4. Number of errors as the refresh interval is varied

Activation Interval (AI). As the AI is varied between 55–500ns, Figure 2.5 plots

the numbers of errors in the three modules. (Only the first bank is tested, and the RI is

kept constant at 64ms.) For longer AIs, there are fewer errors because a row is opened

less often, thereby diminishing its disturbance effect. When the AI is sufficiently long,

the three modules have no errors: ∼500ns, ∼450ns, and ∼250ns. At the shortest AIs,

however, there is a notable reversal in the trend: B11 and C19 have fewer errors at 60ns

32

than at 65ns. How can there be fewer errors when a row is opened more often? This

anomaly can be explained only if the disturbance effect of opening a row is weaker at 60ns

than at 65ns. In general, row-coupling effects are known to be weakened if the wordline

voltage is not raised quickly while the row is being opened [129]. The wordline voltage, in

turn, is raised by a circuit called thewordline charge-pump [80], which becomes sluggish

if not given enough time to “recover” after performing its job.12 When a wordline is raised

every 60ns, we hypothesize that the charge-pump is unable to regain its full strength by

the end of each interval, which leads to a slow voltage transition on the wordline and,

ultimately, a weak disturbance effect. In contrast, an AI of 55ns appears to be immune to

this phenomenon, since there is a large jump in the number of errors. We believe this to

be an artifact of how our memory controller schedules refresh commands. At 55ns, our

memory controller happens to run at 100%utilization, meaning that it always has aDRAM

request queued in its buffer. In an attempt to minimize the latency of the request, the

memory controller de-prioritizes a pending refresh command by ∼64us. This technique

is fully compliant with the DDR3 DRAM standard [68] and is widely employed in general-

purpose processors [57]. As a result, the effective refresh interval is slightly lengthened,

which again increases the number of errors.

Number of Activations. We have seen that disturbance errors are heavily influ-

enced by the lengths of RI and AI. In Figure 2.6, we compare their effects by superimpos-

ing the two previous figures on top of each other. Both figures have been normalized onto

the same x-axis whose values correspond to the number of activations per refresh interval:

RI/AI.13 (Only the left-half is shown for Figure 2.4, where RI ≤ 64ms.) In Figure 2.6, the

number of activations reaches a maximum of 1.14 × 106 (=64ms/55ns) when RI and AI

are set to their default lengths. At this particular point, the numbers of errors between the

12The charge-pump “up-converts” the DRAM chip’s supply voltage into an even higher voltage to ensure
that thewordline’s access-transistors are completely switched on. A charge-pump is essentially a large reser-
voir of charge which is slowly refilled after being tapped into.

13The actual formula we used is (RI − 8192 × tRFC)/AI, where tRFC (refresh cycle time) is the timing con-
straint between a REF and a subsequent ACT to the samemodule [68]. Our testing platform sets tRFC to 160ns,
which is a sufficient amount of time for all of our modules.

33

0 50 100 150 200 250 300 350 400 450 500
Activation Interval (ns)

0

100

101

102

103

104

105

106

107

E
rr

or
s

A1240
23 B1146

11 C1223
19

yA = 5.63e6×1.04-x

yB = 1.06e6×1.04-x

yC = 1.90e5×1.05-x

Figure 2.5. Number of errors as the activation interval is varied

two studies degenerate to the same value. It is clear from the figure that fewer activations

induce fewer errors. For the same number of activations, having a long RI and a long AI is

likely to induce more errors than having a short RI and a short AI. We define the thresh-

old number of activations (Nth) as the minimum number of activations that is required to

induce an error when RI=64ms. The three modules (for only their first banks) have the

following values for Nth: 139K, 155K, and 284K.

2.6.3. Address Correlation: Aggressor & Victim

Most rows in A23, B11, and C19 have at least one cell that experienced an error: 100%,

99.96%, and 41.54%. We analyzed the addresses of such victim cells to determine whether

they exhibit any spatial locality. We were unable to identify any distinct pattern or skew.

By chance, however, some victim cells could still end up being located near each other.

For the three modules, Table 2.7 shows howmany 64-bit words in their full address-space

(0–2GB) contain 1, 2, 3, or 4 victim cells. While most words have just a single victim,

there are also some words with multiple victims. This has an important consequence

34

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Activations per RI (millions)

0

100

101

102

103

104

105

106

107
E

rr
or

s

Variable RI:
Variable AI:

A1240
23

A1240
23

B1146
11

B1146
11

C1223
19

C1223
19

Shorter RI←−−−−−−− 64ms
Longer AI←−−−−−−− 55ns

Figure 2.6. Number of errors vs. number of activations

for error-correction codes (ECC). For example, SECDED (single error-correction, double

error-detection) can correct only a single-bit error within a 64-bit word. If a word con-

tains two victims, however, SECDED cannot correct the resulting double-bit error. And

for three ormore victims, SECDED cannot even detect themulti-bit error, leading to silent

data corruption. Therefore, we conclude that SECDED is not failsafe against disturbance

errors.

Module
Number of 64-bit words with X errors

X = 1 X = 2 X = 3 X = 4

A23 9,709,721 181,856 2,248 18
B11 2,632,280 13,638 47 0
C19 141,821 42 0 0

Table 2.7. Uncorrectable multi-bit errors (in bold)

Most rows in A23, B11, and C19 cause errors when they are repeatedly opened. We re-

fer to such rows as aggressor rows. We exposed the aggressor rows in the modules by

subjecting them to two runs of TestEach for only the first bank:

35

1. TestEach(55ns, 64ms, RowStripe)

2. TestEach(55ns, 64ms, ∼RowStripe)

The threemodules had the followingnumbers of aggressor rows: 32768, 32754, and 15414.

Considering that a bank in the modules has 32K rows, we conclude that large fractions of

the rows are aggressors: 100%, 99.96%, and 47.04%.

Each aggressor row can be associated with a set of victim cells that were disturbed by

the aggressor during either of the two tests. Figure 2.7 plots the size distribution of this

set for the three modules. Aggressor rows in A23 are the most potent, disturbing as many

as 110 cells at once. (We cannot explain the two peaks in the graph.) On the other hand,

aggressors in B11 and C19 can disturb up to 28 and 5 cells, respectively.

0 10 20 30 40 50 60 70 80 90 100 110 120
Victim Cells per Aggressor Row

0
100
101
102
103
104
105

C
ou

nt

A1240
23 B1146

11 C1223
19

Figure 2.7. How many cells are affected by an aggressor row?

Similarly, we can associate each aggressor row with a set of victim rows to which the

victim cells belong. Figure 2.8 plots the size distribution of this set. We see that the vic-

tim cells of an aggressor row are predominantly localized to two rows or less. In fact,

only a small fraction of aggressor rows affect three rows or more: 2.53%, 0.0122%, and

0.00649%.

To see whether any correlation exists between the address of an aggressor row and

those of its victim rows, we formed every possible pair between them. For each such pair,

36

1 2 3 4 5 6 7 8 9 10
Victim Rows per Aggressor Row

0
100
101
102
103
104
105

C
ou

nt

A1240
23 B1146

11 C1223
19

Figure 2.8. How many rows are affected by an aggressor row?

we then computed the row-address difference as follows: VictimRowaddr−AggressorRowaddr.

The histogram of these differences is shown in Figure 2.9. It is clear from the figure that an

aggressor causes errors in rows only other than itself. This is understandable since every

time an aggressor is opened and closed, it also serves to replenish the charge in all of its

own cells (Section 2.2.4). Since the aggressor’s cells are continuously being refreshed, it

is highly unlikely that they could leak enough charge to lose their data.

≤-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8≤
Row Address Difference

0
100
101
102
103
104
105
106

C
ou

nt

A1240
23 B1146

11 C1223
19

Figure 2.9. Which rows are affected by an aggressor row?

For all three modules, Figure 2.9 shows strong peaks at±1, suggesting that an aggres-

sor and its victims are likely to have consecutive row-addresses, i.e., they are logically ad-

jacent. Being logically adjacent, however, does not always imply that the rows are placed

37

next to each other on the silicon die, i.e., physically adjacent. Although every logical row

must be mapped to some physical row, it is entirely up to the DRAMmanufacturer to de-

cide how they are mapped [154]. In spite of this, we hypothesize that aggressors cause

errors in their physically adjacent rows due to three reasons.

• Reason 1. Wordline voltage fluctuations are likely to place the greatest electrical stress

on the immediately neighboring rows [110, 129].

• Reason 2. By definition, a row has only two immediate neighbors, which may explain

why disturbance errors are localized mostly to two rows.

• Reason 3. Logical adjacency may highly correlate with physical adjacency, which we

infer from the strong peaks at ±1 in Figure 2.9.

However, we also see discrepancies in Figures 2.8 and 2.9, whereby an aggressor row

appears to cause errors in non-adjacent rows. We hypothesize that this is due to two rea-

sons.

• Reason 1. In Figure 2.8, some aggressors affect more than just two rows. This may be

an irregularity caused by re-mapped rows. Referring back to Figure 2.2 (Section 2.2.1),

the ith “row” of a rank is formed by taking the ith row in each chip and concatenating

them. But if the row in one of the chips is faulty, the manufacturer re-maps it to a spare

row (e.g., i�j) [47]. In this case, the ith “row” has four immediate neighbors: i±1th rows

in seven chips and j±1th rows in the re-mapped chip.

• Reason 2. In Figure 2.9, some aggressors affect rows that are not logically-adjacent:

e.g., side peaks at±3 and±7. This may be an artifact of manufacturer-dependent map-

ping, where some physically-adjacent rows have logical row-addresses that differ by±3

or±7— for example, when the addresses are gray-encoded [154]. Alternatively, it could

be that aggressors affect rows farther away than the immediate neighbors — a possibil-

38

ity that we cannot completely rule out. However, if that were the case, then it would be

unlikely for the peaks to be separated by gaps at ±2, ±4, and ±6.14

Double Aggressor Rows. Most victim cells are disturbed by only a single aggressor

row. However, there are some victim cells that are disturbed by two different aggressor

rows. In the first bank of the three modules, the numbers of such victim cells were 83,

2, and 0. In module A23, for example, the victim cell at (row 1464, column 50466) had a

‘1’�‘0’ error when either row 1463 or row 1465 was toggled. In module B11, the victim cell

at (row 5907, column 32087) had a ‘0’�‘1’ error when row 5906 was toggled, whereas it

had a ‘1’�‘0’ error when row 5908 was toggled. Within these two modules respectively,

the same trend applies to the other victim cells with two aggressor rows. Interestingly,

the two victim cells in module B11 with two aggressor rows were also the same cells that

had errors for both runs of the test pair described in Section 2.6.1. These cells were the

only cases in which we observed both ‘0’�‘1’ and ‘1’�‘0’ errors in the same cell. Except for
such rare exceptions found only in B modules, every other victim cell had an error in just

a single preferred direction, for reasons we next explain.

2.6.4. Data Pattern Dependence

Until now, we have treated all errors equally without making any distinction between

the two different directions of errors: ‘0’⇆‘1’. When we categorized the errors in Ta-

bles 2.3, 2.4, and 2.5 based on their direction, an interesting trend emerged. Whereas

A modules did not favor one direction over the other, B and C modules heavily favored

‘1’�‘0’ errors. Averaged on a module-by-module basis, the relative fraction of ‘1’�‘0’ er-
rors is 49.9%, 92.8%, and 97.1% for A, B, and C.15

The seemingly asymmetric nature of disturbance errors is related to an intrinsic prop-

14Figure 2.9 presents further indications of re-mapping, where somemodules have non-zero values for±8
or beyond. Such large differences — which in some cases reach into the thousands —may be caused when a
faulty row is re-mapped to a spare row that is far away, which is typically the case [47].

15For manufacturer C, we excluded modules with a die version of B. Unlike other modules from the same
manufacturer, these modules had errors that were evenly split between the two directions.

39

erty of DRAM cells called orientation. Depending on the implementation, some cells rep-

resent a logical value of ‘1’ using the charged state, while other cells do so using the dis-

charged state — these cells are referred to as true-cells and anti-cells, respectively [97].

If a true-cell loses charge, it experiences a ‘1’�‘0’ error. When we profiled two modules

(B11 and C19), we discovered that they consist mostly of true-cells by a ratio of 1000s-to-

1.16 For these two modules, the dominance of true-cells and their ‘1’�‘0’ errors imply that
victim cells are most likely to lose charge when they are disturbed. The same conclusion

also applies toA23, whose address-space is divided into large swaths of true- and anti-cells

that alternate every 512 rows. For this module, we found that ‘1’�‘0’ errors are dominant
(>99.8%) in rows where true-cells are dominant: rows 0–511, 1024–1535, 2048–2559,

· · ·. In contrast, ‘0’�‘1’ errors are dominant (>99.7%) in the remainder of the rows where
anti-cells are dominant. Regardless of its orientation, a cell can lose charge only if it was

initially charged — explaining why a given cell did not have errors in both runs of the test

in Section 2.6.1. Since the two runs populate the module with inverse data patterns, a cell

cannot be charged for both runs.

Table 2.8 reports the numbers of errors that were induced in three modules using four

different data patterns and their inverses: Solid, RowStripe, ColStripe, and Checkered.

Among them, RowStripe (even/odd rows ‘0’s/‘1’s) induces themost errors forA23 andB11,

as well as the second most errors for C19. In contrast, Solid (all ‘0’s) has the fewest errors

for all three modules by an order of magnitude or more. Such a large difference cannot

be explained if the requirements for a disturbance error are only two-fold: (i) a victim cell

is in the charged state, and (ii) its aggressor row is toggled. This is because the same two

requirements are satisfied by all four pairs of data patterns. Instead, there must be other

factors at play than just the coupling of a victim cell with an aggressor wordline. In fact,

we discovered that the behavior of most victim cells is correlated with the data stored in
16At 70◦C, we wrote all ‘0’s to the module, disabled refreshes for six hours and read out the module. We

then repeated the procedure with all ‘1’s. A cell was deemed to be true (or anti) if its outcome was ‘0’ (or ‘1’)
for both experiments. We could not resolve the orientation of every cell.

40

some other cells.17 A victim cell may have aggressor cell(s) — typically residing in the

aggressor row— that must be discharged for the victim to have an error. A victim cell may

also have protector cell(s) — typically residing in either the aggressor row or the victim

row — that must be charged or discharged for the victim to have a lower probability of

having an error. In its generalized form, disturbance errors appear to be a complicated

“N-body” phenomenon involving the interaction of multiple cells, the net result of which

would only explain the differences in Table 2.8.

Module
TestBulk(DP) + TestBulk(∼DP)

Solid RowStripe ColStripe Checkered

A23 112,123 1,318,603 763,763 934,536
B11 12,050 320,095 9,610 302,306
C19 57 20,770 130 29,283

Table 2.8. Number of errors for different data patterns

2.7. Sensitivity Results

Errors are Mostly Repeatable. We subjected three modules to ten iterations of

testing, where each iteration consists of the test pair described in Section 2.6.1. Across

the ten iterations, the average numbers of errors (for only the first bank) were the follow-

ing: 1.31M, 339K, and 21.0K. There were no iterations that deviated by more than±0.25%

from the average for all three modules. The ten iterations revealed the following numbers

of unique victim cells: 1.48M, 392K, and 24.4K. Most victim cells were repeat offenders,

meaning that they had an error in every iteration: 78.3%, 74.4%, and 73.2%. However,

some victim cells had an error in just a single iteration: 3.14%, 4.86%, and 4.76%. This

implies that an exhaustive search for every possible victim cell would require a large num-

ber of iterations, necessitating several days (or more) of continuous testing. One possible

17We comprehensively tested the first 32 rows in module A19 using hundreds of different random data
patterns. Through statistical analysis on the experimental results, we were able to identify almost certain
correlations between a victim cell and the data stored in some other cells.

41

way to reduce the testing time is to increase the RI beyond the standardized value of 64ms

as we did in Figure 2.4 (Section 2.6.2). However, multiple iterations could still be required

since a single iteration at RI=128ms does not provide 100% coverage of all the victim cells

at RI=64ms: 99.77%, 99.87%, and 99.90%.

Victim Cells ̸=Weak Cells. Although the retention time of every DRAM cell is re-

quired to be greater than the 64msminimum, different cells have different retention times.

In this context, the cells with the shortest retention times are referred to asweak cells [97].

Intuitively, it would appear that the weak cells are especially vulnerable to disturbance er-

rors since they are already leakier than others. On the contrary, we did not find any strong

correlation between weak cells and victim cells. We searched for a module’s weak cells

by neither accessing nor refreshing a module for a generous amount of time (10 seconds)

after having populated it with either all ‘0’s or all ‘1’s. If a cell was corrupted during this

procedure, we considered it to be a weak cell [97]. In total, we were able to identify ∼1M

weak cells for each module (984K, 993K, and 1.22M), which is on par with the number

of victim cells. However, only a few weak cells were also victim cells: 700, 220, and 19.

Therefore, we conclude that the coupling pathway responsible for disturbance errors may

be independent of the process variation responsible for weak cells.

Not Strongly Affected by Temperature. When temperature increases by 10◦C,

the retention time for each cell is known to decrease by almost a factor of two [81, 97]. To

see whether this would drastically increase the number of errors, we ran a single iteration

of the test pair for the three modules at 70±2.0◦C, which is 20◦C higher than our default

ambient temperature. Compared to an iteration at 50◦C, the number of errors did not

change greatly: +10.2%, −0.553%, and +1.32%. We also ran a single iteration of the test

pair for the threemodules at 30±2.0◦Cwith similar results: −14.5%,+2.71%, and−5.11%.

From this we conclude that disturbance errors are not strongly influenced by temperature.

42

2.8. Solutions to Disturbance Errors

We examine seven solutions to tolerate, prevent, or mitigate disturbance errors. Each

solution makes a different trade-off between feasibility, cost, performance, power, and

reliability. Among them, we believe our seventh and last solution, called PARA, to be the

most efficient and low-overhead. Section 2.8.1 discusses each of the first six solutions.

Section 2.8.2 analyzes our seventh solution (PARA) in detail.

2.8.1. Six Potential Solutions

1. Make better chips. Manufacturers could fix the problem at the chip-level by improv-

ing circuit design. However, the problem could resurface when the process technology is

upgraded. In addition, this may get worse in the future as cells become smaller and more

vulnerable.

