
Scrooge: A Fast and Memory-Frugal Genomic Sequence Aligner
for CPUs, GPUs, and ASICs

Joël Lindegger Damla Senol Cali Mohammed Alser Juan Gómez-Luna Nika Mansouri Ghiasi Onur Mutlu

1. Sequence Alignment 2. Bitap and GenASM

Pairwise sequence alignment is common step in many genomic pipelines,
such as read mapping or de-novo assembly. Optimal pairwise sequence
alignment has roughly quadratic runtime complexity in the length of the
sequences, which is prohibitively expensive especially for long sequences.
We define the alignment problem over a sequence pair <text, pattern> as:
1. Finding the minimum number of single character edits (substitutions,

insertions, deletions) to turn text into pattern. This is called the edit
distance.

2. Finding the exact sequence of edits used, called the CIGAR string.

Bitap [1] is a dynamic programming (DP) algorithm for calculating the edit distance.

Input:
• text : ACGT
• pattern : ACGA

Output:
• Edit distance : 1
• Sequence of edits

1. Match A
2. Match C
3. Match G
4. Substitute A for T

3. Problem

We identify three key problems that high-performance implementations
of the GenASM algorithm face:

6. Key Ideas

4. Our Goal

8. Key Results

Our goal is to address the three key problems of the GenASM algorithm
through algorithmic improvements.

Bitap has cubic runtime complexity with respect to the sequence length.

Bitap uses only cheap bitwise operations.

The recently proposed GenASM algorithm [2] extends Bitap in three aspects:

Traceback for determining the CIGAR string

A windowing heuristic that reduces the runtime complexity to linear

Intra-task parallelism

The memory footprint of the working set (the DP table) is large.

The operational intensity (computations per byte accessed) is low. That
is, the computation puts a high pressure on memory bandwidth.

GenASM does unnecessary work. This is because some cells in the DP
table do not contain useful information, but are calculated nevertheless.

Reduce memory footprint of the working set (the DP table)

Reduce the number of bytes accessed

Eliminate unnecessary work

Scrooge provides:

1. Three novel algorithmic improvements to the GenASM algorithm

2. High-performance CPU and GPU implementations of the improved
algorithm, which can align short and long genomic sequence pairs

1. Store Entries, Not Edges (SENE)

2. Discard Entries Not used by Traceback (DENT)

3. Early Termination (ET)

Reduces the memory footprint of the DP table

Reduces the number of bytes accessed

Reduces the memory footprint of the DP table

Reduces the number of bytes accessed

Eliminates unnecessary work

Reduces the number of bytes accessed

Store Entries, Not Edges (SENE)

Discard Entries Not used by Traceback (DENT) Early Termination (ET)

Example of Bitap’s DP table. Each zero indicates a match between a suffix of
text and pattern for a given number of edits. text and pattern have n and m
characters respectively. We consider at most k edits.

7. Methodology

Scrooge has significantly higher throughput than GenASM on both CPUs and GPUs thanks to our algorithmic improvements.
Scrooge consistently outperforms state-of-the-art CPU and GPU baselines.

The original GenASM algorithm
stores 3 edges per DP entry for traceback.

We show that:
1. Storing the entry itself consumes

less space than storing all edges.
2. Edges can be regenerated during

traceback from stored entries.

We show that GenASM’s traceback does not reach:
• The right half of the DP table
• The right half of each bitvector

We show that:
• The row containing the edit distance can be calculated using only the rows above.
• Traceback traverses only the row containing the edit distance, and rows above.

Benefits: Eliminates unnecessary work, and reduces the number of bytes accessed

jmlindegger@gmail.com

An ASIC implementation of Scrooge uses 3.6× less chip area and 2.1× less chip power than a GenASM ASIC from prior work [2].
This is because the Scrooge ASIC can dedicate significantly less on-chip area to SRAMs due to the memory footprint and reductions.

omutlu@gmail.com

Sequence
Alignment

[1] Wu+, “Fast Text Searching: Allowing Errors”, CACM 1992
[2] Senol Cali+, “GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis”, MICRO 2020
[3] Ono+, “PBSIM2: A Simulator for Long-Read Sequencers with a Novel Generative Model of Quality Scores”, Bioinformatics 2020

[4] Li, “Minimap2: Pairwise Alignment for Nucleotide Sequences”, Bioinformatics 2018
[5] Suzuki+, “Introducing Difference Recurrence Relations for Faster Semi-Global Alignment of Long Sequences”, BMC Bioinformatics 2018
[6] Šošić+, “Edlib: A C/C++ Library for Fast, Exact Sequence Alignment using Edit Distance”, Bioinformatics 2017

[7] Marco-Sola+, “Fast Gap-Affine Pairwise Alignment Using the Wavefront Algorithm”, Bioinformatics 2020
[8] Eizenga+, “Improving the Time and Space Complexity of the WFA Algorithm and Generalizing Its Scoring”, bioRxiv 2022
[9] Marco-Sola+, “Optimal Gap-Affine Alignment in O(s) Space”, Bioinformatics 2023

[10] Liu+, “CUDASW++ 3.0: Accelerating Smith-Waterman Protein Database Search by Coupling CPU and GPU SIMD Instructions”, Bioinformatics 2013
[11] Ahmed+, “GPU Acceleration of Darwin Read Overlapper for de novo Assembly of Long DNA Reads”, BMC Bioinformatics 2020

5. Contributions

Algorithmic Improvements

Benefits: Reduces memory footprint
of the working set (the DP table) and
number of bytes accessed 3-fold

Scrooge discards these DP entries.
Benefits: Reduces memory footprint of the working set (the DP table)
and number of bytes accessed 4-fold

Thus, Scrooge:
1. Calculates rows from the top down
2. Until it reaches the row containing the edit distance (identified by a 0 in the MSB)
3. Starts traceback

Datasets:
• Long reads: Simulated from the human genome using PBSIM2 [3], candidate locations from minimap2 [4]
• Short reads: Real Illumina reads from a human genome, candidate locations from minimap2 [4]

Platforms:
• CPU: Dual Socket Intel Xeon Gold 5118 (2× 24 logical cores) at 3.2GHz with 196GB DDR4
• GPU: NVIDIA RTX A6000

Baseline Tools:
• CPU: KSW2 [4,5], Edlib [6],

WFA [7], WFA lm [8],
BiWFA [9]

• GPU: CUDASW++3.0 [10],
Darwin-GPU [11]

Scrooge@arXiv

Scrooge@GitHub

https://arxiv.org/pdf/2208.09985.pdf
https://github.com/CMU-SAFARI/Scrooge

	Slide 1