2. Correct errors. Server-grade systems employ ECCmodules with extra DRAM chips,

incurring a 12.5% capacity overhead. However, even such modules cannot correct multi-

bit disturbance errors (Section 2.6.3). Due to their high cost, ECCmodules are rarely used

in consumer-grade systems.

3. Refresh all rows frequently. Disturbance errors can be eliminated for sufficiently

short refresh intervals (RI≤RIth) as we saw in Section 2.6.2. However, frequent refreshes

also degrade performance and energy-efficiency. Today’s modules already spend 1.4–

4.5% of their time just performing refreshes [68]. This number would increase to 11.0–

35.0% if the refresh interval is shortened to 8.2ms, which is required by A20 (Table 2.3).

Such a high overhead is unlikely to be acceptable for many systems.

4. Retire cells (manufacturer). Before DRAM chips are sold, the manufacturer could

identify victim cells and re-map them to spare cells [47]. However, an exhaustive search

for all victim cells could take several days or more (Section 2.7). In addition, if there are

many victim cells, there may not be enough spare cells for all of them.

43

5. Retire cells (end-user). The end-users themselves could test the modules and em-

ploy system-level techniques for handling DRAM reliability problems: disable faulty ad-

dresses [3, 45, 147, 156], re-map faulty addresses to reserved addresses [119, 123], or re-

fresh faulty addresses more frequently [98, 156]. However, the first/second approaches

are ineffective when every row in the module is a victim row (Section 2.6.3). On the other

hand, the third approach is inefficient since it always refreshes the victim rows more fre-

quently — even when the module is not being accessed at all. In all three approaches, the

end-user pays for the cost of identifying and storing the addresses of the aggressor/victim

rows.

6. Identify “hot” rows and refresh neighbors. Perhaps the most intuitive solution is

to identify frequently opened rows and refresh only their neighbors. The challenge lies in

minimizing the hardware cost to identify the “hot” rows. For example, having a counter

for each row would be too expensive when there are millions of rows in a system.18 The

generalized problem of identifying frequent items (from a stream of items) has been ex-

tensively studied in other domains. We applied a well-knownmethod [78] and found that

while it reduces the number of counters, it also requires expensive operations to query the

counters (e.g., highly-associative search). We also analyzed approximate methods which

further reduce the storage requirement: Bloom Filters [17], Morris Counters [112], and

variants thereof [30, 35, 155]. These approaches, however, rely heavily on hash functions

and, therefore, introduce hash collisions. Whenever one counter exceeds the threshold

value,many rows are falsely flagged as being “hot,” leading to a torrent of refreshes to all

of their neighbors.

18Several patent applications propose to maintain an array of counters (“detection logic”) in either the
memory controller [11, 12, 39] or in the DRAM chips themselves [13, 10, 40]. If the counters are tagged with
the addresses of only the most recently activated rows, their number can be significantly reduced [39].

44

2.8.2. Seventh Solution: PARA

Ourmain proposal to prevent DRAM disturbance errors is a low-overheadmechanism

called PARA (probabilistic adjacent row activation). The key idea of PARA is simple: ev-

ery time a row is opened and closed, one of its adjacent rows is also opened (i.e., refreshed)

with some low probability. If one particular row happens to be opened and closed repeat-

edly, then it is statistically certain that the row’s adjacent rowswill eventually be opened as

well. The main advantage of PARA is that it is stateless. PARA does not require expensive

hardware data-structures to count the number of times that rows have been opened or to

store the addresses of the aggressor/victim rows.

Implementation. PARA is implemented in thememory controller as follows. When-

ever a row is closed, the controller flips a biased coin with a probability p of turning up

heads, where p ≪ 1. If the coin turns up heads, the controller opens one of its adjacent

rows where either of the two adjacent rows are chosen with equal probability (p/2). Due

to its probabilistic nature, PARA does not guarantee that the adjacent will always be re-

freshed in time. Hence, PARA cannot prevent disturbance errors with absolute certainty.

However, its parameter p can be set so that disturbance errors occur at an extremely low

probability —many orders of magnitude lower than the failure rates of other system com-

ponents (e.g., more than 1% of hard-disk drives fail every year [126, 137]).

Error Rate. We analyze PARA’s error probability by considering an adversarial ac-

cess pattern that opens and closes a row just enough times (Nth) during a refresh interval

but no more. Every time the row is closed, PARA flips a coin and refreshes a given adja-

cent row with probability p/2. Since the coin-flips are independent events, the number

of refreshes to one particular adjacent row can be modeled as a random variable X that is

binomially-distributed with parameters B(Nth, p/2). An error occurs in the adjacent row

only if it is never refreshed during any of the Nth coin-flips (i.e., X=0). Such an event has

the following probability of occurring: (1−p/2)Nth . When p=0.001, we evaluate this prob-

ability in Table 2.9 for different values of Nth. The table shows two error probabilities: one

45

in which the adversarial access pattern is sustained for 64ms and the other for one year.

Recall from Section 2.6.2 that realistic values for Nth in our modules are in the range of

139K–284K. For p=0.001 and Nth=100K, the probability of experiencing an error in one

year is negligible at 9.4× 10−14.

Duration Nth=50K Nth=100K Nth=200K

64ms 1.4 × 10−11 1.9 × 10−22 3.6 × 10−44

1 year 6.8× 10−3 9.4 × 10−14 1.8× 10−35

Table 2.9. Error probabilities for PARA when p=0.001

Adjacency Information. For PARA to work, the memory controller must know

which rows are physically adjacent to each other. This is also true for alternative solu-

tions based on “hot” row detection (Section 2.8.1). Without this information, rows cannot

be selectively refreshed, and the only safe resort is to blindly refresh all rows in the same

bank, incurring a large performance penalty. To enable low-overhead solutions, we ar-

gue for the manufacturers to disclose how they map logical rows onto physical rows.19

Such a mapping function could possibly be as simple as specifying the bit-offset within

the logical row-address that is used as the least-significant-bit of the physical row-address.

Along with other metadata about the module (e.g., capacity, and bus frequency), the map-

ping function could be stored in a small ROM (called the SPD) that exists on every DRAM

module [71]. Themanufacturers should also disclose how they re-map faulty physical rows

(Section 2.6.3). When a faulty physical row is re-mapped, the logical row that hadmapped

to it acquires a new set of physical neighbors. The SPD could also store the re-mapping

function, which specifies how the logical row-addresses of those new physical neighbors

can be computed. To account for the possibility of re-mapping, PARA can be configured to

(i) have a higher value of p and (ii) choose a row to refresh from awider pool of candidates,

which includes the re-mapped neighbors in addition to the original neighbors.

19Bains et al. [13] make the same argument. As an alternative, Bains et al. [11, 12] propose a new DRAM
command called “targeted refresh”. When the memory controller sends this command along with the target
row address, the DRAM chip is responsible for refreshing the row and its neighbors.

46

PerformanceOverhead. Using a cycle-accurateDRAMsimulator, we evaluate PARA’s

performance impact on 29 single-threaded workloads from SPEC CPU2006, TPC, and

memory-intensive microbenchmarks (We assume a reasonable system setup [87] with a

4GHz out-of-order core and dual-channel DDR3-1600.) Due to re-mapping, we conser-

vatively assume that a row can have up to ten different rows as neighbors, not just two.

Correspondingly, we increase the value of p by five-fold to 0.005.20 Averaged across all 29

benchmarks, there was only a 0.197% degradation in instruction throughput during the

simulated duration of 100ms. In addition, the largest degradation in instruction through-

put for any single benchmark was 0.745%. From this, we conclude that PARA has a small

impact on performance, which we believe is justified by the (i) strong reliability guarantee

and (ii) low design complexity resulting from its stateless nature.

2.9. Other RelatedWork

Disturbance errors are a general class of reliability problem that afflicts not onlyDRAM,

but also other memory and storage technologies: SRAM [28, 42, 83], flash [15, 19, 20, 31,

41], and hard-disk [76, 148, 160]. Van de Goor and de Neef [153] present a collection of

production tests that can be employed by DRAM manufacturers to screen faulty chips.

One such test is the “hammer,” where each cell is written a thousand times to verify that it

does not disturb nearby cells. In 2013, one test equipment company mentioned the “row

hammer” phenomenon in the context of DDR4 DRAM [103], the next generation of com-

modity DRAM. To our knowledge, no previous work demonstrated and characterized the

phenomenon of disturbance errors in DRAM chips from the field.

20We do not make any special considerations for victim cells with two aggressor rows (Section 2.6.3).
Although they could be disturbed by either aggressor row, they could also be refreshed by either aggressor
row.

47

2.10. Chapter Summary

We have demonstrated, characterized, and analyzed the phenomenon of disturbance

errors in modern commodity DRAM chips. These errors happen when repeated accesses

to a DRAM row corrupts data stored in other rows. Based on our experimental charac-

terization, we conclude that disturbance errors are an emerging problem likely to affect

current and future computing systems. We propose several solutions, including a new

stateless mechanism that provides a strong statistical guarantee against disturbance er-

rors by probabilistically refreshing rows adjacent to an accessed row. As DRAM process

technology scales down to smaller feature sizes, we hope that our findings will enable new

system-level [116] approaches to enhance DRAM reliability.

48

Chapter 3

Subarray Parallelism: A

High-Performance DRAM

Architecture

The large latency of main memory is a well-known bottleneck for overall system per-

formance. As a coping mechanism, modern processors employ numerous techniques to

expose multiple requests to main memory, in an effort to overlap their latencies: e.g., out-

of-order execution [150], non-blocking caches [92], prefetching, and multi-threading.

The effectiveness of such techniques, however, depends critically onwhether themem-

ory requests are actually served in parallel. For this purpose, DRAM chips are divided into

several banks, each of which can be accessed independently. Nevertheless, if two memory

requests go to the same bank, they must be served one after another — experiencing what

is referred to as a bank conflict.

3.1. Bank Conflicts Exacerbate DRAM Latency

Bank conflicts have two negative consequences. First, they serialize the memory re-

quests, and increase the effective latency of accessing main memory. As a result, pro-

49

cessing cores are more likely to experience stalls, which would lead to reduced system

performance. And to make matters worse, a memory request scheduled after a write re-

quest to the same bank incurs an additional latency called the write-recovery penalty.

Furthermore, this penalty is expected to increase by more than 5x in the near future due

to worsening process variation, which creates increasingly slow outlier DRAM cells [77].

Second, a bank conflict could cause thrashing in the bank’s row-buffer. A row-buffer,

present in each bank, effectively acts as a “cache” for the rows in the bank. Memory re-

quests that hit in the row-buffer incurmuch lower latency than those thatmiss. In amulti-

core system, requests from different applications are interleaved with each other. When

such interleaved requests lead to bank conflicts, they can “evict” the row that is present

in the row-buffer. As a result, requests of an application that could have otherwise hit in

the row-buffer will miss in the row-buffer, significantly degrading the performance of the

application (and potentially the overall system) [113, 117, 143, 167].

A solution to the bank conflict problem is to increase the number of DRAM banks in

the system. While current memory subsystems theoretically allow for three ways of doing

so, they all come at a significantly high cost. First, one can increase the number of banks

in the DRAM chip itself. However, for a constant storage capacity, increasing the number

of banks-per-chip significantly increases the DRAM die area (and thus chip cost) due to

replicated decoding logic, routing, and drivers at each bank [164]. Second, one can in-

crease the number of banks in a channel by multiplexing the channel with many memory

modules, each of which is a collection of banks. Unfortunately, this increases the electrical

load on the channel, causing it to run at a significantly reduced frequency [37, 38]. Third,

one can addmorememory channels to increase the overall bank count. Unfortunately, this

increases the pin-count in the processor package, which is an expensive resource.1 Con-

sidering both the low growth rate of pin-count and the prohibitive cost of pins in general,

it is clear that increasing the number of channels is not a scalable solution.

1Intel Sandy Bridge dedicates 264 pins for two channels [54]. IBM POWER7 dedicates 640 pins for eight
channels [139].

50

This chapter’s goal is to mitigate the detrimental effects of bank conflicts with a low-

cost approach. We make two key observations that lead to our proposed mechanisms.

First, a modern DRAM bank is not implemented as a monolithic component with a

single row-buffer. Implementing a DRAM bank as a monolithic structure requires very

long wires (called bitlines), to connect the row-buffer to all the rows in the bank, which

can significantly increase the access latency (Section 3.2.3). Instead, a bank consists of

multiple subarrays, each with its own local row-buffer, as shown in Figure 3.1. Subarrays

within a bank share (i) a global row-address decoder and (ii) a set of global bitlines which

connect their local row-buffers to a global row-buffer.

Second, the latency of bank access consists of three major components: (i) opening a

row containing the required data (referred to as activation), (ii) accessing the data (read

orwrite), and (iii) closing the row (precharging). In existing systems, all three operations

must be completed for one memory request before serving another request to a different

rowwithin the same bank, even if the two rows reside in different subarrays. However, this

need not be the case for two reasons. First, the activation and precharging operations are

mostly local to each subarray, enabling the opportunity to overlap these operations to dif-

ferent subarrays within the same bank. Second, if we reduce the resource sharing among

subarrays, we can enable activation operations to different subarrays to be performed in

parallel and, in addition, also exploit the existence of multiple local row-buffers to cache

more than one row in a single bank, enabling the opportunity to improve row-buffer hit

rate.

Based on these observations, our proposition in this chapter is that exposing the subarray-

level internal organization of a DRAMbank to thememory controller would allow the con-

troller to exploit the independence between subarrays within the same bank and reduce

the negative impact of bank conflicts. To this end, we propose three different mechanisms

for exploiting subarray-level parallelism. Our proposed mechanisms allow the memory

controller to overlap or eliminate different latency components required to complete mul-

51

row

Bank

r
o
w
-d
e
c
o
d
e
r

row-buffer

3
2

k
 r

o
w

s

(a) Logical abstraction

local row-buffer

Subarray1

global row-buffer

local row-buffer

Subarray64

g
lo

b
a

l
d

e
co

d
e

r 5
1

2

r
o
w
s

5
1

2

r
o
w
s

(b) Physical implementation

Figure 3.1. DRAM bank organization

tiple requests going to different subarrays within the same bank.

First, SALP-1 (Subarray-Level-Parallelism-1) overlaps the latency of closing a row of

one subarray with that of opening a row in a different subarray within the same bank by

pipelining the two operations one after the other. SALP-1 requires no changes to the exist-

ing DRAM structure. Second, SALP-2 (Subarray-Level-Parallelism-2) allows the memory

controller to start opening a row in a subarray before closing the currently open row in a

different subarray. This allows SALP-2 to overlap the latency of opening a row with the

write-recovery period of another row in a different subarray, and further improve perfor-

mance compared to SALP-1. SALP-2 requires the addition of small latches to each subar-

ray’s peripheral logic. Third, MASA (Multitude of Activated Subarrays) exploits the fact

that each subarray has its own local row-buffer that can potentially “cache” the most re-

cently accessed row in that subarray. MASA reduces hardware resource sharing between

subarrays to allow the memory controller to (i) activate multiple subarrays in parallel to

reduce request serialization, (ii) concurrently keep local row-buffers of multiple subar-

rays active to significantly improve row-buffer hit rate. In addition to the change needed

by SALP-2, MASA requires only the addition of a single-bit latch to each subarray’s pe-

ripheral logic as well as a new 1-bit global control signal.

This chapter makes the following contributions.

• We exploit the existence of subarrays within each DRAM bank tomitigate the effects

of bank conflicts. We propose three mechanisms, SALP-1, SALP-2, and MASA, that

52

overlap (to varying degrees) the latency of accesses to different subarrays. SALP-1

does not require any modifications to existing DRAM structure, while SALP-2 and

MASA introduce small changes only to the subarrays’ peripheral logic.

• We exploit the existence of local subarray row-buffers within DRAM banks to mit-

igate row-buffer thrashing. We propose MASA that allows multiple such subarray

row-buffers to remain activated at any given point in time. We show that MASA can

significantly increase row-buffer hit rate while incurring only modest implementa-

tion cost.

• We perform a thorough analysis of area and power overheads of our proposedmech-

anisms. MASA, the most aggressive of our proposed mechanisms, incurs a DRAM

chip area overhead of 0.15% and a modest power cost of 0.56mW per each addition-

ally activated subarray.

• We identify that tWR (bank write-recovery2) worsens the negative impact of bank

conflicts by increasing the latency of critical read requests. We show that SALP-2

and MASA are effective at minimizing the negative effects of tWR.

• We evaluate our proposed mechanisms using a variety of system configurations and

show that they significantly improve performance for single-core systems compared

to conventional DRAM: 7%/13%/17% for SALP-1/SALP-2/MASA, respectively. Our

schemes also interact positively with application-aware memory scheduling algo-

rithms and further improve performance for multi-core systems.

3.2. Background: DRAMOrganization

As shown in Figure 3.2, DRAM-based main memory systems are logically organized

as a hierarchy of channels, ranks, and banks. In today’s systems, banks are the smallest

2Write-recovery (explained in Section 3.2.2) is different from the bus-turnaroundpenalty (read-to-write,
write-to-read), which is addressed by several prior works [27, 94, 142].

53

memory structures that can be accessed in parallel with respect to each other. This is re-

ferred to as bank-level parallelism [86, 118]. Next, a rank is a collection of banks across

multiple DRAM chips that operate in lockstep.3 Banks in different ranks are fully decou-

pled with respect to their device-level electrical operation and, consequently, offer better

bank-level parallelism than banks in the same rank. Lastly, a channel is the collection of

all banks that share a common physical link (command, address, data buses) to the pro-

cessor. While banks from the same channel experience contention at the physical link,

banks from different channels can be accessed completely independently of each other.

Although the DRAM system offers varying degrees of parallelism at different levels in its

organization, two memory requests that access the same bank must be served one after

another. To understand why, let us examine the logical organization of a DRAM bank as

seen by the memory controller.

Bank

Rank

Bank

Rank

Channel

cmd

addr

data

Channel

Processor

MemCtrl

Figure 3.2. Logical hierarchy of main memory

3.2.1. Bank: Logical Organization & Operation

Figure 3.3 presents the logical organization of a DRAM bank. A DRAM bank is a two-

dimensional array of capacitor-basedDRAMcells. It is viewed as a collection of rows, each

of which consists of multiple columns. Each bank contains a row-bufferwhich is an array

of sense-amplifiers that act as latches. Spanning a bank in the column-wise direction are

the bitlines, each of which can connect a sense-amplifier to any of the cells in the same

3A DRAM rank typically consists of eight DRAM chips, each of which has eight banks. Since the chips
operate in lockstep, the rank has only eight independent banks, each of which is the set of the ith bank across
all chips.

54

Category Row Cmd↔ Row Cmd Row Cmd↔ Col Cmd

Name tRC tRAS tRP tRCD tRTP tWR∗

Commands A�A A�P P�A A�R/W R�P W∗�P
Scope Bank Bank Bank Bank Bank Bank

Value (ns) ∼50 ∼35 13-15 13-15 ∼7.5 15

Category Col Cmd↔ Col Cmd Col Cmd � Data

Name tCCD tRTW† tWTR∗ CL CWL
Commands R(W)�R(W) R�W W∗�R R�DATA W�DATA

Scope Channel Rank Rank Bank Bank
Value (ns) 5-7.5 11-15 ∼7.5 13-15 10-15

A: ACTIVATE– P: PRECHARGE– R: READ–W: WRITE
∗ Goes into effect after the last write data, not from the WRITE command

† Not explicitly specified by the DDR3 standard [64]. Defined as a function of other timing constraints.

Table 3.1. Summary of DDR3-SDRAM timing constraints [64]

column. Awordline (one for each row) determines whether or not the corresponding row

of cells is connected to the bitlines.

r
o
w
-d
e
c
o
d
e
r

b
it
li
n
e

cell

row-buffer

r
o
w
-a
d
d
r

row

wordline

sense-amplifier

Figure 3.3. DRAM Bank: Logical organization

To serve a memory request that accesses data at a particular row and column address,

the memory controller issues three commands to a bank in the order listed below. Each

command triggers a specific sequence of events within the bank.

1. ACTIVATE: read the entire row into the row-buffer

2. READ/WRITE: access the column from the row-buffer

3. PRECHARGE: de-activate the row-buffer

55

0

V
D
D
/2

?

Precharged

wordline

b
it

li
n

e

Q

V
D
D
/2

?

0

V
D
D
/2
+
δ

?

?

V
D
D
/2
‒
δ

?

?

tRCD≈15ns

❶ 0
.9

V
D
D

0
.1

V
D
D

READ/WRITE Allowed

❷

1 0

V
D
D

0

1 0

❸

0
Q 0

V
D
D
/2

V
D
D
/2

? ?

VPP VPP VPP
? ? Q 0

PRECHARGEACTIVATE

Activating (tRAS≈35ns) Precharging

tRP≈15ns

READ READ

❹ ❺

(s
ta
b
le
)

(s
ta
b
le
)

Figure 3.4. DRAM bank operation: Steps involved in serving a memory re-
quest [60] (VPP > VDD)

ACTIVATERow. Before aDRAMrowcanbe activated, the bankmust be in theprecharged

state (StateÊ, Figure 3.4). In this state, all the bitlines are maintained at a voltage-level of

1
2
VDD. Upon receiving the ACTIVATE command alongwith a row-address, the wordline cor-

responding to the row is raised to a voltage of VPP , connecting the row’s cells to the bitlines

(StateÊ�Ë). Subsequently, depending on whether a cell is charged (Q) or uncharged (0),

the bitline voltage is slightly perturbed towards VDD or 0 (StateË). The row-buffer “senses”

this perturbation and “amplifies” it in the same direction (StateË�Ì). During this period

when the bitline voltages are still in transition, the cells are left in an undefined state. Fi-

nally, once the bitline voltages stabilize, cell charges are restored to their original values

(State Í). The time taken for this entire procedure is called tRAS (≈ 35ns).

READ/WRITE Column. After an ACTIVATE, the memory controller issues a READ or a

WRITE command, alongwith a columnaddress. The timing constraint between an ACTIVATE

and a subsequent column command (READ/WRITE) is called tRCD (≈ 15ns). This reflects

the time required for the data to be latched in the row-buffer (StateÌ). If the next request

to the bank also happens to access the same row, it can be served with only a column com-

mand, since the row has already been activated. As a result, this request is served more

quickly than a request that requires a new row to be activated.

PRECHARGE Bank. To activate a new row, the memory controller must first take the

bank back to the precharged state (StateÎ). This happens in two steps. First, the wordline

corresponding to the currently activated row is lowered to zero voltage, disconnecting the

cells from the bitlines. Second, the bitlines are driven to a voltage of 1
2
VDD. The time taken

56

for this operation is called tRP (≈ 15ns).

3.2.2. Timing Constraints

As described above, different DRAM commands have different latencies. Undefined

behaviormay arise if a command is issued before the previous command is fully processed.

To prevent such occurrences, the memory controller must obey a set of timing constraints

while issuing commands to a bank. These constraints define when a command becomes

ready to be scheduled, depending on all other commands issued before it to the same chan-

nel, rank, or bank. Table 3.1 summarizes the most important timing constraints between

ACTIVATE (A), PRECHARGE (P), READ (R), and WRITE (W) commands. Among these, two tim-

ing constraints (highlighted in bold) are the critical bottlenecks for bank conflicts: tRC

and tWR.

tRC.Successive ACTIVATEs to the samebank are limited by tRC (row-cycle time), which

is the sum of tRAS and tRP [60]. In the worst case, when N requests all access different

rows within the same bank, the bank must activate a new row and precharge it for each

request. Consequently, the last request experiences a DRAM latency ofN · tRC, which can

be hundreds or thousands of nanoseconds.

tWR. After issuing a WRITE to a bank, the bank needs additional time, called tWR

(write-recovery latency), while its row-buffer drives the bitlines to their new voltages. A

bank cannot be precharged before then – otherwise, the newdatamay not have been safely

stored in the cells. Essentially, after a WRITE, the bank takes longer to reach State Í (Fig-

ure 3.4), thereby delaying the next request to the same bank even longer than tRC.

3.2.3. Subarrays: Physical Organization of Banks

Althoughwe have described a DRAMbank as amonolithic array of rows equippedwith

a single row-buffer, implementing a large bank (e.g., 32k rows and8k cells-per-row) in this

manner requires long bitlines. Due to their large parasitic capacitance, long bitlines have

57

two disadvantages. First, they make it difficult for a DRAM cell to cause the necessary

perturbation required for reliable sensing [80]. Second, a sense-amplifier takes longer to

drive a long bitline to a target voltage-level, thereby increasing the latency of activation

and precharging.

To avoid the disadvantages of long bitlines, as well as long wordlines, a DRAM bank

is divided into a two-dimensional array of tiles [60, 80, 157], as shown in Figure 3.5a.

A tile comprises (i) a cell-array, whose typical dimensions are 512 cells×512 cells [157],

(ii) sense-amplifiers, and (iii) wordline-drivers that strengthen the signals on the global

wordlines before relaying them to the local wordlines.

All tiles in the horizontal direction – a “row of tiles” – share the same set of global

wordlines, as shown in Figure 3.5b. Therefore, these tiles are activated and precharged in

lockstep. We abstract such a “row of tiles” as a single entity that we refer to as a subarray.4

More specifically, a subarray is a collection of cells that share a local row-buffer (all sense-

amplifiers in the horizontal direction) and a subarray row-decoder [60].

As shown in Figure 3.6, all subarray row-decoders in a bank are driven by the shared

global row-address latch [60]. The latch holds a partially pre-decoded row-address (from

the global row-decoder) that is routed by the global address-bus to all subarray row-

decoders, where the remainder of the decoding is performed. A partially pre-decoded

row-address allows subarray row-decoders to remain small and simple without incurring

the large global routing overhead of a fully pre-decoded row-address [60]. All subarrays

in a bank also share a global row-buffer [60, 82, 111] that can be connected to any one of

the local row-buffers through a set of global bitlines [60]. The purpose of the global row-

buffer is to sense the perturbations caused by the local row-buffer on the global bitlines

and to amplify the perturbations before relaying them to the I/O drivers. Without a global

row-buffer, the local row-buffers will take a long time to drive their values on the global

4We use the term subarray to refer to a single “row of tiles” (alternatively, a block [93]). Others have used
the term subarray to refer to (i) an individual tile [152, 157], (ii) a single “row of tiles” [164], or (iii)multiple
“rows of tiles” [111].

58

cell-array

sense-amplifiers

w
o

r
d

li
n

e

d
r
iv

e
r
s

Tile

Bank Tile

Row of Tiles

local wordline

lo
c
a
l

b
it

li
n

e

global wordline

512 cells

5
1

2
 c

e
ll
s

8k cells

3
2

k
 c

e
ll
s

(a) A DRAM bank is divided into tiles

global wordlines

Row of Tiles = Subarraysubarray
row-decoder

local row-buffer

512512 512512

(b) Subarray: A row of tiles that operate in lockstep.

Figure 3.5. A DRAM bank consists of tiles and subarrays

bitlines, thereby significantly increasing the access latency.5

Although all subarrays within a bank share some global structures (e.g., the global row-

address latch and the global bitlines), some DRAM operations are completely local to a

subarray or use the global structures minimally. For example, precharging is completely

local to a subarray and does not use any of the shared structures, whereas activation uses

only the global row-address latch to drive the corresponding wordline.

Unfortunately, existing DRAMs cannot fully exploit the independence between differ-

ent subarrays for two main reasons. First, only one row can be activated (i.e., only one

wordline can be raised) within each bank at a time. This is because the global row-address

latch, which determines which wordline within the bank is raised, is shared by all subar-

rays. Second, although each subarray has its own local row-buffer, only one subarray can

be activated at a time. This is because all local row-buffers are connected to the global

5Better known asmain [60] or I/O [82, 111] sense-amplifiers, the global row-buffer lies between the local
row-buffers and the I/O driver. It is narrower than a local row-buffer; column-selection logic (not shown in
Figure 3.6) multiplexes the wide outputs of the local row-buffer onto the global row-buffer.

59

latch

Subarray
(id: 0)

=
0
?

global row-buffer

global bitlines

Subarray
(id: 1)

=
1
?

global
row-dec.

subarray
row-addr

subarray
id

r
o
w
-a
d
d
r

global addr-bus

global
wordlines

subarray
row-dec.

subarray
row-dec.

global
row-addr

latch

Figure 3.6. DRAM Bank: Physical organization

row-buffer by a single set of global bitlines. If multiple subarrays were allowed to be acti-

vated6 at the same time when a column command is issued, all of their row-buffers would

attempt to drive the global bitlines, leading to a short-circuit.

Our goal in this chapter is to reduce the performance impact of bank conflicts by ex-

ploiting the existence of subarrays to enable their parallel access and to allow multiple

activated local row-buffers within a bank, using low cost mechanisms.

3.3. Motivation

To understand the benefits of exploiting the subarray-organization of DRAM banks,

let us consider the two examples shown in Figure 3.7. The first example (top) presents the

timeline of four memory requests being served at the same bank in a subarray-oblivious

baseline.7 The first two requests are write requests to two rows in different subarrays.

The next two requests are read requests to the same two rows, respectively. This example

highlights three key problems in the operation of the baseline system. First, successive

6We use the phrases “subarray is activated (precharged)” and “row-buffer is activated (precharged)” in-
terchangeably as they denote the same phenomenon.

7This timeline (as well as other timelines we will show) is for illustration purposes and does not incorpo-
rate all DRAM timing constraints.

60

ACT W PRERow0@ Subarray0 timetWR

timeACT W PRE

ACT R PRE

ACT R PREtWRRow1024@ Subarray1

Serialization❶

Write Recovery❷

Same-bank
Timeline
(Baseline)

ACT W PRERow0@Bank0 time

timeRow1024@Bank1

Diff-bank
Timeline
(“Ideal”) ACT W

R

R PRE

saved

Bank0

No Serialization❶

No Write Recovery❷

❸ Extra ACTs

❸ No Extra ACTs

Figure 3.7. Service timeline of four requests to two different rows. The rows are in the
same bank (top) or in different banks (bottom).

ACT WRow0@ Subarray0 time

timeRow1024@ Subarray1

SALP-1

Timeline
saved

PREtWR

ACT W PREtWR

ACT R PRE

ACT R PRE

Bank0

ACT WRow0@ Subarray0 time

timeRow1024@ Subarray1

SALP-2

Timeline
saved

PREtWR

ACT W PREtWR

ACT R PRE

ACT R PRE

Bank0

Row0@ Subarray0 time

timeRow1024@ Subarray1

MASA

Timeline
saved

Bank0

WACT

WACT

R

R

PRE

PRE

Overlapped latency

ACT-before-PRE

Two subarrays activated

SA_SEL
Multiple subarrays activated

Figure 3.8. Service timeline of four requests to two different rows. The rows are in the
same bank, but in different subarrays.

requests are completely serialized. This is in spite of the fact that they are to different

subarrays and could potentially have been partially parallelized. Second, requests that

immediately follow a WRITE incur the additional write-recovery latency (Section 3.2.2).

Although this constraint is completely local to a subarray, it delays a subsequent request

even to a different subarray. Third, both rows are activated twice, once for each of their

two requests. After serving a request from a row, the memory controller is forced to de-

activate the row since the subsequent request is to a different row within the same bank.

This significantly increases the overall service time of the four requests.

The second example (bottom) in Figure 3.7 presents the timeline of serving the four

requests when the two rows belong to different banks, instead of to different subarrays

61

within the same bank. In this case, the overall service time is significantly reduced due

to three reasons. First, rows in different banks can be activated in parallel, overlapping a

large portion of their access latencies. Second, the write-recovery latency is local to a bank

and hence, does not delay a subsequent request to another bank. In our example, since

consecutive requests to the same bank access the same row, they are also not delayed by

the write-recovery latency. Third, since the row-buffers of the two banks are completely

independent, requests do not evict each other’s rows from the row-buffers. This eliminates

the need for extra ACTIVATEs for the last two requests, further reducing the overall service

time. However, as we described in Section 3.1, increasing the number of banks in the

system significantly increases the system cost.

In this chapter, we contend that most of the performance benefits of having multiple

banks can be achieved at a significantly lower cost by exploiting the potential parallelism

offered by subarrays within a bank. To this end, we propose threemechanisms that exploit

the existence of subarrays with little or no change to the existing DRAM designs.

3.4. Overview of Proposed Mechanisms

We call our three proposed schemes SALP-1, SALP-2 and MASA. As shown in Fig-

ure 3.8, each scheme is a successive refinement over the preceding scheme such that the

performance benefits of themost sophisticated scheme,MASA, subsumes those of SALP-1

and SALP-2. We explain the key ideas of each scheme below.

3.4.1. SALP-1: Subarray-Level-Parallelism-1

The key observation behind SALP-1 is that precharging and activation are mostly local

to a subarray. SALP-1 exploits this observation to overlap the precharging of one subar-

ray with the activation of another subarray. In contrast, existing systems always serialize

precharging and activation to the same bank, conservatively provisioning for when they

are to the same subarray. SALP-1 requires no modifications to existing DRAM structure.

62

It only requires reinterpretation of an existing timing constraint (tRP) and, potentially, the

addition of a new timing constraint (explained in Section 3.5.1). Figure 3.8 (top) shows

the performance benefit of SALP-1.

3.4.2. SALP-2: Subarray-Level-Parallelism-2

While SALP-1 pipelines the precharging and activation of different subarrays, the rela-

tive ordering between the two commands is still preserved. This is because existingDRAM

banks do not allow two subarrays to be activated at the same time. As a result, the write-

recovery latency (Section 3.2.2) of an activated subarray not only delays a PRECHARGE to it-

self, but also delays a subsequent ACTIVATE to another subarray. Based on the observation

that the write-recovery latency is also local to a subarray, SALP-2 (our secondmechanism)

issues the ACTIVATE to another subarray before the PRECHARGE to the currently activated

subarray. As a result, SALP-2 can overlap the write-recovery of the currently activated

subarray with the activation of another subarray, further reducing the service time com-

pared to SALP-1 (Figure 3.8, middle).

However, as highlighted in the figure, SALP-2 requires two subarrays to remain acti-

vated at the same time. This is not possible in existing DRAM banks as the global row-

address latch, which determines the wordline in the bank that is raised, is shared by all

the subarrays. In Section 3.5.2, we will show how to enable SALP-2 by eliminating this

sharing.

3.4.3. MASA: Multitude of Activated Subarrays

Although SALP-2 allows two subarrays within a bank to be activated, it requires the

controller to precharge one of them before issuing a column command (e.g., READ) to the

bank. This is because when a bank receives a column command, all activated subarrays

in the bank will connect their local row-buffers to the global bitlines. If more than one

subarray is activated, this will result in a short circuit. As a result, SALP-2 cannot allow

63

multiple subarrays to concurrently remain activated and serve column commands.

The key idea of MASA (our third mechanism) is to allow multiple subarrays to be ac-

tivated at the same time, while allowing the memory controller to designate exactly one

of the activated subarrays to drive the global bitlines during the next column command.

MASA has two advantages over SALP-2. First, MASA overlaps the activation of different

subarrays within a bank. Just before issuing a column command to any of the activated

subarrays, the memory controller designates one particular subarray whose row-buffer

should serve the column command. Second, MASA eliminates extra ACTIVATEs to the

same row, thereby mitigating row-buffer thrashing. This is because the local row-buffers

of multiple subarrays can remain activated at the same time without experiencing colli-

sions on the global bitlines. As a result, MASA further improves performance compared

to SALP-2 (Figure 3.8, bottom).

As indicated in the figure, to designate one of the multiple activated subarrays, the

controller needs a new command, SA_SEL (subarray-select). In addition to the changes

required by SALP-2, MASA requires a single-bit latch per subarray to denote whether a

subarray is designated or not (Section 3.5.3).

3.5. Implementation

Our three proposed mechanisms assume that the memory controller is aware of the

existence of subarrays (to be described in Section 3.5.4) and can determinewhich subarray

a particular request accesses. All three mechanisms require reinterpretation of existing

DRAM timing constraints or addition of new ones. SALP-2 and MASA also require small,

non-intrusive modifications to the DRAM chip. In this section, we describe the changes

required by each mechanism in detail.

64

3.5.1. SALP-1: Relaxing tRP

As previously described, SALP-1 overlaps the precharging of one subarray with the

subsequent activation of another subarray. However, by doing so, SALP-1 violates the

timing constraint tRP (row-precharge time) imposed between consecutive PRECHARGE and

ACTIVATE commands to the same bank. The reasonwhy tRP exists is to ensure that a previ-

ously activated subarray (Subarray X in Figure 3.9) has fully reached the precharged state

before it can again be activated. Existing DRAM banks provide that guarantee by conser-

vatively delaying an ACTIVATE to any subarray, even to a subarray that is not the one being

precharged. But, for a subarray that is already in the precharged state (Subarray Y in Fig-

ure 3.9), it is safe to activate it while another subarray is being precharged. So, as long as

consecutive PRECHARGE and ACTIVATE commands are to different subarrays, the ACTIVATE

can be issued before tRP has been satisfied.8

Subarray X timeActivated Precharging Precharged

timeActivating Activated

tRP

PRE@X (wordline lowered)

Precharged

ACT@Y (wordline raised)

Subarray Y

Figure 3.9. Relaxing tRP between two different subarrays.

Limitation of SALP-1. SALP-1 cannot overlap the write-recovery of one subarray

with the activation of another subarray. This is because both write-recovery and activa-

tion require their corresponding wordline to remain raised for the entire duration of the

corresponding operation. However, in existingDRAMbanks, the global row-address latch

determines the unique wordline within the bank that is raised (Section 3.2.3). Since this

latch is shared across all subarrays, it is not possible to have two raised wordlines within

a bank, even if they are in different subarrays. SALP-2 addresses this issue by adding

8We assume that it is valid to issue the two commands in consecutive DRAM cycles. Depending on
vendor-specific microarchitecture, an additional precharge-to-activate timing constraint tPA (< tRP) may
be required.

65

row-address latches to each subarray.

3.5.2. SALP-2: Per-Subarray Row-Address Latches

The goal of SALP-2 is to further improve performance compared to SALP-1 by over-

lapping the write-recovery latency of one subarray with the activation of another subar-

ray. For this purpose, we propose two changes to the DRAM chip: (i) latched subarray

row-decoding and (ii) selective precharging.

LatchedSubarrayRow-Decoding. Thekey idea of latched subarray row-decoding

(LSRD) is to push the global row-address latch to individual subarrays such that each sub-

array has its own row-address latch, as shown in Figure 3.10. When an ACTIVATE is issued

to a subarray, the subarray row-address is stored in the latch. This latch feeds the subarray

row-decoder, which in turn drives the corresponding wordline within the subarray. Fig-

ure 3.11 shows the timeline of subarray activation with and without LSRD.Without LSRD,

the global row-address bus is utilized by the subarray until it is precharged. This pre-

vents the controller from activating another subarray. In contrast, with LSRD, the global

address-bus is utilized only until the row-address is stored in the corresponding subarray’s

latch. From that point on, the latch drives the wordline, freeing the global address-bus to

be used by another subarray.

EN

subarray
row-addr

=
id
?

global
addr-bus

su
b
a
rr
a
y

ro
w
-d
e
c.

subarray
id

global
row-dec.

global
latch

=
id
?

su
b
a
rr
a
y

ro
w
-d
e
c.

EN

(a) Global row-address latch

EN

subarray
row-addr

=
id
?

global
addr-bus

subarray
id

global
row-dec.

=
id
?

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b
a
rr
a
y

la
tc
h

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b
a
rr
a
y

la
tc
h

EN

(b) Per-subarray row-address latch

Figure 3.10. SALP-2: Latched Subarray Row-Decoding

66

utilized

ACT

subarray
id

INV

subarray
row-addr

0x1 INV

PRE

INV 0x20 INV

wordline@
row 0x20 0

VDD

global
addr-bus

(a) Baseline: global row-address latch & global precharging

ACT

subarray
id

INV

subarray
row-addr

0x1 INV

PRE

wordline@
row 0x20

INV INV

0x1

INV 0x20 INV

latch@
subarray 0x1

0

VDD

utilized

(latched)0x20

(selective)
global

addr-bus

(b) SALP-2: Subarray row-address latch & selective precharging

Figure 3.11. Activating/precharging wordline-0x20 of subarray-0x1.

Selective Precharging. Since existing DRAMs do not allow a bank to have more

than one raised wordline, a PRECHARGE is designed to lower all wordlines within a bank to

zero voltage. In fact, the memory controller does not even specify a row address when it

issues a PRECHARGE. A bank lowers all wordlines by broadcasting an INV (invalid) value

on the global row-address bus.9 However, when there are two activated subarrays (each

with a raised wordline) SALP-2 needs to be able to selectively precharge only one of the

subarrays. To achieve this, we require that PRECHARGEs be issued with the corresponding

subarray ID. When a bank receives a PRECHARGE to a subarray, it places the subarray ID

and INV (for the subarray row-address) on the global row-address bus. This ensures

that only that specific subarray is precharged. Selective precharging requires the memory

controller to remember the ID of the subarray to be precharged. This requires modest

storage overhead at the memory controller – one subarray ID per bank.

Timing Constraints. Although SALP-2 allows two activated subarrays, no column

command can be issued during that time. This is because a column command electrically

9When each subarray receives the INV values for both subarray ID and subarray row-address, it lowers
all its wordlines and precharges all its bitlines.

67

connects the row-buffers of all activated subarrays to the global bitlines – leading to a

short-circuit between the row-buffers. To avoid such hazards on the global bitlines, SALP-

2must wait for a column command to be processed before it can activate another subarray

in the same bank. Hence, we introduce two new timing constraints for SALP-2: tRA (read-

to-activate) and tWA (write-to-activate).

Limitation of SALP-2. As described above, SALP-2 requires a bank to have exactly

one activated subarray when a column command is received. Therefore, SALP-2 cannot

address the row-buffer thrashing problem.

3.5.3. MASA: Designating an Activated Subarray

The key idea behind MASA is to allow multiple activated subarrays, but to ensure that

only a single subarray’s row-buffer is connected to the global bitlines on a column com-

mand. To achieve this, we propose the following changes to the DRAMmicroarchitecture

in addition to those required by SALP-2: (i) addition of a designated-bit latch to each sub-

array, (ii) introduction of a newDRAM command, SA_SEL (subarray-select), and (iii) rout-

ing of a new global wire (subarray-select).

Designated-Bit Latch. In SALP-2 (and existing DRAM), an activated subarray’s lo-

cal sense-amplifiers are connected to the global bitlines on a column command. The con-

nection between each sense-amplifier and the corresponding global bitline is established

when an access transistor, Ê in Figure 3.12a, is switched on. All such access transistors

(one for each sense-amplifier) within a subarray are controlled by the same 1-bit signal,

called activated (A in figure), that is raised only when the subarray has a raised word-

line.10 As a result, it is not possible for a subarray to be activated while at the same time

be disconnected from the global bitlines on a column command.

To enable MASA, we propose to decouple the control of the access transistor from the

wordlines, as shown in Figure 3.12b. To this end, we propose a separate 1-bit signal, called

10The activated signal can be abstracted as a logical OR across all wordlines in the subarray, as shown in
Figure 3.12a. The exact implementation of the signal is microarchitecture-specific.

68

designated (D in figure), to control the transistor independently of the wordlines. This

signal is driven by a designated-bit latch, which must be set by the memory controller in

order to enable a subarray’s row-buffer to be connected to the global bitlines. To access

data from one particular activated subarray, the memory controller sets the designated-

bit latch of the subarray and clears the designated-bit latch of all other subarrays. As a

result, MASA allows multiple subarrays to be activated within a bank while ensuring that

one subarray (the designated one) can at the same time serve column commands. Note

that MASA still requires the activated signal to control the precharge transistors Ë that

determine whether or not the row-buffer is in the precharged state (i.e., connecting the

local bitlines to 1
2
VDD).

EN

su
b

a
rr

a
y

 r
o

w
-a

d
d

r

=
id

?
la

tc
h

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b

a
rr

a
y

 i
d

co
l-

se
l local

sense-amp

VDD/2

local bitline

global bitline

A

A

❶
❷

(a) SALP-2: Activated subarray is connected to global bitlines

EN

su
b

a
rr

a
y

 r
o

w
-a

d
d

r

=
id

?
la

tc
h

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b

a
rr

a
y

 i
d

co
l-

se
l local

sense-amp

local bitline

D

su
b
a
rr
a
y
-s
e
l

EN
global bitline

A

D

❶
❷

VDD/2

(b)MASA:Designated subarray is connected to global bitlines

Figure 3.12. MASA: Designated-bit latch and subarray-select signal

Subarray-Select Command. To allow the memory controller to selectively set and

clear the designated-bit of any subarray,MASA requires a newDRAMcommand, whichwe

call SA_SEL (subarray-select). To set the designated-bit of a particular subarray, the con-

troller issues a SA_SEL along with the row-address that corresponds to the raised wordline

69

within the subarray. Upon receiving this command, the bank sets the designated-bit for

only the subarray and clears the designated-bits of all other subarrays. After this opera-

tion, all subsequent column commands are served by the designated subarray.

To update the designated-bit latch of each subarray, MASA requires a new global con-

trol signal that acts as a strobe for the latch. We call this signal subarray-select. When

a bank receives the SA_SEL command, it places the corresponding subarray ID and sub-

array row-address on the global address-bus and briefly raises the subarray-select sig-

nal. At this point, the subarray whose ID matches the ID on the global address-bus will

set its designated-bit, while all other subarrays will clear their designated-bit. Note that

ACTIVATE also sets the designated-bit for the subarray it activates, as it expects the subar-

ray to serve all subsequent column commands. In fact, from the memory controller’s per-

spective, SA_SEL is the same as ACTIVATE, except that for SA_SEL, the supplied row-address

corresponds to a wordline that is already raised.

Timing Constraints. Since designated-bits determine which activated subarray will

serve a column command, they should not be updated (by ACTIVATE/SA_SEL) while a col-

umn command is in progress. For this purpose, we introduce two timing constraints called

tRA (read-to-activate/select) and tWA (write-to-activate/select). These are the same tim-

ing constraints introduced by SALP-2.

Additional Storage at the Controller. To support MASA, the memory controller

must track the status of all subarrays within each bank. A subarray’s status represents (i)

whether the subarray is activated, (ii) if so, which wordline within the subarray is raised,

and (iii) whether the subarray is designated to serve column commands. For the system

configurations we evaluate (Section 3.8), maintaining this information incurs a storage

overhead of less than 256 bytes at the memory controller.

While MASA overlaps multiple ACTIVATEs to the same bank, it must still obey timing

constraints such as tFAW and tRRD that limit the rate at which ACTIVATEs are issued to

the entire DRAM chip. We evaluate the power and area overhead of our three proposed

70

mechanisms in Section 3.6.

3.5.4. Exposing Subarrays to the Memory Controller

For the memory controller to employ our proposed schemes, it requires the following

three pieces of information: (i) the number of subarrays per bank, (ii)whether the DRAM

supports SALP-1, SALP-2 and/orMASA, and (iii) the values for the timing constraints tRA

and tWA. Since these parameters are heavily dependent on vendor-specificmicroarchitec-

ture and process technology, they may be difficult to standardize. Therefore, we describe

an alternate way of exposing these parameters to the memory controller.

Serial Presence Detect. Multiple DRAM chips are assembled together on a circuit

board to form a DRAM module. On every DRAM module lies a separate 256-byte EEP-

ROM, called the serial presence detect (SPD), which contains information about both the

chips and the module, such as timing, capacity, organization, etc. [66]. At system boot

time, the SPD is read by the BIOS, so that the memory controller can correctly issue com-

mands to the DRAM module. In the SPD, more than a hundred extra bytes are set aside

for use by the manufacturer and the end-user [66]. This storage is more than sufficient to

store subarray-related parameters required by the controller.

Number of Subarrays per Bank. The number of subarrays within a bank is ex-

pected to increase for larger capacity DRAM chips that have more rows. However, certain

manufacturing constraints may prevent all subarrays from being accessed in parallel. To

increase DRAM yield, every subarray is provisioned with a few spare rows that can replace

faulty rows [60, 80]. If a faulty row in one subarray is mapped to a spare row in another

subarray, then the two subarrays can no longer be accessed in parallel. To strike a trade-

off between high yield and the number of subarrays that can be accessed in parallel, spare

rows in each subarray can be restricted to replace faulty rows only within a subset of the

other subarrays. With this guarantee, the memory controller can still apply our mecha-

nisms to different subarray groups. In our evaluations (Section 3.9.2), we show that just

71

having 8 subarray groups can provide significant performance improvements. From now

on, we refer to an independently accessible subarray group as a “subarray.”

3.6. Power & Area Overhead

Of our three proposed schemes, SALP-1 does not incur any additional area or power

overhead since it does not make any modifications to the DRAM structure. On the other

hand, SALP-2 and MASA require subarray row-address latches that minimally increase

area and power. MASA also consumes additional static power due to multiple activated

subarrays and additional dynamic power due to extra SA_SEL commands. We analyze

these overheads in this section.

3.6.1. Additional Latches

SALP-2 and MASA add a subarray row-address latch to each subarray. While MASA

also requires an additional single-bit latch for the designated-bit, its area and power over-

heads are insignificant compared to the subarray row-address latches. In most of our

evaluations, we assume 8 subarrays-per-bank and 8 banks-per-chip. As a result, a chip

requires a total of 64 row-address latches, where each latch stores the 40-bit partially pre-

decoded row-address.11 Scaling the area from a previously proposed latch design [90] to

55nm process technology, each row-address latch occupies an area of 42.9µm2. Overall,

this amounts to a 0.15% area overhead compared to a 2Gb DRAM chip fabricated using

55nm technology (die area = 73mm2 [128]). Similarly, normalizing the latch power con-

sumption to 55nm technology and 1.5V operating voltage, a 40-bit latch consumes 72.2µW

additional power for each ACTIVATE. This is negligible compared to the activation power,

51.2mW (calculated using DRAMmodels [104, 128, 157]).

11A 2Gb DRAM chip with 32k rows has a 15-bit row-address. We assume 3:8 pre-decoding, which yields
a 40-bit partially pre-decoded row-address.

72

3.6.2. Multiple Activated Subarrays

To estimate the additional static power consumption of multiple activated subarrays,

we compute the difference in the maximum current between the cases when all banks are

activated (IDD3N , 35mA) and when no bank is activated (IDD2N , 32mA) [107]. For a DDR3

chip which has 8 banks and operates at 1.5V, each activated local row-buffer consumes at

most 0.56mW additional static power in the steady state. This is small compared to the

baseline static power of 48mW per DRAM chip.

3.6.3. Additional SA_SEL Commands

To switch between multiple activated subarrays, MASA issues additional SA_SEL com-

mands. Although SA_SEL is the same as ACTIVATE from the memory controller’s perspec-

tive (Section 3.5.3), internally, SA_SEL does not involve the subarray core, i.e., a subarray’s

cells. Therefore, we estimate the dynamic power of SA_SEL by subtracting the subarray

core’s power from the dynamic power of ACTIVATE, where the subarray core’s power is the

sum of the wordline and row-buffer power during activation [128]. Based on our analysis

usingDRAMmodeling tools [104, 128, 157], we estimate the power consumption of SA_SEL

to be 49.6% of ACTIVATE. MASA also requires a global subarray-select wire in the DRAM

chip. However, compared to the large amount of global routing that is already present

within a bank (40 bits of partially pre-decoded row-address and 1024 bits of fully decoded

column-address), the overhead of one additional wire is negligible.

3.6.4. Comparison to Expensive Alternatives

As a comparison, we present the overhead incurred by two alternative approaches that

can mitigate bank conflicts: (i) increasing the number of DRAM banks and (ii) adding an

SRAM cache inside the DRAM chip.

MoreBanks. To addmore banks, per-bank circuit components such as the global de-

coders and I/O-sense amplifiersmust be replicated [60]. This leads to significant increase

73

Processor 1-16 cores, 5.3GHz, 3-wide issue, 8 MSHRs, 128-entry instruction window

Last-Level Cache 64B cache-line, 16-way associative, 512kB private cache-slice per core

Memory
Controller

64/64-entry read/write request queues per controller,
FR-FCFS scheduler [130, 172], writes are scheduled in batches [27, 94, 142]

Memory
Timing: DDR3-1066 (8-8-8) [107], tRA (4tCK), tWA (14tCK)
Organization (default in bold): 1-8 channels, 1-8 ranks-per-channel,
8-64 banks-per-rank, 1-8-128 subarrays-per-bank

Table 3.2. Configuration of simulated system

in DRAM chip area. Using the DRAM area model from Rambus [128, 157], we estimate

that increasing the number of banks from 8 to 16, 32, and 64, increases the chip area by

5.2%, 15.5%, and 36.3%, respectively. Larger chips also consume more static power.

Additional SRAM Cache. Adding a separate SRAM cache within the DRAM chip

(such “CachedDRAM”proposals are discussed in Section 3.7), can achieve similar benefits

as utilizingmultiple row-buffers across subarrays. However, this increases theDRAMchip

area and, consequently, its static power consumption. We calculate the chip area penalty

for adding SRAM caches using CACTI-D [149]. An SRAM cache that has a size of 8 Kbits

(same as a row-buffer), 64 Kbits, and 512 Kbits increases DRAM chip area by 0.6%, 5.0%,

and 38.8%, respectively. These figures do not include the additional routing logic that is

required between the I/O sense-amplifiers and the SRAM cache.

3.7. RelatedWork

In this chapter, we propose three schemes that exploit the existence of subarrayswithin

DRAM banks to mitigate the negative effects of bank conflicts. Prior works proposed in-

creasing the performance and energy-efficiency of DRAM through approaches such as

DRAMmodule reorganization, changes to DRAM chip design, andmemory controller op-

timizations.

DRAMModuleReorganization. ThreadedMemoryModule [158],MulticoreDIMM[5],

and Mini-Rank [171] are all techniques that partition a DRAM rank (and the DRAM data-

74

bus) into multiple rank-subsets [4], each of which can be operated independently. Al-

though partitioning a DRAM rank into smaller rank-subsets increases parallelism, it nar-

rows the data-bus of each rank-subset, incurring longer latencies to transfer a 64 byte

cache-line. Fore example, having 8 mini-ranks increases the data-transfer latency by 8

times (to 60 ns, assuming DDR3-1066) for all memory accesses. In contrast, our schemes

increase parallelism without increasing latency. Furthermore, having many rank-subsets

requires a correspondingly large number of DRAM chips to compose a DRAM rank, an

assumption that does not hold in mobile DRAM systems where a rank may consist of as

few as two chips [106]. However, since the parallelism exposed by rank-subsetting is or-

thogonal to our schemes, rank-subsetting can be combined with our schemes to further

improve performance.

Changes to DRAM Design. Cached DRAM organizations, which have been widely

proposed [34, 44, 46, 49, 79, 121, 135, 159, 170] augment DRAM chips with an additional

SRAM cache that can store recently accessed data. Although such organizations reduce

memory access latency in amanner similar toMASA, they come at increased chip area and

design complexity (as Section 3.6.4 showed). Furthermore, cached DRAM only provides

parallelismwhen accesses hit in the SRAMcache, while serializing cachemisses that access

the same DRAM bank. In contrast, our schemes parallelize DRAM bank accesses while

incurring significantly lower area and logic complexity.

Since a large portion of the DRAM latency is spent driving the local bitlines [109], Fu-

jitsu’s FCRAM and Micron’s RLDRAM proposed to implement shorter local bitlines (i.e.,

fewer cells per bitline) that are quickly drivable due to their lower capacitances. How-

ever, this significantly increases the DRAM die size (30-40% for FCRAM [136], 40-80%

for RLDRAM [80]) because the large area of sense-amplifiers is amortized over a smaller

number of cells.

A patent by Qimonda [125] proposed the high-level notion of separately addressable

sub-banks, but it lacks concretemechanisms for exploiting the independence between sub-

75

banks. In the context of embedded DRAM, Yamauchi et al. proposed the Hierarchical

Multi-Bank (HMB) [164] that parallelizes accesses to different subarrays in a fine-grained

manner. However, their scheme adds complex logic to all subarrays. For example, each

subarray requires a timer that automatically precharges a subarray after an access. As a

result, HMB cannot take advantage of multiple row-buffers.

Although only a small fraction of the row is needed to serve amemory request, a DRAM

bank wastes power by always activating an entire row. To mitigate this “overfetch” prob-

lem and save power, Udipi et al. [152] proposed two techniques (SBA and SSA).12 In SBA,

global wordlines are segmented and controlled separately so that tiles in the horizontal

direction are not activated in lockstep, but selectively. However, this increases DRAM

chip area by 12-100% [152]. SSA combines SBA with chip-granularity rank-subsetting to

achieve even higher energy savings. But, both SBA and SSA increase DRAM latency, more

significantly so for SSA (due to rank-subsetting).

A DRAM chip experiences bubbles in the data-bus, called the bus-turnaround penalty

(tWTR and tRTW in Table 3.1), when transitioning from serving a write request to a read

request, and vice versa [27, 94, 142]. During the bus-turnaround penalty, Chatterjee et

al. [27] proposed to internally “prefetch” data for subsequent read requests into extra reg-

isters that are added to the DRAM chip.

An IBM patent [89] proposed latched row-decoding to activate multiple wordlines in a

DRAM bank simultaneously, in order to expedite the testing of DRAM chips by checking

for defects in multiple rows at the same time.

Memory Controller Optimizations. To reduce bank conflicts and increase row-

buffer locality, Zhang et al. proposed to randomize the bank address of memory requests

by XORhashing [169]. Sudan et al. proposed to improve row-buffer locality by placing fre-

quently referenced data together in the same row [143]. Both proposals can be combined

with our schemes to further improve parallelism and row-buffer locality.

12Udipi et al. use the term subarray to refer to an individual tile.

76

Prior works have also proposed memory scheduling algorithms (e.g., [33, 58, 85, 86,

114, 117, 118, 122]) that prioritize certain favorable requests in the memory controller to

improve system performance and/or fairness. Subarrays expose more parallelism to the

memory controller, increasing the controller’s flexibility to schedule requests.

3.8. Evaluation Methodology

We developed a cycle-accurate DDR3-SDRAM simulator that we validated against Mi-

cron’s Verilog behavioral model [108] andDRAMSim2 [131]. We use thismemory simula-

tor as part of a cycle-level in-house x86multi-core simulator, whose front-end is based on

Pin [100]. We calculateDRAMdynamic energy consumption by associating an energy cost

with each DRAM command, derived using the tools [104, 128, 157] and the methodology

as explained in Section 3.6.13

Unless otherwise specified, our default system configuration comprises a single-core

processorwith amemory subsystem that has 1 channel, 1 rank-per-channel (RPC), 8 banks-

per-rank (BPR), and 8 subarrays-per-bank (SPB). We also perform detailed sensitivity

studies where we vary the numbers of cores, channels, ranks, banks, and subarrays. More

detail on the simulated system configuration is provided in Table 3.2.

We use line-interleaving to map the physical address space onto the DRAM hierar-

chy (channels, ranks, banks, etc.). In line-interleaving, small chunks of the physical ad-

dress space (often the size of a cache-line) are striped across different banks, ranks, and

channels. Line-interleaving is utilized to maximize the amount of memory-level paral-

lelism and is employed in systems such as Intel Nehalem [55], Sandy Bridge [54], Sun

OpenSPARC T1 [144], and IBM POWER7 [139]. We use the closed-row policy in which

the memory controller precharges a bank when there are no more outstanding requests

to the activated row of that bank. The closed-row policy is often used in conjunction with

13We consider dynamic energy dissipated by only theDRAMchip itself and do not include dynamic energy
dissipated at the channel (which differs on a motherboard-by-motherboard basis).

77

line-interleaving since row-buffer locality is expected to be low. Additionally, we also show

results for row-interleaving and the open-row policy in Section 3.9.3.

We use 32 benchmarks from SPEC CPU2006, TPC [151], and STREAM [141], in addi-

tion to a random-accessmicrobenchmark similar in behavior toHPCCRandomAccess [48].

We form multi-core workloads by randomly choosing from only the benchmarks that ac-

cess memory at least once every 1000 instructions. We simulate all benchmarks for 100

million instructions. Formulti-core evaluations, we ensure that even the slowest core exe-

cutes 100million instructions, while other cores still exert pressure on thememory subsys-

tem. Tomeasure performance, we use instruction throughput for single-core systems and

weighted speedup [140] formulti-core systems. We report results that are averaged across

all 32 benchmarks for single-core evaluations and averaged across 16 different workloads

for each multi-core system configuration.

3.9. Results

3.9.1. Individual Benchmarks (Single-Core)

Figure 3.13 shows the performance improvement of SALP-1, SALP-2, and MASA on

a system with 8 subarrays-per-bank over a subarray-oblivious baseline. The figure also

shows the performance improvement of an “Ideal” schemewhich is the subarray-oblivious

baseline with 8 times asmany banks (this represents a systemwhere all subarrays are fully

independent). We draw two conclusions. First, SALP-1, SALP-2 and MASA consistently

perform better than baseline for all benchmarks. On average, they improve performance

by 6.6%, 13.4%, and 16.7%, respectively. Second, MASA captures most of the benefit of

the “Ideal,” which improves performance by 19.6% compared to baseline.

The difference in performance improvement across benchmarks can be explained by a

combination of factors related to their individualmemory access behavior. First, subarray-

level parallelism in general is most beneficial for memory-intensive benchmarks that fre-

quently accessmemory (benchmarks located towards the right of Figure 3.13). By increas-

78

0%

10%

20%

30%

40%

50%

60%

70%

80%
IP

C
 I

m
p

ro
v
e

m
e

n
t SALP-1 SALP-2 MASA "Ideal"Benchmark key:

c (SPEC CPU2006)

t (TPC)

s (STREAM)

random (random-access)

Figure 3.13. IPC improvement over the conventional subarray-oblivious baseline

ing the memory throughput for such applications, subarray-level parallelism significantly

alleviates their memory bottleneck. The averagememory-intensity of the rightmost appli-

cations (i.e., those that gain>5% performance with SALP-1) is 18.4MPKI (last-level cache

misses per kilo-instruction), compared to 1.14 MPKI of the leftmost applications.

Second, the advantage of SALP-2 is large for applications that are write-intensive. For

such applications, SALP-2 can overlap the long write-recovery latency with the activation

of a subsequent access. In Figure 3.13, the three applications (that improve more than

38% with SALP-2) are among both the most memory-intensive (>25MPKI) and the most

write-intensive (>15 WMPKI).

Third, MASA is beneficial for applications that experience frequent bank conflicts. For

such applications, MASA parallelizes accesses to different subarrays by concurrently ac-

tivating multiple subarrays (ACTIVATE) and allowing the application to switch between

the activated subarrays at low cost (SA_SEL). Therefore, the subarray-level parallelism of-

fered by MASA can be gauged by the SA_SEL-to-ACTIVATE ratio. For the nine applications

that benefit more than 30% fromMASA, on average, one SA_SEL was issued for every two

ACTIVATEs, compared to one-in-seventeen for all the other applications. For a few bench-

marks, MASA performs slightly worse than SALP-2. The baseline scheduling algorithm

used with MASA tries to overlap as many ACTIVATEs as possible and, in the process, inad-

vertently delays the column command of the most critical request which slightly degrades

performance for these benchmarks.14

14For one benchmark, MASA performs slightly better than the “Ideal” due to interactions with the sched-
uler.

79

3.9.2. Sensitivity to Number of Subarrays

Withmore subarrays, there is greater opportunity to exploit subarray-level parallelism

and, correspondingly, the improvements provided by our schemes also increase. As the

number of subarrays-per-bank is swept from 1 to 128, Figure 3.14 plots the IPC improve-

ment, average read latency,15 and memory-level parallelism16 of our three schemes (aver-

aged across 32 benchmarks) compared to the subarray-oblivious baseline.

Figure 3.14a shows that SALP-1, SALP-2, and MASA consistently improve IPC as the

number of subarrays-per-bank increases. But, the gains are diminishing because most of

the bank conflicts are parallelized for even amodest number of subarrays. Just 8 subarrays-

per-bank captures more than 80% of the IPC improvement provided by the same mecha-

nism with 128 subarrays-per-bank. The performance improvements of SALP-1, SALP-2,

and MASA are a direct result of reduced memory access latency and increased memory-

level parallelism, as shown in Figures 3.14b and 3.14c, respectively. These improvements

are two-sides of the same coin: by increasing the parallelism across subarrays, ourmecha-

nisms are able to overlap the latencies of multiple memory requests to reduce the average

memory access latency.

3.9.3. Sensitivity to System Configuration

Mapping and Row Policy. In row-interleaving, as opposed to line-interleaving,

a contiguous chunk of the physical address space is mapped to each DRAM row. Row-

interleaving is commonly used in conjunction with the open-row policy so that a row is

never eagerly closed – a row is left open in the row-buffer until another row needs to be

accessed. Figure 3.15 shows the results (averaged over 32 benchmarks) of employing our

three schemes on a row-interleaved, open-row system.

15Average memory latency for read requests, which includes: (i) queuing delay at the controller, (ii) bank
access latency, and (iii) data-transfer latency.

16The average number of requests that are being served, given that there is at least one such request. A
request is defined as being served fromwhen the first command is issued on its behalf until its data-transfer
has completed.

80

0%

5%

10%

15%

20%

25%

30%

1 2 4 8 16 32 64 128

Subarrays-per-bank
IP

C
 I

n
c
r
e

a
s
e Baseline SALP-1 SALP-2 MASA "Ideal"

(a) IPC improvement

0

20

40

60

80

100

1 2 4 8 16 32 64 128

Subarrays-per-bank

R
D

 L
a

te
n

cy
 (

n
s) Baseline SALP-1 SALP-2 MASA "Ideal"

(b) Average read latency

1

2

3

4

1 2 4 8 16 32 64 128

Subarrays-per-bank

M
e
m
o
ry

P
a
ra
ll
e
li
sm

Baseline SALP-1 SALP-2 MASA "Ideal"

(c)Memory-level parallelism

Figure 3.14. Sensitivity to number of subarrays-per-bank

As shown in Figure 3.15a, the IPC improvements of SALP-1, SALP-2, and MASA are

7.5%, 10.6%, and 12.3%, whereMASAperforms nearly as well as the “Ideal” (14.7%). How-

ever, the gains are lower than compared to a line-interleaved, closed-row system. This is

because the subarray-oblivious baseline performs better on a row-interleaved, open-row

system (due to row-buffer locality), thereby leaving less headroom for our schemes to im-

prove performance. MASA also improves DRAM energy-efficiency in a row-interleaved

system. Figure 3.15b shows that MASA decreases DRAM dynamic energy consumption

by 18.6%. Since MASA allows multiple row-buffers to remain activated, it increases the

81

row-buffer hit rate by 12.8%, as shown in Figure 3.15c. This is clear from Figure 3.15d,

which shows that 50.1% of the ACTIVATEs issued in the baseline are converted to SA_SELs

in MASA.

0%

5%

10%

15%

IP
C

 I
n

c
r
e

a
s
e

Baseline

SALP-1

SALP-2

MASA

"Ideal"

(a) IPC improvement

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

li
ze

d

D
y

n
.

E
n

e
rg

y
 Baseline

SALP-1

SALP-2

MASA

(b) Dynamic DRAM energy

0.0

0.2

0.4

0.6

0.8

1.0

R
o

w
-B

u
ff

e
r

H
it

 R
a

te

Baseline

SALP-1

SALP-2

MASA

(c) Row-buffer hit rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
r
m
a
li
z
e
d

A
C
T
IV
A
T
E
s

Baseline

SALP-1

SALP-2

MASA

(d) Number of issued ACTIVATEs

Figure 3.15. Row-interleaving and open-row policy.

Number of Channels, Ranks, Banks. Even for highly provisioned systems with

unrealistically large numbers of channels, ranks, and banks, exploiting subarray-level par-

allelism improves performance significantly, as shown in Figure 3.16. This is because even

such systems cannot completely remove all bank conflicts due to the well-known birthday

paradox: even if there were 365 banks (very difficult to implement), with just 23 concur-

rent memory requests, the probability of a bank conflict between any two requests is more

than 50% (for 64 banks, only 10 requests are required). Therefore, exploiting subarray-

level parallelism still provides performance benefits. For example, while an 8-channel

baseline system provides more than enough memory bandwidth (<4% data-bus utiliza-

tion), MASA reduces access latency by parallelizing bank conflicts, and improves perfor-

mance by 8.6% over the baseline.

Asmore ranks/banks are added to the same channel, increased contention on the data-

82

bus is likely to be the performance limiter. That is why addingmore ranks/banks does not

provide as large benefits as adding more channels (Figure 3.16).17 Ideally, for the high-

est performance, one would increase the numbers of all three: channels/ranks/banks.

However, as explained in Section 3.1, adding more channels is very expensive, whereas

the number of ranks-/banks-per-channel is limited to a low number in modern high-

frequencyDRAMsystems. Therefore, exploiting subarray-level parallelism is a cost-effective

way of achieving the performance of many ranks/banks and, as a result, extracting the

most performance from a given number of channels.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1 2 4 8 1 2 4 8 8 16 32 64

channels ranks-per-chan banks-per-rank

N
o

r
m

a
li

z
e

d
 I

P
C Baseline SALP-1 SALP-2 MASA

Figure 3.16. Memory configuration sweep (line-interleaved, closed-row). IPC normal-
ized to: 1-channel, 1-RPC, 8-BPR, 8-SPB.

Number of Cores. As shown in Figure 3.17, our schemes improve performance of 8-

core and 16-core systems with the FR-FCFS memory scheduler [130, 172]. However, pre-

vious studies have shown that destructive memory interference among applications due

to FR-FCFS scheduling can severely degrade system performance [113, 117]. Therefore, to

exploit the full potential of subarray-level parallelism, the scheduler should resolve bank

conflicts in an application-aware manner. To study this effect, we evaluate our schemes

with TCM [86], a state-of-the-art scheduler that mitigates inter-application interference.

As shown in Figure 3.17, TCM outperforms FR-FCFS by 3.7%/12.3% on 8-core/16-core

systems. When employed with the TCM scheduler, SALP-1/SALP-2/MASA further im-

prove performance by 3.9%/5.9%/7.4% on the 8-core system and by 2.5%/3.9%/8.0% on

17Havingmore ranks (as opposed to having just more banks) aggravates data-bus contention by introduc-
ing bubbles in the data-bus due to tRTRS (rank-to-rank switch penalty).

83

the 16-core system. We also observe similar trends for systems using row-interleaving and

the open-row policy (not shown due to space constraints). We believe that further perfor-

mance improvements are possible by designing memory request scheduling algorithms

that are both application-aware and subarray-aware.

0%

5%

10%

15%

20%

25%

FRFCFS TCM FRFCFS TCM

8-core system 16-core system

W
S

 I
n

c
r
e

a
s
e Baseline SALP-1 SALP-2 MASA

Figure 3.17. Multi-core weighted speedup improvement. Configuration: 2-channel, 2-
RPC, line-interleaved, closed-row policy.

3.10. Chapter Summary

We introduced new techniques that exploit the existence of subarrays within a DRAM

bank to mitigate the performance impact of bank conflicts. Our mechanisms are built on

the key observation that subarrayswithin aDRAMbank operate largely independently and

have their own row-buffers. Hence, the latencies of accesses to different subarrays within

the samebank canpotentially be overlapped to a large degree. We introduce three schemes

that take advantage of this fact and progressively increase the independence of operation

of subarrays by making small modifications to the DRAM chip. Our most sophisticated

scheme, MASA, enables (i)multiple subarrays to be accessed in parallel, and (ii)multiple

row-buffers to remain activated at the same time in different subarrays, thereby improv-

ing both memory-level parallelism and row-buffer locality. We show that our schemes

significantly improve system performance on both single-core and multi-core systems on

a variety of workloads while incurring little (<0.15%) or no area overhead in the DRAM

chip. Our techniques can also improve memory energy efficiency. We conclude that ex-

84

ploiting subarray-level parallelism in a DRAM bank can be a promising and cost-effective

method for overcoming the negative effects of DRAM bank conflicts, without paying the

large cost of increasing the number of banks in the DRAM system.

85

Chapter 4

Ramulator: A Fast and Extensible

DRAM Simulator

In recent years, we have witnessed a flurry of new proposals for DRAM interfaces

and organizations. As listed in Table 4.1, some were evolutionary upgrades to existing

standards (e.g., DDR4, LPDDR4), while some were pioneering implementations of die-

stacking (e.g., WIO, HMC, HBM), and still others were academic research projects in ex-

perimental stages (e.g., Udipi et al. [152], Kim et al. [87]).

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [62]; DDR4 (2012) [69]

Low-Power LPDDR3 (2012) [67]; LPDDR4 (2014) [72]

Graphics GDDR5 (2009) [63]

Performance eDRAM [102, 120]; RLDRAM3 (2011) [105]

3D-Stacked
WIO (2011) [65]; WIO2 (2014) [73]; MCDRAM (2015) [61];
HBM (2013) [70]; HMC1.0 (2013) [51]; HMC1.1 (2014) [52]

Academic

SBA/SSA (2010) [152]; Staged Reads (2012) [27];
RAIDR (2012) [98]; SALP (2012) [87]; TL-DRAM (2013) [96];
RowClone (2013) [138]; Half-DRAM (2014) [168];
Row-Buffer Decoupling (2014) [124]; SARP (2014) [24];
AL-DRAM (2015) [95]

Table 4.1. Landscape of DRAM-based memory

86

At the forefront of such innovations should beDRAMsimulators, the software toolwith

which to evaluate the strengths and weaknesses of each new proposal. However, DRAM

simulators have been lagging behind the rapid-fire changes to DRAM. For example, two of

themost popular simulators (DRAMSim2 [131] andUSIMM[26]) provide support for only

one or two DRAM standards (DDR2 and/or DDR3), as listed in Table 4.2. Although these

simulators are well suited for their intended standard(s), they were not explicitly designed

to support a wide variety of standards with different organization and behavior. Instead,

the simulators are implemented in a way that the specific details of one standard are inte-

grated tightly into their codebase. As a result, researchers — especially those who are not

intimately familiar with the details of an existing simulator — may find it cumbersome to

implement and evaluate new standards on such simulators.

Type Simulator DRAM Standards

DRAMSim2 (2011) [131] DDR2, DDR3
USIMM (2012) [26] DDR3
DrSim (2012) [74] DDR2, DDR3, LPDDR2

Standalone

NVMain (2012) [127] DDR3, LPDDR3, LPDDR4

GPGPU-Sim (2009) [14] GDDR3, GDDR5
McSimA+ (2013) [6] DDR3Integrated
gem5 (2014) [43] DDR3,∗ LPDDR3,∗ WIO∗

∗Not cycle-accurate [43].

Table 4.2. Survey of popular DRAM simulators

The lack of an easy-to-extend DRAM simulator is an impediment to both industrial

evaluation and academic research. Ultimately, it hinders the speed at which different

points in the DRAM design space can be explored and studied. As a solution, we propose

Ramulator, a fast and versatile DRAM simulator that treats extensibility as a first-class

citizen. Ramulator is based on the important observation that DRAM can be abstracted as

a hierarchy of state-machines, where the behavior of each state-machine — as well as the

aforementioned hierarchy itself — is dictated by the DRAM standard in question. From

any given DRAM standard, Ramulator extracts the full specification for the hierarchy and

87

behavior, which is then entirely consolidated into just a single class (e.g., DDR3.h/cpp). On

the other hand, Ramulator also provides a standard-agnostic state-machine (i.e., DRAM.h),

which is capable of being paired with any standard (e.g., DDR3.h/cpp or DDR4.h/cpp) to

take on its particular hierarchy and behavior. In essence, Ramulator enables the flexibil-

ity to reconfigure DRAM for different standards at compile-time, instead of laboriously

hardcoding different configurations of DRAM for different standards.

The distinguishing feature of Ramulator lies in its modular design. More specifically,

Ramulator decouples the logic for querying/updating the state-machines from the imple-

mentation specifics of any particular DRAM standard. As far as we know, such decoupling

has not been achieved in previous DRAM simulators. Internally, Ramulator is structured

around a collection of lookup-tables (Section 4.1.3), which are computationally inexpen-

sive to query and update. This allows Ramulator to have the shortest runtime, outper-

forming other standalone simulators, shown in Table 4.2, by 2.5× (Section 4.3.2). Below,

we summarize the key features of Ramulator, as well as its major contributions.

• Ramulator is an extensible DRAM simulator providing cycle-accurate performance

models for a wide variety of standards: DDR3/4, LPDDR3/4, GDDR5, WIO1/2,

HBM, SALP, AL-DRAM,TL-DRAM,RowClone, and SARP.Ramulator’smodular de-

sign naturally lends itself to being augmented with additional standards. For some

of the standards, Ramulator is capable of reporting power consumption by relying

on DRAMPower [22] as the backend.

• Ramulator is portable and easy to use. It is equipped with a simple memory con-

troller which exposes an external API for sending and receiving memory requests.

Ramulator is available in two different formats: one for standalone usage and the

other for integrated usage with gem5 [16]. Ramulator is written in C++11 and is re-

leased under the permissive BSD-license [2].

88

4.1. Ramulator: High-Level Design

Without loss of generality, we describe the high-level design of Ramulator through a

case-study of modeling the widespread DDR3 standard. Throughout this section, we as-

sume a working knowledge of DDR3, otherwise referring the reader to literature [62]. In

Section 4.1.1, we explain how Ramulator employs a reconfigurable tree for modeling the

hierarchy of DDR3. In Section 4.1.2, we describe the tree’s nodes, which are reconfig-

urable state-machines for modeling the behavior of DDR3. Finally, Section 4.1.3 provides

a closer look at the state-machines, revealing some of their implementation details.

4.1.1. Hierarchy of State-Machines

In Code 1 (left), we present the DRAM class, which is Ramulator’s generalized template

for building a hierarchy (i.e., tree) of state-machines (i.e., nodes). An instance of the DRAM

class is a node in a tree of many other nodes, as is evident from its pointers to its parent

node and children nodes in Code 1 (left, lines 4–6). Importantly, for the sake of modeling

DDR3, we specialize the DRAM class for the DDR3 class, which is shown in Code 1 (right). An

instance of the resulting specialized class (DRAM<DDR3>) is then able to assume one of the

five levels that are defined by the DDR3 class.

1 // DRAM.h
2 template <typename T>
3 class DRAM {
4 DRAM<T>* parent;
5 vector<DRAM<T>*> children;
6 T::Level level;
7 int index;
8
9 // more code...
10 };

1 // DDR3.h/cpp
2 class DDR3 {
3 enum class Level {
4 Channel, Rank,
5 Bank, Row,
6 Column, MAX
7 };
8
9 // more code...
10 };

Code 7. Ramulator’s generalized template and its specialization

In Figure 4.1, we visualize a fully instantiated tree, consisting of nodes at the channel,

89

rank, and bank levels.1 Instead of having a separate class for each level (DDR3_Channel,

DDR3_Rank, DDR3_Bank), Ramulator simply treats a level as just another property of a node

— a property that can be easily reassigned to accommodate different hierarchies with dif-

ferent levels. Ramulator also provides a memory controller (not shown in the figure) that

interacts with the tree through only the root node (i.e., channel). Whenever the memory

controller initiates a query or an operation, it results in a traversal down the tree, touching

only the relevant nodes during the process. This, and more, will be explained next.

DRAM<DDR3> Instance

-level = DDR3::Level::Channel

-index = 0

DRAM<DDR3>

-Rank

-1

DRAM<DDR3>

-Rank

-0

DRAM<DDR3>

-Rank

-2

DRAM<DDR3>

-Bank

-0

DRAM<DDR3>

-Bank

-7

•••

Figure 4.1. Tree of DDR3 state-machines

4.1.2. Behavior of State-Machines

States. Generally speaking, a state-machine maintains a set of states, whose transi-

tions are triggered by an external input. In Ramulator, each state-machine (i.e., node)

maintains two types of states as shown in Code 2 (top, lines 5–6): status and horizon.

First, status is the node’s state proper, which can assume one of the statuses defined by

the DDR3 class in Code 2 (bottom). The node may transition into another status when it

receives one of the commands defined by the DDR3 class. Second, horizon is a lookup-table

for the earliest time when each command can be received by the node. Its purpose is to

prevent a node from making premature transitions between statuses, thereby honoring

1Due to their sheer number (tens of thousands), nodes at or below the row level are not instantiated.
Instead, their bookkeeping is relegated to their parent — in DDR3’s particular case, the bank.

90

DDR3 timing parameters (to be explained later). We purposely neglected to mention a

third state called leaf_status, because it is merely an optimization artifact — leaf_status

is a sparsely populated hash-table used by a bank to track the status of its rows (i.e., leaf

nodes) instead of instantiating them.

Functions. Code 2 (top, lines 9–11) also shows three functions that are exposed at

each node: decode, check, and update. These functions are recursively defined, meaning

that an invocation at the root node (by the memory controller) causes these functions to

walk down the tree. In the following, we explain how thememory controller relies on these

three functions to serve a memory request — in this particular example, a read request.

1. decode(): The ultimate goal of a read request is to read from DRAM, which is ac-

complished by a read command. Depending on the status of the tree, however, it

may not be possible to issue the read command: e.g., the rank is powered-down or

the bank is closed. For a given command to a given address,2 the decode function

returns a “prerequisite” command that must be issued before it, if any exists: e.g.,

power-up or activate command.

2. check(): Even if there are no prerequisites, it doesn’t mean that the read command

can be issued right away: e.g., the bank may not be ready if it was activated just re-

cently. For a given command to a given address, the check function returns whether

or not the command can be issued right now (i.e., current cycle).

3. update(): If the check is passed, there is nothing preventing the memory controller

from issuing the read command. For a given command to a given address, the update

function triggers the necessary modifications to the status/horizon (of the affected

nodes) to signify the command’s issuance at the current cycle. In Ramulator, invok-

ing the update function is issuing a command.

2An address is an array of node indices specifying a path down the tree.

91

1 // DRAM.h
2 template <typename T>
3 class DRAM {
4 // states (queried/updated by functions below)
5 T::Status status;
6 long horizon[T::Command::MAX];
7 map<int, T::Status> leaf_status; // for bank only
8
9 // functions (recursively traverses down tree)
10 T::Command decode(T::Command cmd, int addr[]);
11 bool check(T::Command cmd, int addr[], long now);
12 void update(T::Command cmd, int addr[], long now);
13 };

1 // DDR3.h/cpp
2 class DDR3 {
3 enum class Status {Open, Closed, ..., MAX};
4 enum class Command {ACT, PRE, RD, WR, ..., MAX};
5 };

Code 8. Specifying the DDR3 state-machines: states and functions

4.1.3. A Closer Look at a State-Machine

So far, we have described the role of the three functions without describing how they

exactly perform their role. To preserve the standard-agnostic nature of the DRAM class, the

three functions defer most of their work to the DDR3 class, which supplies them with all

of the standard-dependent information in the form of three lookup-tables: (i) prerequi-

site, (ii) timing, and (iii) transition. Within these tables are encoded the DDR3 standard,

providing answers to the following three questions: (i) which commands must be pre-

ceded by which other commands at which levels/statuses? (ii) which timing parameters

at which levels apply between which commands? (iii) which commands to which levels

trigger which status transitions?

Decode. Due to space limitations, we cannot go into detail about all three lookup-

tables. However, Code 3 (bottom) does provide a glimpse of only the first lookup-table,

calledprerequisite, which is consulted inside the decode function as shown inCode 3 (top).

92

In brief, prerequisite is a two-dimensional array of lambdas (a C++11 construct), which is

indexed using the (i) level in the hierarchy at which the (ii) command is being decoded. As

a concrete example, Code 3 (bottom, lines 7–13) shows how one of its entries is defined,

which happens to be for (i) the rank-level and (ii) the refresh command. The entry is a

lambda, whose sole argument is a pointer to the rank-level node that is trying to decode

the refresh command. If any of the node’s children (i.e., banks) are open, the lambda

returns the precharge-all command (i.e., PREA, line 11), which would close all the banks

and pave the way for a subsequent refresh command. Otherwise, the lambda returns the

refresh command itself (i.e., REF, line 12), signaling that no other command need be issued

before it. Either way, the command has been successfully decoded at that particular level,

and there is no need to recurse further down the tree. However, that may not always be

the case. For example, the only reason why the rank-level node was asked to decode the

refresh command was because its parent (i.e., channel) did not have enough information

to do so, forcing it to invoke the decode function at its child (i.e., rank). When a command

cannot be decoded at a level, the lambda returns a sentinel value (i.e., MAX), indicating that

the recursion should continue on down the tree, until the command is eventually decoded

by a different lambda at a lower level (or until the recursion stops at the lowest-level).

93

1 // DRAM.h
2 template <typename T>
3 class DRAM {
4 T::Command decode(T::Command cmd, int addr[]) {
5 if (prereq[level][cmd]) {
6 // consult lookup-table to decode command
7 T::Command p = prereq[level][cmd](this);
8 if (p != T::Command::MAX)
9 return p; // decoded successfully
10 }
11
12 if (children.size() == 0) // lowest-level
13 return cmd; // decoded successfully
14
15 // use addr[] to identify target child...
16 // invoke decode() at the target child...
17 }
18 };

1 // DDR3.h/cpp
2 class DDR3 {
3 // declare 2D lookup-table of lambdas
4 function <Command(DRAM<DDR3>*)>
5 prereq[Level::MAX][Command::MAX];
6
7 // populate an entry in the table
8 prereq[Level::Rank][Command::REF] =
9 [] (DRAM<DDR3>* node) -> Command {
10 for (auto bank : node->children)
11 if (bank->status == Status::Open)
12 return Command::PREA;
13 return Command::REF;
14 };
15
16 // populate other entries...
17 };

Code 9. The lookup-table for decode(): prereq

Check & Update. In addition to prerequisite, the DDR3 class also provides two other

lookup-tables: transition and timing. As is apparent from their names, they encode the

status transitions and the timing parameters, respectively. Similar to prerequisite, these

94

two are also indexed using some combination of levels, commands, and/or statuses. When

a command is issued, the update function consults both lookup-tables to modify both the

status (via lookups into transition) and the horizon (via lookups into timing) for all of the

affected nodes in the tree. In contrast, the check function does not consult any of the

lookup-tables in the DDR3 class. Instead, it consults only the horizon, the localized lookup-

table that is embedded inside the DRAM class itself. More specifically, the check function

simply verifies whether the following condition holds true for every node affected by a

command: horizon[cmd] ≤ now. This ensures that the time, as of right now, is already past

the earliest time at which the command can be issued. The check function relies on the

update function for keeping the horizon lookup-table up-to-date. As a result, the check

function is able to remain computationally inexpensive — it simply looks up a horizon

value and compares it against the current time. For performance reasons, we deliberately

optimized the check function to be lightweight, because it could be invoked many times

each cycle — the memory controller typically has more than one memory request whose

scheduling eligibility must be determined. In contrast, the update function is invoked at

most once-per-cycle and can afford to be more expensive. The implementation details of

the update function, as well as that of other components, can be found in the source code.

4.2. Extensibility of Ramulator

Ramulator’s extensibility is a natural result of its fully-decoupled design: Ramulator

provides a generalized skeleton of DRAM (i.e., DRAM.h) that is capable of being infused

with the specifics of an arbitrary DRAM standard (e.g., DDR3.h/cpp). To demonstrate the

extensibility of Ramulator, we describe how easy it was to add support for DDR4: (i) copy

DDR3.h/cpp to DDR4.h/cpp, (ii) add BankGroup as an item in DDR4::Level, and (iii) add or

edit 20 entries in the lookup-tables — 1 in prerequisite, 2 in transition, and 17 in timing.

Although there were some other changes that were also required (e.g., speed-bins), only

tens of lines of code were modified in total — giving a general idea about the ease at which

95

Ramulator is extended. As far as Ramulator is concerned, the difference between any

two DRAM standards is simply a matter of the difference in their lookup-tables, whose

entries are populated in a disciplined and localized manner. This is in contrast to existing

simulators, which require the programmer to chase down each of the hardcoded for-loops

and if-conditions that are likely scattered across the codebase.

In addition, Ramulator also provides a single, unified memory controller that is com-

patible with all of the standards that are supported by Ramulator (Table 4.2). Internally,

the memory controller maintains three queues of memory requests: read, write, and

maintenance. Whereas the read/write queues are populated by demandmemory requests

(read, write) generated by an external source ofmemory traffic, themaintenance queue is

populated by other types of memory requests (refresh, powerdown, selfrefresh) gener-

ated internally by thememory controller as they are needed. To serve amemory request in

any of the queues, the memory controller interacts with the tree of DRAM state-machines

using the three functions described in Section 4.1.2 (i.e., decode, check, and update). The

memory controller also supports several different scheduling policies that determine the

priority between requests from different queues, as well as those from the same queue.

4.3. Validation & Evaluation

As a simulator for the memory controller and the DRAM system, Ramulator must be

supplied with a stream of memory requests from an external source of memory traffic.

For this purpose, Ramulator exposes a simple software interface that consists of two func-

tions: one for receiving a request into the controller, and the other for returning a request

after it has been served. To be precise, the second function is a callback that is bundled

inside the request. Using this interface, Ramulator provides two different modes of op-

eration: (i) standalone mode where it is fed a memory trace or an instruction trace, and

(ii) integrated mode where it is fed memory requests from an execution-driven engine

(e.g., gem5 [16]). In this section, we present the results from operating Ramulator in

96

standalone-mode, where we validate its correctness (Section 4.3.1), compare its perfor-

mance with other DRAM simulators (Section 4.3.2), and conduct a cross-sectional study

of contemporary DRAM standards (Section 4.3.3). Directions for conducting the experi-

ments are included the source code release [2].

4.3.1. Validating the Correctness of Ramulator

Ramulator must simulate any given stream of memory requests using a legal sequence

of DRAM commands, honoring the status transitions and the timing parameters of a stan-

dard (e.g, DDR3). To validate this behavior, we created a synthetic memory trace that

would stress-test Ramulator under a wide variety of command interleavings. More specif-

ically, the trace contains 10Mmemory requests, themajority of which are reads and writes

(9:1 ratio) to a mixture of random and sequential addresses (10:1 ratio), and the minor-

ity of which are refreshes, power-downs, and self-refreshes.3 While this trace was fed

into Ramulator as fast as possible (without overflowing the controller’s request buffer),

we collected a timestamped log of every command that was issued by Ramulator. We then

used this trace as part of an RTL simulation by feeding it into Micron’s DDR3 Verilog

model [108] — a reference implementation of DDR3. Throughout the entire duration of

the RTL simulation (∼10 hours), no violationswere ever reported, indicating that Ramula-

tor’s DDR3 command sequence is indeed legal.4 Due to the lack of corresponding Verilog

models, however, we could not employ the samemethodology to validate other standards.

Nevertheless, we are reasonably confident in their correctness, because we implemented

them by making careful modifications to Ramulator’s DDR3 model, modifications that

were expressed succinctly in just a few lines of code — minimizing the risk of human er-

ror, as well as making it easy to double-check. In fact, the ease of validation is another

advantage of Ramulator, arising from its clean and modular design.

3We exclude maintenance-related requests which are not supported by Ramulator or other simulators:
e.g., ZQ calibration and mode-register set.

4This verifies that Ramulator does not issue commands too early. However, the Verilog model does not
allow us to verify whether Ramulator issues commands too late.

97

4.3.2. Measuring the Performance of Ramulator

In Table 4.3, we quantitatively compare Ramulator with four other standalone simula-

tors using the same experimental setup. All five were configured to simulate DDR3-16005

for two differentmemory traces,Random and Stream, comprising 100Mmemory requests

(read:write=9:1) to random and sequential addresses, respectively. For each simulator,

Table 4.3 presents four metrics: (i) simulated clock cycles, (ii) simulation runtime, (iii)

simulated request throughput, and (iv)maximummemory consumption. From the table,

we make three observations. First, all five simulators yield roughly the same number of

simulated clock cycles, where the slight discrepancies are caused by the differences in how

their memory controllers make scheduling decisions (e.g., when to issue reads vs. writes).

Second, Ramulator has the shortest simulation runtime (i.e., the highest simulated re-

quest throughput), taking only 752/249 seconds to simulate the two traces — a 2.5×/3.0×

speedup compared to the next fastest simulator. Third, Ramulator consumes only a small

amount of memory while it executes (2.1MB). We conclude that Ramulator provides su-

perior performance and efficiency, as well as the greatest extensibility.

Simulator
(clang -O3)

Cycles (106) Runtime (sec.) Req/sec (103) Memory
(MB)Random Stream Random Stream Random Stream

Ramulator 652 411 752 249 133 402 2.1
DRAMSim2 645 413 2,030 876 49 114 1.2
USIMM 661 409 1,880 750 53 133 4.5
DrSim 647 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20 4,230.0

Table 4.3. Comparison of five simulators using two traces

4.3.3. Cross-Sectional Study of DRAM Standards

With its integrated support for many different DRAM standards— some of which (e.g.,

LPDDR4, WIO2) have never been modeled before in academia — Ramulator unlocks the

5Single rank, 800Mhz, 11-11-11, row-interleaved, FR-FCFS [130], open-row policy.

98

ability to perform a comparative study across them. In particular, we examine nine differ-

ent standards (Table 4.4), whose configurations (e.g., timing) were set to reasonable val-

ues. Instead of memory traces, we collected instruction traces from 22 SPEC2006 bench-

marks,6 which were fed into a simplistic “CPU” model that comes with Ramulator.7

Standard
Rate Timing Data-Bus

Rank-per-Chan
BW

(MT/s) (CL-RCD-RP) (Width×Chan.) (GB/s)

DDR3 1,600 11-11-11 64-bit × 1 1 11.9
DDR4 2,400 16-16-16 64-bit × 1 1 17.9
SALP† 1,600 11-11-11 64-bit × 1 1 11.9
LPDDR3 1,600 12-15-15 64-bit × 1 1 11.9
LPDDR4 2,400 22-22-22 32-bit × 2∗ 1 17.9
GDDR5 [53] 6,000 18-18-18 64-bit × 1 1 44.7
HBM 1,000 7-7-7 128-bit × 8∗ 1 119.2
WIO 266 7-7-7 128-bit × 4∗ 1 15.9
WIO2 1,066 9-10-10 128-bit × 8∗ 1 127.2

†MASA [87] on top of DDR3 with 8 subarrays-per-bank.
∗More than one channel is built into these particular standards.

Table 4.4. Configuration of nine DRAM standards used in study

Figure 4.2 contains the violin plots and geometric means of the normalized IPC com-

pared to the DDR3 baseline. We make several broad observations. First, newly upgraded

standards (e.g., DDR4) perform better than their older counterparts (e.g., DDR3). Sec-

ond, standards for embedded systems (i.e., LPDDRx, WIOx) have lower performance be-

cause they are optimized to consume less power. Third, standards for graphics systems

(i.e., GDDR5, HBM) provide a large amount of bandwidth, leading to higher average per-

formance than DDR3 even for our non-graphics benchmarks. Fourth, a recent academic

proposal, SALP, provides significant performance improvement (e.g., higher than that of

WIO2) by reducing the serialization effects of bank conflictswithout increasing peak band-

width. These observations are only a small sampling of the analyses that are enabled by

Ramulator.
6perlbench, bwaves, gamess, povray, calculix, tonto were unavailable for trace collection.
73.2GHz, 4-wide issue, 128-entryROB, no instruction-dependency, one cycle for non-DRAM instructions,

instruction trace is pre-filtered through a 512KB cache,memory controller has 32/32 entries in its read/write
request buffers.

99

0.5

1.0

1.5

2.0
IP

C
 d

is
tr

ib
u
ti

o
n

(N
o
rm

a
liz

e
d
 t

o
 D

D
R

3
) 1.14 1.19 0.88 0.92 1.09 1.27 0.84 1.12

DDR4 SALP LPDDR3 LPDDR4 GDDR5 HBM WIO WIO2

Figure 4.2. Performance comparison of DRAM standards

4.4. Chapter Summary

In this chapter, we introducedRamulator, a fast and cycle-accurate simulation tool for

current and future DRAM systems. We demonstrated Ramulator’s advantage in efficiency

and extensibility, as well as its comprehensive support for DRAM standards. We hope that

Ramulator would facilitate DRAM research in an era when main memory is undergoing

rapid changes [77, 116].

100

Chapter 5

Conclusion & FutureWork

For the last four decades, it has been the sustained success of DRAMscaling that has al-

lowed computing systems to enjoy larger and faster mainmemory at lower cost. Recently,

however, the advantages provided by DRAM scaling have started to become offset by its

disadvantages, mainly in the form of deteriorating reliability and performance. This is be-

cause, at reduced sizes, DRAM cells are significantly more vulnerable to coupling effects

and process variation. Unlike in the past, these problems are too costly to be solved by

employing techniques in the domain of circuits/devices alone. In this thesis, we showed

the effectiveness of taking an architectural approach to enhance DRAM scaling. First, we

demonstrated the widespread existence of a new reliability problem — disturbance errors

— in recent DRAM chips, and proposed to prevent them through a collaborative effort

between the DRAM controller and the DRAM chips. Second, we highlighted a latency se-

rialization bottleneck in DRAM chips, and proposed to alleviate it by making small and

non-intrusive modifications to the DRAM architecture that increase the parallelism of its

underlying subarrays. Lastly, we developed a DRAM simulator, called Ramulator, that

accelerates the design space exploration of DRAM architecture with its high simulation

speed and ease of extensibility. Our architectural approach, combined with the benefits

of traditional circuits/devices scaling, provides a more sustainable roadmap for DRAM-

101

based main memory.

5.1. FutureWork

As DRAM process technology fast approaches its limit, this thesis contends that com-

puter architects must play a greater role in defining and building the next generation of

memory systems. Treating the memory system simply as “a bag of commodity DRAM

chips” — as it has been done in the past — is no longer a viable approach. In fact, several

disruptive changes to the memory system have already been set in motion. For exam-

ple, the shortcomings of commodity DRAM in providing adequate bandwidth and energy-

efficiency are driving the industry toward 3D die-stacking (e.g., HMC, WIO2, HBM, MC-

DRAM), especially for graphics and embedded systems. Also, the projected erosion in

DRAM’s cost-per-bit is sparking renewed interest in cheaper non-volatile alternatives

(e.g., resistive memory, phase change memory), despite their inferior latency and en-

durance characteristics. The nature of these and other emerging technologies is such that

they create new opportunities to provision the memory system with a rich set of features

and capabilities, while also presenting new challenges that must be overcome.

Hardware Reliability & Security. At advanced technology nodes, hardware fail-

ures will become more commonplace, some of which may be diagnosed only after they

have been released into the wild, as was the case with disturbance errors in DRAM [84].

This opens up the possibility of zero-day hardware vulnerabilities that could undermine

system integrity in unpredictable ways. Moreover, such vulnerabilities would have far-

reaching consequences since they exploit a systemic weakness in the process technology

itself, thereby affecting millions of logic and memory chips that have already been de-

ployed in the field. From this, we identify two research topics. First, we plan to devise new

testing methodologies that can expose emerging failure modes in the hardware without a

priori knowledge about their symptoms. Second, I plan to develop intelligent hardware

controllers that can be reconfigured on-the-fly (i.e., a hardware “patch”) in response to

102

newly discovered threats.

Reformulating theMemoryHierarchy. Traditionally, thememoryhierarchy con-

sisted of well-defined tiers (e.g., cache, main memory, storage) that were clearly distin-

guished from each other with regard to capacity, performance, function, and physical

medium. But now, the boundaries between themare blurring. EmbeddedDRAM(eDRAM)

and die-stacked DRAM are bridging the gap between cache andmainmemory, while non-

volatile memory is poised to do the same between main memory and storage. What was

once a clear-cut, black-and-white hierarchy is rapidly becoming an ambiguous one with

many shades of gray. This calls for a broad re-evaluation of the trade-offs that have been

assumed at each tier.

We identify three research topics in particular. First, the hierarchy must expose new

software primitives that allow the application to specify the tier from which it allocates

memory. Such primitives should be descriptive, so that the application can fully express

the attributes of the memory it desires (e.g., high vs. low bandwidth, volatile vs. non-

volatile). Alternatively, the memory system could make this decision on behalf of the

application, based on information gathered from its past behavior. Second, the hierar-

chy must assign appropriate roles for each tier, which may change fluidly depending on

the system’s budget and composition. For example, the low capacity of die-stacked DRAM

may suffice as main memory in low-end systems, but not in high-end systems where it is

more befitting as the last-level cache. Third, the hierarchy must gracefully manage all the

implications of introducing non-volatility intomainmemory. This includes, but is not lim-

ited to, reconciling two disparate namespaces (addresses vs. files), bootup/recovery from

inconsistent memory states, and vulnerability to remanence attacks on sensitive data.

103

Bibliography

[1] Memtest86+ v4.20. http://www.memtest.org.

[2] Ramulator source code. https://github.com/CMU-SAFARI/ramulator.

[3] The GNU GRUBManual, 2012.

[4] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber. Improving System
Energy Efficiency with Memory Rank Subsetting. ACM TACO, Mar. 2012.

[5] J. H. Ahn, J. Leverich, R. Schreiber, andN. P. Jouppi. Multicore DIMM: An Energy Efficient
Memory Module with Independently Controlled DRAMs. IEEE CAL, 2009.

[6] J. H. Ahn, S. Li, O. Seongil, and N. Jouppi. McSimA+: A Manycore Simulator with
Application-Level+ Simulation and DetailedMicroarchitecture Modeling. In ISPASS, 2013.

[7] Z. Al-Ars. DRAM Fault Analaysis and Test Generation. PhD thesis, TU Delft, 2005.

[8] Z. Al-Ars, S. Hamdioui, A. van de Goor, G. Gaydadjiev, and J. Vollrath. DRAM-Specific
Space of Memory Tests. In ITC, 2006.

[9] AMD. BKDG for AMD Family 15h Models 10h-1Fh Processors, 2013.

[10] K. Bains and J. Halbert. Distributed Row Hammer Tracking. US Patent App. 13/631,781,
Apr. 3 2014.

[11] K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and Z. Greenfield. Row Hammer Refresh
Command. US Patent App. 13/539,415, Jan. 2 2014.

[12] K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and Z. Greenfield. Row Hammer Refresh
Command. US Patent App. 14/068,677, Feb. 27 2014.

[13] K. Bains, J. Halbert, S. Sah, and Z. Greenfield. Method, Apparatus and System for Providing
a Memory Refresh. US Patent App. 13/625,741, Mar. 27 2014.

[14] A. Bakhoda, G. Yuan,W. Fung, H.Wong, and T. Aamodt. Analyzing CUDAWorkloadsUsing
a Detailed GPU Simulator. In ISPASS, 2009.

[15] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to Flash Memory. Pro-
ceedings of the IEEE, 91(4):489–502, 2003.

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood. The Gem5 Simulator. SIGARCH Comput. Archit. News, May 2011.

104

[17] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communica-
tions of the ACM, 13(7):422–426, July 1970.

[18] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. SIGARCH Comput.
Archit. News, June 1997.

[19] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis. In DATE, pages 521–526, 2012.

[20] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai. Program Interference in MLC NAND Flash
Memory: Characterization, Modeling and Mitigation. In ICCD, 2013.

[21] S. Y. Cha. DRAM and Future Commodity Memories. In VLSI Technology Short Course,
2011.

[22] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens. DRAMPower:
Open-SourceDRAMPower &Energy Estimation Tool. http://www.drampower.info, 2012.

[23] N. Chandrasekaran, S. Hues, S. Lu, D. Li, and C. Biship. Characterization and Metrology
Challenges for Emerging Memory Technology Landscape. In Frontiers of Characterization
and Metrology for Nanoelectronics, 2013.

[24] K. Chang, D. Lee, Z. Chishti, C. Wilkerson, A. Alameldeen, Y. Kim, and O.Mutlu. Improving
DRAM Performance by Parallelizing Refreshes with Accesses. InHPCA, 2014.

[25] M.-T. Chao, H.-Y. Yang, R.-F.Huang, S.-C. Lin, andC.-Y. Chin. FaultModels for Embedded-
DRAMMacros. In DAC, 2009.

[26] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. H. Pugsley, A. N. Udipi, A. Shafiee,
K. Sudan,M. Awasthi, andZ. Chishti. USIMM: theUtah SImulatedMemoryModule.UUCS-
12-002, University of Utah, Feb. 2012.

[27] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi. Staged
Reads: Mitigating the Impact of DRAMWrites on DRAM Reads. InHPCA, 2012.

[28] Q. Chen, H.Mahmoodi, S. Bhunia, and K. Roy. Modeling and Testing of SRAM forNewFail-
ure Mechanisms Due to Process Variations in Nanoscale CMOS. In VLSI Test Symposium,
2005.

[29] P.-F. Chia, S.-J. Wen, and S. Baeg. New DRAM HCI Qualification Method Emphasizing on
Repeated Memory Access. In Integrated Reliability Workshop, 2010.

[30] S. Cohen and Y. Matias. Spectral Bloom Filters. In SIGMOD, 2003.

[31] J. Cooke. The Inconvenient Truths of NAND Flash Memory. In Flash Memory Summit,
2007.

[32] DRAMeXchange. TrendForce: 3Q13 Global DRAM Revenue Rises by 9%, Samsung Shows
Most Noticeable Growth, Nov. 12, 2013.

[33] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt.
Parallel Application Memory Scheduling. InMICRO, 2011.

[34] Enhanced Memory Systems. Enhanced SDRAM SM2604, 2002.

105

[35] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary Cache: A Scalable Wide-Area Web
Cache Sharing Protocol. Transactions on Networking, 8(3), June 2000.

[36] J. A. Fifield and H. L. Kalter. Crosstalk-Shielded-Bit-Line DRAM. US Patent 5,010,524,
Apr. 23, 1991.

[37] H. Fredriksson and C. Svensson. Improvement potential and equalization example for mul-
tidrop DRAMmemory buses. IEEE Transactions on Advanced Packaging, 2009.

[38] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. Fully-buffered DIMM memory architectures:
Understanding mechanisms, overheads and scaling. InHPCA, 2007.

[39] Z. Greenfield, K. Bains, T. Schoenborn, C. Mozak, and J. Halbert. Row Hammer Condition
Monitoring. US Patent App. 13/539,417, Jan. 2, 2014.

[40] Z. Greenfield, J. Halbert, and K. Bains. Method, Apparatus and System for Determining a
Count of Accesses to a Row of Memory. US Patent App. 13/626,479, Mar. 27 2014.

[41] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and J. K.
Wolf. Characterizing Flash Memory: Anomalies, Observations, and Applications. In MI-
CRO, 2009.

[42] Z. Guo, A. Carlson, L.-T. Pang, K. T. Duong, T.-J. K. Liu, and B. Nikolic. Large-Scale SRAM
Variability Characterization in 45 nm CMOS. Journal of Solid-State Circuits, 44(11):3174–
3192, 2009.

[43] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. Udipi. Simulating DRAM Controllers
for Future System Architecture Exploration. In ISPASS, 2014.

[44] C. A. Hart. CDRAM in a unified memory architecture. In Compcon, 1994.

[45] D. Henderson and J. Mitchell. IBM POWER7 System RAS, Dec. 2012.

[46] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima. The Cache DRAM Architecture: A
DRAM with an On-Chip Cache Memory. IEEE Micro, Mar. 1990.

[47] M. Horiguchi and K. Itoh. Nanoscale Memory Repair. Springer, 2011.

[48] HPCC. RandomAccess. http://icl.cs.utk.edu/hpcc/.

[49] W.-C. Hsu and J. E. Smith. Performance of cached DRAM organizations in vector super-
computers. In ISCA, 1993.

[50] R.-F.Huang,H.-Y. Yang,M.Chao, andS.-C. Lin. AlternateHammeringTest for Application-
Specific DRAMs and an Industrial Case Study. In DAC, 2012.

[51] Hybrid Memory Cube Consortium. HMC Specification 1.0, Jan. 2013.

[52] Hybrid Memory Cube Consortium. HMC Specification 1.1, Feb. 2014.

[53] Hynix. GDDR5 SGRAMH5GQ1H24AFR, Nov. 2009.

[54] Intel. 2nd Gen. Intel Core Processor Family Desktop Datasheet, 2011.

[55] Intel. Intel Core Desktop Processor Series Datasheet, 2011.

106

[56] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2012.

[57] Intel. 4th Generation Intel Core Processor Family Desktop Datasheet, 2013.

[58] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana. Self Optimizing Memory Controllers: A
Reinforcement Learning Approach. In ISCA, 2008.

[59] K. Itoh. Semiconductor Memory. US Patent 4,044,340, Apr. 23, 1977.

[60] K. Itoh. VLSI Memory Chip Design. Springer, 2001.

[61] James Reinders. Knights Corner: Your Path to Knights Landing, Sept. 17, 2014.

[62] JEDEC. JESD79-3 DDR3 SDRAM Standard, June 2007.

[63] JEDEC. JESD212 GDDR5 SGRAM, Dec. 2009.

[64] JEDEC. Standard No. 79-3E. DDR3 SDRAM Specification, 2010.

[65] JEDEC. JESD229 Wide I/O Single Data Rate (Wide/IO SDR), Dec. 2011.

[66] JEDEC. Standard No. 21-C. Annex K: Serial Presence Detect (SPD) for DDR3 SDRAMMod-
ules, 2011.

[67] JEDEC. JESD209-3 Low Power Double Data Rate 3 (LPDDR3), May 2012.

[68] JEDEC. JESD79-3F DDR3 SDRAM Standard, July 2012.

[69] JEDEC. JESD79-4 DDR4 SDRAM, Sept. 2012.

[70] JEDEC. JESD235 High Bandwidth Memory (HBM) DRAM, Oct. 2013.

[71] JEDEC. JESD-21C (4.1.2.11) Serial Presence Detect (SPD) for DDR3 SDRAMModules, Feb.
2014.

[72] JEDEC. JESD209-4 Low Power Double Data Rate 3 (LPDDR4), Aug. 2014.

[73] JEDEC. JESD229-2 Wide I/O 2 (WideIO2), Aug. 2014.

[74] M. K. Jeong, D. H. Yoon, and M. Erez. DrSim: A Platform for Flexible DRAM System Re-
search. http://lph.ece.utexas.edu/public/DrSim, 2012.

[75] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez. Balancing DRAM
Locality and Parallelism in Shared Memory CMP Systems. InHPCA, 2012.

[76] W. Jiang, G. Khera, R. Wood, M. Williams, N. Smith, and Y. Ikeda. Cross-Track Noise Pro-
file Measurement for Adjacent-Track Interference Study and Write-Current Optimization
in Perpendicular Recording. Journal of Applied Physics, 93(10):6754–6756, 2003.

[77] U. Kang, H. soo Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. S. Choi. Co-
Architecting Controllers and DRAM to Enhance DRAM Process Scaling. In The Memory
Forum (Co-located with ISCA), 2014.

[78] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A Simple Algorithm for Finding Frequent
Elements in Streams and Bags. Transactions on Database Systems, 28(1), Mar. 2003.

107

[79] G. Kedem and R. P. Koganti. WCDRAM: A Fully Associative Integrated Cached-DRAMwith
Wide Cache Lines. CS-1997-03, Duke, 1997.

[80] B. Keeth, R. J. Baker, B. Johnson, and F. Lin. DRAM Circuit Design. Fundamental and
High-Speed Topics. Wiley-IEEE Press, 2007.

[81] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C.Wilkerson, andO.Mutlu. The Efficacy of Error
Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study.
In SIGMETRICS, 2014.

[82] R. Kho, D. Boursin, M. Brox, P. Gregorius, H. Hoenigschmid, B. Kho, S. Kieser, D. Kehrer,
M. Kuzmenka, U. Moeller, P. Petkov, M. Plan, M. Richter, I. Russell, K. Schiller, R. Schnei-
der, K. Swaminathan, B. Weber, J. Weber, I. Bormann, F. Funfrock, M. Gjukic, W. Spirkl,
H. Steffens, J. Weller, and T. Hein. 75nm 7Gb/s/pin 1Gb GDDR5 Graphics Memory Device
with Bandwidth-Improvement Techniques. In ISSCC, 2009.

[83] D. Kim, V. Chandra, R. Aitken, D. Blaauw, and D. Sylvester. Variation-Aware Static and
Dynamic Writability Analysis for Voltage-Scaled Bit-Interleaved 8-T SRAMs. In ISLPED,
2011.

[84] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu.
Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Dis-
turbance Errors. In ISCA, 2014.

[85] Y. Kim, D.Han, O.Mutlu, andM.Harchol-Balter. ATLAS:A Scalable andHigh-Performance
Scheduling Algorithm for Multiple Memory Controllers. InHPCA, 2010.

[86] Y.Kim,M.Papamichael, O.Mutlu, andM.Harchol-Balter. ThreadClusterMemory Schedul-
ing: Exploiting Differences in Memory Access Behavior. InMICRO, 2010.

[87] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM. In ISCA, 2012.

[88] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A Fast and Extensible DRAM Simulator. IEEE
CAL, 2015.

[89] T. Kirihata. Latched Row Decoder for a Random Access Memory. U.S. patent number
5615164, 1997.

[90] B.-S. Kong, S.-S. Kim, and Y.-H. Jun. Conditional-Capture Flip-Flop for Statistical Power
Reduction. IEEE JSSC, 2001.

[91] Y. Konishi, M. Kumanoya, H. Yamasaki, K. Dosaka, and T. Yoshihara. Analysis of Coupling
Noise between Adjacent Bit Lines inMegabit DRAMs. IEEE Journal of Solid-State Circuits,
24(1):35–42, 1989.

[92] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization. In ISCA, 1981.

[93] B. C. Lee, E. Ipek, O.Mutlu, andD. Burger. Architecting Phase ChangeMemory as a Scalable
DRAM Alternative. In ISCA, 2009.

[94] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt. DRAM-Aware Last-Level
CacheWriteback: ReducingWrite-Caused Interference inMemory Systems. TR-HPS-2010-
002, UT Austin, 2010.

108

[95] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu. Adaptive-
Latency DRAM: Optimizing DRAM Timing for the Common-Case. InHPCA, 2015.

[96] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu. Tiered-Latency DRAM:
A Low Latency and Low Cost DRAM Architecture. InHPCA, 2013.

[97] J. Liu, B. Jaiyen, Y. Kim, C.Wilkerson, andO.Mutlu. An Experimental Study of Data Reten-
tion Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mech-
anisms. In ISCA, 2013.

[98] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR: Retention-Aware Intelligent DRAM Re-
fresh. In ISCA, 2012.

[99] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C.Wu. A SoftwareMemory Partition Approach
for Eliminating Bank-level Interference in Multicore Systems. In PACT, 2012.

[100] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K.Hazelwood. Pin: Building Customized ProgramAnalysis Tools with Dynamic Instrumen-
tation. In PLDI, 2005.

[101] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li, and
C. J. Radens. Challenges and Future Directions for the Scaling of Dynamic Random-Access
Memory (DRAM). IBM Journal of Research and Development, 46(2.3):187–212, Mar.
2002.

[102] M. Meterelliyoz, F. Al-amoody, U. Arslan, F. Hamzaoglu, L. Hood, M. Lal, J. Miller, A. Ra-
masundar, D. Soltman, W. Ifar, Y. Wang, and K. Zhang. 2nd Generation Embedded DRAM
with 4X Lower Self Refresh Power in 22nm Tri-Gate CMOS Technology. In VLSI Sympo-
sium, 2014.

[103] M. Micheletti. Tuning DDR4 for Power and Performance. InMemCon, 2013.

[104] Micron. DDR3 SDRAM System-Power Calculator, 2010.

[105] Micron. Micron Announces Sample Availability for Its Third-Generation RLDRAM(R)
Memory. http://investors.micron.com/releasedetail.cfm?ReleaseID=581168,
May 26, 2011.

[106] Micron. 2Gb: x16, x32 Mobile LPDDR2 SDRAM, 2012.

[107] Micron. 2Gb: x4, x8, x16, DDR3 SDRAM, 2012.

[108] Micron. DDR3 SDRAM Verilog model, 2012.

[109] M. J. Miller. Bandwidth Engine Serial Memory Chip Breaks 2 Billion Accesses/sec. In
HotChips, 2011.

[110] D.-S. Min, D.-I. Seo, J. You, S. Cho, D. Chin, and Y. E. Park. Wordline Coupling Noise
Reduction Techniques for Scaled DRAMs. In Symposium on VLSI Circuits, 1990.

[111] Y. Moon, Y.-H. Cho, H.-B. Lee, B.-H. Jeong, S.-H. Hyun, B.-C. Kim, I.-C. Jeong, S.-Y. Seo,
J.-H. Shin, S.-W. Choi, H.-S. Song, J.-H. Choi, K.-H. Kyung, Y.-H. Jun, and K. Kim. 1.2V
1.6Gb/s 56nm 6F2 4Gb DDR3 SDRAM with Hybrid-I/O Sense Amplifier and Segmented
Sub-Array Architecture. In ISSCC, 2009.

109

[112] R. Morris. Counting Large Numbers of Events in Small Registers. Communications of the
ACM, 21(10):840–842, Oct. 1978.

[113] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of Memory Service in
Multi-Core Systems. In USENIX SS, 2007.

[114] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda. Reducing
Memory Interference in Multicore Systems via Application-Aware Memory Channel Parti-
tioning. InMICRO, 2011.

[115] C. H. Museum. Oral History of Joel Karp (Interviewed by Gardner Hendrie), Mar. 2003.

[116] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. InMemCon, 2013.

[117] O.Mutlu and T.Moscibroda. Stall-Time FairMemory Access Scheduling for ChipMultipro-
cessors. InMICRO, 2007.

[118] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both perfor-
mance and fairness of shared DRAM systems. In ISCA, 2008.

[119] P. J. Nair, D.-H. Kim, andM.K.Qureshi. ArchShield: Architectural Framework for Assisting
DRAM Scaling by Tolerating High Error Rates. In ISCA, 2013.

[120] S. Narasimha, P. Chang, C. Ortolland, D. Fried, E. Engbrecht, K. Nummy, P. Parries,
T. Ando, M. Aquilino, N. Arnold, R. Bolam, J. Cai, M. Chudzik, B. Cipriany, G. Costrini,
M. Dai, J. Dechene, C. Dewan, B. Engel, M. Gribelyuk, D. Guo, G. Han, N. Habib, J. Holt,
D. Ioannou, B. Jagannathan, D. Jaeger, J. Johnson, W. Kong, J. Koshy, R. Krishnan, A. Ku-
mar, M. Kumar, J. Lee, X. Li, C. Lin, B. Linder, S. Lucarini, N. Lustig, P. McLaughlin,
K. Onishi, V. Ontalus, R. Robison, C. Sheraw, M. Stoker, A. Thomas, G. Wang, R. Wise,
L. Zhuang, G. Freeman, J. Gill, E. Maciejewski, R. Malik, J. Norum, and P. Agnello. 22nm
High-Performance SOI Technology Featuring Dual-Embedded Stressors, Epi-Plate High-K
Deep-Trench Embedded DRAM and Self-Aligned Via 15LM BEOL. In IEDM, 2012.

[121] NEC. Virtual Channel SDRAM uPD4565421, 1999.

[122] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory systems. In
MICRO, 2006.

[123] C. Nibby, R. Goldin, and T. Andrews. Remap Method and Apparatus for a Memory System
Which Uses Partially Good Memory Devices. US Patent 4,527,251, July 2 1985.

[124] S. O, Y. H. Son, N. S. Kim, and J. H. Ahn. Row-Buffer Decoupling: A Case for Low-latency
DRAMMicroarchitecture. In ISCA, 2014.

[125] J.-h. Oh. Semiconductor Memory Having a Bank with Sub-Banks. U.S. patent number
7782703, 2010.

[126] E. Pinheiro, W. Weber, and L. Barroso. Failure Trends in a Large Disk Drive Population. In
FAST, 2007.

[127] M. Poremba and Y. Xie. NVMain: An Architectural-Level Main Memory Simulator for
Emerging Non-volatile Memories. In ISVLSI, 2012.

110

[128] Rambus. DRAM Power Model, 2010.

[129] M. Redeker, B. F. Cockburn, and D. G. Elliott. An Investigation into Crosstalk Noise in
DRAM Structures. InMTDT, 2002.

[130] S. Rixner,W. J.Dally, U. J. Kapasi, P.Mattson, and J.D.Owens. MemoryAccess Scheduling.
In ISCA, 2000.

[131] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle AccurateMemory System
Simulator. IEEE CAL, 2011.

[132] K. Roy, S. Mukhopadhyay, and H.Mahmoodi-Meimand. Leakage Current Mechanisms and
Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits. Proceedings of the
IEEE, 91(2):305–327, 2003.

[133] K. Saino, S. Horiba, S. Uchiyama, Y. Takaishi, M. Takenaka, T. Uchida, Y. Takada,
K. Koyama, H. Miyake, and C. Hu. Impact of Gate-Induced Drain Leakage Current on the
Tail Distribution of DRAM Data Retention Time. In IEDM, pages 837–840, 2000.

[134] J. H. Saltzer and M. F. Kaashoek. Principles of Computer Design: An Introduction. Chap-
ter 8, p. 58. Morgan Kaufmann, 2009.

[135] R. H. Sartore, K. J. Mobley, D. G. Carrigan, and O. F. Jones. Enhanced DRAMwith Embed-
ded Registers. U.S. patent number 5887272, 1999.

[136] Y. Sato, T. Suzuki, T. Aikawa, S. Fujioka, W. Fujieda, H. Kobayashi, H. Ikeda, T. Nagasawa,
A. Funyu, Y. Fuji, K. Kawasaki, M. Yamazaki, andM. Taguchi. Fast Cycle RAM (FCRAM); A
20-ns RandomRow Access, Pipe-Lined Operating DRAM. In Symposium on VLSI Circuits,
1998.

[137] B. Schroeder and G. A. Gibson. Disk Failures in the Real World: What Does an MTTF of
1,000,000 Hours Mean to You? In FAST, 2007.

[138] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O.Mutlu,
P. B. Gibbons,M. A. Kozuch, and T. C.Mowry. RowClone: Fast andEfficient In-DRAMCopy
and Initialization of Bulk Data. InMICRO, 2013.

[139] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand, B. J.
Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F. Marino,
E. Retter, and P. Williams. IBM POWER7 Multicore Server Processor. IBM Journal Res.
Dev., May. 2011.

[140] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous Multithreaded
Processor. In ASPLOS, 2000.

[141] STREAM Benchmark. http://www.streambench.org/.

[142] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John. The Virtual Write Queue:
Coordinating DRAM and Last-Level Cache Policies. In ISCA, 2010.

[143] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Davis. Micro-
pages: Increasing DRAM efficiency with locality-aware data placement. In ASPLOS, 2010.

111

[144] Sun Microsystems. OpenSPARC T1 Microarch. Specification, 2006.

[145] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar. Coor-
dinated Bank and Cache Coloring for Temporal Protection of Memory Accesses. In ICESS,
2013.

[146] A. Tanabe, T. Takeshima, H. Koike, Y. Aimoto, M. Takada, T. Ishijima, N. Kasai, H. Hada,
K. Shibahara, T. Kunio, T. Tanigawa, T. Saeki, M. Sakao, H. Miyamoto, H. Nozue, S. Ohya,
T. Murotani, K. Koyama, and T. Okuda. A 30-ns 64-Mb DRAM with Built-In Self-Test and
Self-Repair Function. IEEE Journal of Solid-State Circuits, 27(11):1525–1533, 1992.

[147] D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro. Assessment of the Effect of Memory
Page Retirement on System RAS Against Hardware Faults. In DSN, 2006.

[148] Y. Tang, X. Che, H. J. Lee, and J.-G. Zhu. Understanding Adjacent Track Erasure in Discrete
Track Media. Transactions on Magnetics, 44(12):4780–4783, 2008.

[149] S. Thoziyoor, J. H. Ahn, M.Monchiero, J. B. Brockman, and N. P. Jouppi. A Comprehensive
Memory Modeling Tool and Its Application to the Design and Analysis of Future Memory
Hierarchies. In ISCA, 2008.

[150] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal Res. Dev., Jan. 1967.

[151] TPC. http://www.tpc.org/.

[152] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N. P.
Jouppi. Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores.
In ISCA, 2010.

[153] A. J. van de Goor and J. de Neef. Industrial Evaluation of DRAM Tests. In DATE, 1999.

[154] A. J. van de Goor and I. Schanstra. Address and Data Scrambling: Causes and Impact on
Memory Tests. In DELTA, 2002.

[155] B. Van Durme and A. Lall. Probabilistic Counting with Randomized Storage. In IJCAI,
2009.

[156] R. Venkatesan, S. Herr, and E. Rotenberg. Retention-Aware Placement in DRAM (RAPID):
Software Methods for Quasi-Non-Volatile DRAM. InHPCA, pages 155–165, 2006.

[157] T. Vogelsang. Understanding the Energy Consumption of Dynamic Random Access Memo-
ries. InMICRO, 2010.

[158] F.Ware andC.Hampel. Improving Power andData Efficiencywith ThreadedMemoryMod-
ules. In ICCD, 2006.

[159] W. A. Wong and J.-L. Baer. DRAM caching. CSE-97-03-04, UW, 1997.

[160] R. Wood, M. Williams, A. Kavcic, and J. Miles. The Feasibility of Magnetic Recording at 10
Terabits Per Square Inch on Conventional Media. Transactions on Magnetics, 45(2):917–
923, 2009.

[161] Xilinx. Virtex-6 FPGA Integrated Block for PCI Express, Mar. 2011.

112

[162] Xilinx. ML605 Hardware User Guide, Oct. 2012.

[163] Xilinx. Virtex-6 FPGA Memory Interface Solutions, Mar. 2013.

[164] T. Yamauchi, L. Hammond, and K. Olukotun. The Hierarchical Multi-Bank DRAM: AHigh-
Performance Architecture for Memory Integrated with Processors. In Advanced Research
in VLSI, 1997.

[165] J. H. Yoon, H. C.Hunter, andG. A. Tressler. Flash&DRAMSi Scaling Challenges, Emerging
Non-Volatile Memory Technology Enablement — Implications to Enterprise Storage and
Server Compute Systems. In Flash Memory Summit, 2013.

[166] T. Yoshihara, H. Hidaka, Y. Matsuda, and K. Fujishima. A Twisted Bit Line Technique for
Multi-Mb DRAMs. In ISSCC, 1988.

[167] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity effective memory access scheduling
for many-core accelerator architectures. InMICRO, 2009.

[168] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie. Half-DRAM: A High-Bandwidth and
Low-Power DRAM Architecture from the Rethinking of Fine-Grained Activation. In ISCA,
2014.

[169] Z. Zhang, Z. Zhu, and X. Zhang. A Permutation-Based Page Interleaving Scheme to Reduce
Row-Buffer Conflicts and Exploit Data Locality. InMICRO, 2000.

[170] Z. Zhang, Z. Zhu, and X. Zhang. Cached DRAM for ILP Processor Memory Access Latency
Reduction. IEEE Micro, Jul. 2001.

[171] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-Rank: Adaptive DRAM
Architecture for Improving Memory Power Efficiency. InMICRO, 2008.

[172] W. K. Zuravleff and T. Robinson. Controller for a Synchronous DRAM that Maximizes
Throughput by Allowing Memory Requests and Commands to be Issued Out of Order. U.S.
patent number 5630096, 1997.

113

